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Abstract

Most deployed auctions in 2026 are dynamic: bids today affect
future eligibility, prices, pacing, quality scores, or platform recom-
mendations. Classic DSIC/BIC are either inapplicable or too strong,
and learning-based mechanisms (e.g., RegretNet-style) typically certify
only static incentive properties. Building on the data-driven Stage-
IC and Dynamic-IC metrics introduced in the source survey (I-SIC,
I-DIC), we propose a control-theoretic framework for repeated auc-
tions that treats dynamic incentive compatibility as a monitorable
stability objective. We (i) formalize I-DIC as a local sensitivity of
discounted utility to bid shading, (ii) give an online estimator using
logged outcomes and small bid perturbations or counterfactual mod-
els, (iii) design a primal–dual controller that updates the mechanism to
keep I-DIC below a target threshold, and (iv) prove a stability bound:
if I-DIC ≤ ε each period, then the maximum discounted gain from any
admissible shading policy is O(ε/(1−γ)). The result yields a practical
alternative to full dynamic DSIC: platforms can enforce incentive sta-
bility with minimal assumptions, while trading it off against revenue in
a transparent, tunable way. We validate the approach in ad-auction-
like simulations and show reduced manipulation incentives under drift
compared to static regret-minimization baselines. Numerical methods
are needed only for the counterfactual utility estimation step when the
mechanism is not fully observed/differentiable.
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1 Introduction

Digital platforms increasingly allocate scarce opportunities through mecha-
nisms that repeat, adapt, and learn. Sponsored-search systems run millions
of auctions per day while continuously updating ranking and pricing rules;
marketplaces adjust reserve prices, matching, and fee schedules in response
to realized demand; and gig or creator platforms tune eligibility and exposure
policies based on observed performance. In these environments, a bidder or
seller is not merely choosing a one-shot bid. Rather, she is choosing an action
today that both affects today’s allocation and shapes tomorrow’s mechanism
through the platform’s data-driven updates and the public history that com-
petitors observe. This feedback loop is the defining feature of modern market
design in practice, and it makes dynamic incentives first-order.

A central lesson from classical mechanism design is that dominant-strategy
incentive compatibility (DSIC) provides a robust benchmark: if truthful re-
porting is a dominant strategy, we can reason about welfare and revenue
without modeling strategic manipulation in detail. Yet DSIC is a static
concept. Once the mechanism depends on history and is updated online,
even mechanisms that are “truthful in each period” can create intertempo-
ral incentives: shading a bid today may change future prices, eligibility, or
inferred quality, thereby changing continuation payoffs. Conversely, mecha-
nisms that are not exactly DSIC may still be acceptably robust in practice
if the marginal gains from local deviations are small. This observation moti-
vates our approach: rather than treating incentive compatibility as a binary
property, we study and control incentive sensitivity in repeated, learning-
driven auctions.

The limitations of static notions become especially stark when platforms
pursue performance objectives via machine learning. Contemporary designs
often parameterize allocation and payment rules by a high-dimensional vec-
tor and update it using stochastic gradient methods. Even if one could,
in principle, enforce DSIC by construction, doing so may require restric-
tive functional forms or strong distributional assumptions that are at odds
with the richness of real-world contexts. At the same time, standard online
learning guarantees such as regret bounds typically treat the environment as
exogenous. When agents are strategic and forward-looking, the data used for
learning is itself an equilibrium object: the platform updates based on bids
that respond to the update rule. Thus, the platform faces a joint problem
of learning and incentive management, where small changes in mechanism
parameters can create large changes in strategic behavior, and vice versa.

We propose a framework that makes this interaction measurable and,
crucially, controllable. The key idea is to quantify the local profitability
of bid shading around truthful bidding through a directional derivative of
discounted utility with respect to a multiplicative perturbation. Intuitively,
if a bidder slightly scales her bid by a factor 1 + α, the resulting change
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in her expected current payoff and continuation value reveals how “steep”
her objective is in the direction of manipulation. When this slope is near
zero, truthful bidding is locally stable: the bidder may still be able to im-
prove by large deviations, but small, feasible manipulations (which are often
the relevant ones given operational constraints and uncertainty) yield little
gain. This notion aligns with practice: platforms and auditors rarely need
a theorem that no deviation is profitable; instead they need evidence that
meaningful deviations are not profitable enough to justify engineering effort
or compliance risk.

Our first contribution is to formalize two closely related sensitivity met-
rics: a stage incentive sensitivity (capturing the immediate effect of shading
on the current round) and a dynamic incentive sensitivity (capturing the ef-
fect on current utility plus discounted continuation utility under a reference
continuation behavior, such as truthful bidding thereafter). The dynamic
metric directly targets the intertemporal channel that is central in repeated
settings. Importantly, these objects can be estimated online using symmetric
finite differences induced by small bid perturbations. This makes incentive
monitoring feasible even when the mechanism is complex or learned, pro-
vided the platform can evaluate or approximate counterfactual outcomes
under slightly perturbed bids. The resulting estimator has a transparent
bias–variance tradeoff governed by the perturbation size, and its interpre-
tation is straightforward: it is a normalized “marginal gain from shading”
measured in units of truthful expected surplus.

Our second contribution is conceptual: we show how bounding dynamic
incentive sensitivity translates into a bound on the total discounted gains
from (restricted) strategic manipulation. The economic logic is simple. If
the bidder’s discounted value function is locally flat in a neighborhood around
truthful bidding—in the sense that its derivative with respect to shading is
uniformly small—then even an optimally chosen, history-dependent shad-
ing policy cannot accumulate large benefits. Discounting plays a central
role: a per-period incentive slope can compound over time, but the geomet-
ric discount factor limits this amplification, yielding bounds that scale like
1/(1−γ). This makes precise a tradeoff that platform designers already face
implicitly. Tighter incentive stability (smaller allowable sensitivity) reduces
opportunities for manipulation but restricts the designer’s ability to extract
revenue via aggressive pricing or history dependence. Our results make this
tradeoff explicit and provide constants that tie it to primitives such as Lip-
schitz continuity of per-round utility in bids and the allowed magnitude of
shading.

Our third contribution is methodological and speaks directly to imple-
mentation. We propose an online primal–dual control rule that treats in-
centive sensitivity as a constraint, with a Lagrange multiplier that adapts in
real time. The platform updates its mechanism parameters to increase an
objective such as revenue, while simultaneously penalizing violations of the
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incentive sensitivity budget. This is a natural fit for platforms already oper-
ating gradient-based pipelines: the same machinery used to optimize perfor-
mance can incorporate an incentive “risk” signal. Under standard convexity
and bounded-gradient conditions (on suitable surrogates), the resulting al-
gorithm achieves sublinear regret relative to the best fixed design satisfying
the sensitivity constraint, while ensuring that average constraint violation
vanishes. In economic terms, we obtain a disciplined way to run a revenue-
optimizing mechanism subject to an auditable notion of incentive robustness.

The framework also clarifies what can and cannot be guaranteed. Our
sensitivity metrics are local by construction; they certify stability against
small bid shading around truthful behavior, not global optimality across ar-
bitrary deviations. This is a feature rather than a bug when the designer’s
goal is operational robustness, but it is a limitation for settings where agents
can costlessly implement complex deviations. Likewise, the quality of in-
centive control depends on the quality of counterfactual evaluation: if the
platform’s model of perturbed outcomes is biased, sensitivity may be under-
or over-estimated, leading respectively to manipulability or excessive con-
servatism. These considerations suggest a natural role for monitoring and
auditing: an external party can verify the measurement pipeline and impose
a cap on allowable dynamic incentive sensitivity, analogous to how risk limits
are imposed in safety-critical systems.

Finally, we emphasize the practical interpretation of our approach. Rather
than asking whether a learned auction is exactly truthful—a demanding
and often brittle requirement—we ask whether it is approximately stable in
the sense that marginal incentives to shade are small throughout its op-
eration. This shift from exact DSIC to controlled incentive sensitivity is
well-suited to dynamic platforms, where mechanisms evolve, contexts are
high-dimensional, and the relevant threats are incremental manipulations
that exploit predictable gradients in pricing or ranking rules.

The remainder of the paper develops these ideas as follows. We first
situate our work within the literatures on learning-based mechanism design,
dynamic auctions, and online control of economic systems. We then define
the stage and dynamic incentive sensitivity metrics and show how to esti-
mate them online with finite differences, including a discussion of tuning
and robustness. Next, we establish bounds connecting sensitivity control
to bounded strategic gains under restricted deviation classes, highlighting
the role of discounting and regularity. We then present the primal–dual
controller and analyze its regret and constraint-violation guarantees. We
conclude with implications for platform governance and open questions on
extending local certification to richer deviation models and weaker counter-
factual assumptions.
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2 Related Work

Our work sits at the intersection of learning-based mechanism design, dy-
namic and repeated auctions, and online control in strategic environments.
A useful organizing theme in this literature is the tension between expres-
siveness (mechanisms parameterized by rich function classes and tuned from
data) and incentive guarantees (whether truthful or near-truthful behavior
can be expected when agents are forward-looking). We view our contribu-
tion as providing a measurement-and-control layer that can be attached to
a broad class of learned, history-dependent mechanisms: rather than insist-
ing on exact incentive compatibility, we monitor and bound the marginal
profitability of manipulation in the directions that are operationally salient.

Learning auctions with regret-based objectives. A prominent ap-
proach to automated mechanism design trains a parameterized allocation
and payment rule by minimizing an empirical notion of regret, often along-
side a revenue or welfare objective. RegretNet and related architectures ?
implement this idea by sampling value profiles, optimizing payments and
allocations by gradient descent, and penalizing deviations from truthful re-
porting measured by the best-response utility gain within the sample. This
line of work has two features that are particularly relevant for us. First,
it highlights the practical appeal of incentive constraints expressed as loss
terms that can be optimized with standard ML tooling. Second, it makes
clear that, even in static settings, incentive compatibility is typically en-
forced approximately and empirically, with guarantees that depend on the
richness of the deviation class searched and the quality of best-response com-
putation. Our focus differs in that we target repeated environments in which
the mechanism depends on public history and may update online. In such
settings, the incentive problem is inherently intertemporal: the relevant devi-
ations alter not only current outcomes but also future states through learning
and feedback. Regret-style penalties can be extended to dynamic contexts,
but doing so requires specifying a dynamic deviation model and solving a
dynamic best-response problem, which is computationally and statistically
demanding.

Architectures enforcing structure: RochetNet and MyersonNet.
A complementary line of work builds incentive properties into the parame-
terization itself. RochetNet ? and related methods exploit Rochet’s charac-
terization of implementable allocation rules via convex potentials in quasi-
linear environments, ensuring incentive compatibility by construction (often
up to approximation error). MyersonNet ? and subsequent work similarly
embed Myerson’s virtual-value logic, learning monotone transformations or
reserve policies aligned with revenue-optimality under distributional assump-
tions. These approaches underscore an important design philosophy: if we
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can encode the right structural constraints (monotonicity, convexity, enve-
lope conditions), we can obtain strong, global incentive guarantees. At the
same time, the cost is reduced flexibility and, in many applied domains, a
mismatch between the clean static models that admit exact characteriza-
tions and the messy, contextual, and stateful mechanisms used in practice.
Our perspective is that, once mechanisms become history-dependent and are
updated online, insisting on exact implementability may either be infeasible
or may rule out useful classes of mechanisms (e.g., those incorporating non-
trivial exploration or stateful eligibility rules). In such cases, a disciplined
approximate notion of incentive robustness that remains measurable online
becomes valuable.

Dynamic auctions and dynamic mechanism design. The classical
theory of dynamic mechanism design studies environments in which private
information evolves and the designer may condition on past reports and al-
locations. Seminal contributions characterize efficient and revenue-optimal
dynamic mechanisms under various informational and commitment assump-
tions; see, among many others, ???. This literature provides the conceptual
foundation for understanding continuation values and intertemporal incen-
tive constraints. However, optimal dynamic mechanisms are typically com-
plex even under stylized assumptions, and the resulting prescriptions can
be fragile when the environment is misspecified or when the platform must
learn from interaction data. In repeated auctions run by platforms, history
dependence is often introduced not to implement a theoretically optimal dy-
namic mechanism, but because the platform updates ranking, pricing, or
eligibility rules based on observed outcomes, which in turn are influenced
by strategic behavior. Our analysis is motivated by this operational reality:
the intertemporal channel arises endogenously from learning and feedback
rather than from a fully solved dynamic mechanism design problem.

Approximate incentive compatibility and local notions. A broad set
of papers study relaxations of incentive compatibility, including additive and
multiplicative approximate IC, ex post and interim notions, and empirical IC
guarantees. Regret-based metrics used in learned auctions are one promi-
nent example, but the idea of quantifying “how far” a mechanism is from
IC has older roots in both mechanism design and econometrics. Our stage
and dynamic sensitivity metrics, I-SIC and I-DIC, are most closely related
to local or first-order relaxations: they measure the directional derivative
of (discounted) utility with respect to a small, multiplicative shading of the
truthful bid. Conceptually, this resembles sensitivity analysis in optimization
and influence-function logic in statistics: we ask how the objective responds
to an infinitesimal perturbation, normalized by a scale factor that makes
magnitudes comparable across contexts. The key distinction is that we in-
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corporate continuation value into the derivative, thereby directly targeting
the dynamic feedback loop that is absent in static metrics. The limitation of
any local metric is also clear: local flatness does not rule out profitable large
deviations. We view this as an acceptable tradeoff in settings where devia-
tions are practically constrained (by engineering costs, uncertainty, platform
monitoring, or bid granularity) and where policy goals emphasize robustness
rather than exact dominant strategies.

Online learning and control with constraints in markets. Our primal–
dual controller builds on the extensive literature on online convex optimiza-
tion and constrained online learning ??, where one optimizes a sequence of
objectives while keeping long-run constraint violations small via Lagrange
multipliers. Similar ideas appear in “safe” learning and constrained Markov
decision processes, where one trades off performance and risk through dual
variables. In market settings, online learning techniques have been applied
to dynamic pricing, bandit auctions, and adaptive reserve selection, often
under assumptions that the environment is exogenous or that buyers are
myopic. When agents are strategic and forward-looking, the platform’s data
is equilibrium-dependent, complicating standard regret interpretations. We
do not attempt to solve this general strategic learning problem. Instead,
we propose to treat incentive sensitivity as a monitored constraint, thereby
creating a feedback mechanism that penalizes designs that generate steep
manipulation gradients. This aligns with how platforms often operate: they
may accept that strategic effects exist, but they seek operational guardrails
that limit their magnitude.

Governance, auditing, and practical implementation. Finally, our
framing connects to emerging discussions about auditing algorithmic mar-
ketplaces. In practice, regulators or internal risk teams rarely certify that a
mechanism is exactly DSIC, especially when it is updated continuously. A
more realistic governance question is whether the platform can demonstrate
that the mechanism does not create strong incentives for predictable ma-
nipulation, particularly through small and systematic bid adjustments that
sophisticated participants can automate. By casting this as a measurable
sensitivity budget ε and embedding it into an online control loop, we provide
a language for such audits that is analogous to risk limits in safety-critical
systems. This said, the approach is only as credible as the counterfactual
evaluation used to estimate I-DIC; model error or limited experimentation
can bias measurement. Recognizing this limitation is essential: the contri-
bution is not a substitute for structural mechanism design, but a pragmatic
complement that helps manage incentives when rich, learned, and history-
dependent mechanisms are unavoidable.
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3 Model: repeated contextual auctions with his-
tory dependence

Environment and timing. We study a repeated auction run over a fi-
nite horizon T with n strategic bidders. In each round t ∈ {1, . . . , T}, a
public context xt is observed. The context can encode item features, qual-
ity scores, eligibility constraints, or market conditions that affect either the
feasible allocations or the platform’s ranking and pricing logic. A public
history ht−1 summarizes all past publicly observed information up to t − 1
(e.g., contexts, bid profiles, allocations, payments, and any platform an-
nouncements). Bidder i privately observes a per-round value vi,t ∈ [0, 1] and
submits a bid bi,t. The platform then applies a (possibly history-dependent)
mechanism to produce an allocation vector at = (a1,t, . . . , an,t) and payments
pt = (p1,t, . . . , pn,t). The realized round-t utility is quasilinear,

ui,t = vi,t ai,t − pi,t.

The history updates to ht, and the process repeats.
Two features are central for our purposes. First, allocations and pay-

ments may depend on (xt, ht−1) as well as the full bid profile bt; this captures
a broad class of contextual and stateful marketplace rules. Second, the plat-
form may update its mechanism over time using interaction data. We model
this by a parameter θt and a mechanism familyMθ such that, in round t,

(at, pt) = Mθt(xt, ht−1, bt),

with θt+1 allowed to depend on the observed outcomes. This encompasses
common operational patterns such as learning-to-rank updates, adaptive re-
serve policies, eligibility tuning, and budget pacing logic. Precisely because
θ may evolve endogenously, a bidder’s current bid can influence future allo-
cation and pricing conditions through the public state.

Bidder objectives and continuation values. Bidders are forward-looking
with discount factor γ ∈ [0, 1). For a (possibly history-dependent) bid policy
πi mapping the bidder’s information into bids, bidder i’s discounted utility
is

Ui(πi; θ) = E

[
T∑
t=1

γt−1ui,t

]
,

where the expectation is over values, contexts, and any mechanism or plat-
form randomness, induced by the joint policy profile and the mechanism’s
evolution. It is often convenient to separate the current-round effect of a
bid from its impact on the future through the history. We therefore write
a continuation value from time t+ 1 onward, conditional on the post-round
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history ht,

Ūi,t(ht; θ, πi) = E

[
T∑

τ=t+1

γτ−tui,τ

∣∣∣∣ht
]
.

This quantity is the formal object through which the intertemporal incentive
problem enters: even if a bid deviation is unprofitable myopically, it can be
profitable dynamically if it steers the platform’s state (or rivals’ behavior)
in a favorable direction.

Mechanism class and observability. We intentionally allow Mθ to be
rich and history dependent. From a theoretical perspective, this generality is
what makes exact incentive compatibility hard to ensure: the mapping from
a single bidder’s bid to their overall discounted utility can become complex
once learning, feedback, and state updates are present. From a practical
perspective, however, it reflects how real platforms operate. A platform
typically does not commit to a fixed auction rule for long horizons; instead it
iterates, monitors, and updates. Our goal is therefore not to impose a narrow
structural form, but to develop incentive notions that can be monitored in
such adaptive regimes.

We also emphasize an informational asymmetry that matters for imple-
mentation: the platform generally observes bids, allocations, and payments,
but may not observe values. For governance purposes, the relevant question
is whether the platform can nonetheless detect and limit the profitability
of systematic bid manipulations using the signals it does observe (possibly
augmented by experiments or counterfactual estimation).

Dynamic best responses and the truthful benchmark. Fix a plat-
form update rule (or a realized path of parameters θ1, . . . , θT ). In round
t, bidder i’s dynamic best response trades off current utility and contin-
uation value. Formally, letting ûi,t(bi,t;ht−1, vi,t) denote bidder i’s interim
per-round utility when they submit bi,t (holding (ht−1, xt, vi,t) fixed and inte-
grating over other bidders’ bids and any mechanism randomness), a dynamic
best response solves

bi,t ∈ argmax
b∈B

E
[
ûi,t(b;ht−1, vi,t) + Ūi,t(ht; θ, πi)

∣∣∣∣ht−1, vi,t

]
.

The canonical benchmark is truthful bidding, bi,t = vi,t, interpreted as the
reporting policy the platform would like to elicit. An “ideal” dynamic incen-
tive compatibility requirement would assert that truthful bidding is optimal
at every history and value realization. In repeated, history-dependent en-
vironments, this requirement is typically too strong: it can fail even for
mechanisms that are myopically truthful because the continuation value Ūi,t

introduces new strategic channels.
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Admissible deviations and why we focus on shading. Rather than
attempting to characterize all possible dynamic deviations, we adopt a de-
viation class that is both economically meaningful and operationally salient:
multiplicative bid shading around truth. Concretely, we consider policies of
the form

bi,t = si,t(ht−1) vi,t,

with shading factors constrained to lie in a neighborhood of one, si,t(ht−1) ∈
[1− ᾱ, 1 + ᾱ] for some small ᾱ > 0. This class captures the kind of manip-
ulation that sophisticated participants can automate at scale (e.g., uniform
bid multipliers, pacing-like behavior, or systematic underbidding in response
to perceived overpricing) without requiring them to solve a full dynamic
program.

We view the restriction to local shading deviations as a deliberate trade-
off. It yields a tractable and monitorable notion of incentive robustness, but
it does not preclude profitable large deviations or more complex misreports.
This limitation is important in principle; nonetheless, in many marketplace
settings the most common strategic behaviors are incremental and system-
atic, and platforms often seek guardrails that prevent “small hacks” from
compounding into substantial advantage.

Stage versus dynamic incentive stability. The key conceptual distinc-
tion in a stateful mechanism is between incentives that operate within a
round and incentives that operate through the state. To formalize this, we
separate two objects:

(i) Stage incentives ask: holding the public state fixed and abstracting
from future consequences, how profitable is a small deviation from truthful
bidding in the current round? This corresponds to the familiar static IC
logic applied conditional on (xt, ht−1).

(ii) Dynamic incentives ask: accounting for how current actions affect the
next public history and thereby future allocations, payments, and platform
updates, how profitable is a small deviation? This is the relevant notion when
θ is updated online or when future eligibility/ranking depends on observed
bids and outcomes.

Our aim is not to enforce exact optimality of truth-telling, but to bound
the marginal gain from such deviations. Intuitively, we would like the bid-
der’s discounted value as a function of the shading factor s to be locally
flat at s = 1: if the slope is small, then nearby systematic shading provides
little advantage, and the platform is less exposed to predictable forms of
manipulation.

Local stability budgets as design constraints. We operationalize these
ideas by introducing per-round incentive stability metrics: one for the stage
effect and one for the dynamic (stage plus continuation) effect. Each metric
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is designed to be (i) local, in the sense of focusing on a small perturbation
around truthful bidding; (ii) normalized, so that magnitudes are comparable
across contexts; and (iii) amenable to online estimation using bid pertur-
bations or counterfactual evaluation. A platform (or an external auditor)
can then impose a stability budget ε, requiring that the local profitability of
shading remain below ε each round (or on average conditional on history).
This creates a concrete governance handle: rather than certifying global
IC in an adaptive system, the platform can demonstrate that it keeps the
manipulation gradient small in the directions most likely to be exploited.

In the next section we formalize these metrics as directional derivatives of
(discounted) utility with respect to the shading factor and state the regularity
conditions under which they are well-defined and computable.

4 Metrics as sensitivity: stage and dynamic slopes
around truth

We now formalize the idea that an adaptive, history-dependent mechanism
can be locally robust to manipulation even when it is not globally (dynamic)
incentive compatible. The object we can hope to monitor in real time is not
a global deviation gain—which depends on a high-dimensional policy class—
but rather the marginal gain from systematic shading in a neighborhood of
truthful bidding. Concretely, we perturb bidder i’s truthful bid vi,t by a
multiplicative factor s close to one and ask how the bidder’s (discounted)
value changes at s = 1.

Directional perturbations and the stage utility map. Fix a round t,
a public history ht−1, and bidder i’s value realization v ∈ [0, 1]. We write
ûi,t(b;ht−1, v) for bidder i’s interim stage utility when they submit bid b,
holding (ht−1, xt, v) fixed and integrating over rivals’ bids and any mechanism
randomness induced byMθt . We then consider the one-dimensional bid path

b = sv, s ∈ R+,

and focus on local deviations s = 1 + α for small α. The multiplicative
parameterization is convenient for two reasons. First, it aligns with common
operational manipulations (uniform bid multipliers, conservative underbid-
ding, pacing-style attenuation). Second, it is scale-consistent in the sense
that a fixed α represents the same proportional change for low and high
values.

Stage incentive stability: I-SIC. The stage metric measures the local
slope of current-round utility with respect to shading, abstracting from any
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effect of the bid on the future state. Formally, whenever ûi,t(sv;ht−1, v) is
differentiable in s at s = 1, we define the (signed) stage sensitivity

I-SICi,t :=
∂
∂α E

[
ûi,t
(
(1 + α)vi,t;ht−1, vi,t

) ∣∣ht−1

]∣∣
α=0

E
[
vi,t ai,t(vi,t)

∣∣ht−1

] .

The numerator is the directional derivative at truth in the “shading direc-
tion” b = (1 + α)v. The denominator normalizes by a truthful benchmark
scale, E[va(v) | ht−1], which can be interpreted as expected truthful gross
value (welfare for bidder i) in round t. This normalization makes the metric
comparable across contexts and histories with very different levels of trade or
assignment probability. (When E[va(v) | ht−1] = 0, the round is effectively
irrelevant for bidder i, and the metric is either undefined or taken to be 0 by
convention; in what follows we assume it is bounded away from zero on the
histories of interest.)

The sign of I-SICi,t is informative: a positive value indicates that locally
increasing the bid (relative to value) increases interim stage utility, whereas a
negative value indicates local profitability of shading down. For governance,
we typically care about the magnitude of local manipulability, and thus im-
pose a budget on |I-SICi,t| (or, in one-sided formulations, on the positive
part if only overbidding is relevant). A small bound |I-SICi,t| ≤ ε implies
that for small α,

E
[
ûi,t
(
(1 + α)vi,t

)
− ûi,t(vi,t)

∣∣ht−1

]
≈ α · I-SICi,t · E

[
vi,tai,t(vi,t)

∣∣ht−1

]
,

so the dollar gain from small systematic shading is proportional to ε times
the truthful scale.

Dynamic incentive stability: I-DIC. In a stateful mechanism, a bid
can also change the next history ht and thereby the continuation value. We
therefore extend the same sensitivity logic to discounted utility. Fixing a ref-
erence continuation behavior (e.g., truthful bidding from t+ 1 onward) and
the platform’s update rule for θ, let Ūi,t(ht; θ, πi) denote bidder i’s continua-
tion value from t+1 onward as defined earlier. We view Ūi,t as a function of
the post-round history ht, and hence (implicitly) as a function of the current
bid through the induced distribution over ht. When this composite map is
differentiable along the shading path at s = 1, we define

I-DICi,t :=
∂
∂α E

[
ûi,t
(
(1 + α)vi,t

)
+ Ūi,t

(
(1 + α)vi,t

) ∣∣ht−1

]∣∣
α=0

E
[
vi,t ai,t(vi,t)

∣∣ht−1

] .

This metric captures the full local incentive effect of shading: the immediate
change in payments/allocations plus the induced change in the distribution of
future states (and thus future utilities). It is therefore the relevant constraint
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when θ is updated online, when eligibility depends on past bids/outcomes,
or when any part of the mechanism is explicitly history dependent.

As with the stage metric, the dynamic metric can be read as a local first-
order condition: if the bidder’s discounted objective is locally maximized
at truthful bidding along the shading direction, then the derivative is zero
(or satisfies a suitable inequality at the boundary), implying I-DICi,t ≈ 0.
More generally, requiring |I-DICi,t| ≤ ε enforces that the discounted value
function is locally flat at s = 1, so that no small multiplicative shading rule
can reliably extract a large advantage through either the current mechanism
mapping or the induced state dynamics.

When are the metrics well-defined? The definitions above are local
derivatives, so they require mild regularity near truthful bidding. Our stand-
ing assumption (H1) ensures that for each (i, t), the interim stage utility
ûi,t(b;ht−1, v) is differentiable in b at b = v and L-Lipschitz in b uniformly
over (ht−1, v). Lipschitzness serves two roles. First, it rules out pathological
sensitivity: a small bid perturbation cannot create an arbitrarily large utility
jump. Second, it provides the control needed for finite-difference approxi-
mations: for α small, the deviation payoff is approximately linear in α, with
remainder terms controlled by smoothness (or, more weakly, by generalized
derivative bounds). The boundedness assumption (H2) similarly ensures
that continuation values are well-defined and that interchanging differen-
tiation and expectation is justified under standard dominated convergence
arguments.

It is worth emphasizing a practical point: many allocation rules are
not pointwise differentiable in bids (e.g., deterministic winner-take-all rules).
What matters here is differentiability of the interim objective ûi,t along the
shading path after integrating over other bidders and mechanism random-
ness. Random tie-breaking, reserve noise, smoothing in ranking, or context
variability can all render the interim map differentiable even when the re-
alized allocation is discontinuous. When differentiability fails, Lipschitzness
still implies almost-everywhere differentiability (by Rademacher’s theorem)
and supports interpreting the metric via directional derivatives or subgra-
dients; empirically, our estimators in the next section target the same local
slope through symmetric perturbations.

A note on normalization and interpretation. Finally, the normaliza-
tion by E[va(v) | ht−1] is not merely cosmetic. Without it, the same absolute
derivative could correspond to negligible strategic significance in low-volume
contexts and major manipulability in high-volume contexts. The normalized
metric expresses the marginal gain from shading as a fraction of a truthful-
scale benchmark, aligning with the idea of a platform-wide stability budget
ε that is meaningful across heterogeneous rounds and bidder populations.
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Having defined I-SIC and I-DIC as local slopes, we next turn to how a
platform (or auditor) can estimate them online from logged interaction data,
both when the mechanism admits direct counterfactual evaluation and when
it must be treated as a black box.

5 Online estimation of local incentive slopes from
logged interaction

The definitions of I-SICi,t and I-DICi,t are directional derivatives, so the
natural empirical counterpart is a finite-difference slope computed around the
truthful point b = v. The main implementation question is counterfactual
access: can we evaluate what would have happened in round t had bidder i
submitted (1±α)vi,t while all else in that round was held fixed? We describe
two settings that cover most platform deployments.

A symmetric finite-difference template. Fix (i, t) and a history ht−1.
Consider two perturbed bids,

b+i,t := (1 + α)vi,t, b−i,t := (1− α)vi,t,

with α > 0 small. Let Wi,t(b) denote the bidder’s discounted objective
“starting in round t” evaluated at bid b in round t and a specified continuation
rule thereafter:

Wi,t(b) := ûi,t(b;ht−1, vi,t) + Ūi,t(b;ht−1, vi,t).

A direct finite-difference estimate of the (unnormalized) derivative is

D̂i,t :=
Ŵi,t(b

+
i,t)− Ŵi,t(b

−
i,t)

2α
,

and the corresponding normalized metric estimate is

Î-DICi,t :=
D̂i,t

Ẑi,t

, Ẑi,t ≈ E
[
vi,tai,t(vi,t)

∣∣ht−1

]
.

Using the symmetric difference is important in practice: under smoothness,
it has bias O(α2), while the one-sided difference has bias O(α). The same
template applies to I-SIC by dropping Ūi,t.

Two operational details matter. First, the denominator Ẑi,t is itself an
object of conditional expectation; a single realization vi,tai,t can be too noisy
when trade is sparse. In applications we typically use a rolling regression or
moving average (conditioning on coarse bins of xt and ht−1) so that the nor-
malization does not spuriously explode. Second, because D̂i,t is computed
per-round, platforms usually smooth Î-DICi,t across time (e.g., an exponen-
tial moving average) before feeding it into a controller, trading responsiveness
for variance reduction.
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(a) Known and (interim) differentiable mechanisms: direct coun-
terfactual evaluation. In the most transparent setting, the platform knows
Mθt and can re-run the allocation and payment mapping on the realized
bid profile with bidder i’s bid replaced. Concretely, in round t we observe
(xt, ht−1, bt) and the mechanism’s internal randomness (or its random seed).
We can then compute counterfactual outcomes

(a+t , p
+
t ) =Mθt

(
xt, ht−1, (b

+
i,t, b−i,t)

)
, (a−t , p

−
t ) =Mθt

(
xt, ht−1, (b

−
i,t, b−i,t)

)
,

and form stage-utility realizations

̂̂ui,t(b±i,t) := vi,t a
±
i,t − p±i,t,

where vi,t is treated as the value at which the directional derivative is defined
(in a lab setting it is known; in the field, one can replace it with a calibrated
proxy or focus on sensitivity with respect to the reported bid itself). The
remaining term is the continuation value. A practically useful representation
is a value-function approximation V̂i,t(·) mapping post-round public history
to expected discounted future utility under the reference continuation rule:

̂̄U i,t(b) ≈ γ V̂i,t(ht(b)) ,

where ht(b) is the counterfactual next history induced by submitting b in
round t (including the counterfactual allocation/payment and any public
state variables updated from them). This turns the dynamic slope into a
one-step lookahead object, analogous to temporal-difference methods in re-
inforcement learning, and it avoids high-variance full-horizon rollouts. When
the horizon is short (or when an accurate simulator is available), Monte Carlo
rollouts under the reference continuation rule are also feasible:

̂̄U i,t(b) =

t+H∑
τ=t+1

γτ−t ûi,τ (b),

with truncation H controlling variance and bias.
Direct counterfactual evaluation is numerically stable because it does

not require importance weights; the main tuning knob is α. Too large an
α invalidates the local approximation; too small an α makes the difference
Ŵ (b+) − Ŵ (b−) dominated by noise from discrete allocation changes and
value-function error. In deployments we therefore choose α by monitoring
the empirical signal-to-noise ratio of the numerator and by imposing an α-
floor to avoid numerical cancellation.

(b) Black-box mechanisms: model-based and off-policy estimators.
When the platform cannot reliably re-run Mθt on arbitrary counterfactual
bids (e.g., due to proprietary components, non-deterministic downstream
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systems, or missing internal randomness), Ŵi,t(b
±
i,t) must be estimated from

logged data. This is an off-policy evaluation (OPE) problem: we observed
outcomes under the behavior distribution of bids, but we need the value
under a nearby “target action”.

A model-based approach learns a differentiable surrogate M̂ϕ from logs,
mapping (xt, ht−1, bt) to predicted allocations and payments. One then eval-
uates M̂ϕ at (b±i,t, b−i,t) to obtain (â±t , p̂

±
t ), and proceeds exactly as in case

(a), replacing true counterfactual outcomes with predicted ones. The advan-
tage is low variance; the limitation is bias from model misspecification, which
directly feeds into Î-DIC and can cause systematic under-enforcement of the
constraint. For this reason, we prefer flexible models with calibrated uncer-
tainty, and we recommend periodic backtests against any available partial
ground truth (e.g., replay in controlled sandboxes).

Alternatively, one can use importance sampling when the platform knows
(or can estimate) the conditional bid density µi,t(b | ht−1, vi,t) that generated
observed bids. For a stochastic target policy π±

i,t concentrated near b±i,t, we
can form weights

w±
i,t :=

π±
i,t(bi,t | ht−1, vi,t)

µi,t(bi,t | ht−1, vi,t)
,

and estimate E[Wi,t(b
±
i,t)] by a weighted average of realized Wi,t(bi,t). Two nu-

merical requirements are non-negotiable: overlap (the behavior policy must
put sufficient mass where the target policy concentrates) and weight control
(the ratio must not have heavy tails). In practice this pushes us toward (i)
deliberately randomized exploration that occasionally perturbs bids or bid
multipliers so that nearby actions have support, and (ii) variance reduction
via clipped weights, self-normalized importance sampling, and/or doubly ro-
bust estimators that combine a reward model with importance weights:

ŴDR = Ŵmodel(b±) + w±
(
W (b)− Ŵmodel(b)

)
.

The doubly robust form is particularly attractive here because the incentive-
slope estimator is a difference of two nearby counterfactual values; correlated
errors can cancel if the model is smooth, while the importance term guards
against bias when overlap is adequate.

A final practical limitation is that deterministic targets b = b±i,t are in-
compatible with importance sampling unless the behavior has point mass
at exactly those bids. We therefore interpret the derivative operationally as
the slope of a smoothed objective, using a narrow stochastic target around
(1 ± α)v (e.g., log-normal noise on the multiplier). This makes the OPE
problem well-posed and aligns with the fact that, empirically, we care about
systematic shading rules with small but nonzero dispersion.

Taken together, these estimators provide a feasible monitoring layer:
when counterfactual replay is available, Î-DIC can be computed with rela-
tively modest statistical complexity; when it is not, the platform must either
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invest in credible surrogate models or introduce controlled randomization to
ensure overlap, accepting the accompanying bias–variance and governance
tradeoffs.

6 Online control: constrained revenue optimization
with I-DIC caps

Once Î-DICi,t is available as a monitoring signal, the remaining design prob-
lem is operational: how do we adapt the mechanism parameters θ to improve
revenue while ensuring that local dynamic incentives remain within a pre-
scribed stability budget ε? We treat this as a constrained online optimization
problem in which each round produces (i) a noisy revenue gradient signal and
(ii) a noisy constraint signal based on incentive slopes. The controller then
updates θ in small increments, with explicit safeguards to prevent transient
constraint blow-ups from propagating into large regime shifts.

A Lagrangian viewpoint and primal–dual updates. Let Rt(θ) denote
a per-round revenue objective (possibly discounted by the platform) evalu-
ated underMθ at the realized context and bid profile, and let Gi,t(θ) denote
the round-t incentive-sensitivity quantity we aim to cap, e.g.

Gi,t(θ) := I-DICi,t(θ), with constraint Gi,t(θ) ≤ ε.

In many deployments θ affects reserves, rank-score coefficients, pacing pa-
rameters, or other pricing rules, and Rt(θ) is not literally concave. Nonethe-
less, a robust control template is to run a primal–dual update on a surrogate
Lagrangian with stochastic gradients:

Lt(θ, λt) = R̂t(θ) −
n∑

i=1

λi,t

(
Ĝi,t(θ)− ε

)
, λi,t ≥ 0,

with a primal step that moves θ in the direction of higher revenue penalized
by constraint pressure, and a dual step that increases penalties when the
estimated incentive slope exceeds ε. Concretely, for step sizes ηθ, ηλ > 0 and
a feasible parameter domain Θ (e.g. box constraints), we implement

θt+1 = ΠΘ

(
θt + ηθ

(
∇θR̂t(θt)−

n∑
i=1

λi,t∇θĜi,t(θt)
))

, λi,t+1 =
[
λi,t+ηλ

(
Ĝi,t(θt)−ε

)]
+
,

where ΠΘ is projection and [·]+ is truncation at zero. Even when gradients
are only approximate (e.g. obtained from a differentiable surrogate, or via
bandit feedback), the structure is useful: the dual variables λi,t become
interpretable “prices of manipulability,” rising precisely when the monitored
incentive slope drifts upward, and relaxing when the mechanism is locally
flat around truthful bidding.

18



Per-bidder versus aggregate constraints. A practical decision is whether
to maintain n separate constraints Gi,t ≤ ε or to enforce a single aggregate
bound. The per-bidder form is the most direct interpretation of an “indi-
vidual” stability promise and avoids a scenario in which a small subset of
bidders faces large shading incentives while the average remains acceptable.
The downside is statistical: Ĝi,t can be noisy bidder-by-bidder, especially
when some bidders participate infrequently, and the resulting λi,t may over-
react.

Two aggregations are common. First, a max-type constraint maxiGi,t ≤
ε can be implemented by a smooth approximation (e.g. log-sum-exp) or by
maintaining a single dual variable driven by the worst observed bidder:

λt+1 =
[
λt + ηλ(max

i
Ĝi,t(θt)− ε)

]
+
.

Second, a weighted average
∑

iwiGi,t ≤ ε can be matched to policy objec-
tives (e.g. weights based on spend, participation, or protected classes), at
the cost of weakening individual guarantees. In regulated settings we typi-
cally recommend per-bidder constraints whenever participation is sufficiently
dense to support stable estimation, and otherwise a hybrid: enforce a max
constraint over coarse bidder segments (by size or vertical) while logging
bidder-level metrics for audit.

Smoothing and two-timescale control. Because Î-DIC is a difference of
two counterfactual values, it inherits variance from both the numerator and
the continuation-value approximation. Feeding the raw per-round estimate
into a controller can yield “chatter” in θ and oscillations in λ. We therefore
separate measurement from actuation: we maintain an exponential moving
average

G̃i,t = (1− ρ)G̃i,t−1 + ρ Ĝi,t, ρ ∈ (0, 1],

and drive the dual update with G̃i,t rather than Ĝi,t. A complementary
stabilization is a two-timescale step-size choice ηλ ≫ ηθ: the dual reacts
quickly to emerging violations (raising penalties), while the primal moves
cautiously to avoid overshooting. In practice we also cap λ above by λmax

to prevent extreme penalties from forcing θ to the boundary of Θ due to a
brief burst of measurement noise.

Safety filters and rollback mechanisms. Primal–dual updates are asymp-
totic guarantees; a platform operator typically cares about ex post safety in
each deployment window. We therefore implement a “safety filter” that sits
between the computed update and the production mechanism. The simplest
filter is a backtracking line-search on the step size: propose θpropt+1 from the
update above, re-evaluate a fast proxy of G̃i,t (or a conservative upper con-
fidence bound), and shrink the step until the proxy is below ε (or below
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ε − δ for a slack δ > 0). When fast re-evaluation is unavailable, we use a
conservative rule: if G̃i,t > ε, then (i) freeze the primal update (θt+1 = θt)
and (ii) increase λ until the constraint pressure is sufficiently large that the
next non-frozen step is dominated by the penalty term.

A second safety instrument is rollback to a certified-safe baseline θsafe.
Many platforms have a historically stable configuration (e.g. a fixed reserve
policy) that is known to exhibit low manipulability. We keep θsafe as an
anchor and impose a trust region ∥θt − θsafe∥ ≤ r. If the monitored metric
breaches a hard threshold εhard > ε (suggesting a genuine regime break
rather than noise), we reset θt+1 ← θsafe and restart the dual variables. This
introduces conservatism, but it aligns with operational risk management:
short-lived revenue improvements are not worth large incentive shocks.

Step sizes, batching, and delayed feedback. In high-throughput mar-
kets, updating θ every round is unnecessary and can amplify noise. We
commonly batch updates over windows t ∈ {kB + 1, . . . , (k + 1)B} and ap-
ply a single update using averaged estimators Rk, Gi,k. Batching reduces
variance and accommodates delayed feedback (e.g. when payments or con-
versions are observed later). When the continuation-value approximation V̂
is itself learned online, we recommend staggering updates: update V̂ at a
faster cadence, and update θ more slowly once the value estimates stabilize,
to avoid coupling two drifting estimators.

Implementation with non-differentiable mechanisms. Some compo-
nents of Mθ are discrete (rank thresholds, tie-breaking, eligibility rules),
so ∇θR̂t and ∇θĜi,t may not exist in the classical sense. In those cases
we use (i) differentiable relaxations (softmax ranks, smoothed reserves), (ii)
straight-through estimators, or (iii) bandit-style gradient estimates (random
perturbations of θ and regression of outcomes on perturbations). The key
requirement for the control logic is not perfect differentiability, but a direc-
tionally informative update that, on average, moves revenue up while moving
the incentive metric down when it is above budget.

What the controller does not guarantee. Finally, we emphasize a lim-
itation that informs the theory that follows. The controller enforces a local
sensitivity cap with respect to small multiplicative shading, and it does so
through noisy estimates. This does not rule out profitable large deviations
or sophisticated dynamic policies in a fully adversarial sense. What it does
provide is a disciplined way to keep the objective locally flat around truthful
bidding and to prevent learning-driven changes in θ from inadvertently cre-
ating steep incentive gradients. In the next section we formalize how such
local flatness, when maintained uniformly over time, translates into a bound
on the global discounted advantage of bid shading.
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7 Theory I (stability): from local I-DIC caps to
global manipulation bounds

Our monitoring signal I-DICi,t is intentionally local : it measures the direc-
tional derivative of bidder i’s discounted objective at the truthful bid under
a small multiplicative shading. The central theoretical question is whether
such local flatness can be promoted into a global guarantee on the discounted
advantage of any admissible bid-shading policy. The answer is yes, pro-
vided we restrict attention to deviations that remain in a neighborhood of
truth-telling and we assume mild regularity so that derivatives control finite
changes.

Deviation class and the relevant value function. Fix a bidder i and
a round t. We consider deviations of the form

bi,t = si,t(ht−1) vi,t, si,t(ht−1) ∈ [1− ᾱ, 1 + ᾱ],

with ᾱ ∈ (0, 1) small. This class captures the most operationally common
manipulations (systematic shading or overbidding relative to value) while
remaining interpretable as a local perturbation around truthful bidding.

To connect a one-step derivative to an intertemporal payoff, it is conve-
nient to define a one-shot discounted objective at time t that already includes
the continuation value induced by the deviation:

Wi,t(s;ht−1) := E
[
ûi,t(svi,t;ht−1, vi,t) + Ūi,t(ht; θ, truth thereafter)

∣∣ht−1

]
,

where Ūi,t is the expected future discounted utility from t+1 onward under a
specified reference continuation rule (e.g., truthful bidding in future periods).
The choice of continuation rule matters for interpretation: I-DIC is a sensi-
tivity of a particular dynamic objective, and our bound is correspondingly
with respect to the same objective. This is appropriate for auditing and
control, where we must commit to a reference behavior for counterfactual
evaluation.

A stability-to-gain bound. The core implication of I-DICi,t ≤ ε is that
the derivative of Wi,t with respect to shading is small at s = 1, once we
normalize by truthful expected welfare E[vi,tai,t(vi,t)]. To translate this into
a bound for finite deviations s ̸= 1, we assume that Wi,t(·;ht−1) is regular
enough that its slope does not change arbitrarily fast within [1−ᾱ, 1+ᾱ]. One
convenient sufficient condition is that Wi,t is differentiable on this interval
and that its derivative is bounded there by the monitored budget:∣∣∣∣ ∂∂sWi,t(s;ht−1)

∣∣∣∣ ≤ ε · E[vi,tai,t(vi,t) | ht−1] ∀s ∈ [1− ᾱ, 1 + ᾱ]. (1)

21



Condition (1) can be read in two ways. First, it is exactly what we obtain
if we monitor I-DIC not only at s = 1 but also at the two perturbed bids
(1 ± α)v and impose a conservative bound over the neighborhood (which
is feasible in high-throughput environments). Second, it can be implied by
monitoring at s = 1 together with a Lipschitz condition on the derivative
in s (so that small neighborhoods inherit small slopes up to a second-order
slack).

Under (1), the gain from any admissible shading factor si,t is controlled
by integrating the slope:

Wi,t(si,t;ht−1)−Wi,t(1;ht−1) =

∫ si,t

1

∂

∂s
Wi,t(s;ht−1) ds ≤ ε·E[vi,tai,t(vi,t) | ht−1]·|si,t−1|.

Since |si,t − 1| ≤ ᾱ, we obtain a per-period bound

Wi,t(si,t;ht−1)−Wi,t(1;ht−1) ≤ ε ᾱ · E[vi,tai,t(vi,t) | ht−1] . (2)

Summing (2) over t, and using geometric discounting, yields the global dis-
counted gain bound

E[Ui(πi)− Ui(truth)] ≤ ε ᾱ

1− γ
· sup

t
E[vi,tai,t(vi,t)] . (3)

If we want a bound that depends only on primitives and avoids a supt, we
can impose a uniform upper bound E[vi,tai,t(vi,t)] ≤ 1, and/or a lower bound
E[vi,tai,t(vi,t)] ≥ w > 0 (which is already implicit in the normalization used
to define I-DIC). With w available, (3) can be stated in the normalized
form highlighted earlier: the maximum advantage scales linearly in ε and is
amplified by at most 1/(1− γ).

Where Lipschitzness enters. The derivative-band condition (1) is a
clean route to (3), but it is not the only one. Under (H1), per-round utility
is L-Lipschitz in the bid, which implies an a priori absolute bound∣∣ûi,t(svi,t)− ûi,t(vi,t)

∣∣ ≤ L |s− 1| vi,t ≤ L ᾱ.

This does not by itself guarantee that shading is unprofitable, but it controls
how much any single period can contribute to a deviation. When com-
bined with a monitored small I-DIC (which forces the first-order term to be
small), Lipschitzness controls the residual second-order accumulation over
time, yielding constants of the form C = C(L, ᾱ, w) in the global bound.

Multiple bidders. Because I-DICi,t is defined bidder-by-bidder, the sta-
bility guarantee extends pointwise: if the platform enforces I-DICi,t ≤ ε for
every i and t, then each bidder’s unilateral shading gain is bounded as in
(3). Importantly, the mechanism may couple bidders through allocation and
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pricing, but the bound remains individual: it evaluates the best-response
advantage of bidder i holding the environment fixed (including the policy
used to define Ūi,t). Thus, the guarantee is not that the joint profile is an
equilibrium, but that no single bidder has a large local incentive to shade
within the prescribed class. This is precisely the notion needed for an audi-
tor’s manipulability budget and for a controller that seeks to prevent sharp
incentive gradients from emerging as θ drifts.

Heterogeneous discounting. If bidders have heterogeneous discount fac-
tors γi, the only change is the horizon amplification term. Repeating the
summation with bidder-specific discounting gives

E[Ui(πi)− Ui(truth)] ≤ ε ᾱ

1− γi
· sup

t
E[vi,tai,t(vi,t)] .

This comparative static is operationally relevant: in markets with sophis-
ticated, patient bidders (large γi), even small per-period incentive slopes
can cumulate, so the same ε corresponds to a weaker global guarantee. Con-
versely, for myopic bidders (small γi), the platform can tolerate a larger local
slope without materially increasing the long-run manipulation bound.

What this guarantee does and does not say. We should be explicit
about scope. The bound controls discounted gains from small, multiplicative
shading policies that remain near truthful bids; it does not exclude prof-
itable large deviations, nor does it certify equilibrium play under arbitrary
dynamic strategies. Its value is instead as a stability certificate: by keep-
ing Wi,t locally flat around truth-telling uniformly over time, we prevent
learning-driven updates of θ from creating systematically exploitable gra-
dients. The next step is to ask whether the same monitoring-and-control
apparatus can deliver platform-side performance guarantees—namely, rev-
enue regret bounds for the online controller relative to the best fixed feasible
mechanism under tractable surrogate assumptions.

8 Theory II (online performance): regret of incentive-
aware control

We now turn from the bidder-side guarantee to the platform-side question:
if we actively enforce I-DIC ≤ ε while learning or adapting θ, how much
revenue do we lose relative to the best fixed feasible mechanism we could
have run in hindsight? This is the relevant benchmark for practice. A
controller that stabilizes incentives but destroys revenue is not a credible
policy tool; conversely, a controller that approximately matches the best
feasible static design while maintaining the manipulability budget gives a
principled “no-regrets for auditing” interpretation.
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Online problem and benchmark. At each round t, after observing
(xt, ht−1), the platform selects parameters θt ∈ Θ (a compact convex set)
and runsMθt . Let Rt(θt) denote the realized platform revenue in that round
(e.g.,

∑
i pi,t), and let Gt(θt) denote an aggregate incentive-sensitivity sig-

nal (e.g., maxi I-DICi,t(θt) or 1
n

∑
i I-DICi,t(θt)). Since I-DIC is typically

estimated with perturbations, we work with estimators R̂t(θt) and Ĝt(θt),
measurable with respect to the platform’s information at time t.

The natural comparator is the best fixed parameter θ that respects the
incentive budget:

θ⋆ ∈ argmax
θ∈Θ

T∑
t=1

E[Rt(θ)] s.t. E[Gt(θ)] ≤ ε ∀t,

or, in a stationary formulation, E[G(θ)] ≤ ε under the induced data-generating
process. We emphasize the interpretation: we are not comparing to the glob-
ally optimal unconstrained revenue-maximizer (which may be highly manip-
ulable), but to the best mechanism that an auditor would deem acceptable.

Convex surrogate assumption. To obtain transparent regret bounds,
we adopt a standard surrogate view: there exist convex functions rt(θ) and
gt(θ) such that (i) maximizing

∑
t rt(θ) is aligned with maximizing revenue

(e.g., rt is a concave lower bound or a convex loss −rt is minimized), and (ii)
gt(θ) upper bounds the incentive signal (or a smooth approximation thereof).
Formally, we assume that −rt(θ) and gt(θ) are convex on Θ with bounded
gradients,

∥∇θrt(θ)∥ ≤ GR, ∥∇θgt(θ)∥ ≤ GG,

and that the stochastic estimators satisfy a bounded-bias condition,

E
[
∇θR̂t(θ) | ht−1

]
= ∇θrt(θ)+δRt (θ), E

[
∇θĜt(θ) | ht−1

]
= ∇θgt(θ)+δGt (θ),

with ∥δRt (θ)∥ ≤ ∆R and ∥δGt (θ)∥ ≤ ∆G. In particular, when Ĝt is computed
by symmetric finite differences with step size α, the smoothness assumptions
underlying Proposition 1 yield ∆G = O(α2) (at the cost of variance that
grows as α shrinks).

Primal–dual controller and its guarantee. We consider the online La-
grangian

Lt(θ, λ) = −rt(θ) + λ
(
gt(θ)− ε

)
, λ ≥ 0,

and implement projected stochastic gradient steps,

θt+1 = ΠΘ

(
θt + η∇θR̂t(θt)− η λt∇θĜt(θt)

)
, λt+1 =

[
λt+ηλ

(
Ĝt(θt)−ε

)]
+
.

(4)
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The economic meaning is direct: λt is an endogenous “shadow price” of
manipulability. When the estimated incentive sensitivity exceeds the budget,
λt rises and the next parameter update places more weight on reducing Gt;
when the system is comfortably stable, λt relaxes and the update behaves
more like revenue ascent.

Under the convex surrogate assumptions and boundedness of Θ, standard
online primal–dual analysis implies two performance statements. First, the
(expected) revenue regret against the best fixed feasible θ is sublinear:

RegT := max
θ∈Θ: gt(θ)≤ε ∀t

T∑
t=1

E[rt(θ)− rt(θt)] ≤ O(
√
T ) + O((∆R +∆G)T ) ,

with the O(
√
T ) term driven by gradient noise and the diameter of Θ, and

the linear term vanishing when estimators are (nearly) unbiased. Second,
the cumulative constraint violation is also sublinear:

T∑
t=1

E
[(
gt(θt)− ε

)
+

]
≤ O(

√
T ) + O(∆G T ),

so that the time-average violation is O(1/
√
T ) (plus the estimator-bias floor).

These bounds formalize the operational promise: enforcing incentive stabil-
ity does not impose a persistent revenue tax relative to the best audited
mechanism, provided our monitoring signal is accurate enough.

How estimation quality enters. The preceding display makes a point
that is easy to miss in purely economic statements: incentives are only as
enforceable as they are measurable. If the counterfactual model used to
compute Î-DIC is misspecified, the controller may systematically underes-
timate gt, keeping λt too low and allowing manipulability to drift upward;
overestimation has the opposite effect, pushing the system toward overly
conservative θt and sacrificing revenue. This is why we view ε as a policy
instrument coupled to an estimator: a small ε is only meaningful when ∆G

is commensurately small, otherwise the bias floor dominates the theoretical
o(1) violation rate.

Nonconvex reality and what we can still claim. The convex surro-
gate assumptions are, candidly, not literally true in many modern mecha-
nisms. Neural allocation rules, reserve-price networks, pacing heuristics, and
quality-score transformations often create nonconvex revenue landscapes in
θ, and the incentive metric itself may be nonconvex because it composes
equilibrium responses, counterfactual estimators, and truncations (e.g., [·]+,
maxima over bidders). In such settings, we should not expect global regret
guarantees against the best feasible parameter in hindsight.
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Nevertheless, the convex analysis remains useful in two ways. First, it
motivates designing controllers around convexified surrogates (e.g., smooth
upper bounds on maxi I-DICi,t, regularization that keeps θt in regions with
stable gradients, or linearization of gt around the current iterate). Second,
even in nonconvex problems, primal–dual stochastic gradient methods often
provide meaningful local guarantees: convergence to approximate stationary
points of a penalized objective, and bounded constraint violations in practice
when the dual step sizes are tuned to the scale of measurement noise. Our
stance is therefore pragmatic: we use the convex theory as a disciplined
baseline (it clarifies what should scale like

√
T , what should scale like 1/(1−

γ), and where bias enters), and we treat deviations from convexity as an
empirical question rather than an article of faith.

Empirical validation targets. The theory suggests concrete diagnostics
that we can and should validate experimentally: (i) revenue tracks the best
feasible static baseline up to a transient that shrinks with T ; (ii) the real-
ized Î-DIC hovers near ε with occasional excursions attributable to noise,
rather than drifting upward; and (iii) tightening ε produces a predictable
revenue–stability tradeoff rather than unstable oscillations in λt. In the
next section we implement precisely these checks in several repeated-market
environments, including settings with distribution shift where the value of
explicit incentive control is most apparent.

9 Experiments (repeated markets, distribution shift,
and robustness)

Our experiments serve three purposes. First, we test whether the primal–
dual controller can keep the manipulability signal near the target budget, i.e.,
whether realized incentive sensitivity tracks ε rather than drifting. Second,
we quantify the revenue cost of enforcement relative to natural baselines
(including an unconstrained learner that ignores incentives). Third, we stress
the estimator: we study how performance changes as we tighten ε, increase
bidder patience γ, and degrade the quality of the counterfactual model used
to compute Î-DIC.

Common experimental protocol. Across environments, the platform
chooses a parameter θt each round and then runs a history-dependent mech-
anism Mθt . We evaluate (i) discounted revenue

∑T
t=1 γ

t−1
p

∑
i pi,t, (ii) av-

erage constraint violation 1
T

∑T
t=1(Gt(θt) − ε)+, and (iii) ex post strategic

gain of representative bidders from multiplicative shading. For the latter,
we simulate deviations of the form bi,t = si,tvi,t with si,t ∈ [1− ᾱ, 1+ ᾱ] and
compare discounted utility to truthful bidding, holding the platform policy
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fixed; this aligns with the local deviation class used by I-DIC while still
permitting history dependence in si,t(ht−1).

To isolate the role of measurement, we consider two monitoring regimes.
In the oracle regime, we compute Gt(θt) using the simulator directly (or
analytic derivatives when available), so that estimator error is negligible.
In the noisy regime, we compute Ĝt via symmetric finite differences with
perturbation size α and add controlled noise/bias to reflect model misspeci-
fication (e.g., a propensity model trained on a limited window). This lets us
empirically instantiate the bias floor discussed earlier.

Baselines. We compare five platform policies: (i) No-control (revenue-
only): a stochastic gradient update on θ using R̂t with no incentive term
(equivalently, λt ≡ 0); (ii) Fixed feasible: the best fixed θ found by offline
search subject to G(θ) ≤ ε under the training distribution (a stringent but
stationary benchmark); (iii) Static regret minimization: an online learner
that minimizes a surrogate revenue loss but does not maintain a dual variable
(so it adapts, yet treats stability as a post hoc diagnostic); (iv) Penalty with
fixed price: a single tuned λ̄ and updates on −rt(θ) + λ̄gt(θ) (capturing the
common practice of ad hoc regularization); (v) Primal–dual control (ours):
the adaptive λt policy.

9.1 Ad-auction-like repeated setting (quality scores and pac-
ing)

We begin with a stylized ad auction in which each round corresponds to
a query/impression with context xt (user features and slot effects). Each
bidder i draws a private per-click value vi,t ∈ [0, 1] and a quality score
qi,t ∈ [qmin, qmax] that depends on xt and bidder-specific relevance. Alloca-
tion is determined by a score Si,t(θ) = ϕθ(qi,t) bi,t, where ϕθ(·) is a monotone
transformation (e.g., ϕθ(q) = qθ or a clipped linear map), and payments
follow a generalized second-price rule with an optional reserve r(θ). We also
include a pacing component: each bidder has a budget, and the platform ap-
plies a multiplicative pacing multiplier that depends on observed spend, cre-
ating the kind of history dependence that makes dynamic incentives salient.

Distribution shift. Midway through the horizon we perturb the envi-
ronment: either the distribution of qi,t shifts (e.g., a change in user mix),
or a subset of bidders experiences a mean increase in values (e.g., seasonal
demand). This shift is chosen so that a revenue-only learner benefits from
increasing the aggressiveness of ϕθ or raising reserves, but doing so tends to
steepen the utility slope around truthful bidding.

Findings. In the oracle monitoring regime, primal–dual control keeps
Gt(θt) tightly concentrated near ε, while the no-control policy reliably vio-
lates the budget after the shift. Revenue under control tracks the best fixed
feasible θ up to a transient: before the shift, the controller behaves similarly
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to the revenue-only learner; after the shift, λt increases and θt moves toward
a less manipulative region (typically lowering the effective rank curvature
and/or relaxing reserves). Importantly, the bidder-side deviations we sim-
ulate yield substantially lower realized utility gains under control, and the
gap widens with higher γ, consistent with the notion that dynamic channels
amplify small per-period slopes.

9.2 Cloud resource allocation (capacity constraints and throt-
tling)

Our second environment is a repeated allocation of divisible resources (CPU/GPU
time slots) under capacity constraints. Each round t brings a context xt de-
scribing available capacity and job mix. Bidder i has value vi,t for receiving
a unit of resource; allocation is proportional to bids through a parameter-
ized throttling rule ai,t = fθ(bt, xt, ht−1) that can mimic weighted propor-
tional allocation with congestion pricing. Payments are per-unit at a price
determined by a market-clearing or posted-price-like function of aggregate
demand, with θ controlling the aggressiveness of the congestion response.

Distribution shift. We introduce bursts: periods of heavy demand fol-
lowed by slack capacity. These bursts make history dependence operationally
relevant because the platform’s throttling and pricing rules respond to past
congestion.

Findings. The main qualitative pattern persists: no-control learns high-
gain parameters during bursts, which raises both revenue and the measured
incentive slope. Primal–dual control dampens this behavior by endogenously
raising λt during high-congestion episodes, reducing the marginal benefit of
shading. Compared to a fixed penalty λ̄, adaptive pricing of manipulabil-
ity is notably less conservative in slack periods, where the same λ̄ would
unnecessarily suppress revenue.

9.3 Mobility charging (dynamic pricing with temporal sub-
stitution)

Our third environment models repeated allocation of charging slots in a
mobility setting (e.g., EV charging). Each round corresponds to a time
interval with limited chargers and time-varying base demand. Agents have
values for charging now versus later (captured by vi,t and an exogenous
continuation outside the mechanism). The platform sets a parameterized
priority rule and price schedule (e.g., a reserve or surge multiplier θt) that
affects both allocation probability and payment.

Distribution shift. We change commuting patterns: demand shifts earlier
in the day, altering the scarcity profile. This shift creates a plausible real-
world failure mode: a policy trained on one regime can become both revenue-
inefficient and manipulable when scarcity arrives at unexpected times.
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Findings. Incentive-aware control adapts in a way that is economically
interpretable: the shadow price λt rises precisely when scarcity makes prices
more sensitive to bids. In contrast, static regret minimization (without the
dual variable) tends to chase revenue spikes and, as a byproduct, increases
measured manipulability. In this environment, the coupling between γ and
manipulation is especially clear: when agents are more patient (larger γ),
intertemporal substitution makes dynamic incentives more consequential,
and the gap between controlled and uncontrolled strategic gain widens.

9.4 Sensitivity to ε, γ, and estimator noise

Finally, we sweep key parameters to map the practical tradeoffs. Tightening
ε yields a smooth revenue–stability frontier: revenue declines monotonically
while realized strategic gain declines sharply at first and then levels off,
reflecting diminishing returns once the utility slope is close to flat. Increasing
γ does not materially change the platform’s ability to measure Gt, but it
increases the realized utility gains under no-control, making the welfare case
for enforcement stronger in patient markets.

Estimator degradation matters in the expected way. Added variance
in Ĝt produces occasional constraint overshoots but does not systemati-
cally break control when ηλ is tuned conservatively. In contrast, persis-
tent downward bias (underestimating manipulability) yields chronic under-
enforcement: λt remains too small and violations accumulate, mirroring the
bias-floor term in the theory. This reinforces the operational message: choos-
ing ε is inseparable from choosing (and validating) the counterfactual model
used to audit incentives.

Taken together, these experiments indicate that explicit incentive moni-
toring can be integrated into online adaptation without imposing a persistent
revenue tax relative to audited benchmarks, and that the main failure modes
are measurement failures rather than optimization failures. The next section
discusses what our deviation class leaves out, why Lipschitzness and coun-
terfactual validity are the real structural assumptions, and how these choices
relate to classical dynamic DSIC.

10 Discussion and limitations

Our approach is motivated by a pragmatic observation: in many repeated
markets the platform cannot (or will not) commit to a fully dynamic mech-
anism designed ex ante for dominant-strategy truthfulness, yet it can often
measure when the current policy makes utility steep in the direction of simple
shading. We therefore treat incentives as an auditable sensitivity constraint
that can be monitored online and enforced with a controller. This framing
illuminates a tradeoff that is familiar in practice but rarely formalized in
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deployment terms: a platform can buy robustness to manipulation by flat-
tening local utility gradients, but doing so restricts the set of revenue-relevant
parameter moves it can make under distribution shift.

Admissible deviation class. A central modeling choice is the deviation
class captured by I-DIC: multiplicative shading around truthful bidding,
bi,t = si,t(ht−1)vi,t with si,t near 1. We view this as a disciplined compro-
mise between behavioral realism and statistical feasibility. It is behaviorally
plausible because many bidders implement bidding rules that scale a value
proxy (or a learned value model) by a single aggressiveness knob; it is also the
class for which local derivatives are meaningful and can be estimated with
symmetric perturbations. Technically, the local nature matters: bounding a
directional derivative at s = 1 provides a first-order certificate that “small”
shading does not pay, and the Lipschitz/derivative arguments then convert
this certificate into a bound on total discounted gain for shading policies
constrained to [1− ᾱ, 1 + ᾱ].

The limitation is equally clear. Our metric does not preclude profitable
nonlocal deviations: large bid jumps, switching between bidding modes, or
policies that depend on private state in a way not representable by a multi-
plicative factor. Nor does it directly address deviations that exploit discrete
rule changes (e.g., crossing a reserve or a throttling threshold), nor does
it capture strategic delay, participation decisions, or multi-account behav-
ior. In that sense, I-DIC should be interpreted as a local manipulability
budget : it constrains the marginal return to shading in the neighborhood
where many real bidding systems operate, but it is not a full equilibrium
concept. A natural extension is to define a family of sensitivity constraints
along multiple directions (e.g., additive perturbations, or perturbations in
a low-dimensional bid-policy basis) and to enforce a worst-case bound over
that family; doing so would broaden coverage but raises monitoring cost and
variance.

Dependence on Lipschitzness and smoothness. The stability bound
relies on a regularity condition that is easy to state but not always inno-
cent: per-round utility must be L-Lipschitz in own bid (and differentiable
at the reference bid). This is the bridge from “small derivative” to “small
gain,” especially when we sum gains over time with discounting. Economi-
cally, Lipschitzness rules out knife-edge mechanisms where an infinitesimal
bid change triggers a large payment or allocation discontinuity; statistically,
it controls the error induced by finite differences and by imperfect counter-
factual models.

Many marketplace mechanisms do have approximate Lipschitz structure
after accounting for randomization, tie-breaking noise, or smoothing (e.g.,
stochastic assignment, soft reserves, or continuous throttling). However,
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pure rank-by-bid allocation with deterministic tie-breaking, hard eligibility
constraints, and step-function pacing can violate differentiability and create
local cliffs. In such cases, I-DIC may be unstable to estimate (high variance
as α → 0) and potentially misleading (a derivative may not exist, while
discrete deviations may be profitable). One practical implication is design-
oriented: if a platform wants incentive auditing to be meaningful, it may need
to engineer smoothness into the mechanism (e.g., randomized smoothing or
continuous relaxations). This is not merely a mathematical convenience;
it is a governance choice about whether the market should be sensitive to
infinitesimal strategic moves.

Counterfactual estimation and identification. A second structural
dependence is on the ability to compute Î-DIC, which is inherently coun-
terfactual: we must evaluate utility under perturbed bids while holding
(xt, ht−1, vi,t) fixed. In an oracle simulator this is straightforward; in live
markets it becomes an off-policy estimation problem. The key identification
requirement is that the platform can model how allocations and payments
would have changed under the perturbed bid, which typically demands either
(i) a known differentiable mapping (xt, ht−1, bt) 7→ (at, pt), or (ii) a learned
surrogate with adequate coverage near the observed bids. Bias is the central
risk: a downward-biased monitor systematically underprices manipulability
and leads the controller to under-enforce the constraint. This risk is particu-
larly acute when the mechanism itself is changing, since the data distribution
over bids and contexts is endogenous to θt.

From an operational perspective, this suggests that incentive monitoring
should be treated like safety monitoring: it requires calibration, stress tests,
and explicit uncertainty accounting. One conservative modification is to
enforce a high-probability constraint using confidence bounds, e.g.,

Ĝt(θt) + radt ≤ ε,

where radt reflects estimation uncertainty. This reduces false negatives
(missed manipulability) at the expense of some revenue, and it makes trans-
parent how monitoring quality interacts with the chosen budget ε.

Connections to dynamic DSIC and classical mechanism design. It
is useful to situate I-DIC relative to dynamic dominant-strategy incentive
compatibility. Dynamic DSIC is a global property: truthful reporting is
optimal regardless of history and regardless of how far the agent deviates.
Achieving it typically requires strong commitment and carefully structured
transfers (e.g., dynamic pivot or bank-account mechanisms) that internalize
future consequences. By contrast, our constraint is local and directional. It
is closer in spirit to a first-order optimality condition: if truthful bidding is
optimal in a smooth environment, then the derivative of the bidder’s value
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function with respect to shading should be near zero at s = 1. We op-
erationalize this idea by directly estimating that derivative and regulating
it.

This distinction also clarifies what our results do not claim. We do not
claim to implement a truthful equilibrium, nor do we claim robustness to
arbitrary deviations. Rather, we provide a measurable certificate that the
mechanism is not “inviting” a particular family of profitable deviations, and
we show that (under regularity) this certificate bounds the total discounted
gain from those deviations. In this sense, I-DIC can be interpreted as an
“engineering approximation” to dynamic incentive constraints, intended for
systems that must adapt online and cannot solve the full dynamic mechanism
design problem.

Audit implications and governance. Because I-DIC is a scalar signal
that can be tracked over time, it lends itself naturally to auditing. An inter-
nal risk team (or an external auditor) can require that I-DICi,t ≤ ε on aver-
age, by segment, or under stress scenarios, much like reliability constraints
in other safety-critical systems. The dual variable λt has an interpretation
that can be communicated: it is the shadow price of manipulability, reveal-
ing when the platform is implicitly trading revenue for incentive stability.
This transparency is valuable, but it also raises design questions: which
bidder groups are monitored, how the normalization E[va(v)] is estimated,
and whether monitoring can be done without exposing sensitive bid-response
models. These are governance choices, not purely technical ones.

Open problems. Several extensions remain open. First, we would like
broader deviation coverage without losing measurability: can we learn a
small set of adversarial deviation directions online and enforce a max-sensitivity
constraint over that set? Second, the analysis takes the platform’s policy as
the object of control and evaluates bidder deviations holding the policy fixed;
a richer model would endogenize bidder learning dynamics and analyze cou-
pled learning processes. Third, it is unclear how to optimally choose ε: it
reflects both a normative stance (how much manipulability is acceptable)
and a measurement stance (how much monitoring error we can tolerate).
Finally, mechanisms often have multiple desiderata—fairness, budget bal-
ance, stability, and revenue—and incentive sensitivity may interact with
these constraints in nontrivial ways. Understanding when local incentive
flattening complements (or conflicts with) other forms of robustness is, in
our view, the most important step toward making dynamic incentive control
a standard component of repeated-market design.
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