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Abstract

Token-auction mechanisms for aggregating LLM outputs typically
assume the platform has truthful access to each bidder’s next-token
distributions. In 2026, that assumption is fragile: advertisers can
strategically modify prompts, adapters, or served APIs, and regula-
tors increasingly demand verifiable claims about sponsored genera-
tion. We introduce a clean verification layer for influence auctions:
advertisers commit to a reporting interface, the platform occasionally
audits that interface on held-out contexts, and uses strictly proper
scoring rules to penalize misreporting. We show that under log-score
auditing, the expected penalty equals a KL divergence term, yield-
ing a quadratic (Q(g?)) loss for e-scale misreports (Pinsker). When
combined with a monotone aggregation rule (e.g., linear pooling) and
second-price-style influence payments from prior token-auction work,
we obtain approximate dominant-strategy truthfulness for distribution
reporting under mild Lipschitz assumptions on the value of influence.
In a tractable linear-utility benchmark we give a closed-form best-
response characterization, quantify misreport distortion as ©(1/(av)),
and derive comparative statics for audit probability, penalty weight,
and number of audit samples. We also discuss practical enforcement
via TEEs/cryptographic commitments and outline how audits compose
over multi-token generation.
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1 Introduction and motivation: why ‘truthful LLM

access’ fails in 2026; threat models (prompt/adaptor

manipulation, API shading), and why audits are
needed.

In 2026, the premise that a platform can obtain truthful access to a bidder’s
language model—in the sense of reliably learning the bidder’s intended con-
ditional behavior at the exact context where a decision is made—is no longer
a benign engineering assumption. It is an equilibrium object. When multi-
ple parties have a monetary stake in how an LLM completes a prompt, the
model becomes an instrument of influence, and any interface that exposes
“probabilities” or “token-level preferences” is a natural surface for strategic
distortion. The motivating question for our design is therefore not whether
the platform can query an advertiser’s system, but whether it can do so in
a way that is incentive compatible: if we ask for a distribution over next
tokens, do we get the distribution that the advertiser’s committed model
would actually induce, or do we get a strategically shaded report that is
optimized against the platform’s aggregation and pricing rules?

A useful analogy is to classic ad auctions: we do not take an adver-
tiser’s statement “my click-through rate will be z” at face value, because the
advertiser can benefit from misstatements unless there is verification, repu-
tational capital, or a mechanism that makes the claim self-enforcing. The
difference in the LLM setting is that the relevant object is not a scalar but
an entire context-dependent distribution (or a policy), and the action space
is correspondingly larger. Even when a bidder genuinely deploys a fixed base
model, there is typically a thick layer of orchestration—prompting, retrieval,
sampling, tool calls, and post-processing—that can be adjusted to produce
behaviors that are hard to detect ex post from a single realized completion.
As a result, a platform that relies only on non-audited API access is implic-
itly trusting a complex pipeline that the counterparty has both the ability
and the incentive to manipulate.

The failure mode becomes sharp in any mechanism that aggregates bid-
ders’ probabilistic inputs. Token-level auctions and mixture-style aggrega-
tors require probability vectors because they must trade off competing ob-
jectives (e.g., safety, helpfulness, brand tone, or topical preferences) at the
margin. Once payments depend on the reported distribution, bidders face
a familiar temptation: they can tilt the report toward tokens that are ad-
vantageous under the pricing rule while still producing superficially plausible
outputs. This is precisely the kind of “shading” that auctions are designed to
discipline, but the discipline in standard auctions comes from the fact that
the platform can observe the allocation and charge payments accordingly. In
the LLM setting, the relevant allocation is a distribution used internally by
the platform to sample a token; if the bidder can distort the distribution it



reports, it can distort the platform’s internal allocation rule itself.

We can organize the strategic threats into three families that have be-
come operationally salient in modern LLM stacks. The first is prompt and
context manipulation. In principle, the platform controls the prompt, so one
might think the context is fixed. In practice, the “context” is the full state
passed into the bidder’s system, and bidders can influence that state through
seemingly innocuous channels: providing suggested system prompts, “com-
patibility” templates, or safety policies that must be prepended; requesting
additional metadata fields; or offering a retrieval plugin that changes which
documents are injected. Even if the platform insists on a fixed interface,
bidders can define reporting functions that are highly non-smooth in the
context, behaving truthfully on common or audited prefixes while switching
behavior on rare or commercially valuable states. Because LLM policies are
extremely high-dimensional, such conditional manipulations are hard to de-
tect without a deliberate stress-testing procedure. Moreover, the platform’s
own incentives can exacerbate the problem: when latency and user expe-
rience matter, platforms standardize prompts and reduce variability, which
makes it easier for an adversary to overfit its manipulation to the typical
distribution of contexts.

The second family is adapter and fine-tuning manipulation. By 2026, it
is routine to ship a base model plus a collection of low-rank adapters, soft
prompts, routing rules, or mixture-of-experts gates. These components can
be swapped cheaply and can condition on latent features of the prompt.
From a mechanism-design perspective, this means that a bidder can commit
to a base model (or even to a hash of a model) while retaining substantial
degrees of freedom in how the model is actually invoked. For example, the
bidder can implement one adapter for “normal” behavior and another for
“competitive” contexts where influencing the platform’s output is especially
valuable. Even when the platform requires attestation of the model weights,
the bidder may still control the sampling temperature, truncation scheme, or
decoding constraints; each of these changes the induced token distribution
in systematic ways. The strategic concern is not merely that the bidder
can change behavior, but that it can change behavior selectively in ways
that exploit the platform’s aggregation rule and the distribution of prompts
encountered in production.

The third family is API shading, by which we mean any divergence be-
tween (i) the distribution the bidder claims it would sample from at a given
context and (ii) the distribution it actually uses when audited or when the
platform relies on it to construct an aggregate. There are several concrete
instantiations. A bidder may return a probability vector that is not the
true next-token distribution of any underlying model (e.g., after applying
a proprietary reweighting that is designed to increase its influence under
the aggregator). A bidder may report a distribution but then sample from
a different one (for example, to preserve some internal objective while still



earning influence payments). Or the bidder may implement an interface that
is non-committal in subtler ways: returning probabilities at low precision,
clipping small probabilities to zero, or smoothing in a way that makes the
reported distribution appear well-behaved while masking targeted distor-
tions on a small subset of tokens. These are not hypothetical concerns; they
are direct analogues of misreporting quality in procurement and of miscali-
bration in prediction markets, except that here the mechanism’s input is a
full conditional distribution, so there is far more room to hide economically
meaningful deviations in corners of the simplex.

A natural reaction is to demand a stronger form of verification: require
that bidders run inside a trusted execution environment, disclose code, or
submit to third-party certification. But such requirements are neither cost-
less nor fully sufficient. TEEs are promising precisely because they can attest
to code and produce verifiable samples, yet they do not automatically solve
the mechanism problem: if the platform only uses the bidder’s reported dis-
tribution to compute allocations and payments, the bidder can still choose
what to report, and TEEs only help if the platform has a way to compare
the report to a verifiable ground truth. Code disclosure faces obvious com-
mercial constraints and does not prevent context-dependent behavior unless
the full pipeline (including retrieval and orchestration) is inside scope. Cer-
tification can establish baseline safety properties, but it is not designed to
enforce truthfulness with respect to a platform-specific aggregation and pric-
ing scheme.

This leads to the central motivation for audits. We want a mechanism
that (a) allows bidders to retain their proprietary models and pipelines,
(b) makes it costly to misreport the relevant distribution, and (c) does so
in a way that scales to the token-by-token nature of generation. Auditing
provides a conceptually clean approach: rather than trying to prevent every
form of manipulation technologically, we make misreporting economically
dominated by attaching expected penalties to deviations from truth. In
this view, the platform does not need omniscient access; it needs a credible
procedure that occasionally checks the bidder’s claimed distribution against
verifiable outcomes generated by the bidder’s committed model. When the
penalty is derived from a strictly proper scoring rule, truthful reporting
becomes uniquely optimal in expectation for the audited instances, and the
magnitude of the incentive can be tuned by audit frequency and penalty
scale.

The key design constraint is that audits must be compatible with real-
time generation. Token auctions and related aggregation rules are meant
to operate at inference speed. We therefore cannot assume heavy ex post
investigations or long adjudication processes. Instead, we need a lightweight
audit primitive: draw a modest number of held-out contexts, generate out-
comes from a committed model instance in a verifiable way (e.g., inside a
TEE), and score the bidder’s reported distributions on those outcomes. This



separates two roles that are too often conflated. The platform’s production
interface may remain a black-box API, but the audit interface must be tied
to something that can be trusted as ground truth. Importantly, this does
not require the platform to know the model’s internal probabilities; it only
requires the ability to sample from the committed model and to evaluate the
bidder’s reported probabilities on the realized samples.

Audits also discipline the more subtle threat models described above.
Prompt and adapter manipulation become less attractive when the bidder
cannot predict which contexts will be audited and when the audit contexts
are drawn from a distribution that reflects the platform’s relevant use cases.
API shading becomes directly penalized: if a bidder inflates probability mass
on tokens that increase its influence under aggregation, it must accept that
the same inflated report will be scored against samples from the committed
model, and proper scoring rules convert such discrepancies into expected
losses. Even if the bidder tries to game the system by being truthful on
some subset of contexts and manipulative elsewhere, the audit distribution
creates an explicit tradeoff: the more the manipulation is targeted to contexts
that matter in production, the more it risks being caught in audit, unless
the bidder can exploit distribution shift between production and audit.

This last point highlights an essential limitation and a policy-relevant im-
plication. The effectiveness of auditing depends on the relationship between
the platform’s operational contexts and the audit distribution. If audits are
drawn from an unrepresentative or predictable set of prompts, sophisticated
bidders can learn to behave truthfully on audited inputs while shading on
the rest. In other words, verification is only as strong as the coverage of
the audit process. This is a familiar lesson from tax enforcement, product
compliance, and financial auditing: sampling and inspection work when the
inspected set is sufficiently correlated with the set where malfeasance gen-
erates value. For LLM platforms, this suggests that audit-context design is
not a minor implementation detail but a governance choice. Platforms may
need to rotate audit suites, stratify audits across product surfaces, and incor-
porate adversarial prompt generation to keep the audit distribution aligned
with emerging manipulation strategies.

A second limitation concerns measurement and calibration. Proper scor-
ing rules can be unbounded (as with log scores when a bidder assigns near-
zero probability to an event that occurs), which is good for incentives but
delicate for implementation. Real systems must handle numerical issues,
bounded liability, and dispute resolution when a bidder claims the audit en-
vironment differed from production (e.g., different tokenizer versions, non-
deterministic tool outputs, or retrieval corpora). These practicalities push
us toward a hybrid view: audits are a mechanism-design tool whose details
must be engineered with robustness in mind, including version pinning, re-
producible execution, and clear commitments about what constitutes the
“committed” model behavior.



Despite these challenges, the argument for audits is ultimately an argu-
ment about aligning incentives under incomplete technological control. In a
world where bidders can cheaply alter model behavior through orchestration
and decoding, and where platforms cannot feasibly inspect every execution
path, purely contractual notions of “truthful access” are brittle. Auditing
converts a hard-to-enforce property (truthful reporting of a complex object)
into a standard enforcement paradigm: occasional verification with penal-
ties that scale with the severity of misreporting. The result is not perfect
truthfulness in every state, but a tunable approximation whose tightness im-
proves as audits become more frequent or more severe. That is the tradeoff
our model is meant to illuminate: we can preserve the performance and flexi-
bility benefits of multi-party LLM aggregation while introducing an enforce-
ment layer that makes strategic misreporting an unattractive equilibrium
behavior.

2 Related work: token auctions/LLM aggregation,
proper scoring rules, mechanisms with verifica-
tion /audits, and practical ML auditing/TEEs.

Related work. Our setting sits at the intersection of (i) mechanisms for
aggregating probabilistic or policy-like inputs, (ii) proper scoring rules and
information elicitation, (iii) classic “verification and auditing” models in eco-
nomics and mechanism design, and (iv) practical systems work on trustwor-
thy execution and ML auditing. Because each literature addresses a different
part of the problem, it is useful to be explicit about which pieces we borrow
and where the LLM-token setting forces new design choices.

Token auctions and LLM aggregation mechanisms. The immediate
backdrop is the emerging line of work that treats next-token generation as an
allocation problem in which multiple agents have preferences over a probabil-
ity distribution on tokens, and the platform selects a distribution (or action)
to sample from. This “distributional allocation” perspective is reminiscent
of mixture modeling and ensemble methods in machine learning, but the
mechanism-design point is that the mixture weights, the pooling rule, and
any pricing rule together define incentives over an object far richer than a sin-
gle scalar bid. Existing proposals for token-level auctions and influence-style
payments emphasize monotonicity of allocation with respect to bids and the
feasibility of second-price analogues in settings where the outcome is a ran-
domized policy rather than a deterministic slot assignment (see, e.g., 777).
Our contribution is complementary: we treat those allocation-and-pricing
rules as a black box on the bid side and focus on a separate strategic margin
that becomes salient only when bidders also control (or can misrepresent)
the probabilistic inputs used by the platform.



More broadly, our model relates to classical work on randomized alloca-
tions and lotteries in mechanism design, where an allocation is a distribution
over outcomes and agents are risk-neutral with quasi-linear utilities. In that
tradition, incentive properties typically hinge on the platform being able to
compute outcomes and payments as specified by the mechanism. In the
LLM setting, however, the platform often does not directly observe the rele-
vant primitives (the bidders’ token distributions or policies); it queries them
through an interface. This interface layer is what turns a standard ran-
domized mechanism into a mechanism-with-reports problem. One can view
our audit design as a way to restore the usual implementability assumptions
(that the mechanism has access to the inputs it needs) without requiring full
transparency of proprietary models.

Linear pooling, ensemble learning, and probabilistic opinion ag-
gregation. On the purely statistical side, linear pooling and related ag-
gregation rules have a long history in forecast combination and Bayesian
opinion pooling 7. These methods provide a natural vocabulary for what
platforms are already doing operationally when they blend model outputs
from multiple sources (mixture-of-experts routing, weighted ensembles, and
policy interpolation). What changes in our setting is not the mathematics of
pooling per se, but the introduction of strategic agents who can choose what
distribution to feed into the pooling operator. Once reports are strategic,
the platform cannot treat a pooling rule as merely a predictive heuristic;
it is a mechanism that must be evaluated by equilibrium behavior. This
distinction is easy to miss because the objects (probability vectors) look the
same in both worlds, but the normative question changes from “which pool-
ing rule predicts well?” to “which pooling rule, together with payments and
verification, induces the reports we want?”

Proper scoring rules and truthful probability reports. The most
direct tool we use is the theory of strictly proper scoring rules, which charac-
terizes loss functions under which a forecaster maximizes expected score by
reporting its true predictive distribution ??7??. Proper scoring rules are by
now standard in probabilistic forecasting and in machine learning evaluation
because they operationalize calibration and sharpness. In mechanism design,
they also appear as the canonical way to elicit beliefs when the realized out-
come will be observed. The log score in particular plays two roles that are
especially convenient for our purposes: it has an information-theoretic inter-
pretation (expected log loss equals cross-entropy, differing from entropy by
a KL divergence term), and it generates strong marginal incentives against
assigning near-zero probability to events that can occur.

Our use of proper scoring rules is closer in spirit to the “decision mar-
kets” or “prediction market scoring rule” literature 7?7 than to evaluation-



as-benchmarking. The platform is not merely measuring quality; it is us-
ing scoring-rule losses as penalties to shape equilibrium reports. That said,
an important implementation nuance in LLM systems is that unbounded
scores create bounded-liability and numerical-stability issues. Several prac-
tical variants in forecasting (clipped log scores, capped losses, or convex com-
binations with bounded scores) trade off incentive strength for robustness.
We keep the analysis clean by presenting the log-score benchmark, but in
practice the same logic can be carried through with bounded strictly proper
rules at the cost of weaker quadratic bounds and more explicit calibration
of maximum penalties.

Information elicitation without verification versus with verifica-
tion. A large mechanism-design literature studies eliciting information when
the outcome is not directly verifiable, including peer prediction, Bayesian
truth serum, and related methods ???7. These mechanisms are attractive
when no trusted ground truth exists, but they typically require multiple re-
ports about the same latent event and impose distributional assumptions to
pin down equilibria. Our setting is different in a way that matters opera-
tionally: the platform can, at least in principle, create a verifiable channel
by sampling from a committed model instance (via a TEE or equivalent
attestation mechanism). Once verification is available, the design space is
closer to standard proper scoring (single-agent truth-telling against realized
outcomes) and avoids the multiplicity and coordination concerns that arise
in peer-prediction equilibria. Put differently, we are not trying to infer truth
from cross-consistency of agents; we are trying to make a particular interface
report self-enforcing by occasionally checking it against a trusted source.

This comparison also clarifies a limitation: if verification is weak or am-
biguous (e.g., the “true” model behavior depends on non-deterministic tools,
external retrieval, or hidden state), then the platform is pushed back toward
the no-verification regime, and peer-prediction-style tools may again be rel-
evant. Our emphasis on committed distributions and reproducible sampling
is precisely an attempt to keep the problem in the verification regime where
incentives are simpler and sharper.

Mechanisms with verification, auditing, and monitoring. The eco-
nomic core of our approach is the idea that rare but credible audits can
discipline behavior in rich action spaces. This is a recurring theme in con-
tract theory and public finance: costly monitoring can be used selectively to
induce effort or truthful reporting, with equilibrium distortions determined
by audit frequency and penalty severity ?7?7. In auctions and procurement,
related ideas appear as mechanisms with verification or ex post checks, where
misreports can be punished if evidence arises 7. In algorithmic mechanism
design, there is a parallel line on “mechanism design with monitoring” and



” where limited verification can sub-

stitute for full observability of types or outcomes 77.

Our twist is that the audited object is not a scalar claim (cost, value,
quality) but a context-dependent distribution over tokens, and the audit must
be compatible with high-frequency generation. This changes the engineer-
ing constraints (audits must be lightweight and sample-based), but it also
changes the economic geometry: the deviation set is infinite-dimensional,
and the platform needs a penalty that grows smoothly with the magnitude
of misreporting. Proper scoring rules are natural here precisely because
they convert distributional deviations into divergences (KL, and via Pinsker,
quadratic lower bounds in total variation). This is analogous to how convex
regularization disciplines high-dimensional optimization: we are effectively
adding an “entropic barrier” around the truthful distribution, with strength
controlled by (a, 7).

“truthful mechanisms with verification,’

Robustness, approximate incentive compatibility, and Lipschitz en-
vironments. A separate but related literature studies approximate incen-
tive compatibility when agents can only slightly affect outcomes or when
the mechanism is implemented with noise, discretization, or sampling er-
ror. In large markets, for example, an individual agent’s effect on prices
can vanish, making truth-telling approximately optimal even without exact
IC. In our setting, the analogous scaling parameter is the bidder’s influence
weight w;(b) under the aggregation rule: when w;(b) is small, a bidder’s re-
port has limited leverage, so the benefit from shading is at most linear in
lpi — pill1- Combining this with a quadratic audit penalty yields a clean
approximate-truthfulness conclusion. Conceptually, this is close to the spirit
of smoothness and Lipschitz-based analyses in algorithmic game theory: one
bounds how much a deviation can move allocations and payoffs, and then
chooses enforcement strength so that the deviation is not worth it.

We also view this as a bridge between theory and practice. Platform
designers rarely need literal truth-telling in every state; they need deviations
small enough that downstream properties (monotonicity, fairness constraints,
safety filters) are not materially undermined. Approximate IC bounds pro-
vide a way to translate engineering tolerances (how much can ¢ shift before
something breaks?) into audit parameters.

Trusted execution environments, verifiable inference, and repro-
ducible sampling. On the systems side, our audit primitive presumes the
platform can obtain verifiable samples from a committed model behavior.
TEEs such as Intel SGX and related enclave technologies were designed to
support precisely this kind of remote attestation: a remote party can ver-
ify that some code is running in an isolated environment and that outputs
are produced by that code 7. A growing applied cryptography and systems
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literature explores secure and verifiable ML inference using enclaves, secure
multiparty computation, or zero-knowledge proofs ??7. These tools differ in
performance and trust assumptions, but they share the goal of making it
costly (or impossible) to deviate from an agreed computation without detec-
tion.

We deliberately do not take a stand on which primitive dominates, be-
cause the right choice depends on threat models and latency budgets. What
matters for our mechanism is the existence of some channel that (i) pins
down what the “committed model” is for audit purposes, and (ii) allows
the platform to sample from it on demand. In practice, this points to a
checklist of design requirements that are often glossed over: version-pinned
tokenizers, deterministic decoding and sampling procedures (or at least au-
ditable randomness), fixed retrieval corpora or logged retrieval traces, and
clear boundaries around which parts of an orchestration stack are in-scope
for attestation. The more ambiguity remains about what is being attested,
the more room remains for strategic behavior that is technically “compliant”
but economically manipulative.

ML auditing practice: evaluation harnesses, red-teaming, and gov-
ernance. Finally, we connect to the fast-growing practice of ML audit-
ing and evaluation. Frameworks such as model cards and datasheets were
introduced to standardize documentation and disclosure ??7. Benchmark
suites and evaluation harnesses for LLMs (e.g., broad-coverage evaluation
and red-teaming methodologies) aim to measure performance and safety
across heterogeneous tasks ?7. Regulatory and standards efforts (e.g., risk-
management frameworks) increasingly emphasize auditability as a gover-
nance requirement rather than a purely technical desideratum.

Our mechanism-theoretic view does not substitute for these efforts; it
complements them by clarifying what audits can and cannot accomplish
when agents are strategic. In particular, evaluation-oriented audits typically
assume the model is trying to do well on the benchmark. Our audits assume
the opposite: the bidder may want to look well-calibrated while covertly
shifting probability mass to increase its influence under a platform’s aggre-
gation and pricing rules. That adversarial posture changes how one should
select audit contexts and how one should interpret “coverage.” It also sug-
gests a policy implication: audit design (the choice of D, context sampling,
and update cadence) is not merely a technical detail but an institutional
decision akin to how tax authorities design audit selection or how financial
regulators design stress tests. If the audited distribution becomes predictable
or too narrow, sophisticated agents can learn to comply on-audit and deviate
off-audit.

11



Positioning and limitations. Taken together, these literatures motivate
the structure we analyze: an influence-based allocation-and-pricing mecha-
nism on the bid side, combined with a proper-scoring audit layer that makes
distributional reports approximately self-enforcing. The model is intention-
ally stylized in two respects. First, we treat the audit channel as capable
of producing draws from a well-defined p;(- | =), whereas real LLM stacks
may have non-stationary components (retrieval drift, tool APIs, or adap-
tive safety layers). Second, we focus on incentives to misreport distributions
given an aggregation rule, rather than on collusion, sybil attacks, or endoge-
nous entry. These omissions are not innocuous, but they are a useful starting
point: they let us isolate the core economic tradeoff between the benefit of
distorting the platform’s internal allocation rule and the expected cost im-
posed by verifiable audits. In that sense, our contribution is not to claim
that audits solve every strategic problem in multi-model generation, but to
formalize when a lightweight audit primitive can restore the assumptions
under which token-auction-style mechanisms are meant to operate.

3 Model

We model a platform that generates tokens by sampling from a context-
dependent distribution, where multiple strategic “advertisers” (or model providers)
can both bid for influence and report probabilistic outputs. The central fric-

tion is that the platform needs access to bidders’ token distributions in order

to run an influence-based allocation and pricing rule, but those distributions

are typically exposed only through an interface that the bidder controls. Our

goal in this section is to make that interface layer explicit and to separate

(i) the bid-side mechanism that determines influence and payments from (ii)

the audit layer that makes reported distributions credible.

Contexts and tokens. Fix a finite token (or action) set T'. Generation
occurs in contexts x € X, where = should be interpreted broadly: a prompt
prefix, a dialogue state, a tool-augmented state, or any sufficient statistic of
the platform’s generation process. In a multi-step generation, the context
evolves endogenously as tokens are produced; we deliberately do not restrict
the context dynamics, since our incentive results will be stated pointwise in
x or in expectation over an external audit distribution. What matters is
that at each step the mechanism takes as input a context x and returns a
distribution ¢(- | ) € A(T") from which the next token y is sampled.

Advertisers and committed ‘“true’” distributions. There are n ad-

vertisers indexed by i € [n]. Each advertiser has an underlying model (or
policy) that induces a conditional distribution over tokens at every context.

12



We denote this by
pi(- | x) € A(T).

We treat p; as the economically relevant primitive: it is the behavior the
advertiser would exhibit when queried honestly. Operationally, we assume
the platform can obtain verifiable samples from p;(- | ) on demand, for
example by querying an attested model instance in a trusted execution en-
vironment (TEE), or by using another verification channel that pins down
the model version, tokenizer, randomness source, and decoding/sampling
procedure. The economic role of this assumption is not to require that the
platform can inspect the model, but rather that it can occasionally test a
reported distribution against draws generated by a committed, reproducible
implementation.

This commitment requirement deserves emphasis. If the “true” distribu-
tion can drift or be selectively altered in response to audits, then audits cease
to measure a stable object. In practice, maintaining a well-defined p;(- | =)
typically entails version-pinning (weights, tokenizer, system prompt), con-
trolling stochasticity (auditable randomness seeds or a verifiable RNG), and
specifying what external calls (retrieval, tools) are in scope. We abstract
from these systems details and treat them as part of the enforcement primi-
tive that makes p; meaningful.

Reporting functions as interface control. In addition to having a true
distribution p;, advertiser i chooses a reporting function

ﬁi X — A(T),

which is the object the platform actually observes and uses in its aggregation
rule. We impose that p;(- | z) is a valid distribution for every x (nonnegative
and summing to one). Economically, p; is the bidder-controlled interface:
it may coincide with p;, but it may also be strategically shaded, simplified,
truncated, or otherwise distorted. The key design choice in our timing is
that p; is committed once per session (e.g., by committing to code whose
hash is attested), and the same committed p; is used both during generation
and during any subsequent audit. This coupling is what prevents a bidder
from behaving one way on audited queries and another way on production
queries within the same session. It does not eliminate all forms of strategic
behavior (e.g., exploiting predictable audit selection across sessions), but it
rules out the most direct on-the-fly evasion.

We allow p; to be rich: it may depend arbitrarily on =, and we do not
require it to be derived from a model that can be sampled. This is intentional.
In many real systems, the platform queries an API that returns logits or
probabilities, and nothing prevents an advertiser from post-processing those
values before returning them. Our mechanism therefore treats the report as
a potentially adversarial function, and uses audits to discipline it.

13



Bids and influence weights. Each advertiser also submits a scalar bid
b; > 0. The bid affects the advertiser’s influence on the platform’s aggregate
distribution, and it affects the payment charged by the mechanism. We sum-
marize the influence of bids through weights w;(b), where b = (b1,...,by,).
The canonical example is proportional weighting,

b;
Z?:l b ’

defined whenever Zj b;j > 0; if all bids are zero we may set a default rule
(e.g., uniform weights or an outside option model). What we require at the
level of abstraction used here is that influence is monotone in bids: increasing
b; should not reduce advertiser i’s weight, holding others fixed. This is the
bid-side analogue of monotone allocation in classic auctions, and it is the
condition under which second-price-style payments can be used to support
desirable bidding incentives.

w;(b) =

Aggregation rule over reported distributions. Given bids and re-
ports, the platform chooses an aggregate distribution

q(- | ) = q(b, (p1(- | ®),...,pn(- | 2))) € A(T) for each z € X.

We allow ¢ to be any aggregation operator that maps (b,p(- | z)) into a
distribution on 7. The running benchmark is linear pooling,

(- |2) =) wi(d) pi(- | x),
i=1

which is attractive because it is transparent, easily implementable, and makes
each advertiser’s influence scale directly with its weight. But our analysis is
meant to accommodate other monotone aggregation schemes used in practice
(e.g., temperature-scaled mixtures, capped weights, or rules that interpolate
between a baseline model and bidders’ models). The economic point is that
q is the mechanism’s “allocation”: instead of assigning a deterministic slot, it
assigns probability mass over tokens, and bidders care about this randomized
policy.

Generation process and realized outcomes. At each generation step
k, the platform observes the current context xi, queries each committed
reporting function p;(- | =), forms the aggregate distribution gi(- | =)
according to the aggregation rule, and samples an outcome

Uk ~ qi(- | k).

The context may then update to xx41 according to the platform’s environ-
ment (for example by appending y to a prompt, updating a dialogue state,
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or incorporating tool outputs). Because our primary objective is incentive
control over the reported distributions, we do not need to specify the law of
motion for contexts; we will either reason pointwise in = or take expectations
over an externally specified audit distribution.

Utilities from the aggregate distribution. Advertiser i receives a gross
per-step utility U;(q,z) that depends on the chosen aggregate distribution
and the context. This utility captures whatever the advertiser values about
the platform’s behavior: probability assigned to its preferred tokens, down-
stream user actions induced by the sampled token, brand-safe language, or
other context-dependent objectives. We take advertisers to be risk neutral
and to have quasi-linear preferences over money, so total expected utility is
gross utility minus payments and penalties.

To make the mechanism analyzable in a high-dimensional outcome space,
we impose a regularity condition that is natural in distributional allocation
problems: Uj; is Lipschitz in the induced distribution. Concretely, there exists
L; < oo such that for all 2 and all distributions ¢, ¢’ € A(T),

Uilg, x) = Ui(q', 2)| < Lillq(- | x) = ¢'(- [ @)1

This assumption says that small perturbations of token probabilities can-
not cause unbounded jumps in value. It is a modeling choice that rules
out knife-edge discontinuities (e.g., value that depends on whether a token’s
probability crosses an exact threshold), but it matches many practical ob-
jectives that are smooth in probabilities, including expected click-through,
expected conversion, or expected compliance with soft constraints.

Influence payments (bid-side pricing). Alongside the allocation rule,
the platform charges an influence payment z;(b,p) to advertiser i. We keep
the payment rule abstract, with two motivating requirements. First, pay-
ments should be compatible with monotone influence: a bidder who increases
its bid and thereby increases its weight should face (weakly) higher expected
payment, in the same way that higher bids in a second-price auction can
increase the chance of winning and the expected price paid. Second, pay-
ments should be implementable given the randomized nature of ¢; in practice
this often means using sampling-based estimators (as in “stable sampling”
implementations) that approximate counterfactual influence or marginal con-
tribution.

Because our focus is on the interaction between reporting and auditing,
we summarize how payments enter incentives through a Lipschitz condition
analogous to the one for utility. Let z;(q,z) denote the per-step payment as
a function of the induced aggregate distribution (suppressing dependence on
(b, p) through ¢). We assume there exists L7 < oo such that

2i(q, ) = 2i(q", x)] < L llq(- | =) = ¢'(- | z)|1.
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This condition captures the idea that if a bidder can only slightly perturb
the platform’s distribution, it can only slightly perturb its own payment. It
is also the key technical bridge that lets us treat reporting incentives through
how reports move gq.

Audit contexts and audit protocol. The platform can audit advertis-
ers’ reports using a held-out distribution D over contexts. We interpret D as
an “audit harness” or evaluation distribution: it is selected by the platform
(or a regulator, or a third-party auditor) and is not under advertisers’ direct
control. An audit consists of drawing m i.i.d. contexts

%, ..., xp, ~D
and then, for each advertiser 7, obtaining verifiable samples
y; ~pi(- | z5)

from the committed model behavior. The platform then evaluates the com-
mitted report p; (- | #7) against the realized y§ using a scoring function S(p, y)
that assigns a loss (or negative score) to probabilistic reports. The per-audit
penalty for advertiser ¢ is scaled by v > 0 and averaged over contexts:

m

1 R a . a
Penalty, = V'EZS(%(‘ | xj)ayj)'

Audits occur with probability a € (0,1) per session (or per block of inter-
actions). The two parameters («,m) capture distinct operational levers: «
controls how often an audit is triggered, while m controls how informative a
triggered audit is. The scale v controls the economic magnitude of penalties
relative to the gains from influencing q.

Two practical remarks are useful here. First, the coupling of generation
and audits through the same committed p; matters: it ensures that the object
being penalized is exactly what the platform uses to form ¢. Second, the
audit uses samples from p;, not from ¢. This is deliberate: the purpose is not
to evaluate the platform’s overall output, but to verify whether advertiser ¢’s
reported distribution matches its committed model behavior on the audited
contexts.

Session payoff and equilibrium notion. A session consists of K gener-
ation steps followed by settlement. Let g denote the aggregate distribution
used at step k, and let z;; denote the corresponding payment component.
Advertiser i’s expected payoff can be written as

K

7 —E[kZUi(Qk,l”k)}E[Zzi,kz(bap} Oé’YE[ iS yj)}

k=1 7j=1

S\M
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where the last expectation is taken over audit contexts zi ~D and audit
outcomes yi ~ p;(- | z), as well as any randomness in generation and
payment computation. We study Nash behavior: each advertiser chooses
(bi, pi) to maximize II; given others’ choices. The platform is treated as a
designer that commits to ¢(-), z;(+), and the audit protocol.

What the model isolates, and what it does not. This formulation
isolates a specific strategic margin that is easy to overlook if one starts from
standard auction logic: the bidder is not only bidding for influence; it is
also supplying the probabilistic input that determines what influence means.
In other words, even if bid-side incentives are well-behaved under monotone
influence pricing, the mechanism can fail if bidders can cheaply misrepresent
D;i to steer ¢ while still paying the “right” price for the reported influence.

At the same time, the model abstracts from several complications. We do
not model collusion (e.g., bidders coordinating reports), sybil attacks (split-
ting identity across multiple bidders), or endogenous entry. We also treat
D as fixed and exogenous, whereas in practice the choice of audit contexts
is itself a policy decision and may be strategically anticipated. Finally, we
present the audit as producing verifiable samples from p;; when real-world
inference stacks include retrieval drift, tool calls, or adaptive safety layers,
pinning down a stable p; may require additional engineering constraints.
These limitations matter for deployment, but the model is designed to make
one tradeoff transparent: auditing turns misreporting into an expected mone-
tary cost, and the strength of that discipline is governed by («, m,7y) together
with how much a bidder can move ¢ through its weight and the aggregation
rule.

In the next section we specialize to standard strictly proper scoring rules
(notably the log score and the Brier score) and derive the expected-penalty
identities and lower bounds that make this tradeoff quantitatively sharp.

4 Proper-scoring audits and divergence penalties

Our audit layer is meant to solve a very specific credibility problem: the
platform needs to treat each p;(- | ) as a meaningful probabilistic object
when it aggregates reports into ¢, yet the interface that produces p; is bidder-
controlled. The standard mechanism-design response is to attach a monetary
consequence to the report that is minimized (in expectation) by truth-telling.
Proper scoring rules provide exactly this instrument. In this section we
(i) recall the properness property in the present “distribution over tokens”
setting, (ii) specialize to the log score and the Brier score as canonical choices,
and (iii) extract the quantitative lower bounds that convert an expected
misreport into an expected monetary loss. These identities are the input to
our approximate-truthfulness guarantees in the next section.
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4.1 Strictly proper scoring rules as audit primitives
A (loss-based) scoring rule is a function
S:A(T)xT — R,

where S(p, y) is interpreted as the loss charged when the agent reports p and
the realized outcome is y € T. We say that S is proper if for every true
distribution p € A(T),
p € arg in, Eynp[S(r,y)],

and strictly proper if the minimizer is unique and equals p. Properness is
the probabilistic analogue of dominant-strategy truthfulness: it says that,
holding fixed how the audit outcome y is generated (here, y ~ p;(- | z)
via the committed model), the bidder minimizes its expected audit loss by
reporting the true conditional distribution.

Two remarks connect this property to deployment. First, the audit needs
draws from the bidder-specific truth p;, not from the platform aggregate q.
Otherwise the scoring rule would incentivize conforming to the platform
rather than revealing the bidder’s model behavior. Second, strict properness
is inherently an in-expectation statement: it guarantees that the expected
audit penalty is minimized at truth, but any finite audit can be noisy. This
is why we separate the shape of incentives (properness) from the strength of
incentives (how a, m, and =y scale realized losses).

A useful structural fact is that every strictly proper scoring rule induces
a divergence measuring the expected cost of misreporting. Concretely, for
many common scoring rules there exists a convex potential ® : A(T) — R
such that, for any p,p € A(T),

Eyp [5(1572/)] =Eyp [S(p, y)] + Da(p, p),

where Dg is a (nonnegative) Bregman divergence with Dg(p,p) = 0iff p = p.
In our setting this decomposition is especially valuable: the first term is a
constant with respect to the report and therefore irrelevant for incentives,
while the second term is a clean, geometry-aware penalty for misreporting.

4.2 Log score: cross-entropy and KL divergence

The log score is the workhorse scoring rule in probabilistic forecasting and
in information-theoretic mechanism design:

Stog (D, y) = —log p(y).

When we evaluate Sj,e under a true distribution p, we obtain the cross-
entropy:

Eyp[ —logp(y)] = > p(t)(—logp(t)) =: H(p,p).
teT
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The key identity is that cross-entropy decomposes into entropy plus a KL
term.

Proposition 4.1 (Log-score audit identity). For any p,p € A(T) with
p(t) > 0 whenever p(t) > 0,

Eyp| —logp(y)] = H(p) + KL(p||p),

where H(p) = — > _,cp p(t) log p(t) is Shannon entropy and KL(p||p) = > ,cr p(t) log %.

The proof is immediate algebra, but the economic interpretation is worth
stating explicitly. Under log-score audits, the incremental expected penalty
from reporting p rather than the truth p is exactly KL(p|[p). Thus, when we
scale audits by a-y, we are literally pricing misreporting in units of relative
entropy. This is attractive because KL has several properties that map well
to interface credibility: it is zero only at equality; it is sensitive to “hiding”
probability mass (placing too little mass on outcomes that occur under p);
and it is additive across independent draws, which aligns with sampling m
independent audit contexts and outcomes.

At the same time, the log score has an operational sharp edge: if p(y) =0
for an outcome that occurs under p, the penalty is infinite. In an abstract
model this is a feature (it makes support-misreporting prohibitively costly),
but in deployed systems it requires care. The platform may need to en-
force a minimum probability floor (e.g. p(t) > ¢/|T'|) or to clip scores (re-
place —log p(y) with — log(max{p(y),e})). Clipping preserves approximate
properness while restoring boundedness and therefore cleaner finite-sample
concentration; we return briefly to this point below.

4.3 Brier score: squared error geometry

A second canonical choice is the Brier score (quadratic score). In loss form,
for a realized token y,

Sme(poy) = > (A1) — 1{t = y})™.

teT

Taking expectations under y ~ p yields a simple Euclidean decomposition:

By [Ste(09)] = 3 (500 = 20(0)p(t) + p(0)) = 16— pl3 + (1 ~ 1pI3),
teT

where || -||2 is the standard Euclidean norm on RI”I. Hence, up to a constant
independent of the report, the expected Brier loss is exactly ||p — p||3, and
strict properness follows because this squared distance is uniquely minimized
at p =p.

The Brier score is often attractive in practice because it is bounded:
Spr(p,y) € [0,2] for distributions on a finite alphabet. This boundedness
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makes finite-sample audits easier to calibrate using standard concentration
inequalities. The tradeoff is geometric: unlike the log score, the Brier score
does not assign disproportionately large penalties to under-reporting rare-
but-possible events. If the platform’s primary concern is preventing bidders
from strategically “zeroing out” tokens that occur with small probability
under p;, the log score (or a clipped variant) provides a stronger deterrent.

4.4 From divergence to quantitative deterrence: lower bounds
in total variation

Properness alone says that misreporting raises expected loss, but to obtain
sharp equilibrium implications we need a rate: how quickly does the expected
penalty increase as p departs from p? Since our later incentive bounds are
stated in ||-||; (total variation) because aggregation and utilities are Lipschitz
in that metric, we want lower bounds that convert divergence or squared error
into [|p — |2

For log-score audits, the link is Pinsker’s inequality. Writing TV (p,p) =
2llp — |1, Pinsker implies

KL(p|lp) > c¢TV(p,p)?

for a universal constant ¢ > 0; in particular one can use the conservative

bound 1
- ~112
KL(plp) = ¢ lip = plli-
(We emphasize that constants are not the main issue for our comparative
statics; what matters is the quadratic dependence on |p — pl/1.) Combin-
ing with Proposition [4.1) we obtain a direct quadratic lower bound on the

incremental expected audit loss under the log score:

. . 1 .
Eyp [Shoa (P 9) = Siog(p,y)] = KL(pllD) > ¢ Ip — 3.

This inequality is the technical hinge of our later results: it says that any
attempt to shift the report by 0 in ¢; distance necessarily pays at least on
the order of 42 in expected audit penalties, scaled by .

For the Brier score, the analogous conversion uses norm inequalities.
Since ||v||2 > [|v]l1/+/]T] for any v € RI7I| we have

1

Ip—pl2 > — lp—pl?
T

Thus Brier audits also impose a quadratic cost in #; distance, with a factor

that depends on the alphabet size:

1

Eymp[Sp:(D:y) — Sme(p,9)] = 1D —pl3 = [ 16— pl|%.
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When |T'] is very large (as in token vocabularies), this bound is looser than
the log-score Pinsker bound, reflecting again that quadratic scoring rules are
“gentler” in the tails. In applications with large T', one practical response is
to audit on a coarsened outcome space (e.g. token classes, safety categories,
or top-k plus an “other” bin) so that both reporting and auditing focus on
the parts of the distribution that matter for influence and welfare.

4.5 Context dependence and averaging over the audit distri-
bution

Because our objects are conditional distributions, the preceding identities
apply pointwise in context: for each fixed x, the expected audit loss under
y ~ p;i(- | ) is minimized by reporting p;(- | ) = p;(- | ). In our protocol,
however, the platform samples contexts © ~ D and averages scores over m
draws. Taking expectations over x ~ D, the incremental expected penalty
from a reporting function p; relative to truth p; becomes

a’y]E’CCN/D |:Ey~pl(|x)s(ﬁl( | 1’), y):| —ay EacND [Eywpz(\x)s(pz( ’ ZC), y)} ;

which equals ay E,.pKL(pi(- | )||p:(- | =)) under the log score, and equals
ayEepl|pi(- | ) — pi(- | x)||3 under the Brier score.

To connect these expressions to a single scalar notion of “how much mis-
reporting occurs on audited contexts,” it is convenient to define

8; := Egup||pi(- | 2) — pi(- | o)

Then, under log-score audits and using Pinsker pointwise in x followed by
Jensen’s inequality,

EonKL(pi(- | 2) [ | 2) > 3 Eaon|nil |2) =i |27 > 56
This is the cleanest way to see the mechanism’s discipline: the expected
audit loss grows at least quadratically in the average ¢1 deviation on the audit
distribution. In the next section we will combine this quadratic cost with the
(at most) linear benefit a bidder can obtain by moving the platform aggregate
q through its weight, yielding the familiar “linear gain versus quadratic cost”
tradeoff that pins down an O(1/(ay)) deviation scale.

4.6 Finite-sample audits and calibration considerations

Although our main incentive statements are in expectation, it is useful
to note what m buys the platform. When S is bounded (as with the
Brier score), standard concentration implies that the realized average score
% E;n:l S(p,y;) is close to its expectation uniformly over draws, so a bid-
der cannot rely on “getting lucky” in a small audit. When S is unbounded
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(as with the log score), analogous concentration requires additional steps—
most commonly clipping, flooring probabilities, or restricting attention to
events with controlled likelihood ratios. These are not merely technicalities:
they are the operational knobs that determine how harshly the system treats
near-zero reports, how robust audits are to numerical underflow, and how
predictable penalties are to participants.

Finally, the choice of D interacts with every statement above. Properness
guarantees truthfulness on the support of the audit distribution. If audited
contexts are systematically easier, more templated, or otherwise unrepre-
sentative of production contexts, bidders may remain truthful on D while
shading reports elsewhere. This is not a failure of scoring rules; it is a re-
minder that auditing is only as strong as the harness it is evaluated on. For
this reason, in practice we view the selection and refresh of D as a policy
instrument: by broadening coverage and limiting predictability, the platform
increases the effective domain on which proper-scoring penalties bind.

The next section takes these identities as primitives and studies how they
interact with influence aggregation and payments. The high-level message
will be that, under Lipschitz utilities and monotone aggregation, misreport-
ing can create at most linear gains through its effect on ¢, while proper-
scoring audits impose quadratic expected costs; the resulting equilibrium
distortions shrink at rate 1/(ay), with m controlling the reliability of en-
forcement in finite samples.

5 Approximate truthfulness from linear influence
and quadratic audit costs

The incentive problem in our environment has a simple economic structure
once we separate how much a report can move outcomes from how harshly
audits punish misreporting. A bidder reports an entire conditional distri-
bution p;(- | =), and this report influences the platform only through the
aggregate q(- | x). If bidder 7 has a small influence weight (as induced by
its bid relative to others), then even a large distortion in p; can move ¢
only slightly; conversely, a high-weight bidder can move ¢ more and there-
fore has a stronger incentive to shade its report toward tokens that it pri-
vately values. Audits counteract this channel by imposing an expected cost
that grows quadratically with the misreport (Section, creating the familiar
“linear gains versus quadratic costs” tradeoff that underlies our approximate-
truthfulness bounds.

To make this tradeoff explicit we work with aggregation rules that are
Lipschitz in each bidder’s report. Linear pooling is the cleanest case, but
the logic extends to any rule that satisfies a comparable sensitivity bound.
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5.1 The influence channel: how reports move the aggregate

Fix a bid vector b and reports p_; from bidders other than i. Let ¢(- | x)
denote the aggregate when bidder i reports p;(- | z), and let ¢*(- | ) denote
the aggregate when bidder ¢ reports truthfully p;(- | ), holding (b, p_;) fixed.
Under linear pooling,

g(- | @) = wi®) pil- | 2)+D>_wi(®) (- [ @), ¢"( [ @) =wi®) pil- | @)+ w;(0) p; (- | x),
J#i J#i

and therefore

laC- T2) =" [@)]|, = wil®) il | 2) = pil- | )] - (1)

Equation captures the core comparative static: report distortion is “at-
tenuated” by the bidder’s weight.

For later use we summarize the property we need as an assumption that
can be verified for many monotone aggregators beyond linear pooling.

Assumption 5.1 (Individual Lipschitzness of aggregation). For each bidder
i and bid vector b there exists a coefficient k;(b) € [0,1] such that for all
contexts x and all alternative reports p;, py,

la(b, (Bil- | @), p-i(- [ 2))) = (0, (Bi(- | 2), i (- | 2)))[]; < i) [|Bil- | 2)=5i(- | )]

Linear pooling satisfies Assumption with x;(b) = w;(b) and equality
in (I). In what follows we state results for x;(b) = w;(b) to keep formulas
interpretable; replacing w;(b) by k;(b) gives the corresponding extension.

5.2 Approximate truthfulness under Lipschitz utilities and
payments

We now translate the bound (/1)) into a bound on the bidder’s non-audit gains
from misreporting. By assumption, for each context =z,

Ui(g, 2)=Ui(q", )| < Li [|a(- [ )= (- | )|, |zi(g,2)=2i(q", 2)| < L [la(- | 2)—4" (- | ),

Combining these with gives a pointwise bound on the maximal improve-
ment in the bidder’s instantaneous objective (utility net of influence pay-
ment) from shifting its report at context x:

(2)

Audits impose the opposing force. Under the log score, Section [4] showed
that the incremental expected audit penalty from reporting p;(- | =) instead
of pi(- | x) is exactly KL(p;(- | z)||pi(- | )), and Pinsker yields a quadratic
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lower bound in #1. Averaging over the audit distribution D and defining
0i := Eppl||Di(- | ) — pi(- | )1, we have

oy EanKL(pi(- | 2) [ 9i(- | 2)) > 62, 3)

Putting and together yields our main general incentive inequality:
any deviation can generate at most linear gains through influence on ¢, but
necessarily pays at least quadratic costs through the audit layer. Formally,
when we evaluate the bidder’s payoff difference between an arbitrary report
function p; and truthful reporting p;, holding (b,p—;) fixed, we obtain the
upper envelope

(b, i poi) = Wilb,pioi) < (Li+ L) wi®)6i = 07, (4)
where ¢; is measured on the audit distribution. (If generation contexts differ
substantially from D, then controls gains at those contexts but only
disciplines misreports where audits occur; we return to this coverage issue
below.)

Two corollaries fall out immediately by optimizing the quadratic upper
bound in (4). First, no best response can misreport by more than a scale on
the order of w;(b)/(ay).

Proposition 5.2 (Best-response misreport magnitude). Fix (b,p_;) and
suppose aggregation is linear pooling. Under log-score audits, any best re-
sponse p; satisfies
A(Li + L7) wi(b)

ay ’

Second, truthful reporting is approximately optimal even when it is not
exactly dominant (because the bidder can exploit its influence on ¢). Maxi-
mizing the right-hand side of over §; > 0 yields an upper bound on the
value of the best possible deviation relative to truth:

0; <

- o) < 2ALi+ L wi(b)?
sup (IL;(b, pi, p—i) — ILi(b, pi, p—i) ) < ’ :
up. (Wb, i) — (b i 1)) =

Thus, truth-telling is an e-best response with € proportional to w;(b)?/(ay).
The dependence on w;(b) is economically intuitive: audits primarily con-
strain the report, but misreporting is only valuable insofar as it shifts the
outcome (the aggregate distribution), and the outcome shift is mediated by
the bidder’s influence weight.

5.3 Equilibrium implications and aggregate distortion

The preceding results are pointwise best-response bounds holding bidder-by-
bidder. In any Nash equilibrium (b, p), Proposition therefore implies that
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each bidder’s equilibrium misreport on audited contexts is uniformly small
when «y is large relative to its Lipschitz scale and its weight. Under linear
pooling, the distortion of the platform’s aggregate relative to the truthful
aggregate can be bounded directly:

By ol | 1)—q |wH1—Ex~D!!sz J(Bil- T)=pi | 2)| Zwﬂ

Combining with 0; < 4(L; + L7 )w;(b)/(ay) yields the compact bound

n

Eep|lg(- | 2) = ¢ (- | 2)||, < 0?7 Z(Li + L) wi(b)®. (5)
=1

Two practical messages are embedded in . First, concentration of weight
worsens manipulation risk: if a single bidder has w;(b) ~ 1, then the plat-
form must rely primarily on audits (or on bid-side pricing) to discipline that
bidder’s report. Second, when weight is diffuse, the aggregate becomes hard
to manipulate: even moderate audit intensity can make equilibrium aggre-
gates very close to the truthful aggregate because each bidder’s ability to
move ¢ is small.

5.4 Audit intensity as a design lever

The bounds above turn («,7y) into policy parameters with a transparent
meaning. Suppose the platform wants to guarantee (on audited contexts)
that each bidder’s mean ¢; misreport satisfies J; < 0 whenever its bid weight
is at most w. Proposition [5.2) suggests the sufficient condition

oy > 4(L; —|:Lf)7I1
0

This expression makes clear why we treat o and v symmetrically in the the-
ory: both enter only through the product a-y in expectation. Operationally,
however, the two knobs have different interpretations. Increasing -y raises
the penalty when an audit occurs, which can create sharper tail risk for
participants and may be limited by regulatory or contractual constraints.
Increasing « raises audit frequency, which may be limited by audit compute
or by the overhead of obtaining TEE-backed samples. In practice, platforms
often have more flexibility to tune a moderate o and then calibrate « within
acceptable monetary bounds.

The parameter m does not appear in because our incentive bounds
are in expectation. Its role is reliability: larger m reduces the variance of
realized penalties and therefore reduces the profitability of “gambling” on a
small number of lucky audit draws. This is especially salient under score
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clipping or probability flooring, where boundedness permits direct concen-
tration guarantees and thus more explicit calibration of how large m must
be to make deviations unattractive ex post rather than only ez ante.

A natural extension suggested by the theory is weight-dependent auditing:
since the temptation to manipulate scales with w;(b), the platform can keep
distortion roughly uniform across bidders by choosing «;; increasing in w;(b)
(or directly in b;). This is analogous to risk-based supervision in financial
regulation: large participants with outsized influence face stricter scrutiny
not because they are intrinsically less trustworthy, but because their actions
have larger external effects.

5.5 Coverage and limitations: why D matters

Finally, we emphasize what these results do and do not guarantee. The
quadratic audit cost disciplines misreports on the audit distribution D.
If bidders can predict D or if D under-covers the contexts that matter in
production, bidders may remain nearly truthful on audited contexts while
strategically shading reports elsewhere. In that case the mechanism still
behaves as designed during audits, but the platform may not obtain credible
distributions where it needs them.

For this reason, the selection of D is not a mere technical detail: it is an
institutional choice that determines the domain over which “approximately
truthful reporting” is enforced. The theory clarifies the tradeoff. Broaden-
ing D (or refreshing it frequently) increases coverage and reduces the scope
for distribution-shift manipulation, at the cost of potentially higher audit
complexity (since audits must faithfully represent the contexts the platform
cares about). In our view, this is the right way to read the comparative stat-
ics: audits buy truthful reporting where they look, and the platform chooses
where to look.

The next section turns to a benchmark in which we can solve the bidder’s
reporting problem in closed form. That exercise complements the general
bounds here: it shows explicitly how the optimal report “tilts” away from p;
in response to marginal incentives, and it recovers the same 1/(a-y) distortion
rate as a limit of the exact first-order conditions.

5.6 Closed-form benchmark: linear valuations under linear
pooling

To see the “tilting” logic behind our envelope bound in its cleanest form,
we now study a benchmark in which bidder ¢’s incremental (non-audit) pay-
off is linear in the aggregate distribution, and aggregation is linear in re-
ports. The advantage of this case is not realism per se—many bidders have
nonlinear objectives and many platforms impose safety layers that make ¢
nonlinear in p—but transparency: we can solve for the unique best-response

26



report and read the 1/(ay) rate directly off the first-order conditions.

Setup (single context, linear objective). Fix a context x and suppress
it from notation. Let the platform use linear pooling so that, holding (b, p—;)
fixed,

q(t) = wi pi(t) +r—i(t), where  r_;(t) := Z w; P (t)
J#i
is the component of the aggregate coming from other bidders. Suppose
bidder i’s per-step utility net of influence payment can be written as

Ui(q) — 2i(q) = Z citq(t), (6)
teT
for some coefficients ¢;; € R capturing the bidder’s marginal value of in-
creasing the probability of token ¢ (possibly net of payment effects). Un-
der @, bidder ¢’s report influences its payoff only through the linear term
w; Y, CigPi(t), since Y, ¢;4r—;(t) is a constant with respect to p;.
Under log-score audits, the bidder’s expected audit penalty at this con-
text equals the cross-entropy

Ey~p; [ log pi(y sz )log pi(t) = H(p;) + KL(pillpi),
teT

where H(p;) does not depend on p; and can be dropped from the optimiza-
tion. Thus, for this fixed context, bidder i solves the concave program

max w; citDi(t) +ay Yy pi(t)logpi(t 7
DiEA(T) z; 7 7 ; 7 7 ( )

The objective in @ makes the economic tradeoff stark. The linear term re-
wards moving mass toward high-c; ; tokens, while the log term is an entropic
barrier anchored at p;: placing too little mass on a token that the true model
emits with nontrivial probability is punished sharply.

Best-response report (closed form). Because is strictly concave
on the simplex (the log term is strictly concave on the interior, and the
constraint set is convex), the maximizer is unique and lies in the interior
whenever p;(t) > 0 for all ¢ € TE| Writing the Lagrangian for with
multiplier \; for the simplex constraint ), p;(t) = 1,

L1 M) wzzc”pl )+ ar > pil®)logpilt) + Ai (1 - D pilt))
t t

f p;(t) = 0 for some ¢, then the log-score term does not discipline p;(t) directly;
the solution still exists but may place zero mass on such tokens depending on c¢;:. In
implementations one typically imposes probability floors (or clipped scores), in which
case the optimization is over a truncated simplex and the same KKT logic applies with
complementary slackness at the floor.
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the first-order conditions for each ¢ € T are

pi(t) : . ay pi(t)
- =0, lentl () = —————. 8
iy + 0y B = caivalently (1) =y 10 U (8)
The multiplier ); is pinned down by normalization:
ay pi( :
g py- ;ZCH =1, with A > Iglea% WiC; t- (9)

teT

Equations (8} f@ reproduce the rational-form best response stated in Propo-
sition 4 in the global context, here specialized to a single context and with
the explicit factor w; from linear pooling.

Two features are worth highlighting. First, the report p; tilts away from
p; toward tokens with higher c¢;;, but it does so in a way that remains
absolutely continuous with respect to p; (when p;(¢) > 0): the penalty makes
it expensive to “pretend” that likely tokens are impossible. Second, w; enters
only through the combination w;c;;: if the bidder has little influence on ¢,
then even a large private preference c;; has little strategic value because it
cannot move the aggregate much.

Asymptotic distortion rate O(1/(ay)). The closed form also makes the
ay comparative static precise. To see the scaling, suppose the coefficients are
uniformly bounded, |¢;¢| < é. When o is large, the multiplier ); is of order
a7, and we can expand as a perturbation around truth. A convenient
way to express the leading term is to write A\; = ay + w;¢; + o(1), where ¢;
is a constant of order ¢ chosen so that ), p;(t) = 1. Plugging into and
expanding (\; — wici’t)_l around avy yields the approximation

u(t) = pi(t) 1+ — E of 2w 10
(0 =0) (14 2 (e~ Beplend) ) + 0555 ) . (10
where the mean-centering arises because the simplex constraint forces ), (p;(t)—
pi(t)) = 0. Equation makes the economic content of the “entropic bar-
rier” interpretation concrete: the audit layer behaves like a regularizer that
penalizes departures from p;, so the bidder only shifts probabilities in pro-
portion to relative marginal values ¢;; — Ep, [¢;¢].

From (10) we immediately obtain the 1/(ay) distortion rate. For in-
stance, using Y, p;i(t) = 1 and |¢;; — Ep, [ci ]| < 26,

222

2w1, w;c w;C
1pi—pilli = Z |pi(t)—pi(t)| < sz ) lcii—Ep, [ci ]| +O <(047)2> = O( > .

teT 7 er Y
(11)

Moreover, the rate is typically tight: whenever c;; is not almost surely con-
stant under p; (so there is something to “tilt” toward), the leading term in
is nonzero and one can lower bound |[p; — p;||1 by a constant multi-
ple of w;/(ay), yielding ||p; — pi|l1 = O(w;/(ay)) up to problem-dependent
constants.
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How much can a bidder gain from optimal misreporting? The
benchmark also lets us quantify the value of strategic shading. For large
v, the bidder’s best deviation payoff relative to truth is of order w?/(avy),
consistent with the envelope bound derived earlier. Intuitively, the bidder
moves q by w;(p; — pi), and we have just seen that p; — p; is of order w;/(ary);
the resulting first-order gain is therefore second order in w; and first order
in 1/(ay).

One way to make this precise is to take a second-order expansion of
KL(p;||pi) around p; = p;, which gives

A ;. 2
KL ) = 5 3 PO o1 - i)
teT ¢

and then solve the approximate quadratic program obtained by substitut-
ing this into and imposing the simplex constraint. The optimizer of the
quadratic approximation satisfies p;(t) — p;(t) o< p;(t) (¢t — Ep, [ci¢]), match-
ing , and the maximal improvement in the objective is proportional to
a variance:

2 323
* i) — Wy . w;'c
(- ) = 3o Variepi(cid) + O ( (ow)?) , (12)

where IIY denotes the per-context optimum of and II¥" is the value at
pi = p;. Equation is useful as a calibration heuristic: it suggests that
what matters for the temptation to misreport is not merely the magnitude
of ¢;; but its dispersion under the bidder’s true model.

Welfare and revenue implications (and why the platform should
not rely on penalties as “revenue”). Although our mechanism is de-
signed around individual incentives, the benchmark clarifies how auditing
affects aggregate performance.

On the welfare side, misreporting is a classic externality: bidder ¢ can
manipulate g in a direction that is privately valuable, but the resulting shift
may be harmful to other bidders or to platform objectives (e.g., user sat-
isfaction). Under linear pooling the welfare-relevant object is the induced
distortion in the aggregate distribution,

q—q" = wi(pi — pi).
Combining this identity with yields an immediate scaling law:

2

. . wic
o= a3 = sl il = O ) . (13)

Thus, even in the worst case where private incentives are adversarial to wel-
fare, audits reduce the outcome distortion at a rate w?/(ay). This squares
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with the economic intuition emphasized earlier: influence is already attenu-
ated by w;, and audits then attenuate the report distortion by 1/(ay).

On the revenue side, it is tempting to view audit penalties as a source of
income. The benchmark cautions against this interpretation. Under the log
score, the expected audit penalty decomposes into a constant term H (p;) plus
KL(p;||p;). At the optimal report , the incremental component KL (p;||p;)
is small when audits are effective: since ||p; — pilli = O(w;/(avy)), Pinsker
implies KL(p;|[p;) = O(w?/(ay)?), and therefore the expected incremental
penalty ay KL(p;||p;) is only

KLl = 0 22) (14

which vanishes as a7y grows. In other words, when the audit system is doing
its job (reports are close to truth), it does not generate substantial incre-
mental penalty payments in expectation. This is a desirable feature from a
policy perspective: it aligns the mechanism with a compliance logic (penal-
ties as deterrence) rather than a fiscal logic (penalties as a profit center),
reducing the platform’s temptation to set audit parameters in a way that
extracts rents rather than ensures veracity.

Finally, because our influence payments z; are designed to support bid-
side monotonicity under truthful inputs, and together suggest a
practical separation of roles. The influence-pricing layer is the primary in-
strument for allocating influence and raising revenue, while the audit layer
is primarily an enforcement primitive that keeps the informational inputs
(reported distributions) credible. In the benchmark, stronger audits reduce
outcome distortions and simultaneously shrink the scope for profitable re-
port shading; the platform does not need (and should not expect) to finance
the system through large penalty collections.

Interpretation and limitations. The closed form is also a reminder
of where the analysis can break. The denominator A\; — w;c; ; must remain
positive for all ¢, which requires A\; > max; w;c;;. When ¢;; can be ex-
tremely large (or unbounded), the bidder would like to push p; toward a
corner of the simplex, and the log barrier becomes the only force prevent-
ing near-degenerate reports; in practice this is precisely the regime where
implementations impose probability floors, clip scores, or restrict admissible
reporting classes. Moreover, in realistic systems the mapping from reports
to outcomes is not exactly linear pooling: the platform may apply nonlin-
ear temperature scaling, safety filters, or other post-processing that breaks
separability across tokens. In such cases the first-order conditions no longer
yield in closed form, and one must solve a constrained optimization (often
numerically) to characterize best responses.

With these caveats, the benchmark serves its intended purpose: it turns
the abstract “linear gain versus quadratic cost” story into an explicit formula,

30



and it shows that the 1/(a-y) misreport rate we derived by envelope argu-
ments is not an artifact of loose bounding. It is the genuine scaling of optimal
strategic behavior when bidders can profit from shaping token probabilities
but face proper-scoring audits that penalize deviations from the committed
model.

Implementation: enforcing a single committed reporting function.
Our incentive statements implicitly rely on a mundane but crucial engi-
neering property: bidder ¢ must be unable to “answer two different ques-
tions,” i.e., to use one function during generation and a different function
during audits. Formally, the mechanism assumes a single committed map-
ping p; : X — A(T) that the platform can query at arbitrary contexts z, and
that the same committed object is the one scored against draws y ~ p;(- | =)
in the audit. In practice, enforcing this single-function discipline is not au-
tomatic, because a sophisticated bidder can condition behavior on metadata
(request headers, timing, IP ranges), on whether the platform is likely to be
auditing, or even on hidden “audit-mode” bits if those are exposed by the
interface.

A robust implementation therefore treats the reporting function as a
measured program with a narrow I/O boundary. The high-level design is:
bidder ¢ supplies code and (optionally) model parameters implementing p; (-
x); these are loaded into a trusted execution environment (TEE) that (a)
exposes only a fixed RPC interface “input context x, output vector p;(- | z),”
(b) seals any internal state, and (c) produces an attestation quote binding
the running measurement (code hash and relevant configuration) to a public
key that signs outputs. The platform then accepts reports only if they are
signed by that attested key and reference a specific measurement. This turns
“commitment to p;” from a paper assumption into a verifiable artifact: the
platform is no longer trusting the bidder to behave consistently; it is trusting
the hardware-rooted measurement and the verification logic.

Two details matter for incentive compatibility rather than mere integrity.
First, the TEE must commit to all sources of behavioral branching that
could induce different answers on audit and non-audit inputs. This includes
the code and weights, but also any external calls (tool use, network ac-
cess), randomness sources, and configuration flags. A conservative stance is
to disallow outbound network access and to require either determinism or
explicitly attested randomness (e.g., TEE-provided randomness with tran-
script binding). Second, the platform must ensure that the request visible
to the TEE is indistinguishable across audited and non-audited contexts. If
the bidder can detect audit queries, it can trivially report p; = p; on audits
(minimizing expected penalty) while shading on production contexts. Oper-
ationally, the simplest defense is interface uniformity: the platform always
queries p;(- | =) through the same channel, with the same formatting, and
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never tags a request as “audit.” The audit then consists only of the platform
privately selecting certain contexts z® and later scoring the bidder’s com-
mitted outputs on those contexts against y* ~ p;(- | %) obtained via the
separately attested true model.

Remote attestation and transcript binding. Remote attestation is
most useful when it is paired with transcript binding and key management
that make equivocation difficult. Concretely, we want three properties.

(i) Measurement binding. The attestation quote should bind a mea-
surement M; (hash of code, weights, and configuration) to a signing key
K; generated inside the enclave. The platform verifies the quote once per
(re)commitment and records (i, M;, K;).

(ii) Query-response authenticity. Each reported vector p;(- | ) should be
signed under K; and include a nonce and a context hash, so that the platform
can prove to itself (or to an external auditor) that it scored the bidder on
the output actually produced by the committed code at that context. This
is mainly a governance and dispute-resolution feature, but it also disciplines
subtle implementation failures where the platform might accidentally score
an output produced by a different version.

(iii) Anti-rollback and state discipline. Even if p; is intended to be state-
less, many real implementations are not: they cache, they adapt, they main-
tain counters, or they update internal calibration. If state is allowed, then
commitment must specify whether p; is permitted to change over time, and if
so on what schedule. For the model we analyze (a single committed reporting
function per session), the clean analogue is to enforce that the enclave uses
a sealed, read-only model snapshot for the session and that any update re-
quires a new attestation measurement M and a new commitment. Rollback
protection (e.g., monotone counters) prevents the bidder from presenting an
old, more “audit-friendly” snapshot on demand.

These are not purely technical niceties: they are the operational coun-
terpart to the economic assumption that the bidder cannot costlessly con-
dition its report on hidden information about the auditing process. If we
fail here, the relevant distribution in Proposition-style bounds becomes the
conditional distribution of contexts given that the bidder believes it is be-
ing audited, which is exactly the distribution-shift loophole that undermines
proper-scoring incentives.

Cryptographic commitment variants (when TEEs are unavailable
or insufficient). TEEs are a natural enforcement primitive, but not the
only one. A weaker (and sometimes deployable) alternative is a crypto-
graphic commitment to a container image plus a reproducible-build pipeline,
combined with auditing by re-execution on platform-controlled infrastruc-
ture. The bidder commits to a hash of the code and weights, the platform
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runs that code in a sandbox, and the bidder is paid according to outputs
produced there. This approach avoids trusting the bidder’s hardware, but it
assumes the platform can run the bidder’s model and that IP concerns are
addressed.

At the opposite extreme, one can imagine verifiable computation (SNARKs
or succinct proofs) that the reported p;(- | x) is the output of a commit-
ted circuit on input x. This would offer strong integrity without hardware
trust, but current performance makes it unrealistic for large neural models
at token-level cadence. In between lies a pragmatic compromise: use TEEs
for inference integrity, but also require a public commitment (hash registry)
to the model version, so that any unilateral update is observable and can
trigger a re-commitment cycle with updated audit parameters.

In our view, the mechanism design point is simple: the more cheaply bid-
ders can equivocate about p;, the more the audit probability « and penalty
scale v must do the heavy lifting, and the less sharp our approximate-
truthfulness guarantees become in practice.

Probability floors, clipped scores, and finite-sample auditing. FEven
with perfect commitment, score-based penalties have implementation pit-
falls. The log score S(p,y) = —log p(y) is unbounded above when p(y) — 0,
which creates two issues. First, unbounded penalties are politically and con-
tractually hard to sustain (a single unlucky audit could bankrupt a bidder).
Second, unbounded losses complicate finite-m calibration because concen-
tration is poor without tail control.

A standard remedy is to impose a probability floor p;(¢ | ) > € (equiva-
lently, to clip the score), scoring instead

Se(p,y) = —log(max{p(y), e}).

This preserves the “properness” logic approximately on the truncated sim-
plex and yields bounded penalties S¢(p,y) < —loge, enabling meaningful
concentration guarantees as m grows. Economically, floors slightly weaken
incentives around extremely low-probability events; operationally, they pre-
vent the mechanism from turning rare modeling discrepancies into catas-
trophic liabilities. In deployments, ¢ and m are coupled design parameters:
smaller e strengthens truthfulness but increases variance; larger m reduces
variance but increases audit cost. Our theoretical bounds treat a-y as the
main lever, but in practice (¢, m) are part of the same deterrence budget.

When closed forms disappear: nonlinear aggregation and safety
layers. The benchmark in Section [5.6|is deliberately transparent, but pro-
duction systems rarely satisfy its separability. Platforms often transform
or post-process reports before sampling: temperature scaling, nucleus/top-k
truncation, safety filters, policy constraints (e.g., disallowing certain tokens),
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or reranking layers that depend on external classifiers. These features make
the mapping p — ¢ nonlinear and sometimes discontinuous. Likewise, influ-
ence pricing rules based on stable sampling can introduce kinks when small
changes in ¢ flip tie-breaking events.

From the bidder’s perspective, this changes the optimization problem
qualitatively. Instead of the concave program , the bidder faces something
like

g}gﬁ E[Ui(Q(baﬁ)v :C) - Zi(bv ﬁ)] - a’YEIN'DEpri(-\r) [S(ﬁl( | $)7 y)}v
where ‘H may encode admissible reporting classes (e.g., model families, floors,
or smoothness constraints), and ¢(b,p) may include nonconvex operations.
Even if the audit term remains concave in each p;(- | x), the composition
through ¢ can destroy concavity, yielding multiple local optima and making
best responses sensitive to optimization details.

This is precisely why we emphasize Lipschitz-style envelope bounds in the
general model: they do not require us to solve the bidder’s problem exactly,
and they remain informative whenever (i) the bidder’s influence on outcomes
is bounded and (ii) the audit term grows like a divergence in the report.
In other words, we do not need closed-form best responses to argue that
sufficiently strong audits shrink the profitable scope for manipulation; we
need only that manipulation cannot move ¢ too much and that misreporting
cannot hide from the scoring rule on the audited distribution.

When numerical methods are required (and what is being solved).
Numerical computation enters in two places, and it is helpful to separate
them.

(A) Bidder-side optimization (strategic shading under complex q). A
bidder trying to compute its own optimal report in a nonlinear system will
almost surely rely on numerical methods. If p;(- | x) is produced by a
parametric model py(- | ) (as it would be in any realistic implementation),
then choosing p; is choosing parameters 6. The audit penalty becomes an
expected cross-entropy against samples from p; on contexts z ~ D, i.e., a
regularizer that pulls pg toward p; on the audit distribution. The bidder’s
problem is then a regularized training objective, potentially nonconvex if pg
is a neural network, and may need stochastic gradient methods, projection
onto floors, and careful treatment of constraints (e.g., simplex constraints
are automatic under softmax parameterizations, but floors are not).

(B) Platform-side calibration (choosing (a,y,m,€) and stress testing).
Even if the platform does not compute equilibria, it must pick audit param-
eters that achieve a desired distortion bound at acceptable operational cost.
The relevant constants—effective Lipschitz sensitivity of welfare or safety
metrics to ||g—¢’||1, or the distribution of scores under realistic prompts—are
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rarely known analytically. Here numerical work is unavoidable: simulation-
based estimation of sensitivity, empirical evaluation of score variance under
representative D, and worst-case testing under adversarially chosen shading
heuristics. This is also where the nonlinearity of safety layers matters most,
because it can amplify small report changes in corner cases (e.g., a filter that
sharply truncates probabilities when a classifier threshold is crossed). In such
regimes, conservative parameter choices may be justified even if average-case
behavior is benign.

The broader message is that closed forms are an intellectual aid, not a
deployment requirement. The mechanism’s enforceability hinges on commit-
ment and auditability; the platform’s practical success hinges on calibration
against the true end-to-end pipeline, which is an empirical and numerical
exercise.

Practical takeaways (and remaining limitations). We can summa-
rize the implementation logic as follows. The proper-scoring audit layer is
only as good as (i) the platform’s ability to force a single committed report-
ing function, and (ii) the representativeness and secrecy of the audit contexts
relative to production. TEEs with remote attestation provide a plausible en-
forcement primitive for (i), provided the query interface does not leak audit
status and the measurement captures all behaviorally relevant dependencies.
Cryptographic commitments and re-execution can substitute when the plat-
form can run bidder code directly; fully general zero-knowledge verification
remains aspirational.

At the same time, we should be explicit about limitations. TEEs have
nonzero attack surfaces and can leak via side channels; implementing perfect
indistinguishability between audit and production queries is operationally
hard; and nonlinear post-processing can create incentive “cliffs” where small
manipulations have outsized effects. These are not reasons to abandon the
mechanism; rather, they clarify where the economic model is doing abstrac-
tion work. Our analysis illuminates the tradeoff between influence and verac-
ity under disciplined reporting, but the discipline itself is an engineering and
governance problem. Designing the commitment interface, selecting D, and
calibrating (a, m, ) are therefore part of the mechanism, not afterthoughts,
and they are the natural bridge from the benchmark theory to the extensions
we consider next.

Extensions: dynamics, adaptivity, and strategic behavior beyond
the benchmark. The baseline analysis treats each queried context x as an
independent instance at which a bidder reports p;(- | ) and is (occasionally)
scored against draws from its committed p;(- | ). In deployments, however,
(i) generation is multi-step and contexts are endogenous to past sampled
tokens; (ii) auditing can be made adaptive and risk-based; (iii) penalties
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are often implemented via deposits and slashing rather than open-ended
ex post fines; (iv) bidders may have some control over which contexts are
realized (distribution shift); and (v) bidders may coordinate. None of these
considerations negate the role of strictly proper scoring, but each changes
what we mean by “representative auditing” and how we translate an expected
divergence penalty into a practical deterrent.

Multi-step generation and path-dependent contexts. In a K-step
generation, the context zj at step k is a function of the initial prompt and
the realized history y1.,_1. This creates two conceptual changes. First,
the bidder’s report affects not only the current token distribution g¢x(- |
xy), but also the future distribution of contexts by changing earlier sampled
tokens. Second, if utility is defined over entire transcripts (e.g., conversions,
downstream task success, safety violations), then a small perturbation in gy,
can have compounding effects.

A convenient way to retain tractable bounds is to treat the full prefix as
the context: xp = (z1,y1.k-1), so that p;(- | xx) and p;(- | zx) remain well-
defined conditional distributions over the next token. The mechanism then
remains pointwise: at each visited xy, the platform queries p;(- | =), forms
qr, and samples yr ~ qx. Audits sample z ~ D from a held-out distribution
over prefizes rather than initial prompts.

The economic subtlety is that a bidder may prefer to misreport early in
order to steer the trajectory into “high-value” regions later. Our Lipschitz
envelope approach still applies provided we measure utility sensitivity in a
way that accounts for such steering. One sufficient (if conservative) condition
is a per-step Lipschitz bound on the continuation value: define V; (qi, xy)
as bidder i’s expected remaining gross utility from step k& onward under the
platform’s policy, holding fixed the reporting profile. If for each k,

’V;,k((b 1’) - ‘/i,k(q/7$)’ < Li,k ||q - q/||17
then a deviati0~n that changes the aggregate by |lgx — ¢}.[1 at step k yields
at most Zle L; i|lar — q;,||1 non-audit benefit. Under linear pooling, ||g; —
¢l < wi(d) |pi(- | @) — pi(- | 2x)|/1, and one obtains a dynamic analogue
of the static tradeoft:

L (ps) =1L (ps) < wi(b zk"‘sz E[15:(- | mx)=pi(- | zi)ll1] — oy EenpKL(pil|5:),

Mw

k’:l

where the expectation on the left is over the endogenous trajectory of con-
texts induced by the platform’s sampling. The main design implication is
that in multi-step systems the relevant “benefit slope” can be larger early in
the trajectory (because early perturbations influence many future steps), so
audit strength should be calibrated against the largest continuation sensitiv-
ity, not merely a myopic per-token effect.
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Adaptive audits and risk-based enforcement. A fixed audit probabil-
ity « is analytically clean but operationally blunt. Platforms typically have
side information that correlates with manipulation incentives and harms:
unusual bid spikes, sudden report changes, contexts associated with safety-
critical decisions, or outputs near policy boundaries. This motivates adaptive
auditing, where the platform chooses an audit intensity «(z) (or triggers au-
dits after observing suspicious behavior) subject to a budget constraint.

At the level of expected incentives, the proper-scoring logic composes
neatly: under log scoring, the incremental expected audit cost from misre-
porting becomes

v Esnp[a(z) KL(pi(- | 2)|pi(- | 2))],

which is simply a reweighting of contexts. This suggests a normative pre-
scription: place more audit mass on contexts where either (i) the bidder can
create larger outcome distortions (large effective Lipschitz constants) or (ii)
the social cost of distortion is high (safety, fairness, or legal exposure). In
effect, a(r) is a shadow price on veracity that can be targeted.

Two caveats matter. First, the audit policy itself must not create a pre-
dictable “audit shadow” that bidders can condition on. If bidders can infer
that certain contexts are never audited, they will concentrate misreports
there. Thus, even risk-based auditing should retain randomness and some
minimum coverage: e.g., a(z) > a > 0 for all z in the operational support,
with additional mass allocated adaptively. Second, adaptive audits raise
governance questions: if a(x) is chosen after observing bidder behavior, bid-
ders may worry about discretionary enforcement. A practical compromise is
to commit (cryptographically or contractually) to an audit policy class—for
example, a published detector with fixed thresholds—and to log the random-
ness used for audit triggers. This protects the platform from accusations of
arbitrary punishment while preserving deterrence.

A further extension is sequential auditing: rather than fixing m contexts
per audit event, the platform can perform a sequential probability ratio
test on the stream of scored outcomes, escalating scrutiny when cumula-
tive evidence of misreporting accumulates. Such designs can reduce audit
cost in benign regimes while maintaining strong worst-case deterrence, but
they require bounded or clipped scores for concentration and for predictable
liability.

Bond and slashing variants (liability control and budget balance).
In many markets, “penalties” are implemented through deposits, charge-
backs, or escrow rather than ex post invoices. This is particularly natu-
ral with unbounded scores (like the log score) or with bidders of uncertain
creditworthiness. A bond/slashing design replaces the audit payment term
with a rule of the form: bidder i posts a bond B; at commitment time; the
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platform computes an audit loss ¢; (e.g., v+ = > i1 S(Piyyf)), and slashes
min{¢;, B;} from the bond, returning the remainder at settlement.

Economically, the bond changes the risk of participation and the enforce-
ability of large penalties; it does not change the first-order incentive effect so
long as the bond is large enough that the slashing constraint is rarely bind-
ing on equilibrium paths. Operationally, bonds provide three benefits. (i)
They cap platform counterparty risk: the platform can enforce penalties up
to B; without collection. (ii) They reduce political objections to unbounded
losses by replacing them with a posted maximum exposure. (iii) They allow
a budget-balanced implementation: slashed funds can finance auditing or
subsidize users harmed by manipulation.

The cost is that small bidders may be bond-constrained, which can distort
entry. One mitigation is to allow tiered mechanisms: lower bonds with
higher audit rates (or stronger clipping) for small participants, and higher
bonds with lower audit intensity for large participants. Formally, one can
treat (ay,7;, B;) as bidder-specific contract parameters, chosen to maintain
a target bound on d; given the bidder’s weight w;(b) and observed volatility.

Strategic selection of contexts and the distribution-shift loophole.
Our approximate-truthfulness guarantees are only as strong as the connec-
tion between audited contexts and the contexts that matter for outcomes.
If auditing draws « ~ D but production contexts are distributed as DP™d,
then a bidder may be truthful on D and manipulative on contexts that occur
frequently in production but rarely (or never) in audits. This is not merely
a theoretical nuisance: in interactive systems bidders may influence prompts
(through UT suggestions), traffic routing (through publisher relationships),
or downstream chains (through tool use), all of which can shift the context
distribution.

A simple way to make this dependence explicit is to decompose the ex-
pected benefit of misreporting under production as

EwNDprod [AZ (l’)] = Eme [Al (l’)] + (EmNmed — EJ;ND) [Az (:L')],

where A;(z) denotes the bidder’s per-context gain from moving ¢(- | z) via
misreporting. The second term is an adversarial “distribution shift” wedge.
Bounding it requires either (i) control of TV (DP*4 D) and bounded A;(x),
or (ii) audit designs that explicitly cover the production support.

This motivates two practical design principles. First, audits should be
drawn from a distribution that tracks production, possibly as a mixture

D= (1 _ p) Dprod + sttress’

where DS gversamples safety-critical or manipulation-prone regions, and
p is chosen for coverage. Second, the platform should treat the choice of D
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as part of the mechanism: it should be versioned, periodically refreshed, and
kept partially private. Full transparency of D invites gaming; full secrecy
invites governance concerns. A middle ground is to publish broad classes
of audited contexts and statistical summaries while keeping the exact draws
unpredictable.

An even stronger approach is importance-weighted auditing: sample x
from an easy-to-sample proposal distribution and weight the score by a factor
proportional to DP™d(z)/D(x), targeting production truthfulness directly.
This is statistically efficient only when weights are controlled; otherwise vari-
ance can explode, again pointing to clipping and careful calibration.

Collusion and coalition-proofing. Finally, we should ask what happens
when bidders coordinate. Proper scoring rules discipline each bidder against
its own p;, so collusion cannot eliminate the audit term. However, collusion
can change the mapping from individual deviations to aggregate influence.
Under linear pooling, the aggregate perturbation is

q(- [ &) = g™ (- | 2) = Zwi(b) (Bi(- | 2) = pil- [ ).

A coalition can split a desired aggregate perturbation across members. Be-
cause our audit lower bound is roughly quadratic in each member’s deviation
(via Pinsker), while the coalition’s benefit is roughly linear in the sum of
weighted deviations, spreading manipulation can reduce total penalty for a
given aggregate shift.

A stylized calculation makes this clear. Suppose a coalition C' aims to
induce a fixed aggregate Li-deviation s(z) := ||¢ — ¢""*"||; on audited con-
texts. The coalition chooses individual deviations d;(z) := ||p; — pill1 to
satisfy (heuristically) » ..~ wid; ~ s. The sum of quadratic penalties is
minimized when deviations are allocated proportional to weights, yielding
the Cauchy—Schwarz bound

2

S
2 > — .
Z ’ Zz’ecwiQ
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Since ..o w? can be much smaller than (ZiEC wi)2 when weights are
dispersed, collusion can reduce the coalition’s effective marginal penalty for
moving ¢g. This is the same geometry that makes quadratic regularization
weaker against coordinated, distributed perturbations.

There are at least three responses. First, the platform can scale audit
intensity with influence, for example by setting bidder-specific penalty mul-
tipliers ; increasing in w;(b) (or in b;). In the bound above, increasing
~; effectively increases the cost of allocating deviation to high-weight mem-
bers, making distributed manipulation less attractive. Second, the platform
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can introduce joint consistency checks that score the coalition on aggregate
properties of reports (e.g., comparing g to a separately estimated baseline),
though such checks are no longer strictly proper in the individual sense
and must be designed carefully to avoid penalizing legitimate correlation.
Third, the platform can rely on market design and governance: limit iden-
tity splitting, impose KY C-style requirements, monitor correlated bid /report
changes, and treat suspicious clustering as a compliance risk.

We should also distinguish collusion on reporting from collusion on bid-
ding. Influence payments address bid-side incentives under monotonicity
assumptions, but identity splitting can allow bidders to manipulate weights
w;(b) and the effective audit burden. Thus, anti-collusion enforcement is
partly a mechanism-design issue (how weights and payments scale) and
partly an identity and compliance issue (what constitutes a bidder).

Summary: what changes and what persists. Across these extensions,
two messages persist. First, proper-scoring audits remain a disciplined way
to tie reported distributions to verifiable generative behavior, and their ex-
pected effect is still divergence-like. Second, the calibration of auditing must
track the true sources of leverage: dynamic continuation values in multi-step
generation, concentrated risk regions under adaptive enforcement, represen-
tative coverage under distribution shift, and coalition geometry under coor-
dinated manipulation. Our benchmark bounds are therefore best read as a
template: they identify the linear benefit versus quadratic cost tradeoff, and
the extensions tell us which terms become larger or more subtle in realistic
systems.

Empirical sketch (optional): a simulation plan for calibrating («,~y,m).
Our bounds are deliberately distribution-free, but a platform ultimately
needs a numerical calibration: given an operational audit budget and an
acceptable level of report distortion, what audit frequency «, penalty scale
~, and sample size m are required in practice? An empirical sketch is there-
fore useful, not as a replacement for incentive analysis, but as a bridge from
the divergence-based penalty logic to concrete engineering choices (latency,
TEE calls, and bidder risk limits). The goal of the exercise is to map a
desired tolerance 4 for

8 = Egnpl|pi(- | 2) — pil- | 2)]|,
into a feasible region of (cv,7,m) that (i) makes § a best-response scale for

strategically chosen misreports, and (ii) yields high-probability detection in
finite samples when scores are noisy or clipped.

A minimal testbed: open LLMs as committed generators and para-

metric misreports. A convenient starting point is to instantiate each ad-
vertiser ¢ with an open-weight language model (or a fixed checkpoint plus
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decoding policy) that defines the committed truth p;(- | ) at every context.
In a real deployment, the platform would not see p; directly, but would be
able to sample from it inside a TEE. In simulation we can treat the model as
the oracle, and enforce the same information constraint by allowing the plat-
form to access only p; during generation and only sampled draws y ~ p;(- | =)
during audits.

Because a full reporting function p; : X — A(T) is intractable to opti-
mize naively, we can restrict deviations to a parametric family that captures
plausible manipulations. A simple and revealing class is a logit-tilt misreport:

Pilt | 2;0) oc pi(t | x) exp{0' o(t,x)},

where ¢(t, z) are hand-designed features (e.g., whether ¢ is a brand token,
a safety-sensitive token, or belongs to a semantic cluster) and 6 is chosen
strategically by the advertiser. This family preserves support (avoiding triv-
ial infinite log losses when p;(t | ) > 0) while allowing systematic up-
weighting of preferred tokens. It also makes the audit penalty analytically
interpretable: it becomes a regularized tilt around p;, closely matching the
closed-form benchmark intuition.

Synthetic contexts and outcome primitives. To approximate the “ad-
vertiser prompt” setting, we can construct contexts in three layers: (i) a base
prompt (user query or task instruction), (ii) a short advertiser-specific suffix
that induces commercial intent or content, and (iii) the endogenous prefix
created by previously sampled tokens in multi-step generation. Concretely,
we can define a prompt generator that samples (topic, style, locale, risk
flag) tuples and renders templated prompts, then lets the system generate
K tokens under the platform aggregate gq. For auditing we maintain a held-
out distribution D over prefixes, obtained either by sampling base prompts
and rolling out trajectories under a reference truthful policy, or by replaying
logged production prefixes. The key practical point is that D must be ver-
sioned: the audit distribution used for calibration should match the audit
distribution used for enforcement, and should be refreshed as prompts and
bidder populations change.

Advertiser utilities and payments: choosing a controlled objective.
For calibration we need an explicit non-audit objective that creates a motive
to misreport. A controlled choice is a linear functional of the generated
distribution (per context),

Ui(g,x) = > wvin(z)qlt | x),

teT

where v; ¢(x) encodes the advertiser’s value for token ¢ in context z (e.g.,
higher value for brand mentions in appropriate contexts, negative value for
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disallowed content). This makes the benefit of manipulation transparent
and allows us to estimate Lipschitz constants directly via ||v;(x)| e bounds.
Influence payments can be implemented in the simulation either as (i) a
stylized monotone mapping z;(g, ) that is Lipschitz in ¢, or (ii) the actual
influence-payment proxy used in the intended mechanism (e.g., a stable-
sampling second-price analogue) but evaluated on the finite token set. The
calibration exercise does not require an exact payment rule so long as it
captures the magnitude and smoothness of payment changes induced by
shifts in q.

Evaluation metrics: distortion, welfare effects, and audit statistics.
We can measure three objects on a common set of contexts x:

1. Report distortion: empirical estimates of §; and also squared deviation
E||p; — pi]|3, since the audit penalty lower bound is quadratic.

2. Outcome distortion: E|lqg — ¢"™"*|; and task-level metrics computed
on generated samples (e.g., conversion proxy, toxicity proxy, constraint
violations). This is the policy-facing quantity.

3. Audit evidence: the realized audit loss
~ 1 e .
b= S8, v ~ml ],
j=1

and its deviation from the truthful baseline. This is what determines
deterrence under finite m.

A practical refinement is to report both log score and a clipped log score,
S:(p,y) = min{—logp(y), T}, because unbounded penalties are difficult to
finance via bonds and difficult to concentrate statistically.

Strategic behavior in the loop: approximate best responses over a
restricted class. To connect calibration to incentives rather than passive
measurement, we can compute approximate best responses for each adver-
tiser within the parametric misreport family. Holding (b, p—;) fixed, adver-
tiser ¢ chooses € to maximize empirical payoft:

K
() = B[ Uilan(0),0)] — B - zin(ax(6), 2) | — ar B[G(0)].
k=1 =
In simulation, gradients with respect to 8 can be obtained by automatic dif-
ferentiation through p; and the aggregator, while treating sampled outcomes
via standard score-function estimators or by evaluating objectives directly
at the distribution level (since we can compute ¢(- | ) on a truncated token
set). This yields a numerically grounded estimate of the equilibrium distor-
tion d;(av, v, m) within the chosen deviation class, and lets us test whether the
predicted scaling §; = ©(1/(ary)) appears in a realistic LLM environment.
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A calibration recipe based on a target distortion bound. The sim-
plest practical recipe uses the approximate-truthfulness inequality as a design
constraint rather than as an ex post bound. Fix a platform-chosen tolerance
8 on D. Under linear pooling, a conservative sufficient condition suggested
by the bound is

L AL+ 1)) wih)
- 0
Empirically we can estimate (L; + L7) by perturbing ¢ in random direc-
tions on held-out contexts and measuring the resulting change in the ad-
vertiser’s objective (or by bounding values v; () directly when utilities are
constructed). We can also replace the worst-case w;(b) by a high quantile of
realized weights (e.g., the 95th percentile), acknowledging that bids fluctuate
and that strict worst-case design may be unnecessarily expensive.

Given an operational audit budget constraint of the form “expected TEE
samples per session < C,” we then choose a and m such that am < C,
and set « to satisfy the product constraint above. This makes explicit the
substitution between auditing more often (higher «) and penalizing more
per audit (higher 7). In practice, risk and liability constraints often cap ~y
(or require a bond B; satisfying B; 2 v7 under clipping), so we can treat 7
as the binding instrument and solve for a.

ay for each materially influential bidder 1.

Choosing m: concentration, clipping, and false negatives. The role
of m is not primarily the expected penalty (which scales with o), but the
reliability of enforcement. With finite m, a misreport can “get lucky” and
avoid slashing in a particular audit event. To quantify this, we need a con-
centration inequality for the per-sample score. With unclipped log score, the
tails can be heavy if p(y) is small, which undermines clean high-probability
statements. This is one reason clipping (or a bounded proper score) is oper-
ationally attractive.

If we use S; € [0, 7], then for any fixed context distribution and report
we have (by Hoeffding) that

R . 2
Pr(& —E[4] < —e) < exp<— 2m; > .
T

A platform can therefore pick (m,7) to achieve a target false-negative prob-
ability S for a given expected gap in audit loss between truthful and misre-
porting behavior. Empirically, we can estimate this gap as

Aaudit = Ezop |:KL(pz( ‘ .CC) Hﬁz( | JZ))]7

recognizing that clipping will reduce the effective gap. The calibration exer-
cise then becomes: pick 7 to balance bounded liability against informative-
ness, then pick m so that the realized penalty concentrates tightly enough
that repeated audits induce predictable deterrence.

43



Stress tests: distribution shift, early-trajectory leverage, and coali-
tion geometry. A useful simulation should deliberately violate the bench-
mark assumptions to reveal how fragile a calibration is. First, to probe dis-
tribution shift, we can construct DP9 by routing prompts through an “en-
gagement” model that correlates with advertiser incentives, while keeping D
as a more neutral held-out set. We can then measure the wedge between mis-
reporting incentives under D and under DP9, and evaluate mixture audits
of the form D = (1 — p)DProd  ppstress,

Second, to probe multi-step leverage, we can compare the distortion in-
duced by misreports restricted to early tokens versus late tokens, holding
the same audit parameters fixed. If early-step perturbations produce larger
downstream effects, the empirically required oy to stabilize behavior should
rise, consistent with a continuation-value interpretation.

Third, to probe collusion, we can simulate identity splitting by replacing
one bidder of weight w with k& nominally distinct bidders of weights w/k and
allowing joint optimization of their misreport parameters subject to separate
audit penalties. The object of interest is whether aggregate distortion |g —
¢"™™||; can be maintained while reducing total expected audit loss, and
whether bidder-specific scaling (e.g., 7; increasing in weight) restores the
intended deterrence.

Deliverables: an audit frontier rather than a single point estimate.
The outcome of the exercise should not be a single recommended triple
(a,y,m), but an audit frontier: the set of parameter combinations that
achieve (i) a target equilibrium distortion §; < ¢ for influential bidders, and
(ii) a target enforcement reliability (false-negative rate below ) under the
chosen scoring rule and clipping. This frontier can be plotted against op-
erational costs (TEE calls, latency, bonded capital) and against outcome
metrics (task success, safety violations). A useful practical summary is: for
each bidder size tier (weight quantile), report the minimal am required to
keep 0; below threshold under a feasible v and 7.

Limitations and what we learn despite them. We should be explicit
about what such a simulation can and cannot validate. It cannot prove
incentive compatibility in the full strategy space, and it cannot eliminate
governance issues around who controls D, how TEEs are attested, or how
disputes are resolved. It also inherits modeling choices: a restricted misre-
port family may understate adversarial creativity, while a stylized utility may
misstate real commercial incentives. Nonetheless, it can validate the com-
parative statics that drive practical design (how distortion scales with ay,
how sensitive enforcement is to m and clipping, and how quickly distribution
shift breaks naive auditing). In this sense, the empirical sketch complements
the theory: it helps the platform translate a divergence-based incentive lever
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into a budgeted compliance program with measurable performance targets.

Transition. With these calibration tools in hand, we can distill the broader
design recommendations for verified influence markets, and clarify which
open problems remain primarily economic (equilibrium selection, collusion,
dynamic incentives) versus primarily systems-oriented (attestation, privacy,
and scalable auditing).

Conclusion: design recommendations for verified influence mar-
kets. Our analysis highlights a simple but operationally meaningful prin-
ciple: if a platform wants to sell influence over a generative model while
retaining auction-like bidding incentives, it must make the inputs to aggre-
gation (the reported conditional distributions) verifiable enough that they
can be treated as approximately truthful objects. Proper-scoring-rule audits
provide a natural lever because they translate misreporting into a divergence
cost that is (i) local in the reported distribution, (ii) composable across con-
texts and steps, and (iii) mechanism-agnostic in the sense that the audit
penalty depends only on (p;,p;) and not on the particular aggregation or
payment rule. The design task, then, is not to eliminate manipulation in all
states of the world, but to pick («,~y, m) and operational primitives so that
any profitable deviation must be small enough that the platform can treat
the resulting perturbations in ¢ (and hence in outcomes and payments) as
negligible at the policy-relevant scale.

Recommendation 1: separate truth enforcement from influence
pricing. A practical architecture is to keep the influence mechanism (mono-
tone aggregation plus monotone influence payments) as close as possible to
the familiar token-auction logic, and to add audits as a separate enforce-
ment layer whose sole role is to discipline the reporting function p;. This
separation is valuable for two reasons. First, it limits the surface area of
strategic interactions: bidders optimize bids and (approximately) truthful
reports rather than entangled objects. Second, it yields modularity for en-
gineering: changes in the auction/payment implementation need not require
changes in the audit logic so long as the report object and its semantics
remain the same.

Recommendation 2: treat ay as the core incentive knob, and m
as the reliability knob. The economic deterrence in expectation is con-
trolled primarily by the product oy (audit frequency times penalty scale).
In contrast, the sample size m matters mainly for concentration of realized
penalties and hence for the predictability of enforcement. In deployments
where large one-shot penalties are politically or legally constrained, the plat-
form can keep v moderate and raise «; where audits are expensive (TEE
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calls, latency), the platform can reduce o and compensate with higher =,
subject to bounded-liability constraints. Operationally, it is helpful to set
a target distortion tolerance § and back out a conservative requirement on
ary for the largest-weight bidders (since w;(b) scales manipulation leverage),
then choose m to make audit outcomes stable enough that the expected
deterrence is realized in finite samples.

Recommendation 3: use bounded or clipped proper scores, with
explicit bonded capital. Unbounded penalties are difficult to finance
and hard to make statistically well-behaved. Clipping the log score, or using
a bounded strictly proper scoring rule, makes enforcement more practical
but introduces a tradeoff: clipping protects bidders from catastrophic losses
yet weakens the marginal deterrent against assigning extremely small prob-
ability to events that occur under p;. A disciplined approach is (i) select a
clipping threshold 7 that matches a permissible per-audit loss, (ii) require a
posted bond B; that comfortably covers worst-case exposure (e.g., B; 2 77
per audit event, scaled by an upper bound on audit frequency), and (iii) cali-
brate m so that clipped-score estimates still separate truthful and materially
misreporting behavior with high probability. From a mechanism-design per-
spective, the bond is not merely a collection tool: it is part of the incentive
system, ensuring that the promised penalty is credible ex post.

Recommendation 4: tier audits and penalties by effective influence
weight. Because the ability to move the aggregate distribution scales with
w;(b) under linear pooling (and analogously under other monotone aggrega-
tors), we should not expect a single uniform (a, ) to be cost-effective across
a heterogeneous bidder population. A platform can implement tiering rules
of the form

~; nondecreasing in w;(b) and/or «; nondecreasing in w;(b),

with tiers defined either by ex ante bid commitments or by realized weights
over time. Tiering is also a mitigation against identity-splitting: if a bidder
can cheaply split into many small identities, then any scheme that makes
enforcement much weaker for small weights invites circumvention. One
practical remedy is to base tiers on affiliated-account aggregation (common
control, payment instrument, or cryptographic identity), though this raises
governance questions. Another is to make the penalty schedule convex in
cumulative weight, so that splitting does not reduce total expected audit
exposure.

Recommendation 5: commit to (and refresh) an audit-context dis-
tribution D that matches where influence matters. Audits only bind
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on the contexts they cover. If D drifts away from production traffic, so-
phisticated bidders will concentrate misreports on un-audited regions of X,
preserving apparent compliance on audited contexts while manipulating out-
comes where it counts. This is not a minor technicality: it is the main
channel through which a theoretically clean divergence penalty can fail in
practice. We therefore recommend that the platform (i) publicly specify a
versioned audit distribution family (or a sampling procedure) that tracks
production, (ii) include stress components that oversample safety-critical
and high-commercial-value contexts, and (iii) refresh D on a schedule that
is both frequent enough to prevent gaming and stable enough to keep com-
pliance predictable. A useful compromise is a mixture audit policy, e.g.,
D = (1 — p)DPd 4 pDseS | where DS is designed to be hard to antici-
pate and disproportionately informative about problematic behavior.

Recommendation 6: audit the reporting function as code, not only
its numeric outputs. The object of enforcement is a committed mapping
pi + X = A(T). In practical systems, bidders will implement p; as code
that may contain hidden conditionals, backdoors, or trigger-based behavior.
Auditing only on sampled contexts provides statistical guarantees but can
be brittle against adversarially chosen triggers. We therefore recommend
combining statistical audits with attestation and change control: bidders
should commit to a code hash (or container digest) and a declared interface,
with updates gated by a re-commitment process and possibly a probation
period with elevated audits. This is a systems requirement, but it has direct
economic content: it constrains the strategy space in a way that makes the
scoring-rule incentive lever meaningful.

Recommendation 7: design for multi-step generation and early-
trajectory leverage. In multi-token generation, early distortions can have
outsized downstream effects by steering the state distribution over future
contexts. Our Lipschitz-based bounds treat each step in a controlled way,
but the practical implication is that the platform should allocate audit and
monitoring resources to where leverage is highest. Concretely, we can (i) in-
crease audit probability on early steps or on steps that shift topic/style, (ii)
define context features that flag high-impact prefixes, and (iii) supplement
distribution-level audits with outcome-level monitors (e.g., constraint viola-
tions) that are sensitive to compounding effects. Importantly, such monitors
need not replace proper-scoring audits; they can serve as triggers for more
intensive auditing, thereby conserving budget while targeting risk.

Recommendation 8: maintain transparency about compliance, but
keep randomness unpredictable. Verified influence markets will be scru-
tinized by bidders, users, and regulators. A platform should publish the scor-
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ing rule family, the broad structure of D (including what classes of contexts
are in scope), and the tiering logic for («,v,m). This improves legitimacy
and reduces dispute costs. At the same time, the realizations of audit con-
texts should remain unpredictable to deter context-specific gaming, and the
platform should retain the ability to introduce fresh stress distributions when
new manipulation patterns are discovered. Transparency about rules cou-
pled with unpredictability about draws mirrors standard compliance practice
in other regulated settings.

Recommendation 9: implement a dispute-resolution pathway grounded
in verifiable evidence. Audits create financial transfers that will be con-
tested. A platform should therefore define an appeals process that is com-
patible with privacy and with TEE limitations. The key design goal is to
make the relevant evidence (attested code hash, audited contexts, realized
samples y7, and computed scores) verifiable without revealing sensitive user
prompts. One approach is to store commitments and audit transcripts as
signed artifacts, and to permit third-party verification under confidentiality.
This is not merely legal hygiene: predictable dispute resolution increases the
credibility of penalties and therefore strengthens deterrence without increas-
ing « or 7.

Open problem 1: endogenous and strategic audit distributions.
We treated D as fixed, but in reality the platform chooses it and bidders
may try to influence it (through traffic shaping, prompt injection, or creating
contexts that are rare under audits). A rigorous treatment would model a
dynamic game where D is both a monitoring technology and a strategic
object. Two questions seem central: (i) what mixture policies over contexts
are robust to gaming while remaining representative of production welfare,
and (ii) how should the platform allocate audit mass across context strata
to minimize worst-case outcome distortion for a fixed audit budget?

Open problem 2: collusion, identity splitting, and correlated mis-
reports. Proper-scoring penalties are bidder-separable, which is a feature
for modular enforcement but a vulnerability under coalitions. If multiple
bidders coordinate their reports, they may be able to steer ¢ while spread-
ing audit exposure. Understanding the limits of such “coalition geometry”
requires extending the analysis beyond unilateral deviations. Promising di-
rections include (i) coalition-proof audit schedules with weight-dependent
penalties, (ii) mechanisms that base influence rights on authenticated entities
rather than accounts, and (iii) aggregation rules that reduce marginal manip-
ulability at high concentration (e.g., regularized pooling) without breaking
monotonicity properties needed for influence pricing.
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Open problem 3: richer objectives and non-Lipschitz utilities. We
assumed Lipschitz continuity in ||¢ — ¢’[|1 to obtain clean bounds. This is
a reasonable approximation when advertisers care about smooth token-level
metrics, but it can fail when objectives are thresholded (e.g., a conversion
event that triggers only when a particular phrase appears) or when payments
depend on discrete outcomes. Extending the theory to objectives with dis-
continuities, heavy tails, or state-dependent constraints likely requires either
(i) smoothing assumptions at the mechanism layer (e.g., randomized alloca-
tion rules) or (ii) alternative enforcement tools that directly target discon-
tinuous behaviors. The practical takeaway is that platforms should, where
possible, design payments and allocation to be stable under small distribu-
tion shifts, thereby making the audit-based truthfulness program effective.

Open problem 4: bounded proper scoring rules under strategic
support manipulation. The log score is analytically convenient but un-
bounded, while bounded proper scores or clipped scores can weaken de-
terrence against assigning near-zero probability to adverse events. A deeper
question is whether we can design bounded scoring rules (or hybrid penalties)
that preserve strong incentives against “support hacking” while maintaining
finite liability and good statistical concentration. This intersects with robust
statistics: one would like a penalty that behaves like KL near the interior
of the simplex but saturates gracefully near the boundary, without creating
perverse incentives to concentrate mass.

Open problem 5: dynamics, learning, and partial commitment.
In realistic deployments bidders will update models, features, and target-
ing logic. The assumption of a single committed reporting function per
session is a useful abstraction, but the economically relevant object is a dy-
namic commitment with occasional updates. This raises questions about
(i) how to price and audit updates, (ii) whether past audit performance
should affect future audit rates (a “reputation” or “compliance” state), and
(iii) whether adaptive auditing creates new strategic incentives (e.g., behav-
ing well early to reduce future scrutiny). A principled approach would treat
auditing as a control problem with incentive constraints, potentially yield-
ing state-dependent («,,m) schedules that reduce cost while maintaining
deterrence.

Where we land. Despite these open problems, the model clarifies a core
tradeoff that we expect to persist across implementations: influence mecha-
nisms make the aggregate output sensitive to bidder-provided distributions,
and any sensitivity invites strategic distortion; proper-scoring audits convert
distortion into a convex cost that can dominate the linear gains from ma-
nipulation when ary is sufficiently large relative to the bidder’s influence and
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the environment’s payoff smoothness. The practical program is therefore
to (i) make reports and audits verifiable, (ii) choose audit parameters that
scale with influence, (iii) keep liability bounded and enforcement reliable via
clipping and sufficient m, and (iv) treat the audit distribution as a first-class
design object that must track production realities. If we do these things,
verified influence markets can be engineered as compliance systems with
measurable performance targets, rather than as fragile one-off mechanisms
whose correctness depends on heroic assumptions.
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