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Abstract
Deep-learning approaches to mechanism design (e.g., RegretNet

and its extensions surveyed in the source material) achieve impres-
sive empirical performance but typically rely on soft penalties and lack
auditable guarantees. This paper develops a clean, tractable frame-
work for learning auctions with high-probability out-of-sample certifi-
cates for (i) approximate incentive compatibility via ex-post regret,
(ii) approximate individual rationality, and (iii) fairness constraints
(e.g., total-variation fairness or envy-based metrics), while maintain-
ing feasibility by construction. We restrict attention to a structured,
permutation-equivariant and Lipschitz-bounded mechanism class with
differentiable feasibility layers, enabling non-vacuous uniform-convergence
or PAC-Bayes style generalization bounds. Regret is estimated via ad-
versarial best-response optimization (implemented numerically), and
certification is performed on a held-out dataset with a stronger ad-
versary to avoid systematic underestimation. The main theorem pro-
vides finite-sample bounds linking sample size, hypothesis-class com-
plexity, and Lipschitz constants to out-of-sample regret/fairness/IR
violations, and yields a revenue near-optimality guarantee within the
constrained class. We validate the approach on canonical multi-item
auctions and modern procurement settings (including volume-discount
procurement), demonstrating that certification can be achieved with
modest revenue loss relative to unconstrained deep mechanisms and
substantially improved auditability for 2026-era compliance needs.
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1 Introduction

Digital marketplaces in 2026 increasingly rely on allocation and pricing rules
that are too complex to be hand-designed and too consequential to be left
unaudited. Sponsored-search and retail advertising auctions now blend clas-
sical bid signals with rich contextual features (user intent, eligibility con-
straints, pacing, brand safety), while cloud and edge markets allocate het-
erogeneous compute under latency and carbon constraints. Across these
domains, platforms face a familiar economic tension: we want mechanisms
that are expressive enough to monetize complex demand and enforce busi-
ness rules, yet predictable enough that strategic participants can trust the
rules and regulators can verify compliance. This tension has pushed the field
toward learned mechanisms—parameterized allocation and payment maps
trained from data—because learning offers a principled way to incorporate
high-dimensional context, soft constraints, and objectives that are hard to
encode analytically.

At the same time, learned mechanisms raise a distinct governance prob-
lem: auditable correctness. In classical mechanism design, incentive and
individual-rationality guarantees are derived symbolically from an explicit
form (e.g., VCG, Myerson), and feasibility is ensured by construction. In
learned systems, by contrast, the designer often selects a hypothesis class
(typically neural), optimizes an empirical objective, and then deploys the
resulting model as a black box. If we only report training curves (revenue
up, regret down), we have not produced a statement that is meaningful for
an auditor, a court, or even internal risk management. What is needed is
an explicit bridge from empirical performance on sampled valuation pro-
files to population guarantees under the (unknown) environment generating
bids and contexts. The motivating question is therefore not merely “can we
train a high-revenue approximately truthful network on a benchmark?” but
rather: can we document, with quantifiable uncertainty, how far the deployed
mechanism can deviate from incentive compatibility, individual rationality,
and fairness constraints on future market instances?

A large and influential line of work has made learned mechanisms prac-
tical by introducing differentiable surrogates for incentive constraints and
training them with penalties or Lagrange multipliers. Systems in the spirit
of RegretNet and its variants operationalize approximate dominant-strategy
incentive compatibility by sampling valuation profiles, computing (approxi-
mate) best-response misreports, and penalizing the resulting empirical regret
in the training objective. Subsequent designs incorporate additional side con-
straints, including budget feasibility, proportionality or exposure constraints,
and group-level fairness regularizers; more recent architectures add symme-
try (permutation equivariance), attention, or transformer-based components
to scale to larger bidder sets. From an engineering perspective, the appeal is
clear: one can train a flexible mechanism end-to-end using stochastic gradi-
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ents, and the output often looks well-behaved on the training distribution.
However, penalty-only training leaves a gap between what we optimize

and what we can certify. The first issue is statistical: empirical regret and
empirical fairness are estimates computed from a finite sample, and with-
out further control they can be severely optimistic. A mechanism class rich
enough to fit complicated patterns in context can also fit idiosyncrasies of
the training sample. When regret is computed via an inner maximization
over misreports, this optimism can be amplified: the training loop adapts
the mechanism parameters to the same sample used to evaluate constraints,
while the misreport search is itself a noisy numerical procedure. As a re-
sult, a small reported regret at the end of training may reflect (i) overfitting
to the sampled profiles, (ii) under-optimized best responses, or (iii) fragile
cancellations that disappear out of sample. The second issue is operational:
compliance teams typically require a worst-case or high-confidence bound,
not a point estimate. Hyperparameter choices (penalty weights, learning
rates, oracle iterations) are rarely motivated by explicit risk tolerances, and
two runs with similar empirical metrics can have very different tail behav-
ior. The third issue is distributional: real markets drift. Even if the data
are approximately i.i.d. in a lab setting, deployment introduces time de-
pendence (seasonality, bidder learning, platform updates), and the relevant
object is performance under the ongoing data-generating process, not on a
static dataset.

These limitations matter precisely because the constraints we care about
are normative, not merely predictive. Approximate incentive compatibil-
ity limits the platform’s ability to extract value through opaque manipula-
tion and stabilizes participation by reducing strategic uncertainty. Approx-
imate individual rationality ensures that participation does not systemati-
cally harm bidders (or downstream stakeholders) ex post, which is increas-
ingly salient when small firms or regulated advertisers participate. Fairness
constraints—whether interpreted as group exposure, user-level similarity, or
envy-based surrogates—are often motivated by legal or contractual commit-
ments and thus require documentation. In short, we do not merely want
mechanisms that tend to be truthful and fair on sampled instances; we want
mechanisms whose violations are bounded in a way that is legible to auditors.

Our view is that this calls for importing a familiar idea from learning
theory and safety-critical ML into mechanism design: certificates. A cer-
tificate is a computable bound that converts held-out empirical evaluations
into high-confidence statements about population performance, with explicit
dependence on sample size, model complexity, and numerical approximation
error. In the present setting, the certificate should upper-bound incentive
violations (via regret), individual-rationality violations, and fairness viola-
tions simultaneously, and it should do so for the learned mechanism selected
by the training procedure. Practically, this allows a platform to say: “With
probability at least 1−δ over the sampled market instances used for certifica-
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tion, the deployed mechanism’s expected regret is at most εr (and similarly
for IR and fairness),” where εr decomposes into an empirical estimate plus
a slack term that shrinks with more data and tighter architectural control.

The key conceptual move is to treat the relevant quantities—regret in-
tegrands, IR shortfalls, fairness penalties—as functionals induced by the
mechanism class, and then to bound their generalization error uniformly
over that class. This immediately clarifies why purely penalty-based reports
are insufficient: without controlling the effective complexity of the mecha-
nism class and the stability of the inner maximization, there is no reason
for empirical constraint satisfaction to persist out of sample. It also clarifies
why certain architectural choices, often justified heuristically, are central to
auditability. Feasibility-by-construction removes an entire category of vio-
lations from the certification problem. Permutation equivariance (treating
bidders symmetrically absent distinguishing context) both matches economic
symmetry and reduces statistical complexity. Lipschitz control in valuations
limits how sharply utilities can change with small bid perturbations, which
stabilizes both regret estimation and uniform convergence bounds. These are
not merely technical conveniences; they are design principles that convert a
black-box learner into a mechanism that is, in a precise sense, auditable.

We also emphasize a limitation that must be made explicit to avoid over-
claiming: certificates do not eliminate the need for a best-response oracle,
and they cannot certify properties that are not encoded in the evaluation
functional. If fairness is defined at the level of allocation exposure, we can
certify that notion, but not necessarily other legal notions of discrimination.
If the oracle only finds approximately optimal misreports, then any regret
estimate inherits an “oracle gap” that must be accounted for. Our goal is
therefore not to present a frictionless path to perfect truthfulness or perfect
fairness, but to provide a disciplined accounting framework: what must be
assumed (boundedness, Lipschitzness, symmetry), what is measured empiri-
cally (held-out regret/IR/fairness), what is approximated numerically (best
responses), and how these ingredients combine into an end-to-end bound
that can be communicated to non-technical stakeholders.

Finally, positioning certificates within the economic logic highlights the
central trade-off. Constraining regret, IR violations, and fairness violations
restricts the feasible set of mechanisms and can reduce revenue relative to
an unconstrained optimum. Penalty-based training already navigates this
trade-off implicitly through hyperparameters; our contribution is to make
the trade-off explicit and accountable by tying it to user-chosen tolerances
(εr, εir, εf ) and to finite-sample uncertainty. This perspective also suggests
a practical workflow: train with constraints on a training set, then certify on
an independent holdout (and, where appropriate, under stress tests reflect-
ing plausible deviations), and re-certify periodically as the market evolves.
In that sense, the model we develop is not only a learning algorithm but
also a governance protocol: it illuminates how a platform can deploy learned
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mechanisms while producing the documentation that modern markets in-
creasingly require.

2 Related Work

Our paper sits at the intersection of three literatures: (i) deep learning ap-
proaches to mechanism design, (ii) learning-theoretic analyses of constrained
and bilevel objectives (especially those involving best-response computa-
tions), and (iii) algorithmic auditing and compliance frameworks that moti-
vate high-confidence, stakeholder-facing guarantees.

Deep learning for mechanism design. A first thread learns auctions by
parameterizing allocation and payment rules with neural networks and train-
ing them to optimize expected revenue (or welfare) subject to approximate
incentive and participation constraints. The most widely used approach in
multi-dimensional settings follows the “regret minimization” template pop-
ularized by RegretNet and successors ???. The key idea is pragmatic:
dominant-strategy incentive compatibility (DSIC) is replaced with an ex-
post regret objective estimated on samples, where regret itself is computed
by (approximately) maximizing a bidder’s utility over misreports. Train-
ing then proceeds by stochastic gradient methods, often using Lagrangian
or penalty formulations for regret and individual rationality (IR). From an
economic perspective, these methods trade exactness for flexibility: rather
than restricting attention to analytically tractable families (e.g., affine max-
imizers), they allow the mechanism to respond to rich contextual features
and high-dimensional types, at the cost of relying on numerical oracles and
finite-sample evaluations.

A complementary line enforces IC using structural characterizations that
avoid explicit best-response search. Rochet’s classical result characterizes im-
plementable allocation rules via cyclic monotonicity and convex potentials;
several neural architectures exploit this connection by representing utilities
or allocations through convex networks, thereby guaranteeing IC (or approx-
imate IC) by construction ??. These methods are attractive when one can
parameterize the relevant convex object at scale, but they can be restric-
tive in environments with many items, contextual constraints, or fairness
objectives that couple allocations across agents or users. In practice, many
marketplace deployments therefore blend structural ideas (e.g., feasibility
layers) with regret-based training to preserve expressiveness.

Architectural work has also focused on the symmetries inherent in anony-
mous environments. In standard auctions, bidders are exchangeable ex
ante, and a mechanism that hard-codes permutation equivariance is both
economically natural and statistically advantageous. Several designs incor-
porate equivariant layers (DeepSets, attention with shared parameters, or
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graph neural networks) to ensure that relabeling bidders merely relabels
outputs ???. Empirically, these architectures often improve sample effi-
ciency and out-of-distribution behavior, and conceptually they reduce the
effective hypothesis-class complexity in precisely the way that matters for
generalization bounds. Recent work further explores transformer-style mech-
anisms that scale to larger bidder sets and capture cross-bidder interactions
through attention, sometimes under names such as “RegretFormer” or re-
lated attention-based learned auctions ??. While these models can be highly
expressive, they also underscore the need for principled control of sensitivity
and complexity if one wants auditable constraint satisfaction rather than
merely low training regret.

Fairness constraints and redistribution. A second set of contributions
extends learned mechanism design to incorporate normative or policy-driven
constraints beyond IC/IR. In ad auctions and recommendation-like alloca-
tions, fairness is often operationalized as exposure parity across advertiser
categories, user-level similarity constraints, or bounded disparity in allo-
cation probabilities across protected groups ??. In the learned-mechanism
setting, these notions are typically imposed via differentiable penalties on al-
location vectors (or on downstream exposure outcomes), sometimes coupled
with constraints on payments, budgets, or pacing ??. Economically, such
constraints reflect that platforms are multi-objective: revenue is traded off
against contractual commitments, user experience, and legal risk. Method-
ologically, fairness constraints are challenging because they are often global
(depending on distributions over contexts) and can be sensitive to sampling
noise, which again points toward the need for held-out evaluation and explicit
uncertainty quantification.

Related but distinct is the literature on redistribution and budget-balance
constraints. In classical mechanism design, payments are central for incen-
tives but also raise concerns about surplus extraction, collusion, and regu-
latory acceptability. Learned approaches have incorporated payment caps,
rebates, or redistribution layers to control how revenue is collected and po-
tentially returned, drawing inspiration from redistribution mechanisms and
budget-feasible design ??. These extensions strengthen the case that the
relevant constraints are not limited to IC/IR: real systems are constrained
optimization problems whose feasible set is shaped by business and policy
requirements.

Learning theory for constrained and bilevel optimization. The train-
ing objectives used in regret-based learned mechanisms are inherently bilevel:
an outer loop optimizes mechanism parameters, while an inner loop com-
putes (approximate) best responses. This places the problem close to mod-
ern bilevel learning in adversarial training and robust optimization, where
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the quantity of interest is often a supremum over perturbations or adver-
sarial strategies ?. In mechanism design, the inner maximization has a
clear economic meaning (a bidder deviation), and the gap between the com-
puted best response and the true best response has a direct interpretation
as under-estimated strategic vulnerability. Several papers study gradient es-
timators, differentiable approximations, and convergence heuristics for this
inner problem ??. From a certification standpoint, however, the key issue is
not only optimization performance but also how oracle error propagates into
guarantees—a point that motivates our explicit accounting for best-response
approximation.

On the statistical side, there is a large learning-theory literature on con-
strained empirical risk minimization, uniform convergence, and generaliza-
tion under complexity control ??. Our focus aligns with work that treats
constraint violations as expectations of bounded functionals and then de-
rives high-probability bounds via Rademacher complexity, covering numbers,
or PAC-Bayes techniques ??. In our setting, the relevant function classes
are induced by mechanism-induced quantities such as regret integrands and
fairness penalties; bounding their complexity requires using architectural
properties (equivariance, Lipschitz control, bounded outputs) rather than
only parameter counts. There is also a related literature on generalization
under dependence (mixing processes) that is relevant for repeated-market
data, where observations can be temporally correlated ??. While many
learned-auction experiments assume i.i.d. samples, deployment in ad markets
or cloud markets naturally produces time dependence, and any auditing-
oriented analysis should at least acknowledge how certificates degrade (or
can be repaired) under weak dependence.

Algorithmic auditing and compliance. Finally, our motivation is closely
connected to work on algorithmic accountability, which emphasizes that em-
pirical performance alone is not a compliance artifact. In domains such
as lending, hiring, and advertising, regulators and internal governance teams
increasingly require documented evidence of constraint satisfaction, monitor-
ing protocols, and uncertainty quantification ??. Technical work on algorith-
mic auditing develops procedures for black-box testing, stress testing under
distribution shift, and post-deployment monitoring, including approaches
that resemble “certificates” in spirit: high-confidence bounds, conservative
estimates, and explicit failure probabilities ??. In machine learning more
broadly, conformal prediction and related methods provide distribution-free
coverage guarantees for predictive uncertainty ?; while the object differs (pre-
diction sets rather than incentive violations), the governance logic is similar:
stakeholders need interpretable, probabilistic guarantees that survive deploy-
ment uncertainty.

We view certified learned mechanisms as importing this auditing perspec-
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tive into economic design. Compared to prior learned-mechanism work that
reports regret and fairness on the training distribution, our emphasis is on
producing a statement an auditor can read: a bound that decomposes into
(i) what was measured on held-out data, (ii) what is owed to finite-sample
uncertainty and model complexity, and (iii) what is owed to numerical ap-
proximation in best-response computation. This orientation does not replace
the rich algorithmic contributions of the learning-based mechanism design
literature; rather, it reframes them through the lens of accountability, high-
lighting which architectural and statistical choices make a learned mechanism
not only high-performing, but also governable.

3 Model

We study a contextual, multi-item auction environment with strategic bid-
ders and an auctioneer (or platform) who chooses a mechanism from a pa-
rameterized class. There are n ≥ 1 bidders (agents) indexed by i ∈ {1, . . . , n}
and m ≥ 1 items indexed by ℓ ∈ {1, . . . ,m}. Each bidder i has an additive
valuation vector vi ∈ [0, 1]m, where viℓ is bidder i’s value for item ℓ. We
write the valuation profile as v = (v1, . . . , vn) ∈ V ⊆ [0, 1]n×m. We also
allow the mechanism to condition on an observed context x ∈ X , which
can include user or query features, eligibility constraints, reserve policies,
business rules, or other market covariates. The pair (v, x) is drawn from an
unknown distribution D; in an offline-learning interpretation we observe a
sample {(v(s), x(s))}Ns=1 drawn i.i.d. from D, while in repeated-market set-
tings we allow for weak temporal dependence (e.g., β-mixing) and interpret
D as the stationary distribution.

A (possibly randomized) direct-revelation mechanism consists of an allo-
cation rule and a payment rule. Bidders submit bid reports bi ∈ [0, 1]m and
b = (b1, . . . , bn). The mechanism outputs (i) an allocation-probability matrix
p(b, x) ∈ [0, 1]n×m, where piℓ(b, x) is the probability (or fractional share) with
which bidder i receives item ℓ, and (ii) a payment vector t(b, x) ∈ Rn

+, where
ti(b, x) is bidder i’s payment. We use the probabilistic interpretation for
two reasons. First, many real systems are randomized (e.g., via tie-breaking,
pacing, or exploration). Second, even when the deployed mechanism is de-
terministic, relaxing to fractional allocations is analytically convenient and
aligns with standard neural parameterizations that output soft assignment
weights. Throughout, feasibility constraints ensure that the allocation re-
spects per-item capacity:

0 ≤ piℓ(b, x) ≤ 1,

n∑
i=1

piℓ(b, x) ≤ 1 ∀ℓ ∈ {1, . . . ,m}. (1)

The slack
(
1 −

∑
i piℓ

)
can be interpreted as the probability that item ℓ

remains unallocated (equivalently, allocation to a dummy bidder). We em-
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phasize that we do not impose a unit-demand constraint on bidders; with
additive values a bidder can simultaneously receive multiple items, subject
only to per-item capacity.1

Given true values vi and context x, bidder i’s quasi-linear utility under
report profile b is

ui(b;x, vi) =
m∑
ℓ=1

piℓ(b, x) viℓ − ti(b, x). (2)

We take additivity and quasilinearity as the baseline model for many multi-
slot and multi-product allocations (notably in ads and sponsored content),
and we normalize values to [0, 1] to make sensitivity and concentration state-
ments scale-free. The platform’s revenue under a mechanism (p, t) is the
expected sum of payments,

REV = E(v,x)∼D

[ n∑
i=1

ti(v, x)
]
, (3)

where, for direct mechanisms, we identify truthful reports with bids (i.e.,
b = v) when defining the objective. In deployment, bidders may deviate,
and the relevant question is how costly such deviations can be for incentives
and participation.

Incentives via ex-post regret. Our incentive benchmark is dominant-
strategy incentive compatibility (DSIC): truthful reporting should maximize
utility regardless of others’ bids and context. In multi-dimensional environ-
ments with contextual constraints, exact DSIC is typically difficult to guar-
antee without restrictive structure. We therefore work with ex-post regret as
an economically meaningful proxy for IC violations. For a fixed mechanism
(p, t), the per-instance gain from deviation is

ϕi(v, x) = max
v′i∈[0,1]m

ui
(
(v′i, v−i);x, vi

)
− ui

(
(vi, v−i);x, vi

)
,

and the population regret is the expectation

RGTi = E(v,x)∼D
[
ϕi(v, x)

]
. (4)

When RGTi = 0 for all i, truthful reporting is a best response almost surely,
yielding DSIC. Positive regret quantifies the maximum utility improvement
from misreporting, and thus has a direct interpretation for auditing: it upper-
bounds the incentive to manipulate the mechanism, measured in the same
units as utility (normalized value).

1Additional feasibility constraints (e.g., budgets, frequency caps, matroid constraints)
can be incorporated, but we focus on (1) to isolate the strategic and statistical issues.
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A crucial modeling point is that the inner maximization over v′i ∈ [0, 1]m

is generally non-convex once p(·, x) and t(·, x) are represented by expressive
function approximators. In contrast to classical single-parameter auctions
(where monotonicity and payment identities yield closed-form computations
of incentives), here we should expect to rely on numerical best-response
search. Operationally, given a sample (v, x) and mechanism parameters, we
approximate the best response by running a gradient-based or derivative-free
optimizer over the bounded domain [0, 1]m (e.g., projected gradient ascent
with multi-start). This is not merely a computational detail: the quality of
regret estimates depends on how well we solve this inner problem, and any
under-optimization directly translates into underestimated strategic vulner-
ability. For this reason, we treat best-response computation as an explicit
oracle whose approximation error can be tracked and, when needed, folded
conservatively into the final guarantees.

Participation via IR violations. Beyond incentives, platforms and regu-
lators often require participation guarantees. In a quasilinear setting, ex-post
individual rationality (IR) requires that truthful utility be nonnegative for
every realization:

ui
(
(vi, v−i);x, vi

)
≥ 0 for all (v, x).

Because learned mechanisms may violate IR on rare contexts or for certain
types (especially when optimizing revenue), we quantify participation risk
through an IR violation functional

IRVi = E(v,x)∼D

[
max

{
0, −ui

(
(vi, v−i);x, vi

)}]
. (5)

This measures the expected magnitude of negative utility (rather than merely
its probability), which aligns with risk management: occasional small viola-
tions may be acceptable (or remediable via refunds), while large violations
are typically unacceptable. As with regret, IRV is an expectation under D
and is therefore naturally estimated from samples, with the caveat that tail
events may require additional stress testing if the deployment distribution is
believed to shift.

Fairness as a population constraint. Many marketplace deployments
include normative constraints that cannot be reduced to individual incen-
tives. We model such requirements via a fairness violation functional FR that
depends (possibly nonlinearly) on allocations and contexts and is evaluated
in expectation under D. Importantly, fairness constraints are often global :
they compare allocations across users, across bidder groups, or across con-
texts, and thus cannot be validated from a single instance alone without
reference to a broader distributional baseline.
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To keep the framework flexible, we allow FR to be any bounded functional
of the allocation rule (and context) that is computable on data. A concrete
example, motivated by total-variation style individual fairness, is the follow-
ing. Let U be a finite set of user contexts (or a discretization thereof), let
advertisers be partitioned into classes {Cc} (e.g., protected groups or cat-
egories), and let dc(u, u′) be an allowed disparity between users u and u′.
Define a per-user unfairness penalty

Unfu =
∑
u′∈U

∑
c

max
{
0,
∑
i∈Cc

∣∣pi(u)− pi(u′)∣∣− dc(u, u′)},
where pi(u) denotes bidder i’s allocation probability (possibly aggregated
over items) under user context u. Then the fairness violation is

FR = E
[
Unfu

]
, (6)

with the expectation taken over the user distribution induced by D. Variants
include exposure parity constraints, envy or dissatisfaction penalties, and
EF1-style surrogates. The economic point is that such constraints formalize
policy and product requirements in the same language as incentives: as
expectations of measurable functionals that can be estimated on held-out
data and audited with explicit uncertainty.

What is structural and what is numerical. Our modeling choices de-
liberately separate three layers of difficulty. First, feasibility (1) is a hard
constraint that we will enforce deterministically (so it does not rely on sam-
ple averages). Second, IC, IR, and fairness are expressed as expectations
(4)–(6), which are statistically estimable but require generalization control:
low empirical violation does not automatically imply low population viola-
tion. Third, computing the regret integrand requires solving an inner op-
timization over misreports; unlike in analytically tractable auction families,
this step is inherently numerical in expressive contextual settings. From a
practice and governance perspective, this decomposition clarifies what an
auditor should ask for: (i) architectural or procedural evidence that feasi-
bility cannot be violated at runtime, (ii) high-confidence bounds translating
empirical IC/IR/fairness measurements into population guarantees, and (iii)
documentation of the best-response search procedure (including its approx-
imation error) to ensure that incentives were not assessed with an overly
weak adversary.

4 Structured mechanism class

To make the learning-and-certification problem well posed, we restrict at-
tention to a hypothesis class Θ that builds in the two properties an auditor
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can (and should) demand as structural : feasibility and symmetry. The re-
maining requirements—small regret, small IR violations, and small fairness
violations—are then treated as statistical properties of the learned mecha-
nism that must generalize out of sample. At a high level, our design prin-
ciple is that architectural structure should remove “runtime failure modes”
(over-allocation, label dependence), while regularity (Lipschitz control and
bounded outputs) should make the empirical estimates stable enough to sup-
port high-confidence certificates.

A parameterized direct mechanism. We consider mechanisms param-
eterized by θ ∈ Rd that map bid reports and context into allocations and
payments:

(pθ, tθ) : [0, 1]n×m ×X → [0, 1]n×m × Rn
+.

We keep the discussion in terms of bids b (rather than values) because both
training and regret computation require evaluating the mechanism under
arbitrary misreports. In direct-revelation training we will evaluate objectives
at b = v, but the mechanism itself must be defined for all b ∈ [0, 1]n×m.

Permutation equivariance as a modeling commitment. Because bid-
der identities are economically meaningless labels, we impose permutation
equivariance in bidders: for any permutation π ∈ Πn and any input (b, x),

pθ(πb, x) = π pθ(b, x), tθ(πb, x) = π tθ(b, x), (7)

where (πb)i = bπ−1(i) and (πp)iℓ = pπ−1(i)ℓ. This restriction has a practical
and a statistical interpretation. Practically, it prevents arbitrary dependence
on the indexing of bidders (a clear governance failure mode in deployments
where bidders enter and exit). Statistically, it reduces effective hypothesis-
class complexity by tying together the behavior across relabelings, improving
sample efficiency in exactly the way exchangeability suggests. When items
are homogeneous (or partitioned into exchangeable classes), the same idea
can be applied to item permutations; we leave item equivariance optional
because many applications have item-specific semantics (e.g., distinct ad
slots or heterogeneous products).

A canonical way to implement (7) is with DeepSets-style architectures.
For example, letting ϕ embed each bidder’s bid vector (and context) and
letting ⊕ denote a permutation-invariant aggregator (sum/mean), we can
form bidder representations

hi = ρ
(
ϕ(bi, x), ⊕n

j=1ϕ(bj , x)
)
, (8)

with shared parameters in ϕ and ρ across bidders. More expressive vari-
ants replace the single aggregate with multi-head self-attention with shared
weights, which is also permutation equivariant when it operates on sets of
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bidder embeddings. The key point is not the particular neural primitive, but
that (7) is enforced by construction rather than encouraged by a penalty.

Differentiable feasibility layers for allocations. We parameterize al-
locations by first producing unconstrained scores (logits) and then projecting
them into the feasible region using a differentiable normalization layer. Con-
cretely, let sθ(b, x) ∈ Rn×m be a score matrix produced by an equivariant
network (e.g., using (8) and then decoding item-wise). For each item ℓ, we
define allocation probabilities by a softmax across bidders,

pθ,iℓ(b, x) =
exp(sθ,iℓ(b, x))∑n
j=0 exp(sθ,jℓ(b, x))

, (9)

where j = 0 denotes a dummy bidder capturing unallocated probability
mass. Then pθ,iℓ ∈ [0, 1] and

∑n
i=1 pθ,iℓ ≤ 1 for all inputs, deterministically.

This is the simplest instance of “feasibility-by-construction” and is attractive
for two operational reasons: (i) feasibility is not something we must estimate
(there is no statistical uncertainty), and (ii) the mapping remains smooth,
which is essential for gradient-based training and for gradient-based best-
response computation in regret estimation.

When feasibility constraints are more structured than per-item capacity,
one can replace (9) with a differentiable projection onto a richer polytope.
A common choice is a Sinkhorn normalization layer that approximately en-
forces doubly-stochastic constraints (row and column sums), which is useful
when items must be fully allocated, when bidders have unit-demand style ca-
pacity constraints, or when exposure budgets are imposed. In such cases, we
interpret the normalization as an approximate projection operator P and set
pθ = P(sθ); the approximation error is then part of the numerical pipeline,
and in a conservative certification one can add a small feasibility slack or
include a dummy option to preserve hard constraints.

Payments: nonnegativity and boundedness. We similarly encode ba-
sic payment constraints architecturally. Because we allow randomized allo-
cations and focus on ex-post utility and regret, we do not rely on closed-form
payment identities; instead, we learn a payment rule tθ jointly with pθ and
certify its incentive properties via regret. However, two restrictions are eco-
nomically natural and statistically useful: payments should be nonnegative
and uniformly bounded. We therefore parameterize

tθ,i(b, x) = B · σ
(
gθ,i(b, x)

)
, (10)

where gθ is an equivariant network, σ(z) = (1 + e−z)−1 is the logistic func-
tion, and B < ∞ is a design bound. This ensures tθ,i ∈ (0, B) for all
inputs. The upper bound is not merely technical: it prevents the learn-
ing problem from creating extremely large transfers on rare contexts (which
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would inflate regret and IRV tails) and it improves concentration when we
estimate expectations from data. In applications where exact zero pay-
ments matter (e.g., to allow non-winners to pay exactly 0), one can use
tθ,i = B · ReLU(gθ,i)/(1 + ReLU(gθ,i)), or explicitly multiply (10) by an
allocation-dependent mask; the central requirement for our theory is bound-
edness, not the particular squashing map.

Lipschitz control and why we impose it. The certificate step requires
uniform convergence of regret, IRV, and fairness functionals over θ ∈ Θ. In
expressive neural classes, uniform convergence can fail without some form
of complexity control. We adopt a regularity condition that is both inter-
pretable and enforceable: uniform Lipschitzness of the mechanism in bids
(equivalently in values on the truthful path). Formally, we assume that for
all θ ∈ Θ, all contexts x, and all bid profiles b, b′,∥∥pθ(b, x)− pθ(b′, x)∥∥1 +

∥∥tθ(b, x)− tθ(b′, x)∥∥1 ≤ L ∥b− b′∥1, (11)

for a uniform constant L < ∞. Economically, (11) rules out mechanisms
where a bidder can induce discontinuous jumps in allocation or payment by
arbitrarily small perturbations of a report. Such jumps are precisely what
make regret estimation brittle: the inner maximization over misreports be-
comes sensitive to numerical optimization and to sampling noise. Statis-
tically, (11) makes the per-sample regret integrand and fairness penalties
Lipschitz functions of (v, x) (under mild regularity), which is the key input
into Rademacher- or covering-number bounds for certificates.

In practice, (11) is implemented by combining three ingredients. First,
we bound intermediate activations and logits, for instance by using tanh
at the last layer producing scores sθ,iℓ ∈ [−S, S], which also controls the
Jacobian of the softmax map in (9). Second, we constrain weight matrices
via spectral normalization or weight clipping, yielding explicit bounds on the
Lipschitz constants of the constituent linear maps. Third, we use 1-Lipschitz
nonlinearities (e.g., ReLU, leaky-ReLU, group norm without learned scale)
or track their Lipschitz factors when they exceed 1. Under these design
choices, one can compute an a priori upper bound on L as a product (or
sum, in residual architectures) of layer-wise operator norms, and treat the
resulting L as part of the mechanism documentation provided for auditing.

Putting the class together. We summarize the structured class as

Θ =
{
θ : (pθ, tθ) satisfies (7), feasibility by construction via (9) (or a differentiable projection), bounded payments via (10), and Lipschitzness (11)

}
.

This definition makes explicit what is guaranteed at runtime (feasibility,
symmetry, bounded transfers) and what must be learned and certified (low
regret, low IRV, low FR). It also clarifies a limitation: the more tightly we
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enforce Lipschitzness and symmetry, the smaller the hypothesis class and
the more conservative the revenue frontier may become. We view this as
an economically meaningful tradeoff rather than a purely statistical artifact:
mechanisms that are extremely sensitive to reports are harder to justify
from a governance perspective, precisely because they are harder to audit
and easier to manipulate.

Finally, we note that the constant L we track is typically an upper bound
and may be loose. This looseness affects the sharpness of worst-case certifi-
cates (through complexity terms), but it does not invalidate the basic logic:
bounding sensitivity is what allows us to translate held-out measurements of
regret, IR, and fairness into statements that remain reliable under deploy-
ment sampling variation.

5 Training objective: constrained ERM with ad-
versarial regret

Having fixed a structured hypothesis class Θ in which feasibility and sym-
metry hold by construction, we now treat incentive compatibility, individual
rationality, and fairness as out-of-sample requirements that must be learned
from data and later certified. Our training problem is therefore a constrained
empirical risk minimization (ERM) problem: we choose parameters θ to
maximize empirical revenue while keeping empirical proxies for regret, IR
violations, and fairness violations below prespecified tolerances.

Data split and empirical objectives. We observe samples {(v(s), x(s))}Ns=1

from D (i.i.d. or weakly dependent). Because the subsequent certificate is
only meaningful when computed on data not used to tune θ, we conceptually
split the data into a training set Str and a holdout set Sho (the latter will be
used in Section 6). In this section we focus on training on Str of size Ntr.

On the truthful path we evaluate the mechanism at b = v, but the regret
computation will explicitly query the mechanism at misreports. Given θ,
define the empirical revenue

R̂EVtr(θ) =
1

Ntr

∑
(v,x)∈Str

n∑
i=1

tθ,i(v, x).

The empirical IR-violation estimate is straightforward because it depends
only on truthful utility:

ÎRVtr,i(θ) =
1

Ntr

∑
(v,x)∈Str

max
{
0, −ui((vi, v−i);x, vi)

}
.

For fairness, we assume we have a per-sample (or per-mini-batch) measurable
penalty ψθ(v, x) whose expectation is FR(θ) (e.g., total-variation violations
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computed by pairing contexts within a batch). We then define

F̂Rtr(θ) =
1

Ntr

∑
(v,x)∈Str

ψθ(v, x).

Empirical regret as a bilevel objective. The central complication is
regret. For each sample (v, x) and bidder i, define the sample-level best-
response value

ϕi,θ(v, x) = max
bi∈[0,1]m

ui
(
(bi, v−i);x, vi

)
− ui

(
(vi, v−i);x, vi

)
,

and the empirical regret estimate

R̂GTtr,i(θ) =
1

Ntr

∑
(v,x)∈Str

ϕi,θ(v, x).

Computationally, R̂GTtr,i(θ) is a bilevel quantity: an outer expectation over
samples and an inner maximization over misreports. We deliberately work
with this ex-post regret proxy (rather than an ex-interim IC constraint) be-
cause it is agnostic to the mechanism’s parametric form and remains mean-
ingful in the presence of contextual features x and randomized allocations.

Constrained ERM formulation. Fix target tolerances (εr, εir, εf ) for
regret, IR violation, and fairness, respectively. The training problem is

max
θ∈Θ

R̂EVtr(θ)

s.t. R̂GTtr,i(θ) ≤ εr, i ∈ [n],

ÎRVtr,i(θ) ≤ εir, i ∈ [n],

F̂Rtr(θ) ≤ εf .

(12)

Although (12) is written with hard empirical constraints, in practice we
will not solve it exactly. Instead, we use a smooth constrained optimiza-
tion scheme that (i) can be implemented with stochastic gradients, and (ii)
produces mechanisms whose empirical violations are small enough that the
holdout certificate (Section 6) can plausibly clear them with statistical slack.

Augmented Lagrangian training. A convenient approach is an aug-
mented Lagrangian (or, equivalently, a primal–dual penalty method) in which
we penalize constraint violations while maintaining explicit dual variables.
Let λ = (λ1, . . . , λn) ∈ Rn

+ be multipliers for regret, µ ∈ Rn
+ for IR vio-

lations, and ν ∈ R+ for fairness. For a penalty weight ρ > 0 and hinge
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notation [z]+ = max{0, z}, define

Lρ(θ, λ, µ, ν) = − R̂EVtr(θ) +
n∑

i=1

λi
(
R̂GTtr,i(θ)− εr

)
+

n∑
i=1

µi
(
ÎRVtr,i(θ)− εir

)
+ ν
(
F̂Rtr(θ)− εf

)
+
ρ

2

n∑
i=1

[
R̂GTtr,i(θ)− εr

]2
+
+
ρ

2

n∑
i=1

[
ÎRVtr,i(θ)− εir

]2
+
+
ρ

2

[
F̂Rtr(θ)− εf

]2
+
.

(13)
We then perform alternating updates: (a) approximately minimize Lρ over
θ using stochastic gradient descent on mini-batches; (b) ascend in the dual
variables (with projection onto R+) using, for example,

λi ←
[
λi+αλ

(
R̂GTmb,i(θ)−εr

)]
+
, µi ←

[
µi+αµ

(
ÎRVmb,i(θ)−εir

)]
+
, ν ←

[
ν+αν

(
F̂Rmb(θ)−εf

)]
+
,

where “mb” denotes mini-batch estimates. Economically, the multipliers
act as endogenous “shadow prices” on violations: when regret or unfairness
rises, training reweights the objective toward correcting it. Practically, the
quadratic hinge terms stabilize training relative to a pure Lagrangian, which
can oscillate when constraints are near-binding.

Numerical best responses as an adversarial inner loop. To compute
ϕi,θ(v, x) and its gradients, we require a best-response oracle. Because the
mechanism is differentiable in bids by construction, we implement the inner
maximization via projected gradient ascent in bi ∈ [0, 1]m. For each (v, x) in
a mini-batch and each bidder i (or a randomly chosen subset of bidders to
reduce cost), we solve

max
bi∈[0,1]m

ui
(
(bi, v−i);x, vi

)
approximately using K steps of a first-order method:

b
(k+1)
i ← Π[0,1]m

(
b
(k)
i + ηbr∇biui

(
(b

(k)
i , v−i);x, vi

))
,

possibly with momentum or Adam-style preconditioning. We typically use
multiple random restarts (including the truthful report bi = vi) and keep
the best iterate. Two implementation details matter for auditability. First,
we log the achieved inner objective values and gradient norms; large residual
gradients are a clear signal that the oracle is not close to optimal. Second, we
explicitly track the number of steps K, restarts, and step sizes, since these
choices determine an oracle error η that must later be reflected in the final
regret certificate (as formalized by the oracle-gap logic in Proposition 5).

Differentiating through the max operator. If we could compute an
exact maximizer b⋆i (v, x; θ), then by Danskin-type arguments the gradient
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of ϕi,θ(v, x) with respect to θ can be taken by holding b⋆i fixed and differ-
entiating the utility difference at that maximizer. With approximate best
responses, we adopt the same heuristic—treat the final iterate b̃i as fixed
when differentiating—which is standard in adversarial training. This choice
is not merely computational convenience: it aligns with what we can later
certify. The certificate will upper-bound true regret in terms of (i) the em-
pirically estimated regret using a tighter adversary on holdout data, plus (ii)
an explicit slack for the residual oracle error. In other words, we do not need
training-time gradients to be exact; we need the evaluation-time adversary
to be strong and its remaining error to be measurable and conservatively
incorporated.

Practical approximations and their governance meaning. Three ap-
proximations are common and, in our view, should be treated as part of the
mechanism’s documented training protocol.

First, we may compute regret on a subset of bidders per mini-batch.
This reduces cost from O(n) best-response solves per sample to a constant
number, but it introduces variance and can miss worst-case agents when
n is large. A conservative deployment process therefore increases adversary
strength at certification time (Section 6) and explicitly reports the maximum
regret over all bidders on holdout.

Second, for fairness penalties that require comparing allocations across
contexts (e.g., total-variation constraints over user pairs), we estimate F̂Rtr(θ)
using within-batch pairings or a sampled neighborhood of contexts. This
makes the training signal tractable, but it can underrepresent rare groups or
long-tail contexts. Again, the remedy is not to claim training solves fairness,
but to design the certification to target those tails (e.g., stratified holdout
evaluation and stress tests).

Third, we often tighten training tolerances relative to the eventual policy
tolerances, using (εtrr , ε

tr
ir, ε

tr
f ) that are smaller than the desired deployment

bounds. This “train conservatively” heuristic is economically interpretable:
it builds a safety margin for generalization slack and for distribution drift.
The cost, of course, is revenue; our framework makes that tradeoff explicit,
and the certificate later quantifies whether the margin was sufficient.

Limitations. Constrained ERM with adversarial best responses is com-
putationally intensive and nonconvex. We do not claim global optimality of
the trained θ̂, nor do we claim that the training constraints alone guarantee
safe deployment. Rather, training is the stage at which we search for a high-
revenue mechanism that appears empirically compliant under a reasonably
strong adversary. The next stage—certification—is where we insist on out-
of-sample, high-confidence bounds under a tightened adversary and explicit
diagnostics for the failure modes that training can mask.
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6 Certification protocol: held-out evaluation with
a tightened adversary

Training is inherently exploratory: we tune θ, adjust optimization hyperpa-
rameters, and (often) select a checkpoint. For an auditor, however, what
matters is not whether constraints were encouraged during training, but
whether the deployed mechanism satisfies incentive, IR, and fairness require-
ments out of sample with an explicit confidence level. We therefore separate
learning from certification. The certification protocol takes a fixed candidate
mechanism θ̂ and produces (i) empirical estimates of regret, IR violation,
and fairness violation on data not used for fitting, and (ii) a conservative
translation of these estimates into population-level bounds that hold with
probability at least 1− δ.

Holdout discipline and non-adaptivity. Let Sho = {(v(s), x(s))}Nho
s=1 be

a holdout sample drawn independently of training (or separated in time when
data are mixing, using blocking). Certification is performed once on Sho af-
ter we commit to θ̂. To preserve the meaning of a 1− δ certificate, we treat
all design choices that could respond to holdout outcomes—including which
checkpoint to deploy, how many adversary steps to run, and which fairness
subgroups to emphasize—as part of a pre-registered evaluation plan. When
operational constraints force repeated certification attempts (e.g., iterative
model updates), we account for this adaptivity by allocating failure proba-
bility across attempts (e.g., a Bonferroni-style split of δ) or by maintaining
a fresh holdout stream.

Tightened adversary for holdout regret. Regret is the most delicate
object to certify because it contains an inner maximization over misreports.
The central principle is that the holdout adversary should be at least as
strong as the adversary used in training. Concretely, for each (v, x) ∈ Sho
and bidder i, we define a holdout regret integrand using a strengthened best-
response oracle:

ϕ̃i,θ̂(v, x) = max
bi∈Aho(v,x)

ui
(
(bi, v−i);x, vi

)
− ui

(
(vi, v−i);x, vi

)
,

where Aho(v, x) ⊆ [0, 1]m is the feasible report set explored by the oracle
(in the simplest case Aho(v, x) = [0, 1]m). The oracle itself is implemented
by a higher-budget projected ascent routine: more steps Kho, more random
restarts Rho, and (when useful) a small portfolio of step sizes and initializa-
tions that include bi = vi and boundary points. We then set

R̂GTho,i(θ̂) =
1

Nho

∑
(v,x)∈Sho

ϕ̃i,θ̂(v, x), R̂GT
max

ho (θ̂) = max
i∈[n]

R̂GTho,i(θ̂).
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Because the oracle is numerical, we also attach an explicit oracle error term
ηho ≥ 0 that upper-bounds how much the computed value could underes-
timate the true inner maximum. In practice, we make ηho conservative by
combining (i) observed improvement over the last iterations (a “no further
progress” criterion), (ii) multiple restarts (so that the best found value is
difficult to improve upon), and (iii) a stationarity diagnostic such as pro-
jected gradient norms. The certificate reports the full oracle configuration
(Kho, Rho, ηho) so that the evaluation is reproducible.

Holdout IR and fairness estimates. IR violations do not require ad-
versarial search. On holdout we compute

ÎRVho,i(θ̂) =
1

Nho

∑
(v,x)∈Sho

max
{
0, −ui((vi, v−i);x, vi)

}
, ÎRV

max

ho (θ̂) = max
i∈[n]

ÎRVho,i(θ̂).

For fairness we compute a holdout analogue

F̂Rho(θ̂) =
1

Nho

∑
(v,x)∈Sho

ψθ̂(v, x),

where ψθ̂ is the per-sample (or per-batch) fairness-violation statistic. Be-
cause fairness constraints are often most binding in the long tail, we aug-
ment the global average with stratified reports: conditional estimates over
protected groups, high-leverage contexts, or slices defined by policy-relevant
features of x. When the fairness notion involves pairwise comparisons across
contexts, we standardize the sampling scheme used to form pairs on holdout
(e.g., fixed neighborhood sampling) to ensure that F̂Rho is a well-defined
estimator of the target functional.

From holdout means to high-probability population certificates.
The output of certification is not just a point estimate but a bound that
holds with confidence 1 − δ. We therefore translate holdout estimates into
population-level guarantees using slack terms ∆r(Nho, δ), ∆ir(Nho, δ), and
∆f (Nho, δ) that depend on sample size, failure probability, and the complex-
ity of the hypothesis class. Formally, the certificate takes the form

max
i∈[n]

RGTi(θ̂) ≤ R̂GT
max

ho (θ̂) + ∆r(Nho, δr) + ηho,

max
i∈[n]

IRVi(θ̂) ≤ ÎRV
max

ho (θ̂) + ∆ir(Nho, δir), FR(θ̂) ≤ F̂Rho(θ̂) + ∆f (Nho, δf ),

with δr + δir + δf ≤ δ (for example, a simple equal split). Economically, the
bound decomposes into three transparent components: what we observed
on unseen data, what we pay for statistical uncertainty, and what we pay

21



for numerical under-optimization of the adversary. This decomposition mat-
ters in practice: when a certificate fails, it is diagnostically important to
know whether failure is driven by observed violations, insufficient data, or
an underpowered regret oracle.

Stress tests and “known unknowns.” Holdout evaluation targets the
distribution D represented by available samples. Deployment risk often
comes from nearby but different environments: composition shifts in bid-
ders, new contexts, or strategic adaptation over time. We therefore add an
explicit stress-test layer that is not used to compute the main 1−δ certificate
but is reported alongside it. Examples include: (i) worst-slice evaluation over
rare or high-impact contexts, (ii) perturbation tests that slightly modify v or
x within plausible ranges to detect brittle discontinuities, and (iii) stronger
adversaries that expand Aho(v, x) or increase Kho beyond the pre-registered
level. These stress tests are not formal guarantees; rather, they are gov-
ernance tools that help decide whether the certified mechanism is robust
enough for high-stakes deployment.

Failure modes and diagnostics. We treat certification as an opportunity
to falsify overly optimistic conclusions. Four failure modes recur.

(1) Oracle weakness. If regret appears small only because the adversary is
weak, then increasing Kho or restarts should materially increase R̂GT

max

ho (θ̂).
We therefore report regret as a function of adversary budget and include
convergence diagnostics (e.g., improvement curves and projected gradient
norms).

(2) Selection bias from checkpointing. Choosing θ̂ by scanning many
checkpoints against holdout performance invalidates nominal confidence lev-
els. Our protocol avoids this by selecting θ̂ using training-only criteria (or a
separate validation set) and using the holdout strictly once for certification.

(3) Tail risk masked by averages. Since RGTi(θ) and FR(θ) are expecta-
tions, a small mean can coexist with rare but severe violations. We therefore
report distributional diagnostics: quantiles of ϕ̃i,θ̂(v, x), the maximum ob-
served per-sample regret on holdout, and slice-wise maxima for fairness and
IR.

(4) Temporal dependence and drift. When data are mixing rather than
i.i.d., naive random splits can leak dependence. We mitigate this by block
splitting and by periodic recertification on recent data, reporting certificate
deterioration as an early warning signal.

Certification output. The final artifact is a short certificate report con-
taining: the mechanism description and hash of θ̂; the holdout estimators
R̂GT

max

ho , ÎRV
max

ho , and F̂Rho; the computed slack terms ∆r,∆ir,∆f and
the oracle error ηho; and the resulting population upper bounds. This is
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the object that can be handed to a regulator or internal risk committee: it
is explicit about uncertainty, explicit about numerical approximations, and
explicit about where (and why) the guarantee could fail.

7 Main theory: uniform convergence and certified
constrained optimality

We now make precise the statistical argument that turns finite-sample eval-
uations of regret, IR violation, and fairness violation into out-of-sample
guarantees. The central difficulty is that incentive compatibility is assessed
through an inner maximization (a best response), which can in principle
amplify estimation error and destroy uniform convergence. Our approach is
to (i) control the complexity of the entire integrand class induced by mech-
anisms in Θ, and (ii) exploit Lipschitzness and boundedness to ensure the
inner maximization is stable.

Function classes for certification. Fix any bidder i ∈ [n] and mecha-
nism θ ∈ Θ. Define the per-sample regret integrand

ϕi,θ(v, x) := max
v′i∈[0,1]m

ui
(
(v′i, v−i);x, vi

)
− ui

(
(vi, v−i);x, vi

)
,

as well as the per-sample IR-violation integrand

ζi,θ(v, x) := max
{
0, −ui

(
(vi, v−i);x, vi

)}
.

For fairness we write ψθ(v, x) for the per-sample fairness-violation statistic
whose expectation equals FR(θ). We then consider the induced function
classes

Fr =
{
ϕi,θ : θ ∈ Θ, i ∈ [n]

}
, Fir =

{
ζi,θ : θ ∈ Θ, i ∈ [n]

}
, Ff =

{
ψθ : θ ∈ Θ

}
.

Uniform convergence for these classes yields simultaneous control of all bid-
ders and all mechanisms that might plausibly be output by training or model
selection (provided the evaluation protocol remains non-adaptive with re-
spect to the holdout sample).

Boundedness and stability of the inner maximization. The regret
integrand is a max over a continuum of misreports, so we first argue it re-
mains well-behaved under our architectural assumptions. Because valuations
lie in [0, 1]m, allocations satisfy piℓ ∈ [0, 1] with

∑
i piℓ ≤ 1, and payments

are uniformly bounded by ti ∈ [0, B], utilities satisfy

−B ≤ ui(b;x, vi) ≤ m ⇒ 0 ≤ ϕi,θ(v, x) ≤ m+B.
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More importantly, Lipschitzness of (pθ, tθ) in v implies that ϕi,θ cannot os-
cillate sharply with small perturbations in types. Intuitively, if we perturb
(v, x) slightly, then (a) the truthful utility changes smoothly, and (b) the
best attainable utility under misreporting also changes smoothly because
the maximization is taken over a compact set and the objective is itself Lip-
schitz. Formally, under mild regularity (e.g., existence of maximizers and
an envelope argument), the mapping (v, x) 7→ maxv′i ui((v

′
i, v−i);x, vi) inher-

its Lipschitzness with a constant proportional to the Lipschitz constant of
(pθ, tθ) and the bounded domain [0, 1]m. The same reasoning applies to ζi,θ
(a hinge of a Lipschitz function) and to ψθ whenever fairness is defined as a
bounded Lipschitz functional of allocations.

Uniform convergence via Rademacher complexity. Let S = {(v(s), x(s))}Ns=1

be an evaluation sample drawn i.i.d. from D (extensions to mixing appear
in Section 8). For any bounded function class F , standard symmetrization
yields, with probability at least 1− δ,

sup
f∈F

∣∣∣ 1
N

N∑
s=1

f(v(s), x(s))− E[f(v, x)]
∣∣∣ ≤ 2RN (F) + C

√
log(1/δ)

N
,

for a constant C depending only on the uniform bound on F . Applying
this bound to Fr,Fir,Ff and union bounding over bidders where needed,
we obtain slack terms ∆r(N, δ),∆ir(N, δ),∆f (N, δ) of the generic form

∆·(N, δ) = O

(
RN (F·) +

√
log(1/δ)

N

)
,

with logn factors when taking maxi and with constants that scale with (m+
B) for regret and with the corresponding uniform bounds for IR and fairness.
Permutation equivariance helps here because it reduces effective complexity:
intuitively, the class cannot represent bidder-specific idiosyncrasies, which
tightens RN (Fr) relative to an unconstrained architecture.

PAC-Bayes as a data-dependent alternative. Worst-case complexity
bounds can be pessimistic for over-parameterized neural mechanisms. A
complementary route is PAC-Bayes, which controls the posterior-averaged
generalization gap in terms of a KL divergence to a prior. Concretely, let
P be a prior over parameters θ (e.g., a Gaussian around an initialization),
and let Q be a posterior distribution produced by training (for instance, a
distribution over nearby checkpoints or a Gaussian around θ̂ with learned
scale). For any bounded loss fθ ∈ [0, U ], a standard PAC-Bayes inequality
implies that with probability at least 1− δ over S,

Eθ∼Q

[
E[fθ]− Ê[fθ]

]
≤ O

(√
KL(Q∥P ) + log(1/δ)

N

)
,
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where Ê denotes the empirical mean on S. Taking fθ to be ϕi,θ (or ψθ)
yields a certificate for the randomized mechanism induced by Q, and, via
standard arguments (e.g., choosing Q concentrated near θ̂), also provides a
practical, data-dependent upper bound for the deterministic candidate. The
policy-relevant point is that PAC-Bayes can turn “large network” into “small
effective description length” when training finds a stable, low-complexity
solution.

Accounting for approximate best responses. Because ϕi,θ contains
an inner maximum, certification must acknowledge that we compute best
responses numerically. Suppose the regret oracle returns η-approximate best
responses in the sense that for each (v, x) it outputs a value ϕ̃i,θ(v, x) satis-
fying

ϕ̃i,θ(v, x) ≥ ϕi,θ(v, x)− η.

Then empirical regret computed using ϕ̃ underestimates true empirical re-
gret by at most η, and consequently any population certificate acquires an
additive η term. This separation is economically important: it distinguishes
statistical uncertainty (which decays with N) from computational under-
optimization (which decays with adversary budget and algorithmic improve-
ments).

Certified constrained near-optimality. We can now state the main
guarantee in a form aligned with the constrained learning objective. Let θ̂
be an (approximate) solution to the empirical problem

max
θ∈Θ

R̂EV(θ) s.t. max
i

R̂GTi(θ) ≤ εr, max
i

ÎRVi(θ) ≤ εir, F̂R(θ) ≤ εf ,

where empirical quantities are evaluated on an independent sample and
where R̂GTi is computed with an η-approximate oracle. Then, with proba-
bility at least 1− δ,

max
i

RGTi(θ̂) ≤ max
i

R̂GTi(θ̂) + ∆r(N, δr) + η, max
i

IRVi(θ̂) ≤ max
i

ÎRVi(θ̂) + ∆ir(N, δir),

FR(θ̂) ≤ F̂R(θ̂) + ∆f (N, δf ), δr + δir + δf ≤ δ.

Moreover, letting Θ⋆ = {θ ∈ Θ : RGT(θ) ≤ 0, IRV(θ) ≤ 0, FR(θ) ≤ 0}
denote the (unknown) population-feasible set, the expected revenue satisfies
the near-optimality bound

REV(θ̂) ≥ sup
θ∈Θ⋆

REV(θ) − O(εr + εir + εf +∆r +∆ir +∆f + η) ,

where the big-O hides only universal constants and the uniform bounds on
utilities and payments.
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Interpretation and limitations. The theorem makes a specific tradeoff
explicit. We can only certify what our class Θ can express and what our
data can justify: tighter constraint tolerances reduce the feasible set and
may lower revenue, while richer mechanisms increase revenue potential but
worsen statistical slack through RN (F). This tension is not merely math-
ematical. In practice, regulators care about documented upper bounds on
violations, and those bounds meaningfully depend on (i) architectural choices
that control Lipschitzness and symmetry, (ii) the size and representativeness
of evaluation data, and (iii) the strength and transparency of the regret or-
acle. Finally, our guarantee is relative to the best mechanism within Θ that
satisfies the exact constraints; if the true economic optimum lies outside
Θ (e.g., because of unmodeled bidder heterogeneity or richer type spaces),
the certificate remains valid but the revenue comparison is necessarily class-
conditional.

8 Extensions

We have stated the main theory under an i.i.d. evaluation sample primarily
to keep the logic transparent. In many deployments, however, observations
arrive sequentially and are neither independent nor identically distributed:
bidder populations drift, contexts exhibit seasonality, and platform-side con-
straints induce temporal correlation in outcomes. We also often face richer
private information than a pure valuation vector (e.g., budgets), and we may
wish to certify mechanisms that operate across time rather than in a single
static snapshot. Finally, it is natural to ask when classical closed-form mech-
anisms can be incorporated to strengthen guarantees rather than replaced
by a black-box network. We briefly sketch how each of these extensions fits
into the same certification template.

Weak dependence and mixing over time. Suppose we observe a time
series {(v(s), x(s))}Ns=1 generated by a stationary process with weak depen-
dence, rather than i.i.d. draws. A standard assumption in learning with
dependent data is β-mixing (absolute regularity), with coefficients β(t) that
decay as the lag t grows. Intuitively, when

∑
t≥1 β(t) is small (or β(t) de-

cays geometrically), blocks of observations far apart behave approximately
as if independent. Under such conditions, uniform convergence for bounded
(and, in our case, Lipschitz) function classes continues to hold with an ef-
fective sample size smaller than N but still growing linearly in N up to
dependence factors.

A convenient route is a blocking argument: partition {1, . . . , N} into
K blocks of length ℓ separated by gaps of length g, so that observations in
different retained blocks are nearly independent. For a bounded class F with
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envelope U , one obtains bounds of the schematic form

sup
f∈F

∣∣∣∣∣ 1N
N∑
s=1

f(v(s), x(s))− E[f(v, x)]

∣∣∣∣∣ ≤ O

(
RK(F) + U

√
log(1/δ)

K

)
+ O(U K β(g)) ,

where K ≈ N/(ℓ+ g). Choosing g so that β(g) is small trades off bias (from
dependence) against variance (from fewer effective blocks). The economic
interpretation mirrors the i.i.d. case: statistical slack shrinks with data, but
more slowly when the market is “sticky” over time. Importantly, the archi-
tectural levers emphasized above still matter. Lipschitzness and equivari-
ance reduce the complexity terms (e.g., via Rademacher or covering-number
bounds) regardless of whether the data are independent; dependence affects
primarily the concentration step.

A practical implication for auditors is that the certificate should record
not only N but also the dependence model used to justify concentration.
When stationarity is questionable (e.g., known regime shifts), one can still
certify windowed performance: apply the same bounds to rolling windows in
which the process is plausibly stable, and treat re-certification as part of the
governance process rather than a one-time event.

Private budgets and additional type components. Many applica-
tions, especially in advertising and procurement, impose budget constraints
that are privately known or only imperfectly observable. A minimal exten-
sion is to augment bidder i’s type from vi ∈ [0, 1]m to τi = (vi, Bi), where
Bi ∈ [0, B] is a budget cap. The mechanism now outputs (pθ(τ, x), tθ(τ, x))
with an additional feasibility constraint

0 ≤ tθ,i(τ, x) ≤ Bi ∀i.

This constraint can again be enforced by construction, for example by pa-
rameterizing an unconstrained payment t̃i ≥ 0 and setting ti = min{t̃i, Bi}
(or a smooth approximation). Utilities remain quasi-linear up to the cap:

ui(b;x, τi) =
m∑
ℓ=1

piℓ(b, x) viℓ − ti(b, x),

and regret is defined exactly as before, except that deviations range over
reports (v′i, B

′
i) in the allowed domain. Two modeling choices are common.

If budgets are verifiable (the platform can enforce ti ≤ Bi and bidders can-
not benefit from overstating), we restrict deviations to B′

i ≤ Bi; if budgets
are cheap talk, we allow B′

i in the full interval and let incentives discipline
truthful reporting. Either way, the certification logic is unchanged: the re-
gret integrand is still a max of a bounded Lipschitz objective over a compact
set, hence remains stable under the same regularity conditions, and uniform
convergence applies to the induced function classes.
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The main limitation is conceptual rather than statistical: budgets break
the classic equivalence between DSIC and envelope-based payment formulas
for additive valuations, so the mechanism class Θ matters more. In par-
ticular, a network that is expressive enough to exploit budgets may also
be expressive enough to create subtle incentive issues unless Lipschitzness
and symmetry are carefully controlled. Our framework is well-suited to this
reality because it does not assume a closed-form characterization of truth-
fulness; it measures and certifies deviations directly, but it must pay for that
flexibility through computation of best responses and through complexity
control.

Dynamic settings and stagewise certificates. Platforms rarely run a
single auction; they run a sequence. Let t = 1, . . . , T index stages, and let
(v(t), x(t)) denote the types and context at stage t. A dynamic mechanism
may couple allocations and payments across stages (e.g., pacing, carry-over
budgets, or frequency capping). In such environments, full dynamic incentive
compatibility is a statement about deviations in an entire reporting policy
across time, which is typically intractable to certify without strong structural
assumptions.

A pragmatic compromise is a stagewise certificate. We treat each stage
as a (possibly context-augmented) static mechanism and certify that, condi-
tional on the realized history h(t) that the mechanism observes, misreporting
at stage t yields little gain relative to truthful reporting at that stage. For-
mally, define a per-stage regret integrand

ϕ
(t)
i,θ(v

(t), x(t), h(t)) = max
v′i∈[0,1]m

u
(t)
i

(
(v′i, v

(t)
−i);x

(t), h(t), v
(t)
i

)
−u(t)i

(
(v

(t)
i , v

(t)
−i);x

(t), h(t), v
(t)
i

)
,

and certify E[ϕ(t)i,θ ] ≤ ε
(t)
r uniformly over t (or on average). When the mech-

anism is myopic (no cross-stage coupling), this stagewise notion coincides
with the static notion applied repeatedly. When coupling exists, stagewise
regret becomes a bound on one-step deviations holding future play fixed;
it is weaker than full dynamic truthfulness but can still be policy-relevant,
especially when regulations are framed around per-auction transparency and
when long-horizon deviations are practically limited by monitoring and bud-
get constraints.

From a statistical viewpoint, stagewise certification is attractive: it re-
duces the deviation class from policies to per-stage reports, preserving com-
pactness and enabling the same Lipschitz stability arguments. Dependence
across t can be handled via the mixing extension above (or, when condition-
ing on histories, via martingale concentration under bounded differences).
The cost is interpretability: the certificate must clearly state whether it
bounds per-stage deviations, deviations over a restricted policy class, or full-
horizon deviations, so that stakeholders understand the scope of the guar-
antee.
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Embedding closed-form mechanisms as structure. Finally, we com-
ment on when classical auction theory can strengthen guarantees. When the
environment is close to a setting with a known optimal truthful mechanism
(e.g., single-item with independent private values, or additive valuations with
VCG-style structure), we can incorporate that structure into Θ rather than
learning from scratch. There are two complementary benefits.

First, structure can reduce statistical complexity. If we parameterize al-
locations or payments through a low-dimensional family motivated by theory
(e.g., monotone allocation rules with Myerson-style payment computation,
or VCG with learned reserve adjustments), then RN (F·) can be materially
smaller than for a generic network, tightening ∆r,∆ir,∆f and improving
the practical sharpness of certificates. Second, structure can reduce the ora-
cle burden. If parts of the mechanism are provably truthful by design, then
regret computation becomes easier because the inner maximization is either
identically zero in the structured limit or is constrained to a smaller deviation
set arising from the learned residual components.

Concretely, one can view a hybrid mechanism as

(pθ, tθ) =
(
pbaseα , tbaseα

)
+
(
∆pβ,∆tβ

)
,

where the base component is a closed-form truthful mechanism (or a dif-
ferentiable approximation), and the residual is a Lipschitz, equivariant ad-
justment trained to meet fairness or business constraints. Certification then
targets the combined mechanism, but we expect both regret and complexity
to be smaller when the residual is small. The limitation is that theoretical
structure is only as good as the model assumptions behind it; when indepen-
dence, single-parameter structure, or quasilinearity fail, forcing a Myerson-
style form can mis-specify incentives and reduce revenue. Our framework is
designed to make this tradeoff explicit: adding structure may tighten certifi-
cates and improve robustness, but it can also restrict Θ and thereby lower
the best achievable objective under the true environment.

Taken together, these extensions emphasize that certification is not tied
to a single idealized statistical model. Rather, it is a modular pipeline: we
enforce feasibility by construction, quantify incentive and fairness violations
through empirically estimable functionals, and then choose the appropriate
generalization theory (i.i.d., mixing, or martingale) and the appropriate type
model (valuations, budgets, histories) to make the guarantees both mathe-
matically defensible and operationally interpretable.

9 Experiments

We complement the theoretical certificate guarantees with experiments de-
signed to answer three practical questions. First, in standard multi-item
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benchmarks, do the architectural restrictions we advocate (feasibility lay-
ers, permutation equivariance, and Lipschitz control) materially change the
revenue–incentives frontier relative to widely used learned-mechanism base-
lines? Second, in a context-rich advertising allocation problem with an ex-
plicit group fairness constraint, does certification remain informative at real-
istic sample sizes, or does the bound become vacuous? Third, in a procure-
ment setting with volume discounts—where the economic primitives differ
from “sell m items to n bidders”—does the same training-and-certification
template remain useful, particularly when the best-response oracle is only
approximate?

Common protocol and evaluation metrics. Across all environments
we train mechanisms by constrained empirical risk minimization, maximiz-
ing empirical revenue subject to empirical constraints on (i) ex-post regret,
(ii) ex-post individual-rationality violation, and (iii) the relevant fairness
functional when present. We use a standard Lagrangian or augmented-
Lagrangian procedure with multipliers updated on a held-out minibatch to
reduce overfitting to the constraints. To compute empirical regret we em-
ploy a numerical best-response oracle: for each sampled (v, x) and bidder i,
we approximately solve the inner maximization over misreports v′i ∈ [0, 1]m

via projected gradient ascent on the differentiable surrogate utility induced
by the mechanism network. This produces both a training-time estimate
R̂GTi(θ) and, crucially for auditing, a certification-time estimate on an in-
dependent evaluation set. We report (a) empirical regret/IR/fairness on
the training distribution, (b) the same quantities on the evaluation set, and
(c) the corresponding certificate upper bounds (evaluation estimate plus the
appropriate slack term), highlighting when certification is tight enough to
be decision-relevant. In addition, we report the best-response oracle gap by
running longer inner-loop optimization at evaluation time and measuring the
increase in attained utility; this provides an empirical proxy for the η term
in Proposition 5.

Baselines and ablations. We compare our mechanisms to four families
that represent common design points in the recent literature. RegretNet
is a generic, non-equivariant neural mechanism trained to minimize regret
while maximizing revenue; it serves as a strong “black-box” baseline but typ-
ically lacks explicit symmetry and Lipschitz control. EquivarianceNet adds
permutation-equivariant layers in the bidder dimension, aligning the archi-
tecture with exchangeability and often improving sample efficiency. Regret-
Former represents a transformer-style architecture that can capture richer
interactions among bidders and items, again usually without explicit Lip-
schitz calibration. ProportionNet is a fairness-oriented baseline that hard-
codes proportional allocation heuristics (or their smooth relaxations) and

30



then learns payments; it tends to achieve low fairness violation but may sac-
rifice revenue or incentives because the allocation rule is heavily constrained.
For our own method we ablate three components: (i) removing Lipschitz con-
trol (e.g., dropping spectral normalization or gradient penalties), (ii) remov-
ing equivariance while keeping feasibility and the same optimizer, and (iii)
weakening the adversarial certification by replacing the best-response oracle
with random misreports, which tests whether the certificate depends sub-
stantively on adversarial search rather than on incidental near-truthfulness.

(i) Standard multi-item multi-bidder benchmarks. We begin with
synthetic benchmark distributions commonly used to evaluate learned mech-
anisms: additive valuations with viℓ drawn independently from simple fam-
ilies (uniform, truncated normal, and mixtures that create “common high
value” items), and contexts suppressed (x empty) to isolate the mechanism
design problem. We vary (n,m) over a grid spanning small markets (e.g.,
n ∈ {2, 4}, m ∈ {2, 4}) to moderately sized markets (e.g., n = 8, m = 8)
where the inner-loop regret computation becomes nontrivial. The principal
outcome is a revenue–regret curve obtained by sweeping the target tolerance
εr in training (and analogously εir for IR). Two patterns are consistent across
distributions. First, architectures that encode bidder symmetry reduce out-
of-sample regret at a fixed revenue level: equivariant models dominate non-
equivariant ones in the region where the regret constraint is tight, which is
precisely the regime in which certification is economically meaningful. Sec-
ond, explicit Lipschitz control reduces the variance of regret estimates across
samples and narrows the train–test gap in regret and IR violation. In prac-
tical terms, when we remove Lipschitz control, we often observe mechanisms
that appear nearly DSIC on the training sample but exhibit materially higher
regret on the evaluation set; these are exactly the failures our certificate is
intended to flag. The most salient comparison is that, at a fixed certified
regret level, our approach achieves revenue comparable to (and often exceed-
ing) RegretNet while producing substantially tighter certificates, suggesting
that controlling sensitivity is not merely a theoretical convenience but im-
proves the operational auditability of the learned mechanism.

(ii) Fairness-constrained ad allocation with contexts. We next con-
sider a stylized display advertising allocation problem in which the context
x encodes a user (or impression type) and eligibility constraints, and bidders
represent advertisers partitioned into classes (e.g., protected categories, in-
dustries, or campaigns subject to policy constraints). Each bidder submits
per-impression values vi(x) for a single slot (so m = 1) or a small set of
slots/items (small m) representing multiple placements. We instantiate the
fairness functional as a total-variation style constraint across users, in which
the aggregated allocation probability for each advertiser class is required
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to be similar across nearby users (as in the template FR(θ) described ear-
lier). We generate semi-synthetic values by combining observed covariates
with randomized bidder-specific coefficients, allowing us to create realistic
heterogeneity while retaining a known data-generating process.

The economic tension is transparent: stronger fairness constraints com-
press the ability to discriminate across contexts, lowering revenue, and they
can also interact with incentives by changing the marginal effect of a bidder’s
report in different contexts. Empirically we find that fairness-constrained
training produces mechanisms that satisfy fairness on the evaluation set,
but only when the mechanism family is both equivariant (to reduce the ef-
fective complexity in the bidder dimension) and Lipschitz controlled (to pre-
vent sharp context-dependent discontinuities that amplify estimation error in
F̂R). ProportionNet attains very low fairness violation but at a substantial
revenue loss, and its incentive properties can be fragile because the restricted
allocation rule forces payments to do too much of the work. RegretFormer
can recover higher revenue, but without sensitivity control its fairness per-
formance is less stable out of sample: in several configurations it meets the
fairness tolerance on the training sample while violating it on the evaluation
sample. Our certified approach, by contrast, tends to produce a “middle”
outcome: revenue close to the best unconstrained models subject to certified
fairness, with certificates that remain non-vacuous at moderate N . A key
ablation result is that replacing adversarial misreports with random misre-
ports can dramatically understate regret in this setting, because profitable
deviations are structured and context-dependent; thus, the best-response or-
acle is not an implementation detail but part of what makes the evaluation
credible.

(iii) Volume-discount procurement. Finally, we study a reverse-auction
procurement environment motivated by platform purchasing and supply-
chain contracting. Here the auctioneer purchases quantities of multiple
goods, and suppliers have private cost information exhibiting volume dis-
counts (equivalently, convexities in value in a selling formulation). We repre-
sent the procurement decision as allocating “demand units” across suppliers
and items, with payments interpreted as transfers to suppliers; the feasi-
bility constraint becomes a demand-fulfillment constraint and per-supplier
capacity. Although the primitive differs from selling m items, the learned
mechanism can be expressed in the same allocation–payment form by inter-
preting piℓ as the probability (or fraction) of awarding unit ℓ to supplier i.
We train to minimize expected procurement cost (negative revenue) subject
to incentive and IR constraints; we also explore a fairness-like constraint
corresponding to supplier diversification (penalizing excessive concentration
in awards), which is economically motivated by resilience and antitrust con-
siderations.
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This setting stress-tests the regret oracle because suppliers’ profitable
deviations can be “global” across many units, creating a rugged optimization
landscape. Consistent with Proposition 5, we observe that weaker inner-loop
optimization leads to optimistic regret estimates; when we increase the or-
acle budget at certification time, estimated regret rises and the certificate
correspondingly loosens. Importantly, the Lipschitz-controlled, equivariant
architectures are more robust to this oracle gap: they exhibit smaller changes
in regret as we strengthen the inner optimization, suggesting that smooth-
ness reduces the prevalence of narrow, high-gain deviations that are hard to
discover. From a governance perspective, this is an attractive property: it
implies that the certificate is less sensitive to the precise numerical choices
in the adversary, making the compliance story more stable.

Synthesis: what the experiments teach. Across the three domains, the
empirical message aligns with the economic logic of our framework. When
mechanisms are allowed to be highly sensitive and asymmetric, they can
extract revenue in-sample but produce brittle incentives and fairness out
of sample, rendering any a posteriori evaluation unreliable. Equivariance
and Lipschitz control act as “regularizers with meaning”: they constrain the
mechanism in ways that correspond to exchangeability and continuity of re-
sponses to bids, improving both performance stability and the sharpness of
certificates. Just as importantly, adversarial evaluation is essential: replacing
best-response search with heuristic deviations can make constraint satisfac-
tion appear easier than it is, particularly in context-rich environments where
profitable deviations exploit interaction effects. We view these findings as
a practical justification for treating certification as part of the mechanism
design problem itself, rather than as an afterthought applied to a trained
black box.

10 Discussion and Policy Implications

Our motivating premise is that a learned mechanism is not merely an op-
timization artifact but a decision rule that must be defensible to multiple
audiences: engineers who deploy it, economists who reason about incentives,
and auditors or regulators who need a verifiable account of what is guaran-
teed and at what confidence. The certificate framework we study provides a
concrete object around which such accountability can be organized: an ex-
plicit upper bound on incentive violations (via regret), individual-rationality
violations, and fairness violations, together with a stated failure probabil-
ity. In this sense, certification plays the role that stress testing and capital
buffers play in financial regulation: it translates complex model behavior
into a small set of quantities that are legible for governance, while still being
grounded in a rigorous out-of-sample statement.
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How to report a certificate. A certificate should be reported as a tuple
of (i) the empirical evaluation estimates on a holdout set, (ii) the corre-
sponding slack terms (e.g., ∆r(N, δ), ∆ir(N, δ), ∆f (N, δ)), (iii) the chosen
confidence level 1 − δ, and (iv) the numerical best-response oracle budget
together with an explicit oracle-gap proxy. Concretely, for each bidder i we
recommend reporting

R̂GTi(θ̂) and R̂GTi(θ̂) + ∆r(N, δ) + η,

and analogously for IRVi and FR. This is not a cosmetic choice: separating
the estimate from the slack term makes clear whether non-compliance (if any)
is due to observed violations or statistical uncertainty. Moreover, reporting
the oracle budget and the empirical gap from a stronger adversary provides
the practical counterpart of Proposition 5, preventing a common failure mode
in which evaluation appears favorable simply because deviations were not
adequately searched.

Interpreting certificate magnitudes. Because regret and fairness vio-
lations have different operational meanings, it is useful to complement scalar
bounds with economic calibration. For regret, a bound of εr means that, in
expectation under the reference distribution, a bidder can gain at most εr
utility by misreporting. In markets where values are normalized to [0, 1], this
quantity can be translated into an approximate “dollar” bound by rescaling
with typical transaction sizes. For fairness, we recommend reporting both
the expected violation FR(θ̂) and salient conditional violations (e.g., worst-
case over user groups in a finite audit set), even if the formal guarantee
targets only the expectation. This mirrors common compliance practice:
regulators often care about tail risks and subgroup harms, while the statisti-
cal theory typically controls an average. Being explicit about this distinction
reduces the risk that a mathematically correct certificate is misinterpreted
as a guarantee of uniform fairness across all contexts.

Monitoring and re-certification under distribution shift. The cen-
tral limitation of any distributional certificate is that it is relative to a refer-
ence D. In deployment, D can change due to seasonality, product changes,
entry and exit of bidders, or deliberate strategic adaptation to the mecha-
nism. A practical workflow therefore treats certification as a living require-
ment: we certify at launch and then periodically re-certify using fresh data,
with an explicit monitoring layer in between. One operational approach is to
maintain a rolling evaluation buffer and compute (i) drift statistics on (x, b)
or estimated values, and (ii) online estimates of the certificate functionals.
When drift is small, one can interpret the certificate as approximately valid;
when drift exceeds a threshold, the mechanism is placed into a “heightened
scrutiny” mode (e.g., conservative parameterization, tighter Lipschitz con-
trol, or fallback rules) until re-training and re-certification occur.
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From a theoretical perspective, this suggests two complementary exten-
sions. First, one can incorporate robust certificates that hold uniformly
over a neighborhood of distributions around the empirical distribution (e.g.,
Wasserstein balls), trading off slack for resilience to modest shift. Second,
one can analyze mixing or time-series regimes in which samples are not i.i.d.;
while our global context allows mild temporal dependence, practical mon-
itoring benefits from explicit bounds that account for effective sample size
under mixing. Both directions connect naturally to existing tools in distri-
butionally robust optimization and learning under dependence, but remain
underdeveloped for multi-agent incentive constraints.

Compliance workflows: roles, logs, and change management. In
organizational terms, we view certification as enabling a clear separation of
responsibilities. The mechanism designer (or ML team) produces the trained
parameters θ̂ and a “certificate report” containing the quantities above; the
auditor (internal or external) verifies the report by re-running evaluation
scripts on a locked holdout set and, critically, by re-running the best-response
oracle with a prescribed minimum budget. This suggests simple but im-
portant engineering controls: immutable logs of mechanism outputs (p, t),
versioning of θ and the oracle code, and retention of evaluation datasets
used for certificates. Change management should treat any modification to
the hypothesis class Θ (architecture, equivariance choices, Lipschitz enforce-
ment), or to the fairness functional itself, as a material change requiring
re-certification. In regulated settings, the appropriate analogy is a model-
risk governance program: the certificate becomes a standardized artifact that
can be reviewed, archived, and compared across model versions.

Policy relevance: what regulators can ask for. A regulator or plat-
form policy team cannot be expected to inspect neural mechanism internals,
but it can require a small set of standardized disclosures. We propose three.
First, a statement of the targeted constraint semantics: regret as an approx-
imation to DSIC, the precise IR notion (ex-post versus interim), and the
fairness definition including the user distance dc and class partition. Second,
quantitative certificates with a specified δ (e.g., 5% or 1%), including a trans-
parent accounting of the oracle gap. Third, an operational monitoring plan
describing how drift is detected, how often re-certification occurs, and what
fallback rule is used when certificates become non-informative. Importantly,
such disclosures are compatible with business confidentiality: they need not
reveal bidders’ data or the mechanism weights, only performance bounds
and procedures. This is a pragmatic virtue of certificate-based governance
relative to more intrusive forms of oversight.

35



Limitations. Several limitations deserve emphasis. (i) Regret is a proxy:
small ex-post regret implies approximate incentive compatibility but does
not fully characterize equilibrium behavior in repeated or information-rich
environments; bidders may learn and coordinate, and small one-shot de-
viations need not preclude profitable multi-period strategies. (ii) Fairness
is contestable: no single functional captures all normative concerns, and a
bound on one fairness metric can coexist with harms measured by another.
Our framework is agnostic to the choice of FR, but the burden shifts to
the policy process that selects it. (iii) Computational scalability: the inner
maximization that defines regret is costly in high-dimensional type spaces,
and approximate oracles can be brittle. Lipschitz control helps, but does
not eliminate the risk that the adversary misses structured deviations. (iv)
Endogeneity and strategic distribution shift: once deployed, the mechanism
can change the distribution of observed bids and contexts (and, in ad mar-
kets, user composition), so the data used for re-certification may itself be
policy-induced. This complicates both statistical inference and causal inter-
pretation.

Open problems. These limitations point to several research directions.
One is to develop stronger and more interpretable certificates, for example
converting regret bounds into approximate payment identity statements or
monotonicity diagnostics that economists find more transparent. Another is
to integrate online learning with continual certification, providing guarantees
that hold uniformly over time while the mechanism adapts. A third is to cou-
ple certification with privacy constraints, since many markets require that
training and auditing respect bidder confidentiality; the interaction between
differential privacy and incentive guarantees remains subtle. Finally, there is
the broader question of market-level outcomes: revenue and constraint satis-
faction are mechanism-level objects, but policy often cares about allocative
efficiency, entry, and long-run welfare. Extending certificate-based design to
these outcomes—particularly under strategic responses and platform feed-
back loops—is an important step toward making learning-based mechanism
design a mature tool for high-stakes allocation.

Taken together, these considerations support a practical view of our con-
tribution: certification is not a replacement for economic judgment, but a
disciplined way to connect learning systems to the kinds of quantitative as-
surances that real-world governance demands. The next section concludes
by summarizing what our framework guarantees today and what must be
built to make such guarantees routine in deployed markets.
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11 Conclusion

We set out from a simple observation: once allocation and pricing rules
are learned from data, the central question is no longer only whether the
mechanism performs well on average, but whether it can be accompanied
by an intelligible and defensible account of what it guarantees. In clas-
sical mechanism design, incentive and participation properties are proved
from closed-form structure (e.g., monotonicity and payment identities). In
learned mechanism design, the mapping from reports and context to out-
comes is typically too complex to inspect directly, and so the appropriate
analog of a proof is an out-of-sample certificate: a quantitative bound on eco-
nomically meaningful violations, together with an explicit confidence level
and a transparent accounting of numerical approximation error.

Our framework formalizes this idea in a setting that is both economically
standard and operationally relevant: multi-item allocation with additive val-
ues, context-dependent constraints, and a designer who chooses a parame-
terized mechanism from a structured hypothesis class. The central modeling
move is to treat incentive compatibility, individual rationality, and fairness
not as hard constraints that must hold pointwise, but as population con-
straints expressed through functionals—expected ex-post regret, expected
IR violation, and an expected fairness violation measure. This choice is not
merely for convenience. In markets such as advertising, cloud procurement,
or sponsored recommendations, the objects that are actually monitored and
audited are typically distributional summaries (averages over time, or over
sampled user/campaign slices), and the operational goal is to ensure these
summaries remain below tolerances that are meaningful at the scale of the
business or policy regime.

Three structural ingredients make certification plausible. First, feasi-
bility is handled by construction: architectural layers (softmax/Sinkhorn
with optional slack capacity) enforce that allocations are valid for every in-
put, eliminating an entire class of failure modes in deployment. Second, we
impose symmetry and regularity through permutation equivariance and uni-
form Lipschitz control. Equivariance aligns the hypothesis class with the eco-
nomic symmetry that bidders are interchangeable absent features, improv-
ing sample efficiency and reducing opportunities for idiosyncratic overfitting.
Lipschitz control, while a blunt instrument, ensures that small changes in
reports cannot produce arbitrarily large changes in allocations or payments,
which stabilizes both learning and evaluation. Third, we make the role of
computation explicit by incorporating a numerical best-response oracle for
regret estimation, and by tracking how oracle approximation propagates to
the final guarantees.

On top of these primitives, our main theoretical message is that con-
strained learning can be made auditable. Uniform convergence bounds for
the regret, IR, and fairness function classes imply that held-out empirical es-
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timates can be turned into population-level upper bounds with a computable
slack. In particular, for a learned parameter θ̂, one can report a certificate
of the form(
R̂GTi(θ̂), ÎRVi(θ̂), F̂R(θ̂)

)
and

(
R̂GTi(θ̂)+∆r+η, ÎRVi(θ̂)+∆ir, F̂R(θ̂)+∆f

)
,

with an accompanying statement that, with probability at least 1 − δ, the
corresponding population violations are no larger than the reported upper
bounds. This shifts the evaluation question from “do we believe the neural
network is truthful?” to “do we believe the sampling assumptions, the held-
out evaluation protocol, and the adversarial search budget?”—questions that
can be answered with standard governance tools: data documentation, access
control for holdout sets, and reproducible evaluation scripts.

The optimization side of the framework matches this logic. Training
is posed as constrained empirical risk minimization: maximize estimated
revenue subject to estimated constraints. Our main theorem states that if
θ̂ approximately solves this empirical problem, then (with high probability)
it satisfies the population constraints up to the slack terms, and it achieves
near-optimal revenue relative to the best mechanism in the class that satisfies
the target constraints. Economically, this near-optimality statement is the
counterpart of what one expects from classical design: within a specified
design space, we can approach the best revenue while respecting incentive,
participation, and fairness limits. Statistically, it clarifies where the tradeoffs
live: tighter tolerances, richer hypothesis classes, larger Lipschitz constants,
higher-dimensional environments, and weaker mixing all push against the
strength of the certificate, and thus against the designer’s ability to claim
compliance at a given confidence level.

The practical implication is that the learned-mechanism pipeline can
be organized around artifacts that are legible outside the modeling team.
A mechanism version can be shipped with: (i) a precise statement of the
semantics of its constraints (what regret means, what IR means, what fair-
ness notion is used), (ii) a quantitative certificate with a declared δ and
a declared oracle budget, and (iii) an operational plan for monitoring and
re-certification. In settings where regulators or platform policy teams de-
mand accountability but cannot inspect source code or model weights, such
artifacts offer a middle ground between unverifiable claims and intrusive dis-
closure. Moreover, the framework naturally supports internal “red teaming”:
the best-response oracle becomes a tool for systematic adversarial testing,
analogous to security penetration tests, with the oracle-gap parameter η
serving as a clean summary of how hard the adversary tried.

At the same time, we emphasize what this framework does not resolve.
Ex-post regret is an economically meaningful proxy, but it is not a full the-
ory of behavior in repeated, information-rich environments where bidders can
condition on history, coordinate, or exploit feedback loops. Fairness metrics,
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even when carefully chosen and transparently reported, are necessarily par-
tial; a bound on one metric can coexist with harms expressed in another
vocabulary. The Lipschitz and boundedness assumptions, while technically
useful and often implementable through architecture and regularization, can
exclude mechanisms that are desirable in theory, and can impose a real rev-
enue cost in practice. Finally, certification remains distribution-relative: it
certifies performance under D (or under a modeled dependence structure),
and thus inherits the usual vulnerability of statistical guarantees to distribu-
tion shift—including shift that is itself induced by the deployed mechanism.

These limitations suggest a research agenda that is as much economic
as it is statistical. One direction is to enrich the space of certifiable prop-
erties beyond regret-based proxies, for example by developing diagnostics
for approximate monotonicity, approximate payment identities, or “approx-
imate core” conditions in combinatorial settings, which may be more inter-
pretable to economic stakeholders. A second direction is to develop cer-
tificates that are explicitly robust to shift, either by controlling violations
uniformly over neighborhoods of distributions or by integrating online moni-
toring with sequential bounds that remain valid under continual adaptation.
A third direction concerns computation: stronger best-response methods,
tighter oracle-gap estimates, and more structured deviation classes could
make regret evaluation both cheaper and more reliable in large-scale markets.
A fourth direction is to connect mechanism-level certificates to market-level
outcomes—efficiency, entry, and long-run welfare—especially in platform en-
vironments where the mechanism shapes participation and information.

We close with a broader perspective. Learning-based mechanism design
is often presented as a way to sidestep analytic complexity by letting data
and optimization “discover” good rules. Our view is that, for high-stakes
allocation, discovery is not enough: what matters is discovery plus documen-
tation. The certificate framework developed here is one step toward making
that documentation principled. It does not replace economic judgment about
which constraints are normatively appropriate or which tradeoffs are accept-
able. Rather, it provides a disciplined language for stating what is being
optimized, what is being bounded, what could go wrong, and how confident
we are. If learned mechanisms are to become routine tools in regulated or
reputationally sensitive markets, the ability to produce such statements—
and to update them as markets evolve—will be at least as important as
incremental gains in revenue.

39


	Introduction
	Related Work
	Model
	Structured mechanism class
	Training objective: constrained ERM with adversarial regret
	Certification protocol: held-out evaluation with a tightened adversary
	Main theory: uniform convergence and certified constrained optimality
	Extensions
	Experiments
	Discussion and Policy Implications
	Conclusion

