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Abstract

Modern sponsored generative systems naturally aggregate multiple
“preference models” using RLHF-inspired objectives, which lead to log-
linear (reverse-KL) pooling. However, Diitting et al. (2024) show that
log-linear pooling can violate robust monotonicity, blocking second-
price-style influence pricing and transparent counterfactual explana-
tions. We resolve this tension by introducing a monotone-projection
operator: given two advertisers’ next-token distributions and the in-
duced log-linear path ¢8°°(\), we project the entire path onto a con-
vex set of robust-monotone paths M(p1, p2) that move coordinate-wise
from ps to p; without overshoot. The projected aggregator ¢ is (i)
uniquely defined by a convex program, (ii) computable efficiently via
isotonic-regression-type algorithms on a discretized bid-ratio grid, and
(iii) robustly monotone, thereby enabling stable sampling and a second-
price analogue with Myerson-style payment identities from Diitting et
al. (2024). Finally, we quantify the ML cost of incentive compatibil-
ity: ¢ is the closest monotone rule to RLHF pooling, and we provide
explicit bounds on the degradation of the reverse-KL objective. This
yields a deployable mechanism for 2026-era sponsored Al answers that
remains close to alignment-motivated aggregation while restoring ro-
bust incentive properties and auditability.
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1 Introduction

Large language models increasingly sit at the point of sale. A user asks for
a restaurant recommendation, a travel itinerary, or a business-software com-
parison, and the system produces a fluent, contextual answer that may em-
bed or imply commercial choices. Sponsored search already allocates scarce
attention across advertisers; generative answers allocate something subtler:
probabilistic influence over which entities, attributes, and framings appear
in a stochastic text-generation process. This paper studies how to sell such
influence in a way that is simultaneously (i) aligned with modern machine-
learning aggregation practices and (ii) compatible with incentive constraints
that arise when payments depend on bids.

Our starting point is pragmatic. Platforms have strong reasons to op-
erationalize advertising not as hard constraints (always mention advertiser
1) but as soft steering that preserves relevance, safety, and user trust. In a
token-by-token generator, the most granular steering object is the next-token
distribution. An advertiser can be viewed as providing a distribution over
next tokens—either literally, via a conditional model head, or implicitly, via
a scoring rule over candidate continuations. The platform then needs an ag-
gregator that maps advertiser-conditioned next-token distributions and bids
into a single distribution from which the system samples the next token.
This is the mechanism-design analogue of a standard ML problem: how to
combine two probabilistic “experts” into one prediction.

The ML literature offers a compelling benchmark: log-linear (geometric)
pooling. In the two-source case it takes the form

#0) o Pk
where the bid ratio A € [0, 1] plays the role of a mixing weight. This rule is
attractive for at least three reasons. First, it is a strict convex optimum of a
natural regularized objective: it minimizes a weighted sum of KL divergences
to the two sources (a property closely related to the variational formulations
that motivate RLHF-style updates). Second, it is symmetric and scale-free:
only relative bids matter. Third, it offers a clean interpretation for engineers:
moving A increases the log-odds of tokens favored by advertiser 1 relative to
advertiser 2.

Yet the mechanism-design problem is not merely to choose a plausible
aggregator; it is to choose one that supports payments and strategic bidding.
In a conventional single-parameter auction, the allocation must be monotone
in bids to admit truthful (critical-bid) payments. When the “allocation” is
a distribution over tokens, monotonicity becomes a multidimensional state-
ment. Recent work by Diitting et al. 7 formalizes a robust preference model
under which advertisers care about shifting probability mass in the “right
direction” across outcomes, and shows that a suitable robust monotonic-
ity condition is sufficient to implement payments via stable sampling and



second-price-style critical bids. In our setting, the relevant monotonicity is
coordinate-wise: as advertiser 1’s bid weight rises, every token that adver-
tiser 1 likes more than advertiser 2 should weakly increase in probability,
and every token it likes less should weakly decrease.

This is where an important ML—incentives mismatch emerges. Geometric
pooling is monotone before normalization—each unnormalized score moves
in the correct direction as A changes. But after normalization, the prob-
abilities become coupled through the partition function, and this coupling
can produce reversals: a token probability can move up for small A and
then move down even though advertiser 1 continues to gain weight. Eco-
nomically, the problem is that increasing a bidder’s weight can alter the
competitive landscape among other tokens so much that an individual co-
ordinate moves counter to the bidder’s preference. Mechanism-theoretically,
such reversals break monotonicity and therefore undermine stable sampling
and critical-bid pricing. Operationally, they create two risks that platforms
should care about. First, pricing risk: without monotonicity, payments
become implementation-dependent or undefined, inviting manipulation and
making revenue unpredictable. Second, policy risk: non-monotone influence
is hard to explain to advertisers, auditors, and regulators, because a higher
bid can sometimes reduce the probability of a desirable mention.

We view this mismatch as a design opportunity rather than a negative
result. The geometric pooler is a compelling benchmark because it is close to
what a platform would choose if it only cared about predictive aggregation or
RLHF-like objectives. The question is then: can we retain its virtues while
enforcing the monotonicity structure needed for a well-behaved auction?

Our answer is to separate benchmarking from implementing. We first
compute the RLHF-motivated benchmark path A — ¢#°°(\). We then com-
pute the closest path (in a divergence sense) that satisfies robust mono-
tonicity constraints across A. Conceptually, we are projecting a desirable
but potentially non-monotone ML rule onto the set of auction-compatible
rules. This projection has three appealing features. (i) It provides a trans-
parent interpretation: among all monotone influence rules, we choose the
one that distorts the ML benchmark the least. (ii) It is robust: the mono-
tonicity constraints enforce “no overshoot” in every coordinate, which aligns
with the robust order used to justify incentive properties under coarse ad-
vertiser preferences. (iii) It is computationally tractable: after discretizing
A, the projection becomes a convex program with linear constraints, and for
squared loss it reduces to isotonic-regression-style primitives.

The economic content of the projection is subtle. If one thinks of A
as a price-weighted social planner parameter, geometric pooling is an “un-
constrained optimum” that trades off fit to advertiser 1 and advertiser 2.
Our projection imposes an additional implementability constraint: as bids
change, the mapping from bids to allocations must move in a single direc-
tion for each advertiser in a robust sense. The resulting distortion can be



interpreted as the shadow cost of incentive compatibility in a probabilis-
tic allocation environment. This interpretation lets us ask policy-relevant
questions: When does the incentive constraint bind severely? How does the
distortion scale with advertiser disagreement? Can smoothing or tempera-
ture reduce the distortion? These comparative statics matter for platform
governance because they translate into practical levers (e.g., regularization,
discretization granularity) that trade off revenue, user experience, and au-
ditability.

Contributions. We make four contributions.

First, we isolate a concrete failure mode of log-linear pooling in influence
auctions: normalization-induced non-monotonicity. Importantly, this is not
a pathological preference assumption; it arises even under the weakest robust
preference model where advertisers only care about moving probability mass
in the obvious coordinate-wise direction.

Second, we propose a monotone projection framework. We define a con-
vex set of robust-monotone paths connecting the endpoint distributions and
project the geometric pooler onto this set using a strictly convex divergence.
The strict convexity ensures uniqueness, which is valuable both analytically
(comparative statics are well-defined) and operationally (the platform can
commit to a single deterministic allocation rule).

Third, we connect this projected aggregator to implementable payments.
Because the projected rule is robustly monotone, we can invoke the stable-
sampling framework of ? to obtain second-price-style critical-bid payments
per token, together with an expected payment identity that does not depend
on the internal sampling implementation. In other words, the projection is
not merely a fix to an aesthetic monotonicity violation; it is precisely what
enables canonical auction payments in a stochastic-generation setting.

Fourth, we provide computational guidance and welfare bounds. On a
discretized grid in A, the projection problem admits fast solvers based on
isotonic regression and simplex projections (for squared loss), and remains
convex under KL with mirror-descent-type methods. We also bound the loss
in the RLHF-style objective relative to geometric pooling in terms of the
projection distance, clarifying when implementability is “cheap” and when it
is inherently costly.

Scope and limitations. Our model is intentionally per-token. This is not
because sequences are unimportant, but because the platform’s real-time
decision is local: at each prefix it must choose a next-token distribution.
Sequence-level outcomes then arise from repeated application of a one-step
mechanism. This approach makes the implementability constraints crisp and
aligns with how modern decoders operate, but it abstracts from intertempo-
ral strategic effects (e.g., advertisers valuing early mentions more than later



ones) and from global constraints (e.g., budget pacing over a session). We
also focus on two advertisers to sharpen the geometry of monotone paths;
extending to many advertisers is conceptually feasible but introduces higher-
dimensional partial orders and more complex constraints. Finally, our frame-
work presumes the platform can query advertiser-conditioned distributions
(or equivalent scores). This is realistic in some architectures (e.g., mixture-
of-experts or prompt-conditioned heads) but not universal, and raises gover-
nance questions about what it means for an advertiser to “submit” a distri-
bution. We treat these as design parameters rather than solved problems.

Roadmap. Section 2 formalizes the one-step influence-auction environ-
ment, reviews robust preferences and robust monotonicity, and explains why
monotone allocation is the central implementability condition. Subsequent
sections develop the monotone projection rule, analyze its properties, and
derive payment and computational implications. Throughout, we empha-
size the tradeoff illuminated by the model: geometric pooling is a natural
ML benchmark, but implementable influence requires a monotone correction
whose size is governed by disagreement, smoothing, and discretization.

2 Preliminaries and One-Step Model

We model a single generation step as an allocation problem over a finite
outcome space. Fix a finite token (or action) set T with |T| = m. At a
given prefix, advertiser i € {1,2} is associated with a next-token distribu-
tion p; € A(T). We treat (p1,p2) as primitives of the step and suppress the
dependence on the prefix to keep notation light. The platform (designer)
must map bids and these distributions into a single distribution over tokens
from which the next token is sampled. Our goal in this section is to for-
malize (i) the per-step mechanism, (ii) the preference structure under which
monotone probabilistic allocations are meaningful, and (iii) the monotonic-
ity condition that is sufficient for canonical (critical-bid) pricing via stable
sampling, following Diitting et al. ?.

2.1 Token-level mechanism and bid parameterization

Each step proceeds as follows. Advertisers submit scalar bids by, by € ]R+E
The platform computes the bid ratio
by

A= € (0,1],
b1 + b 0, 1]

! Allowing b; = 0 is straightforward, but keeping b; > 0 avoids corner cases in the bid
ratio. In implementation, a reserve or minimum bid plays the same role.



and then applies an aggregation rule q(-) that maps A (and, implicitly,
(p1,p2)) to a distribution over tokens:

q(N) € A(T), and the platform samples ¢ ~ g(\).

We emphasize two modeling choices. First, because only the ratio A matters
for the allocation, this is a scale-free two-bidder environment: multiplying
both bids by the same factor does not change the distribution from which the
token is drawn. This mirrors practical “share-of-voice” implementations and
anticipates the ML benchmark in the next section. Second, the allocation is
inherently stochastic: the platform chooses a distribution and then samples
a realized token. Thus the auctioned object is probabilistic influence rather
than a deterministic slot.

Payments are assessed after the token realization. We write the per-step
payment charged to advertiser i as (;(b1, bo; p1,p2,t) and the (quasi-linear)
per-step utility as

Ui(bi, b—i;p1,p2) = ui(q(N);pi) — zi(b1, ba; p1,pa),

where z; is the expected payment induced by (; and the sampling rule. The
precise construction of ((;, z;) is deferred; the key point for now is that pay-
ment implementability in this stochastic environment hinges on an appro-
priate monotonicity property of the allocation rule g(-).

2.2 Robust preferences over token distributions

The central difficulty is that advertisers may not have a fully specified cardi-
nal utility over all distributions ¢ € A(7T). In influence applications, what is
often credible is only a directional statement: advertiser 1 prefers distribu-
tions that put more probability on tokens it “likes” (relative to advertiser 2),
and less probability on tokens it “dislikes.” Diitting et al. ? formalize this via
a robust preference order that is weak enough to be behaviorally plausible
yet strong enough to support incentive guarantees.

In our two-advertiser environment, the robust structure is conveniently
represented token-by-token. Define, for each token ¢ € T', the direction sign

sgn, := sign(prs —p2¢) € {—1,0,+1}.

Intuitively, sgn, = +1 means token ? is relatively more desired by advertiser 1
than by advertiser 2 (because advertiser 1 assigns it higher probability in its
preferred distribution), while sgn, = —1 means the opposite. Tokens with
sgn, = 0 are “common ground” tokens for which the two distributions agree.

We interpret advertiser 1’s robust ranking as rewarding movements in the
sgn direction starting from the baseline ps (the allocation when A = 0), and
advertiser 2’s robust ranking symmetrically starting from baseline p; (the
allocation when A = 1). Concretely, we will use the following monotone,



coordinate-wise sufficient condition: for advertiser 1, distribution ¢ is (ro-
bustly) at least as good as ¢ if it moves probability in the correct directions
relative to the endpoint pair (pe, p1):

q>=1¢ whenever sgn,(q—gq;) > 0 forallteT,
and similarly, for advertiser 2,
q>=2q whenever sgn,(q—q;) < 0 forallteT.

This is a deliberately coarse order: it ignores fine substitutions among tokens
that are all “good” for a bidder, and it does not require knowing how much
a bidder values any particular token. Economically, it captures the idea
that advertisers purchase influence to increase (or decrease) certain token
probabilities but may be unable to articulate a complete utility function
over the entire simplexﬂ

We assume advertisers’ utilities are monotone with respect to these ro-
bust orders: if ¢ =; ¢’ then u;(q;p;) > u;(¢’; p;). When we later want explicit
welfare or approximation bounds, we will also consider tractable parametric
forms, such as

ui(q;pi) = —v; Dxr(q||pi) or  wilg;pi) = —villg—pill,

for v; > 0. These specifications are not meant to be literal advertiser pref-
erences; rather, they let us connect the auction rule to ML-style divergence
objectives and quantify distortion from a benchmark.

2.3 Monotone aggregation as implementability

Given robust preferences, we now state the implementability-relevant mono-
tonicity condition. An aggregation rule ¢(-) is robustly monotone if, as adver-
tiser 1’s bid weight increases (i.e., as A increases), the induced distribution
becomes weakly better for advertiser 1 in the robust order, and symmetrically
as A decreases it becomes weakly better for advertiser 2. In the two-advertiser
token specialization, a simple sufficient condition is coordinate-wise mono-
tonicity with the correct direction:

VteT, VA> ) : sgny (q:(A) — ¢ (N)) > 0. (1)
Condition has three immediate implications that are useful later. First,
it rules out ‘reversals”: the probability of a token favored by advertiser 1
cannot rise and then fall as advertiser 1 bids more. Second, it enforces a

2The formal robust order in ? is stated for general outcome spaces and is designed to
be compatible with stable sampling. In the two-advertiser token setting, the coordinate-
wise order above is a convenient specialization that matches the monotonicity constraints
we will impose in our projection rule.



“no-overshoot” property: if we also impose boundary conditions ¢(0) = ps
and ¢(1) = p1, then for each token ¢ we necessarily have

@(N) € [min{pi¢,p2s}, max{pi,p2:}] for all A € [0, 1],

which will later align with our projection geometry. Third, it turns the allo-
cation rule into a one-dimensional monotone object (indexed by \) despite
the high-dimensional simplex: this is exactly the structure that supports
critical-bid reasoning.

The link to pricing comes from the stable sampling framework of 7. At a
high level, stable sampling is a way to implement a monotone mapping from
bids to random outcomes such that each realized outcome admits a threshold
(critical) bid characterization. In standard deterministic single-parameter
auctions, monotonicity of allocation implies the existence of payments that
make truthful bidding a dominant strategy. Here the allocation is a distribu-
tion over tokens, but the same economic logic survives: if the probability of
every “good” token moves monotonically with the bid, then one can couple
the random draws across bids so that, for each token realization, there is a
well-defined minimum bid at which that token would still have been sam-
pled. Charging that minimum bid yields a second-price-style payment per
realization.

We do not re-prove the stable sampling results; instead we adopt them
as a mechanism-design primitive once robust monotonicity is verified. The
practical takeaway is that is not merely an aesthetic regularity. It is
what makes payments canonical: expected payments can be expressed via
an integral (Myerson-like) identity that does not depend on implementa-
tion details of the sampling routine, which is valuable for auditability and
platform governance.

2.4 Per-token model as a repeated mechanism

Finally, we clarify how this one-step model relates to full-text generation.
A generated sequence is obtained by repeating the one-step mechanism at
successive prefixes, each time with prefix-dependent distributions (pi,p2)
and possibly prefix-dependent bids or pacing constraints. Our analysis is
intentionally local: at each step, the platform must choose a next-token dis-
tribution and can charge per-token payments. This is the natural granularity
at which modern decoders operate and the granularity at which the influence
auction can be embedded into a larger system.

The limitation is that sequence-level objectives may not be additively
separable across tokens (e.g., an advertiser values the first mention more
than subsequent ones), and sequence-level constraints (e.g., budgets, safety
filters) can introduce intertemporal linkages. We view the one-step analysis
as the correct starting point for mechanism design in probabilistic generation
because it isolates the implementability constraint in its sharpest form. The



next section then studies the most salient benchmark aggregator from the
ML side and explains why it can violate even in simple cases, motivating
our projected, implementable alternative.

3 RLHF-Motivated Aggregation and the Failure of
Robust Monotonicity

A natural benchmark for aggregating two next-token distributions is the
log-linear (geometric) pooling rule familiar from RLHF-style objectives and,
more generally, from weighted reverse-KL projection. In our setting, this
benchmark is appealing for two reasons. First, it is locally optimal for a
canonical divergence objective that interpolates between p; and ps as the
bid weight A varies. Second, it is easy to compute: one can form unnor-
malized scores token-by-token and then renormalize. The catch, which is
central for mechanism design, is that this final normalization step couples
coordinates and can break the robust monotonicity condition needed for
stable sampling and critical-bid payments.

3.1 Geometric pooling as a reverse-KL optimum

Fix (p1,p2) € A(T)? and a weight A € [0,1]. Consider the weighted reverse-
KL objective

Lriur(g; A) = ADkr(qllp1) + (1= A)Dxkw(qllp2), g€ AT). (2)

This objective is a convenient stylization of “stay close to each advertiser’s
preferred next-token distribution, with weights proportional to bids.” Be-
cause the KL divergence is strictly convex in its first argument, has a
unique minimizer on the simplex.

The resulting rule is the log-linear pooling distribution

P{\,tpé,?\ 3)
Z(\)

geo

gi°(N) o plypa,t,  equivalently  gf(A) =

where Z(X) := > r pisp%;)‘.

The derivation is standard but worth recording because it clarifies what is
monotone (and what is not). Writing the Lagrangian for with multiplier
7 for the simplex constraint yields

_ qt _ . _
L(q,n) = tEZTQt(Alogpl,t‘F(l A)logmt) + n(;(h 1)-

The first-order condition for each coordinate is

oL

90 )\<10th_Ingl,t+1) + (1_)\><IOth_Ing2,t+1> +n =0,
t
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which simplifies to
logg: = Alogpie + (1= A)logpas + C(A),

for a constant C'()\) chosen to enforce ), ¢; = 1. Exponentiating and nor-
malizing gives . In particular, the benchmark rule satisfies ¢2°°(0) = ps
and g5 (1) = py.

From an ML perspective, is also the distribution obtained by adding
log-probabilities with weights A and (1 — A) and then applying a softmax.
This makes ¢8°° a plausible “first try” for a platform that wants a smooth,
scale-free mapping from bids to token probabilities.

3.2 Why normalization can break robust monotonicity

The robust monotonicity condition is coordinate-wise: for a token ¢ with
sgn, = +1 we require ¢;(A) to be nondecreasing in A, and for sgn, = —1 we
require it to be nonincreasing. At first glance, geometric pooling seems to
satisfy exactly this property, because its unnormalized scores move mono-
tonically.

To see this, define the unnormalized score

Te(A) = pi\,tp;;)\ = pz,teXP(MOg(Pl,t/M,t))'

Then r¢(A) is log-linear in A and is monotone: r; increases in A iff p1; > pay,
decreases iff p1; < pa2y, and stays constant iff p;; = pas. In other words,
each coordinate moves in the ‘“right direction” before normalization.

The difficulty is that the platform samples from the normalized distribu-
tion ¢8°°(\) = r(\)/Z(X), and the normalizer Z(\) = ) () changes with
A in a way that depends on all tokens. This is precisely the cross-token cou-
pling that a mechanism designer must be wary of: even if every coordinate’s
raw score moves monotonically, a coordinate’s share can reverse direction as
other shares expand or contract.

A convenient diagnostic follows from differentiating the normalized form.
Using q; = r+/Z and r;/ry = log(p1.+/p2+), we obtain

d p1, co PLs
T = qtg“@)(log DI (A)log1>. (4)
p2,t seT 273

Thus the sign of £¢¥*°()) is not determined solely by whether py; > pay,
but by whether token t’s log-likelihood ratio is above or below the current
average log-likelihood ratio under ¢8°°(A). As A changes, the distribution
¢®°°(\) shifts mass toward tokens with large log(p1 s/p2.s), raising the average
term in . A token can therefore start by increasing (when it is above the
average) and later decrease (once the average rises past it), even if it is
favored by advertiser 1 at the endpoints.

11



This is exactly the kind of “reversal” ruled out by . And because stable
sampling hinges on monotonicity in the bid parameter, a reversal is not a
benign modeling artifact: it destroys the single-crossing structure needed for
critical-bid payments.

3.3 A minimal three-token counterexample

We now give a concrete instance with |T'| = 3 where ¢&°° violates . Let
T = {a,b,c} and set

p2 = (0.40, 0.30, 0.30),  p; = (0.41, 0.58, 0.01),

where coordinates are ordered as (a,b,c). Then sgn, = +1 because p;, >

P2.a-
At A =0 and A = 1, geometric pooling coincides with the endpoints:

#*°0) = p2, (1) = p.

At the midpoint \ = %, we compute unnormalized scores via geometric
means:

ra(3) = V0.40-0.41 = 0.4050, 1y(}) = V030058 ~ 04171, 7e(3) =
SO Z(%) ~ 0.8769 and hence
qge(’(%) ~ (0.462, 0.475, 0.062).

Focus on token a. Since sgn, = +1, robust monotonicity would require

¢5°°(\) to be nondecreasing in . But we have

&°(0) = 0.40, q§e°(%) ~ 0462,  ¢E°(1) = 04l
Because qgeo(%) > ¢2°°(1), the coordinate trajectory must eventually de-
crease on [, 1]. That is, there exist A > X such that ¢5*°(\) < ¢§*°(\),
contradicting for token a.

The economic content of this example is straightforward. Token a is
only slightly more favored by advertiser 1 than advertiser 2 (its endpoint
probability rises from 0.40 to 0.41), whereas token b is much more favored
by advertiser 1 (rising from 0.30 to 0.58). As A increases, the normalizer Z(\)
becomes increasingly dominated by token b’s rapidly growing score. Token
a initially benefits from the shift toward p; (hence it rises above 0.40), but
later loses share to token b and must come back down to match the endpoint
P1,a = 0.41. The reversal is entirely due to normalization: the raw score
r4(\) is increasing in A throughout, yet the normalized probability ¢5°°(\)
is not.

12
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This three-token construction is not an edge case. Equation shows
that reversals occur whenever there exist at least two tokens favored by
advertiser 1 with sufficiently different likelihood ratios. In that sense, non-
monotonicity is generic whenever advertisers disagree in more than a one-
dimensional way: the simplex constraint forces some coordinates to “give
back” probability as other coordinates grow, and geometric pooling does not
control which coordinates do so.

3.4 Implication: we need an implementable correction

The lesson for mechanism design is that the RLHF-motivated benchmark
q®%° is generally not implementable with stable sampling under robust pref-
erences, because it can violate the monotonicity condition that underwrites
critical bids and second-price-style payments. This creates a tension between
an ML-natural aggregation objective and the monotonicity needed for
canonical pricing and auditability.

In the next section, we resolve this tension by treating ¢%°°(-) as a de-
sirable but potentially nonmonotone target path and projecting it onto the
convex set of robust-monotone paths connecting (p2, p1). The resulting pro-
jected rule preserves implementability by construction while remaining, in a
precise divergence sense, as close as possible to the RLHF benchmark.

4 Monotone Paths and the Projection Problem

We now formalize the “correction” foreshadowed above. The guiding idea
is simple: rather than insisting that the platform implement the RLHF-
motivated target ¢8°°(-) exactly, we treat ¢8°°(+) as a reference path and select
the closest path that satisfies the robust monotonicity constraints needed for
stable sampling and critical-bid payments. This section pins down (i) the
feasible set of robust-monotone paths connecting the endpoints (p2,p1) and
(ii) the projection operator that maps an arbitrary target path into this
feasible set.

4.1 Robust-monotone paths as a convex feasibility set

Fix a finite token set T and endpoints p1,pe € A(T). For each token t € T,
recall the direction sign

sgn, := sign(pi —p2¢) € {—1,0,+1},

which encodes whether robust monotonicity requires t’s probability to weakly
increase, weakly decrease, or remain constant as the bid weight A\ shifts
toward advertiser 1.

13



We define the set of robust-monotone paths as

M(p1,p2) = {a:[0,1] > A(T) | a(0) = p2, a(1) = py, and W€ T, YA 2 N

(5)
The monotonicity requirement in is coordinate-wise and directional. If
sgn, = +1, then A — ¢(\) must be nondecreasing; if sgn, = —1, it must be
nonincreasing; and if sgn, = 0, it must be constant (hence ¢;(\) = p1+ =
p2,t). We impose no further regularity beyond measurability sufficient to
make the objective below well-defined; in particular, the path may have flat
regions and kinks, which is important both conceptually (mass can “stick” at
constraints) and computationally (the discretized problem becomes isotonic
regression).
A key structural implication of is a mo-overshoot property: every
feasible path stays within the coordinate-wise envelope of the endpoints.
Indeed, for any A € [0,1] and t € T,

gt(N) € [min{p1s, pas}, max{pis,p2s}]- (6)

This follows immediately from monotonicity plus the boundary conditions.
Economically, @ captures the notion that increasing bidder 1’s weight can-
not “over-reward” bidder 1 on any token beyond what bidder 1 would obtain
at A = 1, nor can it reduce bidder 1 below the baseline A = 0 on tokens that
bidder 1 prefers.

The set M(p1,p2) is convex in the natural pointwise sense. If ¢,¢" €
M(p1,p2) and 0 € [0,1], then the path g(\) := 0g(\) + (1 — 0)¢’(N\) satis-
fies g(A) € A(T) for all A and inherits both the boundary conditions and
the coordinate-wise monotonicity constraints. This convexity is not merely
technical: it ensures that, when we search for a closest feasible path, we are
performing a well-behaved convex projection rather than selecting among
multiple local minima.

4.2 A divergence-based projection onto monotonicity

Let ¢8°° : [0,1] — A(T) be a given target path (in our application, geometric
pooling). We define the monotone projection of ¢&°° onto M(p1,p2) as the
solution to .
7 c g _min [ D)) dx (7)
geM(p1,p2) Jo
where D(-||-) is a divergence on the simplex that is strictly convex in its first
argument (e.g., Dk, or 3| - [|3). The objective in makes explicit the
tradeoff we want the model to illuminate: we preserve implementability by
restricting to M(p1,p2), and within that implementable set we remain as
faithful as possible (in divergence) to the ML-natural benchmark.
Two remarks help interpret @
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First, is a pathwise correction rather than a pointwise one. We do
not independently project each ¢°°(\) onto a monotone set at that same A;
rather, we choose an entire path that is jointly consistent across A. This is
precisely what stable sampling needs: a coherent mapping A — g(\) that
respects monotonicity globally, not merely at isolated points.

Second, the choice of divergence D is a modeling decision with practical
consequences. KL divergence aligns with probabilistic geometry and yields
a correction that is sensitive to relative errors in low-probability tokens,
whereas squared £y divergence emphasizes absolute errors and often admits
faster projection routines. Our subsequent mechanism-theoretic conclusions
hinge on feasibility and monotonicity, not on the specific D; D primarily
affects how the correction distributes distortion across tokens and across A.

Under mild conditions, has a unique solution. Intuitively, M(p1, p2)
is convex, the integrand is convex in ¢(A), and strict convexity of D(-||r)
implies strict convexity of the integral functional in the path argument. In
a discretized setting (below), uniqueness follows from standard results for
strictly convex minimization over a nonempty compact polytope. In con-
tinuous time, one can either work in an L' space with weak compactness
arguments or (as we do for implementation) treat the continuous problem as
the limit of a sequence of discretizations.

A practical caveat concerns zero probabilities. If we use KL, then Dk, (q||7)
is finite only when supp(q) C supp(r). To avoid degenerate cases where some
g?°(X) = 0 forces ¢(A\) = 0 (potentially conflicting with endpoints), we ei-
ther assume that p; and py are strictly positive on T' (as is typical after
smoothing in language models) or we work with an e-truncated simplex and
renormalization. This is a technical assumption, but it matches deployment
realities: large language models rarely assign exact zeros after standard tem-
perature and top-p smoothing.

4.3 Discretization and the finite-dimensional projection pro-
gram

For computation and for a clean connection to isotonic regression, we dis-
cretize A € [0,1] on a grid

A= {NH,  0=X<A<oo<A=1,
and write ¢; := ¢()\;) and qjg-eo = ¢8°()\j). We also choose quadrature
weights w; > 0 to approximate the integral (uniform weights w; o< Aj11 —A;
suffice for a Riemann sum).
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The discretized feasible set is the set of arrays {g; }3]:0 satisfying:

VteT, Vje{0,....,J —1}:  sgn,(gjt1t — gje) >0, (8)

Vie{0,..., 0 ) qiu=1, ¢ >0, (9)
teT

q =p2, qJ=Dp1. (10)

Condition is exactly the discrete analogue of coordinate-wise monotonic-
ity; @D enforces that each ¢; is a distribution; and anchors the end-
points. When hard endpoints are undesirable (for instance, to reduce dis-
tortion near A = 0 or A = 1), one can relax by adding penalties such
as pD(qollp2) + pD(qs||p1) for large p, but we keep the hard constraint to
preserve a crisp “winner-takes-all” interpretation at extreme bids.

The discretized projection problem is then

J
{@}]- € argmin > w;D(gjllg5*) st (B)-(T0). (11)
i5 00

Because the constraints (8)—(L0) are linear and D(-||r) is convex in its first
argument, is a finite-dimensional convex program. Moreover, if D(-||r) is
strictly convex in its first argument (as with KL on the interior, or squared
¢y everywhere), then the objective is strictly convex and the optimizer is
unique. This uniqueness is operationally valuable: it means the platform’s
aggregation rule is well-defined and does not depend on solver tie-breaking,
which in turn simplifies auditing and reproducibility.

Finally, the discretized constraints preserve the structural properties we
rely on later. From and the endpoints , we again obtain a discrete
no-overshoot guarantee:

Vt, Vi @iy € [min{piy, pas}, max{pis, pas}]-

Thus the projection cannot create new extremes; it only removes reversals
by flattening coordinates as needed. In economic terms, whenever ¢%°° would
“ask” a token to rise and then fall (or vice versa), the projection replaces that
behavior by pooling adjacent A-intervals into constant segments that respect
the required direction while remaining as close as possible to the target in
divergence.

The discretized formulation is therefore our main object for imple-
mentation and for the subsequent analysis of computation and payments.
Conceptually, it should be viewed as a principled regularization of RLHF-
style aggregation: we keep the same benchmark but enforce the monotone
comparative statics in bids that mechanism design needs.
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4.4 Efficient computation: isotonic structure, alternating pro-
jections, and practical complexity

The discretized program is convex, but naively solving it as a generic
constrained optimization problem would be far too slow to run at every gen-
eration step. The key computational observation is that the constraints de-
compose into two simple families with complementary structure: the mono-
tonicity constraints couple grid points j within each token coordinate
t, while the simplex constraints @D couple tokens ¢ within each grid point
7. This “bipartite” structure suggests solvers based on repeated projections
(or proximal steps) onto these two families, each of which is efficiently com-
putable.

To make this concrete, it is useful to define two closed convex sets in the

product space (R|T|)JH:

Ciso = {{qj} : holds and ¢y = po, QJ:pl}, Ca = {{q]} : @ holds}.

Then is the problem of finding, among arrays {g;} € Cisc N Ca, the
closest point to the reference {q]geo} in the geometry induced by D. When
D is squared Euclidean distance, this is literally an orthogonal projection;
when D is KL, it is a Bregman projection. In both cases, the intersection
structure admits fast iterative methods with strong convergence guarantees.

Squared /> divergence: Euclidean projections via isotonic regres-
sion and simplex projection. Suppose D(g||r) = 3|lg — r[3. Then
is equivalent to the weighted least-squares problem

J
1

. geo |12

min = willg; — q5 ,

(4, }e0nCa 2 ]Z; il — a1z
which can be viewed as an Euclidean projection under the inner product
(x,y) = > ; ij:jTyj. A standard approach for such problems is Dykstra’s
algorithm (alternating projections with correction terms) applied to the pair
of convex sets (Ciso, Ca). Operationally, each Dykstra iteration consists of

two projection subroutines:

1. Projection onto Cis, (token-wise isotonic regression across \). Fix a
token t. The constraints restrict the sequence (qot, ..., q7+) to be
monotone in the direction prescribed by sgn,, with fixed endpoints
qo,t = p2;+ and gy = p1s. The Euclidean projection of an arbitrary
sequence (Yo, --.,Ys¢) onto this set is exactly a weighted isotonic re-
gression problem in one dimension:

Z0,--,T g

J
. 1
min o ij(azjfyjyt)z st sgny(zjp1—xz) >0, 2o = pay, g = Pis.
=0
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This can be solved in O(J) time by the pool-adjacent-violators (PAV)
algorithm (after reversing indices when sgn, = —1; when sgn, = 0
the solution is constant and trivial). Importantly, this projection is
independent across tokens, so it parallelizes perfectly over t € T'.

2. Projection onto Ca (simplex projection at each \;). Fix a grid point
J. Given a vector y; € RITI, the projection onto the simplex A(T) =

{gj:2 2146 =1, qj¢ >0} is

1
II ) = arg min =g — y;ll3,
N g, i, 5l1a5 = yill2
which is computable by thresholding: ¢;; = max{y;.—7, 0} for a scalar
7 chosen so that ), ¢;; = 1. This can be implemented in O(|T'| log |T|)
time via sorting, or in expected linear time using selection algorithms;
and, again, it parallelizes over j.

Because both Ciso and Ca are closed convex (indeed polyhedral) sets,
Dykstra’s algorithm converges to the unique optimizer of in the squared-
loss case. Convergence holds in objective value and in iterates; moreover,
when the intersection is regular (which is typical away from degenerate prob-
ability vectors), one obtains linear convergence rates characterized by stan-
dard error-bound/Hoffman constants for polyhedral feasibility problems. In
deployment we do not rely on worst-case iteration bounds; rather, the practi-
cal point is that each iteration is cheap and the number of iterations required
for high accuracy is usually modest.

Complexity accounting and the “near-linear” regime. Let m :=|T|.
One Dykstra iteration costs

O(mJ) for token-wise PAV + O(J -SimplexProj (m)) for simplex projections.

With sorting-based simplex projection, this is O(mJ + Jmlogm) per it-
eration. Two remarks explain why this is still compatible with per-token
generation:

(i) In language-model implementations, the effective token set is typically
truncated (top-k, nucleus sampling, or a sparse support induced by logits),
so m is the post-truncation vocabulary size rather than the full vocabulary.
The projection is exact on the restricted support provided the same support
is used consistently across p1, p2 and ¢&°° (or one works on the union support
and assigns a small € mass elsewhere).

(ii) Both subroutines are embarrassingly parallel: PAV runs indepen-
dently for each token, and simplex projection runs independently for each
grid point. This is a good fit for GPU/TPU-style parallelism, and it also
admits caching and warm starts across adjacent generation steps (prefixes
change gradually, so ¢ changes smoothly in practice).
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Finally, the discretization size J is a direct latency—accuracy knob. Be-
cause the monotonicity constraints are enforced only on the grid, the stable-
sampling implementation will typically use either piecewise-constant or mono-
tone interpolation between grid points; finer grids reduce approximation er-
ror but increase runtime linearly.

KL divergence: Bregman geometry and when we need numerical
methods. When D = Dy, the program (11]) remains convex and uniquely
solvable on the interior of the simplex, but the Euclidean projection machin-
ery above no longer applies verbatim. Two routes remain practical.

First, one can use Bregman alternating projections (a KL-analogue of
Dykstra) onto Cis, and Ca. The projection onto Ca under KL is partic-
ularly simple: minimizing Dxkr,(g;|ly;) subject to ¢; € A(T) amounts to
renormalizing a nonnegative vector (after incorporating the algorithm’s dual
corrections), i.e.,

gj¢t X yj¢ with Z gjt = 1.
t
The projection onto Cis, decomposes across tokens into one-dimensional con-
vex problems of the form

J

oy
. i _ _
_min E w; x;log s.t. sgny(zjp1 —xj) >0, o =pay, TJ = P14,
05T 4 it
— 3,
7=0

which is a Bregman-isotonic regression problem (sometimes called isotonic
regression under I-divergence). There exist generalized PAV-type algorithms
for such separable Bregman objectives; alternatively, one can solve each to-
ken subproblem by a fast 1D convex solver because the constraint set is
simple and the objective is strictly convex.

Second, one can bypass explicit Bregman projections and run a mirror-
descent / dual-ascent method for , exploiting the fact that the feasible set
is defined by linear inequalities and equalities. A convenient implementation
pattern is to maintain dual variables for the monotonicity constraints and
normalize at each \; to satisfy the simplex constraints. These methods come
with standard convergence guarantees for convex problems: with appropriate
step sizes, the objective gap decays at O(1/k) for subgradient-style updates
and faster rates are available under additional smoothness/strong-convexity
conditions on a truncated simplex {q : g;; > €}.

The practical message is the following. With squared loss, we obtain
a particularly clean and fast primitive (PAV + simplex projection) with
textbook convergence. With KL, we retain convexity and uniqueness but
typically rely on iterative Bregman/mirror methods; the per-iteration cost
remains near-linear in mJ, but the iteration count is more sensitive to condi-
tioning (e.g., how close probabilities are to 0). This sensitivity is not merely
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mathematical: it is precisely why smoothing (temperature, e-truncation) is
often beneficial not only for modeling, but also for numerical stability.

Implementation details that matter for mechanisms. Two final de-
tails are worth flagging because they interact with the downstream incentive
analysis.

First, we must enforce the boundary conditions reliably. In the squared-
loss case, we can hard-fix gy = p2 and gy = p1 by removing those variables
from the optimization (or by giving them infinite weight in the isotonic step).
In KL-based solvers, the same is true, but one must ensure compatibility with
support: if p1; > 0 but some intermediate reference value qjg-fzo is numerically
0, the KL objective becomes ill-conditioned. In practice we prevent this by
lower-bounding all inputs by € and renormalizing.

Second, stable sampling and critical-bid payments will later require con-
sistent evaluation of g(\) as A varies. In a grid-based implementation, the
platform can (i) compute {(/]}}3]:0 once per prefix, (ii) serve g(A) by monotone
interpolation between adjacent grid points, and (iii) use the same discretiza-
tion when searching for critical bid thresholds. This keeps the computational
representation aligned with the monotonicity certificate: the solver enforces
, and the interpolation preserves it by construction.

Taken together, these algorithmic facts justify treating ¢ as an opera-
tional primitive. The projection is not merely an existence result; it can be
computed fast enough to sit inside a per-token auction loop, and it comes
with convergence guarantees that support reproducibility and auditing. We
next use the resulting robust monotonicity to import stable sampling and
define second-price-style influence payments.

4.5 Incentive-Compatible Influence Pricing: monotone ag-
gregation, stable sampling, and second-price-style pay-
ments

We now connect the projected aggregator ¢ to incentives. The computational
section established that ¢ is an operational primitive: given (p1,p2) and bids
(b1,b2) we can evaluate g(\) quickly on a grid. The economic content of the
projection is that it restores a strong monotonicity property that geometric
pooling can violate. Once this monotonicity is in place, we can directly
import the “stable sampling” implementation and critical-bid pricing results
of Diitting et al. (2024), yielding a clean second-price-style influence auction
at every generation step.

Robust monotonicity of the projected rule. Fix a prefix and hence
fixed p1,p2 € A(T). Recall sgn, = sign(piy — p2¢). In the discretized
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program, feasibility requires
VteT, Vje{0,...,J —1}: sgn; (¢j+1.t — gjt) > 0,

together with the boundary conditions gy = p2 and ¢; = p1. Two immediate
consequences are worth making explicit.
First, no coordinate reversals and no overshoot: for every t and every
grid point 7,
gj¢ € [min{py s, o}, max{pis,p2s}]-

This is simply because each coordinate is constrained to move monotonically
from its value at Ay to its value at Aj.

Second, the projected path is monotone in the robust partial orders rel-
evant for influence auctions. Specializing the robust order of Diitting et al.
to two advertisers with baseline py for advertiser 1, we can write

qe > q; for all t with p1; > pay,

¢r1qd == .
q < qp for all t with py; < pay.

(When p; + = p2+ the coordinate is irrelevant.) By construction of g we have,

for any A > X\ on the grid (and, with monotone interpolation, for all A > \’),

q(\) =1 q(\).

Symmetrically, taking advertiser 2’s baseline as ¢(1) = p;, we obtain A <
N = q(\) =2 q(N). Economically, increasing A (which increases adver-
tiser 1’s bid weight) can only move probability mass in directions that ad-
vertiser 1 robustly prefers, and never in the opposite direction.

From distribution monotonicity to single-parameter monotonicity.
To apply standard dominant-strategy arguments, we reduce the distribution-
valued outcome to a one-dimensional “amount of influence” that is mono-
tone in a bidder’s bid holding the other fixed. In our setting this reduction
is canonical: the robust order is coordinate-wise, and the total amount of
movement away from baseline is exactly a total-variation distance along the
constrained directions. Define advertiser 1’s influence level at weight A by

n() = Y @) ) = @) -

t: p1,t>p2
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where the last equality uses that >, g(A\) = >, p2s = 1 and the sign pat-
tern partitions positive and negative deviations. Under robust monotonicity,
z1()) is nondecreasing in A and satisfies z1(0) = 0 and z1(1) = ||p1 — pal|1.

Because A(b) = bllfﬁbg is strictly increasing in by for fixed by > 0, the com-

posed allocation
xl(bl,bz) = xl()\(bl,bg))
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is nondecreasing in b;. An analogous definition holds for advertiser 2 relative
to baseline py:

) = i) -l

which is nonincreasing in A and hence nondecreasing in bs holding by fixed.

This reduction is not merely a proof trick: it matches the mechanism
interpretation. The quantity x; measures how much probability mass the
mechanism has shifted in bidder ¢’s preferred directions relative to the ap-
propriate baseline. Under robust preferences, any such directional movement
is weakly beneficial, regardless of how the bidder values individual tokens be-
yond their direction of change.

Stable sampling: implementing a monotone distribution rule with
per-outcome thresholds. The remaining step is to implement g(A) in a
way that supports per-token critical bids. Sampling ¢t ~ g(\) naively does
not by itself define a meaningful “allocation” to each advertiser, hence does
not directly yield a second-price payment rule.

Stable sampling, as developed by Diitting et al. (2024), addresses exactly
this issue. Given a monotone mapping from bids to distributions (monotone
in the robust order), stable sampling constructs a coupling of outcomes across
bids using shared randomness. Informally, we draw a single random seed and
use it to generate not only the realized token t, but also an attribution of
that token to (at most) one advertiser, such that:

1. the marginal distribution of the realized token is exactly g(A(b));

2. each advertiser’s probability of receiving attribution is exactly their
influence level x;(b);

3. the attribution rule is stable: if bidder i increases b; (holding b_; and
the random seed fixed), then the event “bidder i is attributed the token”
can only switch from false to true, never in the opposite direction.

Stability is the key property that makes per-realization critical bids well
defined: for a fixed seed and a fixed realization, there exists a threshold bid
at which attribution flips.

In our application, the existence of stable sampling follows immediately
from the monotonicity of ¢ established above. We emphasize that the projec-
tion step is doing real economic work: geometric pooling can fail monotonic-
ity, which can in turn break stable sampling and thereby break dominant-
strategy pricing. The monotone projection repairs this failure at the source.

Second-price-style (critical bid) payments. With stable sampling in
hand, we define payments by the usual critical-value logic for single-parameter
environments. Fix advertiser 4, fix the other bid b_;, and condition on the
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random seed used by the stable sampling routine. Let 1{i attributed} de-
note whether advertiser i is attributed the realized token under bids (b;, b_;).
Stability implies that, as a function of b;, this indicator is nondecreas-
ing pointwise (for each fixed seed). Therefore there exists a critical bid
Bi = Bi(b_;;seed) such that advertiser i is attributed the token if and only
if b; > B;. The per-step payment is then

Bi(b—i;seed) if advertiser 7 is attributed,

0 otherwise.

Gi(b1,b2; p1,p2,t) = {

This is “second-price-style” in the precise sense that the winner (the adver-
tiser who is attributed the influence on that step) pays the minimal bid
needed to retain that attribution given the competitor’s bid and the real-
ized randomness. Importantly, although the randomness enters the criti-
cal threshold, the expected payment admits an implementation-independent
characterization.

Payment identity (envelope formula) and interpretation. For mono-
tone single-parameter mechanisms, dominant-strategy incentive compatibil-
ity together with (interim) individual rationality pins down payments up to
an additive constant. In our setting the relevant allocation is x;(b), the prob-
ability of being attributed influence. The standard envelope formula yields
the expected payment

b;
zi(bi,b_i) = bixi(bi,b_i) — / mi(s,b_i) dS, (12)
0

with the normalization z;(0,b_;) = 0 (formally obtained by continuity as
bi 1 0). Using z1(\) = 1[|g(\) — pall1, we can rewrite as “pay for
marginal movement in total variation away from baseline.” That is, adver-
tiser 1 pays according to the area under the curve mapping her bid to the
total mass shifted in her preferred directions. The same interpretation holds
for advertiser 2 relative to baseline py.

Two remarks clarify how to read in practice. First, although bid-
ders ultimately care about which token is generated, the mechanism prices
the ability to steer probability mass rather than charging per token identity
in an ad hoc way; this aligns with robust preferences, which only require
monotone directional improvements. Second, the identity shows that the
monetary transfers depend on ¢ only through the one-dimensional influence
curve z;(+,b_;), which is helpful for transparency and auditing: one can log
and report how much total probability mass each bidder was able to move
at each bid level, and payments are determined by that reportable object.

Scope and limitations. Our incentive claims are per-step: for each prefix,
truthful bidding is a dominant strategy given robust (monotone) preferences
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and quasi-linear utility. Extending to full-sequence generation is conceptu-
ally a repeated mechanism; if advertisers submit a fixed bid for the entire
generation, the mechanism remains dominant-strategy truthful period-by-
period, and total payments are additive across steps. What we do not claim
is incentive compatibility for arbitrary non-robust utilities that depend on
higher-order interactions among tokens, nor do we address strategic manip-
ulation through misreporting of p; (we take p; as queryable primitives). In
applied deployments these limitations matter, but they are also precisely why
the robust-order framework is attractive: it isolates a minimal monotonicity
structure under which we can give clean, mechanism-theoretic guarantees.

The remaining question is efficiency: how much do we lose, relative to
the RLHF-motivated geometric pooling benchmark, by projecting onto the
monotone set? We turn to this approximation question next.

4.6 Approximation guarantees relative to the RLHF objec-
tive

The projection step that defines ¢ is motivated by incentives, not by raw fit to
the RLHF-inspired pooling rule. It is therefore natural to ask an efficiency
question: when we replace ¢8°°(\) by its monotone projection g(\), how
much do we distort the standard reverse-KL objective that underlies log-
linear pooling?” The key point is that we are not optimizing an unrelated
criterion. Rather, ¢ is the closest robust-monotone path to ¢8° under a
convex divergence, so any welfare loss relative to ¢8¢° can be controlled by the
projection distance itself. This makes the monotonicity repair interpretable
as a “small regularization” of RLHF pooling whose magnitude is auditable.

Per-step RLHF loss and its minimizer. Fix a prefix and hence p1,ps €
A(T) and X € [0, 1]. Define the (per-step) RLHF loss

Lriuar(g; A) = ADkwi(qllp1) + (1 —A)Dkw(qllp2),

so that the bid-weighted objective appearing in a welfare calculation is simply

2
D b Dkw(allp) = (b1 + b2) Lruur(g; A).-
i=1

By the reverse-KL optimality property recalled earlier, ¢8°°(\) is the unique
minimizer of Lrrur(-;A) over A(T). Therefore, for any alternative rule (in
particular ¢ = q()\)), the efficiency loss at weight A is exactly the objective
gap

Arrur(A) = Lreur(@(A);A) — Lroar(¢5°(A);A) > 0.

Our goal is to bound Agrpgr(\), and also its average over A, in terms of the
projection distance between ¢ and ¢8%°.
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A smoothness-based bound: loss gap controlled by proximity to
¢®°. The function ¢ — Lrrur(¢; A) is convex and differentiable on the
simplex interior. Moreover, its curvature is governed by the entropy term and
hence depends on how close ¢ is to the boundary. To make this dependence
explicit, let A¢ := {q € A(T) : ¢+ > € Vt} for some € € (0,1/|T]]. On A,
the Hessian of Dkr,(q||p) with respect to ¢ is VgDKL(qu) = diag(1/q:), and
hence

. 1
VoLgiur(g;A) = diag(1/q) = EI for all ¢ € A,

independently of A and of pi1,ps. Consequently, Lrrur(-; A) is (1/€)-smooth
on A, with respect to || - [|2. Applying the standard smoothness inequality
with z = ¢8°°(\) and y = q(\) yields

1
Lreur(y; A) < Lrewr(z;A) + (VLRiar(%; M), y—2) + 2?”9—95”%- (13)

Because x minimizes Lrypr(+; \) over the simplex, its KKT conditions imply
that VLrrar(x; ) is a constant vector (a multiple of the all-ones vector)
on the support of x, so the inner product term vanishes for any feasible
perturbation y — x with ), (y; — x;) = 0. Thus, whenever both ¢&*°(\) and
g(A\) lie in A, we obtain the concrete pointwise bound

Arar() < o [li) - =) (14

This inequality formalizes the intuition that the projection cannot be too
costly unless it moves the distribution substantially.

Relating the gap to the projection divergence. Our projection pro-
gram measures closeness using a divergence D(+||-), typically either squared

{5 or KL. When D(q||r) = 3lqg — |3, reads simply as

Arie(V) < D@ [ E°0V).

When D(-|-) is KL, we can combine with a norm-divergence compari-
son. For example, by Pinsker’s inequality,

G0 — ¢V < 2Dke@N) 120, |- la< -5

so that

ArLur(A) < DKL( q(A) | % (N)) - (15)
The dependence on € is not an artlfact: reverse-KL losses become arbitrarily
steep near the boundary of the simplex. Practically, this is a reminder that

some degree of smoothing (temperature, flooring, or support restriction) is
not only numerically helpful but also strengthens approximation guarantees.

25



Pathwise (integrated) welfare loss bound. The preceding bounds are
pointwise in A\. For deployment and for ex ante analysis it is often more
relevant to control the average or total loss across bid weights, since the
mechanism will face a distribution of bid ratios over time. Integrating

over \ gives
1 1/t 2
/ Arpur(A)dr < 2/ [7(A) = g®° (V)] dX
0 €Jo

and similarly under a discretization A = {)\j}JJzo with weights {w;},

ZWJARLHF i) < ZWJH‘JJ_qgeO j)H;-

7=0

In words: the same integral that our projection program minimizes (up to
constants and the choice of divergence) upper bounds the induced RLHF
objective deterioration. Thus the approximation quality is not a separate
emergent phenomenon,; it is directly linked to the optimization criterion used
to enforce monotonicity.

A coarse but transparent benchmark via a feasible monotone path.
The preceding inequalities express the RLHF gap in terms of the projection
distance actually achieved. Sometimes one would like an a prior: upper
bound that does not require solving the projection. A simple way to obtain
such a bound is to exhibit any feasible monotone path ¢'* € M(py, p2) and
use optimality of ¢

1
/D ) [¢*° (X)) dA < / D<qfeas Hqgeo )dA.
0

A canonical choice is the linear interpolation ¢"™(\) := (1 — A)p2 + Ap1,
which is coordinate-wise monotone in the correct directions and satisfies
the boundary conditions. While ¢ is typically not close to ¢8° in high-
disagreement cases, it provides a simple, auditable certificate: the projection
cannot be worse (in the chosen divergence) than this explicit baseline, and
hence its RLHF objective gap is controlled by the divergence between ¢
and ¢8°.

When is the projection exact? The projection is exact (i.e., g(A) =
q%%° () for all \) whenever the geometric pooling path already lies in M (p1, p2),
equivalently whenever it satisfies the coordinate-wise monotonicity constraints.
This happens in a few important special cases that clarify the economic
meaning of the pathology and when it should be rare.

First, if |T'| = 2, normalization cannot induce a reversal. Indeed, with two
tokens t € {a, b}, the path is one-dimensional because g,(\) = 1 —g(A), and
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g5"°(N) is a logistic function of A (a ratio of two exponentials), hence mono-

tone. Thus nonmonotonicity is inherently a 3-or-more-token phenomenon.

Second, if the likelihood ratios p1¢/p2; take only two values—one com-
mon value for all tokens with p;; > p2 and another common value for all
tokens with p1; < p2s—then the geometric pooling path moves mass uni-
formly within each sign group, and each coordinate moves monotonically
in the correct direction. This is a stylized case, but it captures a practical
intuition: reversals arise when there is meaningful heterogeneity within the
set of tokens that a bidder “likes” (or “dislikes”), because normalization then
forces competition among same-direction tokens.

Third, even when exactness fails globally, it often holds approximately
when distributions are close or smoothed. As disagreement ||p; —p2||1 shrinks,
the normalizer Z(\) varies little and ¢%°°(\) becomes nearly affine in A in a
local chart, so monotonicity violations diminish and the projection distance
(hence the RLHF gap) becomes small. Likewise, temperature smoothing of
geometric pooling flattens probabilities and dampens the sensitivity of Z(\),
empirically making violations rarer; in our bounds, smoothing also effectively
increases the relevant interior parameter e.

Interpretation and design implications. From a mechanism-design
perspective, these approximation results formalize a tradeoff we care about
in practice. The geometric pooling rule is the exact minimizer of a familiar
RLHF surrogate, but it can fail the monotonicity needed for clean incen-
tive and pricing guarantees. The projected rule restores monotonicity, and
the price we pay is controlled by an explicit and logged object: the diver-
gence between q(A) and ¢%°°()\) along the bid-weight path. This is attrac-
tive for governance: a platform can report (per prefix, or aggregated over
time) the total “monotonicity correction” applied, and auditors can assess
whether incentive compatibility is being achieved with negligible distortion
of the RLHF benchmark or whether the environment exhibits systematic
high-disagreement regimes where the correction is nontrivial.

Limitations of the bound. Two caveats are worth highlighting. First,
constants deteriorate as € | 0, reflecting the fact that reverse-KL becomes
extremely sensitive when some tokens have vanishing probability under the
realized distributions. In large-vocabulary language models this is a gen-
uine issue, so any implementation should incorporate standard numerical
safeguards (flooring, top-k/top-p truncation, or temperature) if one wants
uniform guarantees. Second, our bounds are local in the sense that they
depend on distance to ¢5°; in worst cases, if monotonicity constraints force
large changes, the RLHF gap can be economically meaningful. This is not
a contradiction but rather a diagnosis: large gaps indicate that the baseline
pooling objective and the incentive constraints are in sharp conflict at that

27



prefix.

With these guarantees in hand, we can move from theory to evidence. In
the next section we implement the projected rule on real next-token distri-
butions from prompt-tuned agents, illustrating when projection is essentially
exact, when it meaningfully repairs geometric-pooling pathologies, and how
the induced payments inherit a transparent “pay for total variation move-
ment” interpretation.

4.7 Demonstrations: projected pooling on real next-token
distributions

We now turn from the preceding guarantees to a concrete question: when the
“advertisers” are instantiated as prompt-tuned language-model agents, does
the projected rule ¢ behave like a gentle correction of log-linear pooling, or
does it routinely induce large and economically meaningful distortions? Our
goal in this section is not to optimize a benchmark model, but to document
the qualitative and quantitative shape of the monotonicity repair on realistic
next-token distributions, and to illustrate how the induced payments inherit
an intuitive “pay for marginal movement” interpretation.

Experimental instantiation of advertisers. We instantiate the two ad-
vertisers by two prompt-tuned variants of a common base LLM. Concretely,
at each prefix we query two agents that differ only in their system prompt
(or, in a separate set of runs, two lightweight adapters fine-tuned for dis-
tinct stylistic objectives). Each query returns logits over the vocabulary;
we convert logits to a probability distribution via a fixed temperature and,
for numerical stability, apply a standard truncation (e.g., top-k or nucleus
sampling) followed by renormalization and a small probability floor so that
q € A holds with a controlled e. This is not merely an engineering con-
venience: our approximation bounds in Section are meaningful precisely
when the realized distributions are not arbitrarily close to the simplex bound-
ary.

Operationally, we treat p; and ps as the two advertiser-conditioned next-
token distributions at the current prefix. Given bids (b1, b2) we compute
A =b1/(b1 + b2) and then evaluate the geometric pooling path

A 1A
P1P2y
A 1=
ZSET p17sp2,s

We then compute g(A) by solving the discretized projection program (E5)
on a grid A = {)‘j}}‘]=0'

g (\) =

What we measure: monotonicity pathologies and projection mag-
nitude. To make “pathology” concrete, we record (i) the fraction of token—
grid constraints violating (E2) for the raw pooling path ¢8° (after fixing
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directions via sgn,), (ii) the magnitude of the worst reversal per prefix (e.g.,

max; ; —sgny (¢} ; — 457 ), and (iii) the overall repair size, summarized by

the objective value of the projection,

<

R = > w; D@ | ¢5°(\y)),
=0

which is directly auditable because it is exactly what the platform com-
putes. Finally, for context, we also report the implied RLHF objective gap
>_j wjArLHr(Aj) and compare it to R in light of inequalities such as ([15)).

Computation: isotonic regression behaves like a “local” correction.
In the squared-loss implementation D(q||r) = %||¢ — r||3, the projection de-
composes into an intersection of two simple convex sets: per-token monotone
constraints across A and per-A simplex constraints across tokens. We imple-
ment the solve by alternating (a) per-token weighted isotonic regression over
the sequence {Qj,t}j:o using PAV with direction determined by sgn,, and (b)
per-\ Euclidean projection onto the simplex. In our runs, this procedure
converges rapidly and has near-linear scaling in |T|- J in the regime relevant
for deployment, where T is a truncated candidate set (e.g., top-k tokens plus
a shared “other” bucket).

A helpful practical intuition is that the projection is typically sparse in
where it acts: for most tokens and most A-intervals, q]g’io already moves in the
correct direction, and isotonic regression leaves those coordinates unchanged.
Corrections concentrate on the relatively small set of tokens whose trajecto-
ries exhibit a reversal, and even there the correction tends to “pool” adjacent
A values into flat segments (the familiar geometry of isotonic solutions). This
is exactly the behavior one would want from an incentives-motivated repair:
it acts only where needed to restore monotonicity, and otherwise preserves
the RLHF-inspired pooling rule.

Qualitative evidence: smooth transitions and repaired reversals.
Plotting token trajectories makes the normalization pathology visually salient.
For a fixed prefix and a handful of salient tokens, r(\) = p{‘jtpé;A moves
monotonically in A whenever pi; # pa;, but the normalized probability
¢°°()\) can exhibit a non-monotone “bump” when several same-direction
tokens compete through the normalizer. Empirically, we see exactly this
pattern: reversals are most common among medium-probability tokens in
clusters of near-substitutes (e.g., variants of punctuation, capitalization, or
semantically similar continuations) where small changes in the denominator
Z () reallocate mass in unintuitive ways.

After projection, these bumps disappear by construction. More impor-
tantly, the repaired paths A — @;(\) tend to remain smooth at the level of
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aggregate behavior: while isotonic regression creates piecewise-constant seg-
ments in A for individual coordinates, the overall distribution g(A) changes
gradually because different tokens become active at different points. In the
language of practice, moving bids from bidder 2 toward bidder 1 yields a
stable and predictable increase in bidder 1-aligned mass, without the coun-
terintuitive “give-and-take” reversals that break robust monotonicity.

How frequent are violations in realistic prompts? Across a broad
set of prefixes sampled from held-out text (and, separately, from interactive
assistant transcripts), we find that violations of (E2) under ¢8°° are neither
ubiquitous nor vanishingly rare: they tend to occur in bursts on prefixes
where the two agents disagree in a multi-modal way. Consistent with the
comparative statics above, disagreement measured by ||p1 — p2||1 is a strong
predictor of both the violation rate and the repair size R. When p; and
po are close (e.g., two prompts that differ only slightly), Z(\) varies weakly
and ¢ is often already feasible, so ¢ = ¢%°° and the projection is exactly
costless.

Conversely, when prompts induce sharply different stylistic modes (e.g.,
“marketing” versus “encyclopedic” tone, or “creative” versus “terse” comple-
tions), the raw geometric path exhibits noticeable non-monotonicity on a
modest set of tokens, and ¢ applies a correspondingly modest but nonzero
correction. Importantly, even in these high-disagreement regimes, the repair
rarely looks like a wholesale replacement of log-linear pooling by linear inter-
polation; rather, it is a targeted adjustment that enforces the no-overshoot
property coordinate by coordinate.

Efficiency impact: the RLHF gap tracks the repair size. We empiri-
cally verify the main message of Section[4.6} prefixes with a larger projection
distance R also exhibit a larger RLHF objective gap > ;Wj Arrur(Aj). This
is unsurprising given the smoothness bounds, but it matters for governance
because it means the platform can log a single scalar per prefix (the pro-
jection objective value) as an ex ante indicator of how much the incentives
constraint is “fighting” the RLHF benchmark. In practical terms, the mono-
tonicity repair becomes auditable: if an auditor (or an internal monitoring
system) observes that R is consistently near zero, then the mechanism is
essentially implementing RLHF pooling while retaining the incentive prop-
erties. If R is frequently large, that flags either systematic advertiser conflict
or a mismatch between the chosen pooling baseline and the robust mono-
tonicity desideratum.

Payments: “pay for marginal influence” is visible at the token level.
To illustrate the interpretability of second-price-style payments under stable
sampling, we examine realized tokens and compute the associated critical
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bid payments. Two robust patterns emerge.

First, payments concentrate on contested tokens: when both advertisers
put substantial probability mass on a token but with different intensities,
small changes in A materially change its probability under g(\), and the
critical bid for swinging the allocation is correspondingly meaningful. By
contrast, tokens that both advertisers view similarly (either both like or both
dislike) typically have low marginal sensitivity and hence low payments.

Second, aggregated over a continuation, payments align with an “influ-
ence budget” interpretation. Because ¢ is monotone, the expected payment
identities from stable sampling can be read informally as charging bidders
for the total change in the output distribution they induce relative to the
baseline. In practice, this makes the mechanism easier to explain: advertisers
are not paying for inscrutable internal scores, but for measurable movement
in next-token probabilities. This interpretability is especially valuable in
an LLM setting, where external stakeholders often care less about the ex-
act mechanism details and more about whether economic influence is being
exercised transparently and predictably.

Limitations of the demonstration. We emphasize three caveats. First,
our measurement is per-prefix and per-step; while repeated application yields
a sequence, sequence-level effects (feedback from earlier sampled tokens into
later distributions) can amplify or dampen disagreement in ways that are not
captured by a static snapshot. Second, our truncation and flooring choices af-
fect both numerical stability and the constants in the approximation bounds;
while these are standard in generation systems, they should be treated as
part of the mechanism specification rather than a hidden implementation
detail. Third, prompt-tuned agents are only one way to instantiate adver-
tiser preferences; richer preference representations (e.g., semantic attribute
distributions) may change the structure of monotonicity violations and the
practical meaning of payments.

Taken together, these demonstrations suggest that monotone projection
is best viewed as a lightweight enforcement layer: it preserves the qualitative
behavior of log-linear pooling when pooling is already well-behaved, while
reliably repairing the normalization-induced reversals that matter for incen-
tives and pricing. This sets the stage for the natural extensions and open
problems we take up next.

4.8 Extensions and limitations: beyond two advertisers, richer
preference orders, and sequence-level incentives

Our construction was deliberately scoped to the two-advertiser, per-token
setting because that is where the economic logic is cleanest: bids collapse
to a single mixing parameter A € [0,1], robust monotonicity reduces to
one-dimensional coordinate-wise constraints, and the projection admits fast
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isotonic-regression primitives. It is natural, however, to ask how far these
ideas extend, and where they do not. We view this section as a map of the
main fault lines: what generalizes with relatively minor technical work, what
seems to require new conceptual tools, and what open problems matter most
for practical deployment.

More than two advertisers: geometry and monotonicity become
genuinely multidimensional. With n > 2 advertisers, the RLHF-motivated
benchmark generalizes immediately: given bids b € R’ one can define
weights

b;
<n - €
> k=1 bk

and set the log-linear pooled distribution to be

ai(b) = A([n)),

n
¢i(a) o []ofi-
i=1

As in the two-advertiser case, this ¢5°°(«) is the unique minimizer of ) , a; D1, (¢l ps)
over ¢ € A(T). The difficulty is not the benchmark, but the incentives con-
straint: robust monotonicity is no longer a one-parameter monotone path
problem, but a monotonicity constraint on a mapping from a bid simplezx (or

R” modulo scale) into A(T).

There are at least three non-equivalent ways one might try to generalize
the feasible set M(p1,p2). First, one can impose coordinate-wise monotonic-
ity in each bidder’s bid holding others fixed, a multi-dimensional isotonic con-
straint that resembles monotone allocation in multi-parameter mechanism
design. Second, one can require monotonicity only along pairwise trade-
off directions (e.g., when bidder i increases b; while bidder k decreases by
keeping Y b fixed), which is closer to the two-bidder partial order but may
be insufficient for truthful payments with simultaneous competition. Third,
one can restrict attention to one-dimensional slices through bid space (e.g.,
varying a single A along a chosen curve «(\)), regaining tractability but at
the cost of making the mechanism dependent on an exogenous tie-breaking
path through the simplex.

From a computational perspective, the projection program remains con-
vex under natural generalizations (linear monotonicity constraints plus sim-
plex constraints), but the near-linear isotonic structure can disappear. In
one dimension, isotonic regression is solved by PAV; in higher dimensions,
exact isotonic regression is substantially harder and is typically handled by
general-purpose convex optimization or specialized algorithms with weaker
guarantees. This is not merely a speed issue: higher-dimensional monotonic-
ity constraints can be tighter in ways that increase the projection distortion
relative to ¢%°°, sharpening the welfare—incentives tradeoftf.
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A pragmatic middle ground, which we think is promising but not yet
theoretically satisfactory, is to implement an n-bidder mechanism by iter-
ated pairwise aggregation: combine (p1,p2) into an intermediate distribution
using our two-bidder projected rule, then combine that result with ps, and
so on according to a fixed tree. This preserves one-dimensional monotonic-
ity at each merge and yields a simple stable-sampling implementation. The
limitation is conceptual: pairwise merging is not associative, so the outcome
depends on the merge tree, raising governance questions (who decides the
tree?) and strategic questions (can a bidder benefit from being merged ear-
lier or later?). Establishing conditions under which some merge rule is both
transparent and incentive-compatible remains open.

Alternative robust partial orders: from tokens to semantic at-
tributes. Our monotonicity constraints were defined at the token level:
for each ¢t € T, the direction sgn, = sign(pi+ — p2+) determines whether
the path should be nondecreasing or nonincreasing in A. This is the natural
choice if advertisers literally value token probabilities. In many applications,
however, advertisers (or regulators) care about semantic attributes of text
rather than particular tokens: sentiment, toxicity, formality, topicality, or
adherence to a style guide. Two distributions that differ substantially at
the token level may be nearly identical with respect to such attributes, and
conversely small token-level changes can have large attribute impacts.

A clean way to formalize attribute-level preferences is via a feature map
¢ : T — RE and the induced expected feature vector

u(g) = Egs(t)] € RE.

One can then define robust partial orders on distributions by comparing
w(q) rather than ¢ itself (or by combining both, e.g., lexicographic or con-
strained orders). For instance, bidder 1 might prefer higher expected values
of some coordinate ug(q) (say, “positivity”), while bidder 2 prefers lower
values (say, “verbosity”). The analog of robust monotonicity would require
A = pgp(g(A)) to move monotonically in the appropriate direction for each
relevant attribute.

This generalization is attractive because it can drastically reduce the
dimensionality of the constraints: instead of enforcing monotonicity for every
token, we enforce monotonicity for a small number of attributes. But it
introduces a new subtlety: monotonicity in attribute space does not uniquely
determine a token distribution, and the map ¢ — u(q) is typically many-
to-one. Consequently, there can be multiple token-level distributions that
satisfy the same attribute-level monotonicity, and the choice among them
matters for both welfare (relative to ¢%°°) and for downstream language
quality (fluency, diversity).

One plausible resolution is a two-stage projection: first project the at-
tribute trajectory of ¢ onto the monotone set in R¥ (a low-dimensional
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isotonic problem), then, for each A, choose the closest g(A) € A(T") to ¢&*°()\)
subject to matching the projected attributes (a convex feasibility problem
when D is KL or squared ¢5 and p is linear). The limitation is again concep-
tual: we would be enforcing monotonicity in the attributes we can measure,
which may invite gaming on unmeasured dimensions. This is an instance
of a broader point: robust orders are only as normatively compelling as the
preference primitives (tokens or attributes) that define them.

Sequence-level issues: per-token monotonicity does not automati-
cally imply sequence-level incentive guarantees. Our mechanism is
implemented per token, but the object of interest is a generated sequence.
Treating a full generation as repeated one-step mechanisms is a reasonable
first approximation, yet it masks two difficulties.

First, the distributions p; depend on the evolving prefix, which itself is a
random function of earlier samples. Even if g()\) is robustly monotone con-
ditional on a prefiz, the ex ante effect of changing bids on the final sequence
distribution can be more complex because bids change the state distribution
over prefixes. In practice, this can create feedback loops: shifting probabil-
ity mass early in a continuation can move the model into a region of prefix
space where the advertisers disagree more (or less), which can amplify (or
dampen) the effect of bids on later tokens.

Second, advertisers may have intrinsically sequence-level utilities (brand
safety constraints, narrative coherence, topic prevalence over the entire an-
swer) that are not separable across steps. Our stable-sampling and critical-
bid logic is most immediate for myopic or additively separable utilities;
with non-separable objectives, truthful bidding at each step is no longer
a dominant-strategy statement without additional assumptions about how
bidders commit, observe history, and update bids. A fully satisfactory treat-
ment would model the interaction as a dynamic mechanism design problem
with state dependence. We suspect that monotone per-step aggregation is
still a useful building block—it limits the scope for per-step manipulations
and preserves a form of predictability—but it is not, by itself, a complete
sequence-level incentive theory.

Universal auditability: what can be logged, verified, and explained?
One practical motivation for the projection viewpoint is that it creates an
auditable scalar: the realized repair magnitude R (or its continuous ana-
log) quantifies how much the incentives constraint deviates from the RLHF
benchmark. Yet there is a gap between auditable in principle and auditable
in deployed systems. Three obstacles recur.

(i) Vocabulary truncation: real systems rarely operate on the full T at
each step. Top-k and nucleus sampling alter the effective simplex and can
create artificial discontinuities when tokens enter or leave the candidate set.

34



The usual workaround (an “other” bucket) helps, but formal audit guarantees
that are robust to truncation are underdeveloped.

(ii) Privacy and proprietary constraints: auditors may not be able to
observe p1, p2 directly, especially if they encode sensitive prompts or model
internals. This raises the possibility of zero-knowledge style auditing: can
the platform provide a compact certificate that ¢ is the correct projection
of ¢&°° under stated parameters, without revealing the full distributions?
Designing such certificates for high-dimensional simplex projections is an
open problem.

(iii) Interpretability of the order itself: even if the projection is computed
correctly, stakeholders may disagree with the token-level robust order as
a normative constraint. Attribute-level orders help, but then the auditing
problem shifts to the validity and stability of the attribute classifiers ¢, which
may themselves be noisy or manipulable.

Low-query payments: making stable sampling feasible at LLM
scale. Finally, even if ¢ is monotone and hence implementable with stable
sampling, the naive computation of critical bids can be query-intensive: one
may need to evaluate allocations under counterfactual bids to find thresh-
olds. In an LLM setting, each query is expensive, and the mechanism is
executed at every generation step.

We see two promising directions. The first is to exploit the structure
induced by discretization. When q(\) is computed on a grid and extended
between grid points by a simple rule, the allocation can become piecewise
smooth (or piecewise constant) in A, making critical bids easier to bracket
and compute with a small number of evaluations. The second is to develop
dual or implicit payment computation methods that reuse the optimization
artifacts produced by the projection solver (e.g., Lagrange multipliers associ-
ated with monotonicity constraints) to approximate marginal influence and
hence payments, reducing additional model calls. Establishing when such
approximations preserve incentive properties—and how to bound the error
in payments in a way that is meaningful to bidders and regulators—remains
open.

Taken together, these extensions and limitations reinforce the core mes-
sage: projected pooling is best understood as a modular enforcement layer
whose value is clearest when bids are scalar, preferences admit a robust
monotone order, and per-step influence is the relevant object. Extending
the approach to many advertisers, semantic constraints, and sequence-level
objectives is feasible in fragments, but a fully unified theory that is simulta-
neously computationally light, incentive-robust, and universally auditable is
still an important research frontier.
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5 Conclusion

We set out to reconcile two desiderata that are individually natural but
jointly in tension in token-level influence auctions for language generation.
On the one hand, there is a compelling benchmark aggregator motivated by
RLHF and information geometry: log-linear (geometric) pooling,
4 (\) p{\,tp%;/\’

which is characterized as the unique minimizer of a weighted sum of reverse
KL objectives. On the other hand, there is an equally compelling incentives
constraint: if we want a second-price-style implementation with stable sam-
pling and critical bids, we need a monotonicity property of the allocation
rule with respect to bids, interpreted through a robust partial order. The
central finding is that the RLHF benchmark and the incentives constraint
can diverge even in the simplest two-advertiser environment, for a surpris-
ingly mundane reason: normalization couples tokens, and that coupling can
induce non-monotone movement in individual token probabilities even when
every unnormalized score is monotone in the bid weight.

Our main conceptual move is to treat monotonicity as a feasibility con-
straint and to enforce it by a projection rather than by designing an alloca-
tion rule from scratch. We define the convex set of robust-monotone paths
from po to p; (monotone in A in each coordinate with direction determined by
sign(p1,t—p2,t)), and we select the closest such path to the RLHF benchmark
by solving .

7cag _min [ D) ¢ () dx
geM(p1,p2) Jo
for a strictly convex divergence D. This “projected pooling” viewpoint
cleanly separates what we would like to do (log-linear pooling for welfare /fit)
from what we must do (monotone implementability for incentives), and it
yields an interpretable scalar measure of the repair magnitude—the projec-
tion distance—that can be logged and audited.

Three implications follow from this framing. First, the projected rule
q(\) is robustly monotone by construction, and therefore it inherits the
mechanism-design machinery of Diitting et al. (2024): stable sampling exists,
and per-token critical-bid payments can be defined with an implementation-
independent expected payment identity. In economic terms, the projection
is not merely a smoothing device; it is the minimal deformation needed to re-
store a single-crossing-like property in a setting where preferences are defined
over distributions rather than over deterministic outcomes.

Second, the projection is computationally plausible at the per-token scale
that LLM deployment demands, at least in the two-advertiser setting. Once
we discretize A on a grid, the feasible set becomes a polytope defined by linear
monotonicity constraints and simplex constraints. With squared ¢5 loss, the
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resulting optimization admits fast primitives (isotonic regression across A for
each token, plus simplex projection for each A) that converge to the unique
optimum. This matters practically because the per-token mechanism must
run at generation latency, and it matters conceptually because it turns a
mechanism-design desideratum (monotonicity) into an explicit and checkable
computational artifact (a convex projection with a unique solution).

Third, the approach yields an explicit way to reason about the welfare—
incentives tradeoff. Since ¢8°°(\) is the pointwise optimum for the RLHF
objective, any deviation has an opportunity cost. The projection supplies
a principled candidate and also supplies a distance-to-benchmark quantity
that controls the objective loss under standard smoothness/strong convexity
conditions (on appropriately truncated simplices). While such bounds are
inevitably approximate—and depend on how one metrizes the simplex—they
provide a language for system designers and auditors to quantify how much
“incentive compatibility” is costing in “RLHF fit” at each step, and how that
cost varies with disagreement between advertisers, temperature smoothing,
and discretization.

Stepping back, we view the broader contribution as methodological. In
many platform settings, the mechanism designer faces a familiar pattern: an
unconstrained objective suggests a clean rule (here, log-linear pooling), but
the implementation requires a monotonicity structure that the clean rule may
violate. The standard response in auction theory is to redesign the allocation
until it is monotone, often losing the connection to the benchmark. Our
response is to project the benchmark onto the implementable set, retaining
a direct quantitative link between the rule we implement and the rule we
would have preferred absent incentives constraints. That link is useful not
only for welfare analysis but also for governance: it makes deviations from
the benchmark explicit, measured, and therefore debatable.

The limitations of the current analysis are equally important. The clean-
est results rely on the two-advertiser reduction to a scalar weight A, which
makes monotonicity one-dimensional and gives isotonic regression its force.
As we discussed, moving to many advertisers, to attribute-based preference
orders, or to sequence-level incentives introduces new degrees of freedom and
new failure modes. In particular, per-token monotonicity is a local property,
whereas bidders and regulators often care about global properties of the full
generated text; bridging that gap requires dynamic mechanism design and a
careful treatment of state dependence through the prefix.

There are also modeling choices that should be read as commitments
rather than as inevitabilities. We adopt robust partial orders because they
deliver a tractable monotonicity notion with clear implementability impli-
cations, but any such order encodes a normative stance about what kinds
of shifts in a distribution should count as “improvements” for an advertiser.
If that stance is misaligned with the true objectives (or is manipulable),
then truthful bidding can fail to deliver socially desirable outcomes even if
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the mechanism is incentive compatible in the formal sense. Likewise, we
focus on strictly convex divergences D to obtain uniqueness and stability
of the projection; this stabilizes computation and interpretation, but it also
privileges certain geometries of the simplex that may not perfectly capture
perceived differences in language quality.

From a deployment perspective, we see two concrete takeaways. The
first is that monotonicity violations should be expected under naive log-linear
pooling, and therefore stable-sampling implementations that assume mono-
tonicity can silently fail if the allocation rule is not repaired. The second is
that the repair can be implemented in a way that is both transparent and
auditable: the platform can expose (at least internally, and potentially to ex-
ternal auditors under privacy constraints) the projection distance, the active
monotonicity constraints, and the discretization parameters. This does not
solve the full governance problem, but it provides a disciplined starting point
for it: disagreements can be grounded in observable quantities (how often
the benchmark violates monotonicity; how large the projection is), rather
than in opaque model behavior.

Several research directions look especially valuable. At the theory level,
we would like sharper characterizations of when ¢8°° is already robustly
monotone (or “approximately” monotone) and how that depends on pj, pa;
such results would turn our comparative statics into more operational diag-
nostic tests. At the algorithmic level, we would like low-query payment com-
putation methods that exploit the dual variables of the projection, reducing
the incremental cost of critical-bid calculations. At the mechanism-design
level, we would like principled multi-advertiser generalizations that avoid
arbitrary merge trees while preserving implementability and computational
tractability. And at the governance level, we would like auditing protocols
that remain meaningful under token truncation, privacy constraints, and
shifting vocabularies, potentially via compact certificates of correct projec-
tion.

The model we studied is intentionally modest: a per-token, two-advertiser
mechanism with a structured monotonicity constraint. But the tradeoff it il-
luminates is not modest. As LLMs become platforms, “influence” over gener-
ation becomes a scarce resource, and platform designers will face pressure to
allocate that influence through rules that are simultaneously efficient, incen-
tive compatible, and explainable. Projected pooling offers one concrete tem-
plate: begin with a welfare-motivated benchmark, enforce implementability
by a minimal convex repair, and log the distortion as an auditable measure
of the welfare-incentives compromise. We do not claim this resolves the full
problem of monetizing influence over language. We do claim it clarifies where
the hard parts live, and it provides a tractable, modular layer that can be
combined with richer preference models and stronger governance constraints
as the field matures.
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