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Abstract

Offline RL policies often fail at deployment when the observation
function drifts non-stationarily across operational intervals (episodes),
inducing partial observability even if the underlying dynamics and re-
ward remain unchanged. FORL (Ada et al., NeurIPS 2025) addresses
this by combining a zero-shot time-series forecaster for episodic offsets
with a conditional diffusion model that proposes multimodal candi-
date states from within-episode action/effect history, fusing the two
via a heuristic dimension-wise closest match (DCM). We push this
line into a principled 2026-era interface between foundation forecast-
ing and control: Bayes-FORL replaces DCM with a calibrated approx-
imate Bayesian filter. We treat the forecaster as a multivariate prior
over sensor shifts and the offline-trained generative belief model as a
trajectory-consistency likelihood surrogate, yielding a posterior over
offsets (and thus states) that preserves cross-dimensional correlations
and quantifies uncertainty. Our main result is a modular value-loss
bound for any frozen offline policy deployed on Bayes-FORL estimates:
the performance degradation is upper bounded by a Lipschitz constant
times the sum of forecast error, belief-model error, and inference ap-
proximation error; a matching lower bound shows this dependence is
tight. We further specify an implementable particle-based algorithm
and identify stress-test regimes (high-dimensional coupled offsets and
tail-risk metrics) where Bayesian fusion should substantially reduce
catastrophic state-estimation spikes compared to coordinate-wise fu-
sion. Experiments on D4RL/OGBench augmented with correlated
real-world time-series offsets would strengthen the empirical claim.
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1 Introduction and Motivation

We study a deployment mismatch that is ubiquitous in embodied control
and industrial decision systems: the underlying Markovian dynamics and
rewards remain stationary across time, yet the observation function is not.
Concretely, we consider episodic deployment where, in each episode j, sensors
incur an unknown additive shift b; € R™ that is constant within the episode
but varies across episodes. Thus the deployed agent observes

ot = 5t+bj7

where s; denotes the true latent state (fully observed during offline data
collection) and o; is the corrupted observation available online. Such off-
sets arise from sensor re-calibration, systematic bias, camera extrinsics drift,
changes in reference frames, and imperfect zeroing procedures. While the
additive form is simple, the resulting control problem is subtle because the
deployed policy is often fixed: in offline RL, a policy 7 is trained from a
dataset collected under one observation convention and must be deployed
without further interaction-driven policy updates. The only permissible on-
line adaptation is then to estimate the latent state (or equivalently the offset)
sufficiently well so that the frozen policy remains effective.

The difficulty is not merely that b; is unknown. Rather, b; is episode-
constant, hence it is statistically identifiable only through within-episode
temporal structure and action-conditioned evolution. If one were to treat
each time step in isolation, o; does not determine s; or b;. Consequently,
any successful method must pool evidence across time without violating
the online constraint of bounded computation. This suggests an inference
problem: given a stream (0g.,ap.¢—1) in an episode, infer b; (and thus s;)
online. However, the inference must be compatible with the fact that the
agent is actively choosing a; based on its current estimate, so the distribution
of future observations depends on the estimator itself.

A common heuristic response to sensor shifts is coordinate-wise fusion:
estimate each component b;; independently by comparing observed coordi-
nates to an expected reference range, or by applying per-dimension filters
and then concatenating the resulting estimates. We emphasize that such
procedures can fail catastrophically in high dimension, even when each co-
ordinate appears individually “well-behaved.” The reason is that the latent
state typically satisfies strong cross-dimensional constraints induced by the
physical system and by the data distribution implicit in the offline dataset.
When one performs dimension-wise inference, one implicitly replaces the
joint posterior p(b | data) by a product of marginals [, p(b; | data), thereby
discarding correlations that may be essential for identifiability. In the ex-
treme, the true posterior over b may be multimodal along correlated sub-
spaces (e.g., due to symmetries), and the coordinate-wise posterior mean or
median can lie in a region of negligible joint probability. Then the induced



state estimate § = oy — by can be inconsistent with any plausible trajectory
seen during training, and a frozen policy 7 can respond arbitrarily poorly
to such out-of-distribution inputs. This is not a measure-theoretic pathol-
ogy: as n grows, the probability mass of correlated distributions concentrates
away from coordinate-wise “typical” points, so the mismatch between joint
and marginal summaries becomes more severe.

The preceding issue is exacerbated by the online nature of control. A
frozen policy 7 is typically Lipschitz only locally on the support of training
states, and it may be highly sensitive to perturbations in directions that
were rarely explored offline. Thus a state estimator that produces small
per-coordinate errors but violates the learned manifold can induce large ac-
tion errors. Moreover, policy-induced feedback can amplify early estimation
mistakes: if §; is biased, the selected a; changes the next state distribu-
tion, potentially reducing the informativeness of subsequent observations for
correcting b;. For this reason we seek estimators that (i) respect the joint
structure of the state distribution learned offline, (ii) explicitly represent un-
certainty over the episode-constant offset, and (iii) can integrate information
sequentially with bounded per-step cost.

Our proposal, Bayes-FORL, is a modular procedure that instantiates
these desiderata. We assume access to two deployment-time ingredients in
addition to the frozen policy. First, we assume an offline-trained conditional
belief model of state trajectories, summarized by an energy surrogate Fy(s, 7)
that approximates the negative log-belief —logp(s; = s | 7) given a within-
episode history window 7 ,,. Importantly, we do not require a full generative
simulator at test time; we only require fast evaluation of Ey to score can-
didate latent states. Second, we assume that before episode j begins, an
external forecaster produces a prior ¢;(b) over the offset b; (optionally to-
gether with a conformal set B; with marginal coverage). This forecaster may
use any side information or long-horizon logs available at the system level;
Bayes-FORL treats it as a black box and relies on calibration for reliability
rather than on model correctness.

Given ¢; and Ejp, Bayes-FORL maintains a weighted particle approxima-
tion to the posterior over b;. Particles b(™) are sampled jointly in R” and
remain constant throughout the episode; only their weights evolve. Upon
observing o;, each particle proposes a latent state sgm) = o, — ™ and re-
ceives a likelihood surrogate proportional to exp(—Eg(sgm),me)). Weight
updates aggregate evidence across time, so posterior mass concentrates on
offsets that make the implied latent trajectory jointly plausible under the of-
fline learned belief model. The estimator outputs either the posterior mean
Bt or a MAP particle and forms §; = o; — Bt, which is then fed into the
frozen policy a; ~ m(- | §). Because inference is carried out in the joint
space of offsets, Bayes-FORL preserves cross-dimensional correlations and
can represent multimodality, in contrast to coordinate-wise fusions.



A key modeling choice is that the belief model conditions on within-
episode history through delta observations Ao; := o — 0¢—1. Under an
episode-constant offset, Aoy = s; — s;_1, so the deltas remove b; and provide
offset-invariant information about dynamics. By incorporating 7 ,, contain-
ing (Ao, a) pairs, the energy surrogate can learn rich action-conditioned pri-
ors over feasible state transitions while remaining robust to the unknown ab-
solute reference frame. This furnishes Bayes-FORL with a principled mech-
anism to “explain away” the offset: offsets that render o — b compatible with
the learned dynamics receive higher posterior weight.

Our contributions are therefore conceptual and modular. We (i) formalize
episodic additive shifts as a structured nonstationarity where online adap-
tation is possible via inference even when the policy is frozen; (ii) identify
a concrete failure mode of dimension-wise offset correction in high dimen-
sion, stemming from the loss of joint structure; (iii) propose Bayes-FORL,
which combines a forecast prior with an offline-trained energy-based belief
model in an online particle filter; and (iv) provide a theory template link-
ing estimation error to value degradation via Lipschitz regularity of Q™ and
m, thereby cleanly separating forecast error, belief-model approximation er-
ror, and finite-particle inference error. The remainder of the paper places
Bayes-FORL in context, details the algorithmic design choices, and develops
guarantees and stress-tests appropriate for deployment under sensor shifts.

2 Related Work

Offline RL with distribution shift and robustness. Offline reinforce-
ment learning addresses the problem of learning a policy from a fixed dataset
without online interaction ?. A substantial line of work studies robustness
to discrepancies between the data-generating distribution and the deploy-
ment distribution, including behavior-regularized objectives and conservative
value estimation ?7. These approaches primarily mitigate action-distribution
shift and compounding extrapolation error, and they typically intervene by
changing the deployed policy (either explicitly through policy optimization
or implicitly through pessimistic evaluation). In contrast, our setting iso-
lates an observation-model mismatch—an episodic additive shift of the input
coordinates—under the constraint that the policy is frozen at deployment.
Classical robust MDP formulations ?? consider uncertainty sets over tran-
sitions and rewards and derive minimax-optimal policies; while conceptually
related (uncertainty is resolved at decision time), they again presuppose the
ability to optimize the policy against the uncertainty set. Our contribu-
tion is orthogonal: we treat robustness as an inference problem over an
episode-constant nuisance parameter, and we quantify the resulting control
degradation via modular Lipschitz bounds.



FORL and state-estimation-centric deployment adaptation. Re-
cent work at the intersection of representation learning and offline RL em-
phasizes that a significant portion of deployment failures can be traced to
mismatched state representations (sensor drift, calibration changes, partial
observability) rather than to incorrect dynamics models. Approaches some-
times grouped under “filtering for RL” or “forward-model-based filtering” (we
use the shorthand FORL to denote this general direction) combine an offline-
learned predictive model with online inference over latent states, sometimes
via recurrent architectures trained end-to-end on trajectories. Such methods
are standard in partially observable RL, where recurrent policies approximate
belief-state control. Our setting differs in two respects. First, during training
the state is fully observed, and the nonstationarity enters only at deployment
via an episodic observation offset. Second, we separate the deployed policy
from the estimator: the estimator may use an offline-trained belief model,
but the control law is a fixed map 7 (- | §;) acting on the estimator output.
This separation motivates guarantees that explicitly decompose performance
loss into estimation error terms (forecast mis-specification, belief-model ap-
proximation, and finite-sample inference), rather than absorbing all errors
into an end-to-end learned recurrent policy.

Robustness to observation perturbations and test-time adaptation.
There is an extensive literature on robustness to observation noise and adver-
sarial perturbations in RL, including robust policy learning under corrupted
sensors and domain randomization in simulation-to-real transfer. These
methods again typically rely on retraining or fine-tuning policies to become
invariant to a family of corruptions. The episodic additive shift we study
is a particularly structured corruption: it is constant within an episode and
shared across all coordinates. This structure admits a low-dimensional latent
variable b; whose posterior can, in principle, concentrate rapidly when one
aggregates evidence across time. In this sense, our approach is closer to test-
time system identification (estimating a latent environment parameter and
conditioning the controller on it) than to worst-case adversarial robustness.
The estimator-only adaptation constraint also places us nearer to classical
sensor calibration and bias estimation than to policy-level robustification.

Forecasting meets control and calibrated uncertainty. Integrating
probabilistic forecasts into decision-making is classical in operations research
and control: predictive distributions over exogenous signals are propagated
through stochastic control objectives, often via chance constraints, risk mea-
sures, or scenario optimization. In modern “predict-then-optimize” pipelines,
a forecaster provides a distribution over future quantities and an optimizer
consumes it. Our use of a forecaster is similar in spirit but differs in the
object being forecast: we forecast an episode-level offset b; rather than fu-



ture states. Moreover, we treat the forecaster as a black box and rely on
calibration tools to guard against mis-specification. Conformal prediction
provides finite-sample, distribution-free coverage guarantees under exchange-
ability ?7?7. Conformal sets for multivariate quantities can be built via scalar
nonconformity scores (e.g., Mahalanobis or copula-based scores), yielding
marginal coverage even when the forecaster is misspecified. In our frame-
work, such sets B; serve as an optional truncation region for posterior infer-
ence over bj;, providing a principled mechanism to bound tail risk stemming
from forecast errors.

Bayesian filtering and particle methods for static parameters. Our
deployment-time inference problem is a special case of filtering with a static
latent parameter (here, an episode-constant bias) and a dynamic latent state.
Sequential Monte Carlo (SMC) methods, including particle filters with se-
quential importance resampling, provide a standard tool for approximat-
ing filtering distributions in non-linear, non-Gaussian state-space models 7.
When the latent variable includes a static parameter, naive particle filtering
can suffer from degeneracy, motivating parameter-learning variants, rejuve-
nation via MCMC moves, or Rao—Blackwellization when conditional struc-
ture is available 7. Our procedure is best viewed as an SMC approximation
to a posterior over b; with an analytically eliminated state variable given
by s = oy — b; the novelty is that the “likelihood” terms are supplied by a
learned energy surrogate rather than by an explicit generative observation
model. This combination places our method between classical model-based
filters (where likelihoods are known) and amortized inference (where poste-
riors are learned directly): we amortize only the scoring function, retaining
explicit Bayesian updating with a forecast prior.

Energy-based models and learned conditional priors. Energy-based
models (EBMs) represent distributions via an unnormalized density propor-
tional to exp(—FEjy) and have been used as expressive priors and conditional
models in vision and sequential modeling ??7. When EBMs are used for in-
ference, sampling is often carried out by Langevin dynamics or other MCMC
schemes, which can be computationally intensive at test time. In our setting,
we avoid iterative sampling over the latent state trajectory by exploiting the
additive observation structure: candidate offsets b induce candidate states
s = o — b, and the energy surrogate is evaluated pointwise on these candi-
dates. Thus, online computation is dominated by O(M) energy evaluations
and weight updates, compatible with real-time constraints. We emphasize
that our guarantees are phrased in terms of a uniform surrogate error e,
allowing the belief model to be trained by any suitable offline procedure
(contrastive objectives, score matching, or supervised density surrogates) as
long as the resulting energy approximates negative log-beliefs on the relevant



compact set.

Diffusion and flow models as conditional trajectory priors. Diffu-
sion models and normalizing flows provide alternative ways to represent con-
ditional distributions over states or trajectories ?7. In offline RL, diffusion-
based trajectory generation and planning have recently been explored as a
way to model multi-modal behavior distributions and synthesize action se-
quences 7. These methods underscore the importance of capturing joint
correlations and multi-modality—precisely the failure mode of coordinate-
wise fusion that motivates our approach. However, diffusion-based inference
typically requires multiple denoising steps, which can be costly in an online
control loop, and the interface to Bayesian updating with an external fore-
cast prior is not immediate. Our method can be interpreted as using an
EBM-style scoring function as a conditional prior over feasible states (given
within-episode histories), while using the forecaster to supply the episode-
level prior over offsets; this yields a plug-and-play Bayesian update whose
online cost scales linearly with the number of particles.

Summary. Taken together, the above threads suggest a design point that
is underrepresented in the literature: when policy adaptation is disallowed,
robustness to structured observation nonstationarity should be pursued by (i)
explicit episode-level latent-variable inference, (ii) calibrated forecast priors
to encode cross-episode information, and (iii) joint (rather than coordinate-
wise) posterior representations to preserve correlations. Our subsequent for-
mal setup isolates these ingredients and makes the access pattern explicit so
that both algorithmic and theoretical statements are unambiguous.

3 Formal Problem Setup

We formalize an episodic deployment setting in which the control objective
remains stationary but the observation map is perturbed by an episode-
constant additive offset. The key constraint is that the deployed policy is
fixed; the only admissible adaptation at test time is via an online state
estimator that preprocesses observations for the frozen policy.

Training environment and offline data. At training time we are given
a fully observed discounted Markov decision process (MDP)

Mtrain = (Sa A? Ta T, Po, ’y)u

where § C R" is a continuous state space, A is an action space, T'(- | s,a)
is the transition kernel, r(s,a) is the reward function, pg is the initial-state



distribution, and v € (0,1) is the discount factor. We assume that the
training process produces an offline dataset

D - {(Sta ag, 8t+17 rt)}

collected in Myyain under some (possibly unknown) behavior policy. From D
we train an offline policy w (by any offline RL procedure) and then freeze
m for deployment. We emphasize that all quantities entering = at training
are functions of the true state s;; the policy never observes offsets during
training.

Deployment as a sequence of offset-corrupted episodes. Deploy-
ment consists of episodes indexed by j € {1,2,...}. Within episode j, there
is a latent state sequence (s;)L_, evolving under the same stationary dynam-
ics T" and reward r as in training, but the agent does not directly observe s;.
Instead it receives observations

0y = S¢ + bj, bj € Rn, (1)

where the offset b; is constant within the episode and unknown to the agent.

Equation defines a family of partially observed processes, one per episode,

with shared latent dynamics and an episode-level nuisance parameter b;.

(The analysis and algorithmic interface we develop are designed around this

structured nonstationarity; we do not treat b; as i.i.d. per step noise.)
Because b; is constant, first differences remove it:

Aoy := 0y — 041 = (8¢ + bj) — (s4—1 + bj) = 5t — S¢—1.

Accordingly, Aoy is an offset-invariant signal that can be used to condition
belief updates within an episode. We will use a finite history window size w
and define the within-episode context

Tt,w = [(Aot_w+1, at_w), ey (Aot, at_l)],

with the natural truncation when ¢ < w.

Estimator—policy separation and the deployed control loop. At
deployment, the policy 7 is evaluated on an estimated state §; rather than
on o or s;. Concretely, we introduce an online estimator (or filter)

& (OO:t7a0:t—17 Ttaws QJ) = §t7
and actions are drawn according to the frozen policy
agy ~ 7T(' ’ §t)

We regard this separation as a hard constraint: the estimator may maintain
internal memory (e.g. a belief over b;), but 7 itself is not updated, fine-tuned,
or re-optimized during evaluation. The resulting deployed value is denoted
V7€ emphasizing that control quality is mediated by estimation quality.



Cross-episode forecasts and calibrated uncertainty for the offset.
The offset b; is episode-specific but not arbitrary: in many applications it
reflects calibration drift or slow changes across episodes. We formalize the
availability of cross-episode information by assuming that at the start of
episode j a probabilistic forecaster provides a prior distribution q;(b) over
b;. This prior may be misspecified; we therefore optionally augment it with
a conformal prediction set B; satisfying the marginal coverage guarantee

]P)(bj S B]) > 1—5,

under exchangeability assumptions on the calibration procedure. Opera-
tionally, B; serves as a truncation or support constraint for inference, con-
trolling tail behavior when ¢; assigns insufficient mass near the realized offset.

Access patterns and what is not observed at test time. The esti-
mator has the following access pattern.

e Offtine (predeployment): access to D and unlimited training compute
to produce (i) the frozen policy 7, and (ii) auxiliary models used by €£.

o At episode start: access to the forecast prior ¢;(b) and (optionally) B;.

e Online during the episode: sequential access to o, and the actions ac-
tually taken a; (which are generated by w(- | §)). The offset b; is
not revealed during evaluation; likewise, ground-truth states s; are not
observed.

We also impose a bounded per-step compute budget: £ must run online
with fixed-cost updates, allowing (for example) a finite number of calls to a
learned scoring function and simple particle-weight updates, but disallowing
expensive test-time retraining or long-horizon planning.

Objective: control loss relative to an oracle-offset agent. The ideal-
ized benchmark is an oracle-offset agent that knows b; and therefore acts on
the true state s; = o;—b;, yielding value yreoracle when using the same frozen
policy 7. Our primary objective is to minimize the deployment degradation

R o& o 1
AV = }7oE _ ymoorac e’

and secondarily to control tail risk of estimation error within an episode
(e.g. maxy || — s¢|| or a CVaR-type criterion). Since the policy is fixed, any
improvement in AV must come through reducing the discrepancy between
$¢ and s;, while respecting the online access pattern above.

10



Need for a likelihood surrogate from offline data. To construct £ we
require a mechanism that scores candidate latent states s given the within-
episode context 7;,, in a way that is compatible with Bayesian updating over
b; through the relation s = o; —b. We assume that offline training yields
a conditional belief model summarized by an energy surrogate Ey(s,7) in-
tended to approximate —logp(s; = s | 7) (up to an additive, 7-dependent
constant) on the relevant compact domain. In the next section we spec-
ify how such conditional generative belief models are obtained, and how
sampling-oriented models (diffusions or flows) can be converted into compu-
tationally efficient energy /score surrogates suitable for online filtering.

4 Generative Belief Models as Likelihood Surro-
gates

Bayes-FORL requires, for each time ¢, a mechanism for assigning relative
plausibility to candidate latent states s given the within-episode context 7y .
Since the online estimator will compare hypotheses of the form s = o — b
across many candidate offsets b, we require a fast scoring rule in s that
is trained offline from D and can be evaluated online without inner-loop
sampling. We therefore view offline learning as producing a conditional belief
model
p«(s | 7) (implicit or explicit),

together with a computational surrogate Ey(s, 7) satisfying
E@(SaT) ~ = Ing*(S | T) + C(T)a (2>

where ¢(7) is an arbitrary additive normalization term that may depend on
7 but not on s. Because our online posterior over offsets is computed only
up to proportionality, such additive terms cancel and do not affect inference
over b.

Offline construction of conditional training pairs. From trajectories
in D we form supervised pairs (s¢, 7¢4) by computing As; = s — s, and
identifying Ao; with As; under the training observation model (no offset). In
particular, we may set Aoy := s; — S;—1 when training Fy, thereby matching
the deployment statistic Aoy = 0; — 0¢_1. This produces a stationary condi-
tional prediction problem: given a window of recent differences and actions,
score the current state. We stress that the conditioning variable 7, is cho-
sen to be offset-invariant so that remains meaningful under deployment
shifts.

Conditional normalizing flows: exact likelihoods and energies. If
we train a conditional normalizing flow fy(-;7) such that s = fy(z;7) with

11



z ~ N(0,T), then the induced density py(s | 7) admits an exact change-of-
variables likelihood:

logpy(s| 1) = logpz(fzgl(s; 7)) + log |det stqzl(s; 7).
In this case, an immediate choice is

Ey(s, 1) := —logpy(s | 1),

with 0 = ¢ and e determined by standard generalization error on held-out
(s,7) pairs. The flow case is algorithmically convenient: online we evaluate
Eg(of — b, T¢,) directly, and no further distillation is required.

Conditional diffusion models: from sampling to scores/energies.
Diffusion models are typically trained to enable conditional sampling rather
than direct likelihood evaluation. Concretely, for a noise schedule {o}5%
one trains a denoiser or score network wuy(sg, k,7) ~ V, logp(sy | 7) (or
an equivalent e-prediction parameterization), where sy = s + ope and € ~
N(0,I). To use such models inside Bayes-FORL, we convert them into an
online scoring surrogate by one of the following standard reductions.

(i) Score-to-energy distillation. On a compact domain Sy C R™ we may
train an energy network Fy(s,7) so that its gradient matches a target score
field gy (s, 7) obtained from the diffusion model (e.g. via denoising score
matching at a fixed low-noise level). A prototypical objective is

min E[[|V.Eo(s,7) + (s, D[]

where (s, 7) are drawn from the offline construction above and gy, is computed
by a single network call. When the learned vector field is approximately
conservative on Sy, this yields an Fy satisfying (2) up to an additive constant,
with uniform error summarized by eg.

(ii) Likelihood surrogates via ELBO /probability-flow. Alternatively, one
may approximate —logp(s | 7) by an evidence lower bound (ELBO) com-
puted from the diffusion training objective, or by integrating along the
probability-flow ODE with Hutchinson trace estimators. While this can
provide a closer approximation to likelihood, it may be too expensive online.
We therefore treat such constructions primarily as offline tools to produce a
cheaper Fy by regression.

In both diffusion-derived approaches, we emphasize the operational re-
quirement: online filtering evaluates Ep at M candidate states s = o; — b("™)
per time step, so Fy must be a single forward pass (and ideally avoid iterative
sampling).

12



Calibration of energy scales for stable importance weights. Even
when holds approximately, the scale of Fy can be miscalibrated, causing
importance weights to collapse. Since Bayes-FORL uses exp(—FEjy) multi-
plicatively across time, small systematic scale errors can be amplified. We
therefore optionally introduce a temperature parameter 5 > 0 and use the
tempered surrogate exp(—FFEy), with 8 selected on a held-out validation
set to control effective sample size (ESS) or to minimize a predictive loss.
Equivalently, we may perform an affine calibration

E(Sal(s, 7) = aFy(s,7) + k(T),

where k(7) is irrelevant for offset inference but may be used to stabilize
numerics (e.g. centering by the minimum energy over a minibatch). This
calibration is purely offline; online, we only evaluate Egal.

Support constraints and robustness to forecast mis-specification.
The product form of the offset posterior combines the forecast prior g;(b)
with within-episode evidence. If g; assigns negligible mass near the realized
b;, particle methods can fail regardless of the quality of Ey. We therefore
incorporate explicit support constraints in two complementary ways.

First, if a conformal set B; is available, we truncate the proposal and
posterior to B; by sampling bm) ¢;(- | b € Bj) (or rejecting samples
outside Bj). This enforces the marginal coverage guarantee and isolates the
remaining error into a forecast term e measuring how much prior mass g;
places near the true offset within B;.

Second, we may impose a state-domain constraint by restricting can-
didate states to a compact set Sy (e.g. the convex hull of offline states,
possibly dilated). Operationally, when evaluating a particle b(™) we set
Ey(or — b(m),Tt,w) = +oo (or a large constant) if o, — p(m) ¢ So. This
prevents the filter from explaining observations using offsets that imply im-
plausible states, and it aligns the analysis with the uniform approximation
premise defining eg.

Summary of the surrogate interface. For the subsequent algorithmic
development, the only required interface is the ability to compute Fy(s,7)
for arbitrary s and 7 at online time. Conditional flows provide this directly;
conditional diffusions provide it after offline distillation into an energy/score
surrogate. Calibration (via temperature or affine scaling) and explicit sup-
port constraints (via B; and Sp) are modular add-ons that improve stabil-
ity without altering the estimator—policy separation. With this interface in
hand, we can form a product-of-experts posterior over b and implement it
by particle/importance sampling, which we detail next.

13



5 Bayes-FORL: Filtering an Episode-Constant Off-
set

We now specify the online estimator £ used to adapt a frozen policy 7 to an
episode j in which observations satisfy o; = s; + b; for a fixed but unknown
b; € R". The estimator maintains an episode-level belief over b and returns a
point estimate l;t (and hence a state estimate §; = oy —l;t) at each time t. The
defining feature is that we do not attempt to re-plan in belief space; rather,
we separate concerns by (i) performing approximate Bayesian inference over
b and (ii) feeding the resulting state estimate into the unchanged policy .

Product-of-experts posterior over offsets. Fix episode j and suppress
the index j for readability. Let ¢(b) denote the forecaster-provided prior for
b, optionally truncated to a conformal set B (and/or to those b such that
o — b € &y for all relevant t). Given a windowed, offset-invariant context
Tt.w, the surrogate likelihood of the hypothesis b at time ¢ is

Bilon | b,71) o< exp( = Eplor = b)), (3)

where proportionality absorbs any b-independent normalizers. Aggregating
evidence up to time t yields the approximate posterior

t
ﬁt(b \ 00:t, ao:t—l) o8 Q(b) H exp( - Ee(Ot' -, Tt’,w))- (4)
t'=0

This has a product-of-experts form: the forecast prior contributes a global
expert over b, while each time step contributes an expert favoring offsets that
render the implied latent state s = oy — b plausible under the offline belief
model.

Two remarks are operationally important. First, since b is episode-
constant, (4)) is not a standard state-space filtering recursion in the latent
state; it is a static-parameter posterior updated sequentially as data arrive.
Second, the surrogate likelihood is evaluated at s = o; — b, so inference
over b is intrinsically joint in R™; we do not decompose into independent co-
ordinates, and thus preserve cross-dimensional correlations induced by both
q(b) and Fjy.

Sequential importance sampling for static parameters. We approx-

imate with M particles {b(m)}f\n/[:1 drawn at the beginning of the episode
from the proposal ¢ (or g(- | b € B)). We attach weights Wt(m) that track
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the accumulated likelihood contributions. In its simplest form,

m 1
Wﬁl) M) (5)
Wt(m) = Wt(fll) . exp( — Eg(0r — b(m)7Tt,w))7 (6)
wm)
m W,
W= = "
2= Wi

For numerical stability we implement @ in log-space, optionally subtracting
min,, Fy(o; — pm) T¢w) before exponentiation. When a temperature param-
eter [ is used, we replace Fy by SEy in @; this modifies the posterior
approximation in a controlled manner and is primarily a variance-reduction
device.

Because the particles do not move, the approximation quality hinges on
the effective sample size

1

ESS; .= <
M (w2

When ESS; falls below a threshold (e.g. M/2), we perform resampling and
reset weights to 1/M. Since b is static, repeated resampling can lead to
impoverishment; we therefore treat resampling as optional and, when used,
pair it with a mild rejuvenation kernel b(™ « b(™) 4 ¢(m) for small &™)
(e.g. Gaussian with covariance tuned to the current weighted empirical co-
variance), followed by projection back to B if truncation is enforced.

Outputs: posterior mean, MAP, and uncertainty. At each time ¢t we
may output either (i) a posterior mean estimate

M
bgnean — Z Wt(m) b(m)7 (8)

m=1
or (ii) a particle-based MAP estimate

HYAP . — p(mi) where m; € arg max Wt(m). 9)

The posterior mean is smoother and typically better under squared error;

the MAP is often more robust when the posterior is multi-modal and we

wish to commit to a single coherent hypothesis for control. Both preserve

correlation structure because they are computed from joint particles in R”.
The state estimate passed to the policy is then

§t = 0t — I;t, (10)
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and the deployed action is sampled as a; ~ 7(- | §;). For downstream risk
control, we may also report uncertainty, e.g. the weighted covariance

M
C/(;,t(b) — Z W, m) (b(m) _ B;nean) (b(m) _ B?leam)T7
m=1

or posterior samples of b obtained by resampling particles according to W;.
This is useful for diagnosing imminent failure modes (e.g. posterior mass
splitting across widely separated offsets).

Per-step versus aggregated likelihood contributions. Equation (4))
uses the full product over ¢ < t and is the most direct approximation of the
intended posterior under conditional independence assumptions implicit in
the surrogate. In some environments, however, the surrogate Ey(-, 7¢,,) can
over-count evidence due to overlapping windows. We therefore consider two
variants.

(i) Subsampled products. We update weights only at times ¢ belonging to
a subsequence (e.g. every k steps) so that successive likelihood terms depend
on more weakly overlapping contexts.

(ii) Exponentially-forgotten products. We replace the cumulative sum of
energies by a discounted sum, equivalently

Wt(m) — (Wt(lnl))A exp( — Eylop — b(m)yTt,’w)>7

with A € (0, 1]. This stabilizes weights when Ej is slightly miscalibrated and
can be interpreted as a robustness heuristic rather than a literal Bayesian
update.

In all cases, the estimator remains an episode-level inference procedure
over a static b with online complexity linear in M.

Computational and structural properties. Bayes-FORL requires M
evaluations of Ejp per time step, plus bookkeeping for 7, and (optionally)
resampling. Memory is O(Mn) for joint particles and weights. Crucially,
because the inference variable is the full vector b € R", cross-dimensional
correlations are retained; in contrast to dimension-wise fusion rules, the es-
timator can express and exploit structured forecast priors (e.g. correlated
sensor offsets) as well as structured plausibility constraints induced by the
belief model. These algorithmic choices are precisely those that enable the
estimation and control guarantees developed next.
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6 Theory I — Estimation: Concentration, Forecast
Robustness, and Finite-) Effects

We now formalize when Bayes-FORL selects (and remains near) the correct
offset mode, and how forecast uncertainty, energy-surrogate error, and finite-
particle inference contribute additively to the resulting state-estimation er-
ror. Throughout we fix a deployment episode and suppress the episode index.
Recall that 5; = oy — l;t and, under the additive-offset model o; = s; + b, we
have the identity

gt*St:b*Bt, (11)

so that it suffices to control ||b; — b]|.

Energy-based posterior and the optimization landscape. Let 7,
be the offset-invariant window used by the energy surrogate and define the
(approximate) negative log-posterior potential

¢
®i(b) = —logq(b) + ZEO(Ot’_vat’,w)a (12)
=0

so that the Bayes-FORL target density is p¢(b | 0o.t, ap:t—1) o exp(—P¢(b))
(cf. ) To state stability results, we compare ®; to the “ideal” potential
obtained from the true conditional belief model,

t

o7 (b) = —logq(b)+ > E*(op—b, 1),  E*(s,7):=—logp(s | 7)+e(r),
=0

where ¢(7) is any additive normalizer independent of s and hence irrelevant

for inference over b.

Our standing regularity hypothesis is local identifiability of the offset
through curvature of ®;. Concretely, for a neighborhood U of the true offset
b, we assume (for t sufficiently large, or for all ¢ after an initial burn-in)
that ®7 is p-strongly convex and L-smooth on U. This is a mode-separation
condition: it excludes flat directions and indistinguishable offsets in U.

Forecast misspecification enters as a local prior-mass condition.
The forecaster prior ¢ may be imperfect. For estimation, what matters is
not global calibration but whether ¢ assigns non-negligible mass near the
true b. We quantify this by requiring that on the same neighborhood U one
has

inf q(b') > exp(—er), (13)
b'eU

for some ep > 0 (small when the forecast is locally accurate). When we
truncate ¢ to a conformal set B, is interpreted as a condition on the
truncated density (equivalently, we require b € B and local mass within

BNU).

17



MAP stability under surrogate energy error. We assume a uniform
approximation property of the energy surrogate on the compact domain of
interest: for all (s,7) in the domain,

}E’g(S,T)—E*(s,T)’ < eq. (14)

Under this condition, replacing E* by Ey perturbs ®} by at most (¢t+1)eg in
value; more importantly, it perturbs gradients in a controlled manner when
E* is regular and the domain is compact. The following theorem records the
resulting mode-selection guarantee.

Theorem 6.1 (Posterior concentration / MAP offset error). Assume there
exists a neighborhood U of the true offset b such that, with probability at
least 1 — n over the episode trajectory, the potential ®; defined in 18
u-strongly convex and L-smooth on U. Assume further that holds and
that the prior-mass condition holds on U. Let BMAP € arg miny @, (V)
(ties broken arbitrarily). Then on the event above,

R 1
||b115\/IAP—b|| < ;(5F+05G) + Statt, (15)

where C' depends only on local regularity constants (e.g. Lipschitz bounds for
the gradients of E* on U), and Stat; is a term decreasing in t that captures
finite-sample fluctuation of the empirical sum Y, o, E*(op — -, Ty 1) around
its population counterpart (under mizing/boundedness assumptions).

The proof is a perturbation argument for strongly convex objectives: strong
convexity yields [|BMAP — b|| < p!||[V®4(b) — VB, (b*)|| for an appropriate
reference point, while the replacement of E* by Ey and the use of an im-
perfect prior contribute additive gradient/value perturbations summarized
by € and ep. The statistical term Stat; is standard and can be made ex-
plicit given a concentration model for the trajectory-dependent energies (e.g.
bounded differences or martingale concentration).

From MAP to filtering: why we track a full posterior. Theorem[6.]]
is a mode-selection statement: once the posterior landscape becomes suffi-
ciently curved around the true b, local optimization (or a particle approx-
imation that maintains support in U) will remain near the correct mode.
This is precisely why Bayes-FORL maintains a full posterior over b rather
than committing too early to a point estimate: if multiple modes are plau-
sible initially, a particle representation can retain them until evidence (as
measured by the accumulated energies) separates the modes.

Finite-M importance sampling error. Bayes-FORL computes either
the posterior mean or a particle MAP @ To isolate finite-M effects for
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the posterior mean, we appeal to standard concentration for self-normalized
importance sampling. Let

t
Gt(b) = eXp( - Z EQ(Ot’ - ba Tt’;w))a
t'=0

so that the exact surrogate posterior mean is E,[b G¢(b)]/E,[G(b)], and the
particle estimator is its self-normalized Monte Carlo approximation. Under
boundedness of G; on the truncated support (which can be enforced by
compactness and mild clipping of energies), we obtain the usual O(M -1/ 2)
rate.

Theorem 6.2 (Finite-particle error for the posterior mean). Assume 0 <
w < Gi(b) <w < oo for all b in the sampling support. Let (A)EM) be the self-
normalized importance-sampling estimate of the posterior mean based on M
i.i.d. samples from q. Then for any n € (0, 1), with probability at least 1 —n,

~ log(1 [}
6~ B | s, ape]]| < 0/ 2L T (16)

for a constant C' depending only on the diameter of the support.

Integrating conformal coverage. When we truncate the prior to a con-
formal set B, Theorem 1 guarantees P(b € B) > 1 — § marginally. Con-
ditioning on the event {b € B}, Theorems apply with constants
computed on B. Unconditioning yields a two-level guarantee: with proba-
bility at least 1 — 9 —n, Bayes-FORL operates in the “well-specified support”
regime and achieves estimation error controlled by eg, £, and the inference
term eine(M) := O(y/log(1/n)/M); on the remaining 0 mass where b ¢ B,
no nontrivial bound is possible without further assumptions. In view of ,
this directly implies corresponding bounds on ||§; — s;||, which will be the
only estimator-dependent quantity entering our control analysis in the next
section.

7 Theory II — Control: Modular Value-Loss Bounds
for Frozen Policies

We now translate state-estimation error into a bound on the deployment
value degradation incurred by acting through the frozen policy 7 on §; rather
than on the true state s;. The central point is that, once 7 is fixed, all
deploy-time adaptation enters exclusively through §;; consequently, any con-
trol guarantee must be modular in the sense that it depends on the estimator
only via a scalar summary of its state error.
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Setup and a compatible action metric. Let Q7(s,a) be the action-
value function corresponding to the fixed policy m under the true latent
MDP dynamics and rewards. We assume Q™ is Lg-Lipschitz in (s,a) on a
compact domain, i.e.,

Q7(s,0) — Q7(s',a)| < Lo(lls — 'l + da(a, ),

where d 4 is a metric on actions (for continuous actions, typically |ja — a’|]).
Since 7 is stochastic in general, we require a Lipschitz property mapping
states to action distributions: there exists L, such that

dp(x(- | s).7(- | ) < Lalls— ', (17)

where dp is a probability-metric compatible with @7, in the sense that for
any fixed s and any distributions v, 2’ over actions,

EWQ”(s,a)—Ew/Qﬂ(s,a)) < Lodp(v,v/). (18)

For example, holds with dp equal to 1-Wasserstein when a — Q7 (s, a)
is Lg-Lipschitz in a, and also holds with dp equal to total variation when
Q7 is bounded.

A one-step deviation bound. Fix a time ¢, and compare the oracle
action distribution 7(- | s;) to the deployed one (- | 5;). Using (18)—(L7)
and the Lipschitzness of Q™ in s, we obtain

Ea~7r(-\§t)Q7r(St7a) - Ea~7r(~\st)Q7r(Stva)‘ < LQ dp (77( | §t),71'(~ | st)) < LQLW”gt - St”a
(19)

Eomn( 1) Q" (51, @) — Equr(5,) Q" (5t a)‘ < Lgllse — sell- (20)

Combining f yields the canonical (1 4 L) factor: at time ¢ we pay
once for evaluating Q™ at the wrong state, and once more for sampling an
action from the wrong conditional distribution.

Modular discounted value-loss upper bound. We lift the one-step
bound to a discounted value statement by a standard Bellman telescoping
argument. Let V™% (sq) denote the value achieved when actions are sampled
as ay ~ (- | §) with § = E(00.,a0:t—1), and let V™ (sp) denote the oracle
value when sampling a; ~ 7(- | s¢).

Theorem 7.1 (Modular value-loss upper bound). Assume f and
that QT is Lgo-Lipschitz in (s,a) on the relevant compact domain. Then, for
any (possibly randomized) online estimator € producing 3,

o - Lo(l1+ L, B
Vo)~ Vo) < “UE) supBa - sl (o)
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In particular, under the additive-offset model o, = si+b we have 5;—s; = b—l;t
and the right-hand side depends only on the offset-estimation error.

Proof sketch. We write the value difference as a discounted sum of per-step
Q7 differences under a coupling that aligns the latent trajectory while com-
paring actions sampled from 7 (- | §;) and 7(- | ;). Applying (19)-(20) at
each time step yields

B[Q7(Giar) = Q7(s,a)] | < Lo+ La)Ells = sl

and summing with weights ~* gives by the geometric series bound
tho 7t <(1- 7)71- O

Instantiation for Bayes-FORL and separation of error sources. The-
orem reduces control to filtering. Combining with the estimation
statements from Section [6] yields an immediate decomposition: whenever
Bayes-FORL operates in the “well-specified support” regime (e.g. b € B un-
der conformal truncation), we may substitute a bound of the form

supE||5; — s¢|| S er +eg + €ime(M) + sup Staty,
t t

and thus obtain an explicit end-to-end guarantee on value loss whose depen-
dence on forecast misspecification, surrogate error, and finite-M inference is
additive up to constants. Importantly, no property of @ beyond Lipschitz
regularity enters; in particular, we do not require 7 to be optimal, nor do we
require any special structure of the MDP beyond existence and regularity of
Q™ on the visited domain.

Matching lower bound: tightness of the Lipschitz dependence. We
now record that the linear dependence on sup, E||§; — s;|| and the factor
(1 —~)~! are unavoidable without additional structure. The proof proceeds
by constructing an MDP family in which rewards are directly sensitive to
one coordinate of the state, and the frozen policy m maps that coordinate
(Lipschitzly) into actions which linearly control reward. In such a case, any
estimator error induces an essentially proportional reward shortfall.

Theorem 7.2 (Matching lower bound). Fiz v € (0,1) and any estimator
& that produces actions by sampling a; ~ w(- | 8¢). There exists a family of
stationary deterministic MDPs with additive observation offsets and a policy
7w such that Q™ is L-Lipschitz and, for an absolute constant ¢ > 0,

o L .
V™(sg) = VT 8(30) > ¢ . sup E||5; — s¢]|. (22)
=7 t>0
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Construction sketch. We embed a one-step decision problem into a discounted
MDP by making the next state absorbing. Let s € [—1, 1] be scalar and let
the reward be 7(s,a) = —|a — s|, with dynamics s;11 = s; (absorbing). For
a fixed stochastic policy 7(- | s) that concentrates around a = s and is Lips-
chitz in s (e.g. a narrow Gaussian centered at s), the induced Q™ is Lipschitz
in s and a. If the deployed agent acts on § rather than s, then E[|la — s]
increases by a constant fraction of |§ — s| under mild regularity of 7, yielding
a one-step value gap proportional to |§— s|; the absorbing structure amplifies
it by (1 —~)~% O

Discussion: what would be required to beat the bound. Theo-
rems identify the estimator error as the unique lever in the frozen-
policy regime and show that Lipschitz regularity alone cannot yield sublinear
dependence on ||§; — s¢||. Any improvement must therefore exploit addi-
tional structure beyond generic Lipschitzness, such as (i) flat directions of
Q7 aligned with offset ambiguity, (ii) robust policies whose action distribu-
tion is locally invariant to certain state perturbations, or (iii) richer obser-
vation models that make b identifiable faster (reducing sup, E||5; — s¢||). In
the absence of such structure, the appropriate goal is not to seek a sharper
control inequality, but to engineer an estimator that minimizes the relevant
error summaries (including tail-risk versions) under the forecast and compu-
tational constraints.

8 Complexity and Practical Considerations

We collect here the implementation-level considerations that determine whether
the Bayes-FORL filter is a viable deploy-time module under bounded com-
pute. Since the policy 7 is frozen, the only online degrees of freedom are
(i) the number of particles M, (ii) the manner in which we maintain and
update the episode-level belief over b;, and (iii) simple numerical safeguards
that prevent weight collapse and out-of-support behavior.

Online time and space complexity. At time ¢, Bayes-FORL performs
M evaluations of the energy surrogate Ejp(s,T:,,) at the candidate states
s = o; — b Writing C for the cost of a single energy evaluation and Cj
for sampling from (- | §;), the per-step time is

O(MCE +Cx —|—Cbuf),

where Chy¢ is the constant-time update for the history buffer 7 ,, (typically
O(w) but implemented as a ring buffer so that the amortized per-step cost is
constant). Resampling, when triggered, adds an O(M) step. Over a horizon
T, the per-episode complexity is thus O(T'M CE), and the memory footprint
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is
O(Mn) for the particles {b™}M_ < R", plus O(w(n+|al)) for 7¢,q.

We stress that this complexity is independent of any planning step: the
control component remains a single policy query at §;.

Numerical stability: log-weights and effective sample size. Since
the posterior weights are multiplicative over time, naive weight updates un-
derflow quickly. We therefore maintain log-weights

log wim) = log u‘;ETl) — Ey(oy — b(m),rt@),
followed by normalization via a log-sum-exp. A standard diagnostic for de-
generacy is the effective sample size

M (m)\2
BSs, o= (m=t™ )y gy

M (wi™)2

and we trigger resampling when ESS;/M < « for some a € (0,1) (e.g.
a = 0.3). In an episodic constant-offset model, resampling is typically suf-
ficient; however, when the posterior is multimodal, resampling alone can
prematurely eliminate viable modes. We return to this failure mode below.

Amortization and batching. Although the update is conceptually se-
quential, it is vectorizable: the M candidate states sﬁm) = o, — b™M can
be stacked and passed through FEjy in a single batched forward call. This
typically yields near-linear speedups on accelerators, and it also simplifies
memory locality on CPU. When 7, is represented by a fixed-size tensor
(deltas and actions), the energy network can be structured to reuse an em-
bedding of 7, across all m at time ¢, so that only the s-dependent path
is replicated over particles. Concretely, if Ep(s,7) factors as gg(hg(7),s),
we compute z; = hy(7¢.) once per step and evaluate gg(z, sgm)) for all m.
This reduces the effective constant in M Cg without changing the asymptotic

bound.

Calibration and conformal truncation costs. If we employ conformal
sets B; to guarantee P(b; € B;) > 1 — 6, the cost is paid primarily offline.
In the common split-conformal pattern, we compute nonconformity scores
on a calibration log of past offsets and forecaster outputs, then select a
quantile threshold. For multivariate b, a practical choice is a Mahalanobis-
type score a(b) = ||(b— ) /XY/?||, where (11, ¥) are taken from the forecaster
or estimated from residuals; the only nontrivial offline expense is a covariance
estimation /inversion, which is negligible relative to training Ep. Online,
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conformal truncation is essentially free: we either (i) reject-sample particles
until 8™ € B; (acceptable when Py, (b € Bj) is not too small), or (ii) sample
once and clamp/transport particles to the set by a deterministic projection
(useful for ellipsoidal Bj). We emphasize that conformal calibration does
not correct a wrong energy model; rather, it bounds prior support error by
ensuring the true b; lies in a region we do not discard with high probability.

Recommended engineering choices (default settings). In deploy-
ments where n is moderate and FEjy is a neural surrogate, we have found
the following choices to be robust:

o Use Aoy in Tt whenever possible. Under constant bj, deltas remove
the offset and supply identifiability signal that is invariant to b;; this
reduces the burden on the forecaster and improves the conditioning of
the posterior.

e Prefer posterior mean for control, MAP for diagnostics. The posterior
mean b, = Yom wt(m)b(m) is stable when the posterior is unimodal, while
the MAP particle is useful for detecting multimodality (large mean—
MAP discrepancy).

o Use tempering when the energy scale is uncertain. If the magnitude of
FEjy is miscalibrated, weights may collapse. A simple remedy is to intro-
duce an inverse-temperature 8 € (0, 1] and update with exp(—SEy); 5
can be chosen by maintaining a target ESS range.

o Monitor ESS; and posterior dispersion. Low ESS, rapidly decreasing
posterior variance, or abrupt shifts in b; are all actionable signals for
triggering resampling, tempering, or a fallback estimator.

Failure modes and mitigations. We distinguish four common patholo-
gies.

1. Forecast misspecification (support failure). If q; assigns negligible mass
near the true b;, importance sampling fails regardless of M. Conformal
truncation addresses the opposite error (over-pruning) but does not
create missing mass. A practical mitigation is to use heavy-tailed priors
(e.g. Gaussian scale mixtures) or to mix the forecaster with a broad
“safety” component q?‘ix = (1 - XN)g; + Aqo-

2. Multimodal or symmetric posteriors over b. When the likelihood in-
duced by Ejy is approximately symmetric in b, the posterior may have
separated modes. Particle resampling can then lock onto an arbitrary
mode. Remedies include stratified initialization (draw from a mixture
covering plausible modes), rejuvenation steps (e.g. a small Gaussian
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random-walk move on b followed by Metropolis correction using the en-
ergy surrogate), or delayed commitment (control on a mixture-averaged
5 while deferring mode selection until sufficient evidence accumulates).

3. Energy surrogate error out of distribution. If 0,—b(™) exits the compact
domain on which FEj approximates the negative log-belief, the filter
can assign spurious likelihood. This is best handled by explicit domain
checks (clipping to a trusted set, or inflating energy outside-range),
and by training-time augmentation over plausible offsets so that Ejy is
well-behaved on the states induced by o; — b with b € B;.

4. Particle tmpoverishment at long horizons. Even with correct models,
repeated resampling without rejuvenation reduces particle diversity.
Since b; is constant, rejuvenation can be implemented cheaply (a few
move steps every K time steps) without changing the per-step asymp-
totics, and often stabilizes late-episode behavior.

Compute-risk tradeoffs and choosing M. Theorems controlling e;n¢(M)
suggest the usual M ~1/2 improvement, but in practice the relevant criterion
is avoiding catastrophic weight collapse in the early time steps, since control
errors compound through the discount factor only linearly. We therefore
recommend sizing M by a stress-test that measures the worst-case (over
episodes) early-time ESS decay and the tail of ||b; — b;||, rather than by aver-
age loss. When compute is severely constrained, a hybrid approach is viable:
run Bayes-FORL with small M to obtain a coarse by, and switch to a de-
terministic local optimizer for ®;(b) (warm-started at b;) once the posterior
is evidently unimodal, thereby replacing the O(M) particle update with a
small fixed number of gradient steps.

Summary. Bayes-FORL is designed so that all substantial costs are shifted
offline (training Ejp and, optionally, calibrating B;), while the online loop
consists of a batched energy evaluation and a light-weight SMC update. The
dominant practical risks are not asymptotic, but rather mode ambiguity and
support mismatch; these are addressable by conservative prior mixing, ESS-
driven tempering/resampling, and lightweight rejuvenation. This positions
the method for an empirical evaluation focused on correlated offsets and
tail-risk behavior, which we specify next.

9 Experimental Protocol (Recommended)

We recommend an evaluation protocol whose purpose is not merely to im-
prove mean return, but to (i) expose the failure modes predicted by the
modular analysis (support mismatch, multimodality, finite-M collapse), and
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(ii) measure tail state-estimation risk, since the value gap bound in Theo-
rem 4 is controlled by worst-case (or supremal) state error rather than an
average-case proxy.

Training—deployment split and ground-truth access. We assume ac-
cess to an offline dataset D collected in M., with fully observed states.
All components are trained offline: (i) the frozen policy 7 (any offline RL
method), and (ii) the energy surrogate Epy(s,T;,,) trained to approximate
—log p(st | T¢w) on the training distribution induced by D (optionally aug-
mented; cf. Section . The forecaster that produces g;(b) is trained on a log
of offsets from past episodes (or a simulator-generated offset process); cru-
cially, at deployment-time evaluation we do not reveal b; to the estimator,
but we do record it for metrics.

Correlated-offset benchmark design. To test the specific advantage of
a joint belief over b; € R", we recommend benchmarks in which b; has non-
trivial cross-dimensional correlation and exhibits across-episode temporal
structure. A simple, controllable family is

bj = u + A(bj_l—u) + §j7 gj NN(07Z)7 (23)

with A chosen to be stable (e.g. A = pI for p € (0,1), or a low-rank pertur-
bation) and with ¥ dense. To generate structured correlations at scale, we
also recommend a factor model

bj = U + WZj + €5, ZjNN(O,Ik), EjNN(O,O'QIn), (24)

where k£ < n controls the intrinsic correlation dimension. One may combine
with an AR(1) process on z; to induce persistent episode-to-episode
drift while keeping b; constant within each episode. This benchmark di-
rectly probes whether an estimator that treats coordinates independently
can recover offsets that lie near a low-dimensional correlated manifold.

We propose sweeping difficulty along at least three axes: (a) correlation
strength (via |[|[WW] or off-diagonal mass in 3), (b) forecastability (via p in
(23) or SNR in (24))), and (c) out-of-support rate (by occasionally sampling
b; from a broader “shock” distribution, e.g. a mixture with a heavy-tailed
component). The latter is necessary to evaluate support failure and the
practical value of mixing priors.

Forecaster baselines (univariate vs. multivariate). Because Bayes-
FORL is modular in ¢;, we recommend two forecaster classes:

1. Univariate forecaster: fit n independent predictors to each coordinate,
yielding a factorized prior ¢f™(b) = [[iZ; ¢;i(bi) (e.g. ARIMA per
coordinate, or per-dimension quantile regression).
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2. Multivariate forecaster: fit a joint model (e.g. VAR, low-rank state-
space, or a neural multivariate probabilistic model) to obtain a full-
covariance prior ¢t (b).

The comparison isolates whether joint correlation modeling matters even
when the filter itself is unchanged. For both classes, we recommend reporting
a scalar mis-specification diagnostic on held-out offsets, such as negative log-
likelihood or calibration error for marginal quantiles, but we stress that these
do not replace control-centric evaluation.

Estimator baselines: DCM vs. Bayes-FORL (and oracles). We rec-
ommend at least the following estimators: (i) No correction: 5 = o4. (ii)
Oracle offset: §; = sy or 5 = o — bj (upper bound). (iii) DCM (dimension-
wise correction): any estimator that forms by by coordinate-wise fusion of
independent beliefs or scores (the precise implementation may vary, but the
defining restriction is per-coordinate updating without maintaining a joint
posterior over R™). (iv) Bayes-FORL: the joint particle filter described ear-
lier, with fixed compute budget M and optional conformal truncation to
Bj. To ensure fairness, we recommend matching wall-clock or matching the
number of Fy evaluations per step across methods; for DCM variants, this
typically means equating total forward passes through FEy.

Tail-risk metrics for state estimation. Since b; is constant within an
episode, state-estimation error and offset-estimation error coincide: §; —s; =
—(by — bj). We recommend reporting both pointwise and tail metrics:

e = 1356 = sjell; (25)
e;nax = orgtaéXT ej,t7 (26)

u€R —

CVaR, (™) := inf {u + E[(e™™ —u)] } , (27)
with o € {0.9,0.95}. We additionally recommend a discounted error proxy
aligned with value bounds,

T
e] == (1= e (28)
=0

but we treat e}’ and CVaRq as primary, since they are most sensitive to

early catastrophic mistakes and mode-locking.

Control metrics. We recommend reporting (i) mean return E[Y 7 ~v'r],
(ii) return tail risk (e.g. CVaR, of negative return), and (iii) the value gap
to oracle,

AV = Vﬂoé' - Vrrooracle (29)
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When environment stochasticity is substantial, we recommend multiple roll-
outs per episode-offset pair to separate offset-induced error from transition
noise.

Calibration ablations (conformal on/off). To evaluate the effect of
conformal truncation, we recommend three conditions: (a) no truncation
(particles from g;), (b) truncation to Bj at level 1 -4, and (c) an intentionally
mis-set d (e.g. overly aggressive truncation) to show the support-risk tradeoft.
We recommend reporting empirical coverage I@(bj € B;) and relating failures
to spikes in €;***.

Protocol-level ablations. Finally, we recommend ablations that isolate
the sources of robustness: (i) history choice (using Ao; versus raw o; in
Ttw), (1) window size w, (iii) particle count M and resampling/tempering
on/off, and (iv) prior mixing ¢™* = (1 — \)gj + Ago with a broad go. The
outcome of these ablations should be summarized not only by means but by
rankings under tail criteria (e.g. which method minimizes CVaRg g5(e™*)),
since this is the regime in which correlated offsets and multimodality most
clearly separate joint from coordinate-wise approaches.

10 Discussion and Limitations

Dependence on likelihood-surrogate quality. Our online inference
procedure reduces, in effect, to importance-weighting candidate offsets by
the surrogate likelihood contributions

() o exp(— Eg(or — b, 1)), po(b | 00:t,a0:t-1) o q;j(b) H £y (b).

v<t

Consequently, deployment performance hinges on whether Ejy(-,-) assigns
relative energies that are faithful to the true conditional density of s; given
history. The uniform approximation condition ||Ey — E*||c0 < ¢ is conve-
nient for analysis but does not by itself preclude harmful pathologies: (i)
localized regions where the surrogate is overly sharp, causing weight collapse
and premature mode-locking, and (ii) regions where the surrogate is too flat,
producing poor discrimination among offsets and slow concentration. Both
effects can occur even when average predictive metrics (e.g. held-out nega-
tive log-likelihood) appear satisfactory, because the filter compounds errors
multiplicatively over time.

A practical corollary is that one should treat the dynamic range of Eg as
a first-class object: if Fy is miscalibrated by a multiplicative temperature,
then [ ], exp(—Ep) may concentrate too quickly (or not at all). While we have
presented conformal truncation and prior mixing as safeguards on the support
of b, they do not correct a systematically misshapen surrogate. Designing
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calibration procedures that preserve the product structure while controlling
effective sample size (ESS) remains an important implementation detail; our
theoretical bounds implicitly assume that the induced importance weights
remain within a manageable range.

Multimodality, symmetry, and non-identifiability. Theorem-style guar-
antees for offset recovery require some form of local curvature or mode sep-
aration of the (negative) log-posterior

O,(0) == —logq;(b) + > Egloy — b, T w)-

v<t

This is unavoidable: if ®; has multiple well-separated minima with com-
parable values, then neither MAP estimation nor finite-M sampling can be
expected to recover the true b; reliably without additional information. In
our setting, multimodality may arise from at least two sources.

First, the belief model itself may be ambiguous: if the learned conditional
Po(st | Ttaw) is multimodal (e.g. due to partial observability induced by us-
ing only a short window), then Ey may exhibit multiple low-energy regions
corresponding to distinct plausible states, which translate into multiple plau-
sible offsets b = 0y — s. Second, and more fundamentally, the environment
may possess symmetries that render offsets intrinsically unidentifiable. For
instance, if the true dynamics and rewards are invariant under translations
along some coordinates (or approximately so on the relevant domain), then
distinct offsets can generate indistinguishable trajectories under the frozen
policy, implying that no estimator can concentrate beyond the symmetry
class. In such cases, one should expect persistent posterior uncertainty over
b; and therefore a non-vanishing value gap whenever 7 is sensitive to those
coordinates (cf. the Lipschitz lower bound phenomenon).

These observations suggest two diagnostics we regard as essential: (i)
explicit checks for symmetry-induced flat directions by probing whether
Ey(s, ) changes materially under candidate shifts in s, and (ii) stress tests
in which the forecaster prior is intentionally broadened to reveal whether the
filter remains stable under genuine ambiguity or instead collapses arbitrar-
ily due to finite-M effects. Put differently, multimodality is not merely a
sampling nuisance; it is an identifiability question that directly controls tail
risk.

Finite-M collapse and the limits of importance sampling. The par-
ticle implementation inherits the standard failure modes of self-normalized
importance sampling: weight degeneracy, sensitivity to proposal mismatch,
and path dependence through resampling. In our episodic-constant setting,
the weights are updated repeatedly while particle locations remain fixed,
which can lead to rapid ESS decay when the accumulated likelihood ratio
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is large. While resampling stabilizes numerical behavior, it can also irre-
versibly discard minority modes that later become favored as new evidence
arrives. Remedies such as tempering (using exp(—SFy) with g 1 1), reju-
venation moves (e.g. local MCMC steps on b), or maintaining a mixture of
proposals are compatible with our modular framing, but they increase online
compute and complicate guarantees. Our present analysis captures finite-M
error via coarse concentration terms; obtaining sharp, pathwise tail bounds
under resampling remains open.

Extensions beyond additive offsets. A natural extension replaces the
observation model o; = s; + b; by an episode-specific affine transform,

0 = Ajst + bj, (30)

with A; € R™"™ unknown (or structured, e.g. diagonal gains) and b; € R™.
In principle, our approach extends by treating 0; := (Aj, bj) as the episode-
constant latent and weighting particles using ng) = Am=1 (g, — (™) (when
invertible), or more generally by scoring candidate (A,b) through Ejy(-, 7).
However, identifiability becomes substantially more delicate: even in deter-
ministic settings, (A4, b) may not be recoverable without excitation, and the
strong convexity conditions required for concentration may fail unless we
impose structure (e.g. A; near identity, low-dimensional parametrization, or
priors that exclude degenerate transformations). Moreover, errors in A; cou-
ple multiplicatively into state error, potentially amplifying value loss relative
to the additive case. We therefore view as feasible but requiring explicit
structural assumptions and careful experimental validation.

Anchor observations and intermittent ground truth. Many appli-
cations provide occasional “anchors”: absolute-position fixes, trusted propri-
oceptive measurements, or external calibration signals that partially reveal
s¢ (or bj) at a sparse set of times. Such information can be incorporated by
adding anchor likelihood terms to ®;(b), equivalently multiplying the par-
ticle weights by an additional factor at anchor steps. The resulting filter
can break symmetries and collapse multimodality dramatically, but it also
highlights a limitation of our current exposition: we have not quantified how
anchor frequency and noise interact with the energy-surrogate error e and
the forecast mis-specification level ep. Deriving explicit tradeoffs between
anchor rate, particle budget M, and tail estimation risk is a concrete direc-
tion for strengthening the framework.

Open problems. We close by isolating several questions that remain un-
resolved in our modular treatment. (i) Training for filtering robustness:
how should one train Ejy so that the induced product-of-experts posterior is
well-behaved under sequential multiplication, rather than merely accurate
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in one-step prediction? (ii) Non-asymptotic tail guarantees: can one obtain
high-probability bounds on max; ||b; —b;|| under realistic resampling schemes
and mild mixing assumptions? (iii) Diagnosing and handling symmetries:
can one algorithmically detect non-identifiable subspaces online and report
calibrated uncertainty in a way that correlates with control risk? (iv) Beyond
constant offsets: slowly drifting within-episode biases (e.g. b1 = by + ()
interpolate between our episodic model and general POMDP filtering; under-
standing the minimal modifications that preserve tractability, while retaining
conformal safeguards, is an important step toward broader applicability.
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