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Abstract

Offline reinforcement learning (RL) is appealing when online inter-
action is costly, but deployment often fails under non-stationary sens-
ing pipelines. Prior work (e.g., FORL) treats episodic non-stationarity
as additive offsets, leveraging zero-shot time-series forecasting and diffusion-
based multimodal state beliefs conditioned on offset-invariant delta
observations. In real systems, however, observation drift frequently
includes unknown per-channel gains (unit conversions, normalization
changes, calibration drift), not just biases. We generalize the FORL
setting to episodically constant affine observation maps ot = Ajst + bj
with diagonal (or low-rank) Aj and develop AFORL, a transform-
invariant belief-update framework that retains FORL’s retrospective
constraint advantage. The key idea is to replace raw delta observa-
tions with per-dimension log-centered delta features that cancel diag-
onal scaling and additive bias, enabling a conditional generative belief
model trained solely on stationary offline data to remain valid at test
time. AFORL then fits affine parameters per candidate state trajec-
tory in closed form and fuses them with a forecast prior over (Aj , bj) to
select a consistent state estimate for control. We provide identifiability
conditions and upper bounds on state-estimation and value loss, along
with matching lower bounds showing excitation is necessary. We out-
line benchmark protocols extending D4RL/OGBench with real-world
time-series gains and biases; experiments would validate robustness
under uniform scaling, per-channel scaling, and combined bias+scaling
without policy retraining.
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1 Introduction and Motivation

Offline reinforcement learning is frequently adopted in deployment settings
where online exploration is constrained by safety, cost, or latency. In such
pipelines the learned policy is often trained on a fixed dataset collected under
a specific sensing stack and a specific preprocessing chain. The resulting
policy π is then frozen and evaluated (or deployed) under the assumption that
the state variables presented to the policy at test time are “the same” as those
seen during data collection. Our point of departure is that this assumption
fails in a systematic and, by 2026, routine manner: sensing and preprocessing
drift across deployments, across hardware revisions, and even across episodes
within the same deployment day, while the underlying dynamics and reward
remain essentially unchanged.

A widely discussed special case is additive observation bias, for example
due to an offset in a sensor, a baseline shift in a learned perception em-
bedding, or a changed origin in coordinate conventions. Additive offsets are
problematic but conceptually limited: they can sometimes be removed by
recentering, by maintaining running means, or by relying on policies that are
robust to global translations. In practice, however, sensor drift is more ac-
curately modeled as affine. Per-dimension gains change under recalibration,
temperature, optical exposure, compression, quantization, or normalization
steps that are inserted or modified by downstream engineering teams. In ad-
dition, these gains and offsets are often constant over short time horizons (an
episode, a rollout, or a task attempt) but can change abruptly between hori-
zons, e.g., due to resets, reinitializations, or adaptive filtering that restarts
at episode boundaries. This leads us to a test-time observation map of the
form

ot = Ajst + bj ,

where the pair (Aj , bj) is fixed within episode j but may vary across j.
Even when Aj is diagonal, strictly positive, and bounded away from 0, the
induced distribution shift can be severe: a policy trained on clean states may
interpret scaled state components as increased velocity, larger distances, or
more urgent errors, and respond with inappropriate actions.

These affine shifts are not merely a modeling convenience; they capture
concrete failure modes in modern deployment pipelines. First, in robotics
and embodied control, the same physical state can be reported under differ-
ent scaling due to unit conversions (meters vs. centimeters), camera intrinsics
updates, or changes in state-estimation filters. Second, in industrial control
and forecasting-driven decision systems, a standardized feature pipeline may
apply per-batch normalization whose parameters are computed from recent
data; after a reset, these parameters can differ, producing an episode-wise
affine transform of the features. Third, in multi-tenant inference stacks, the
policy may receive state proxies that are the output of another learned model
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(a perception encoder or a latent state estimator) whose calibration changes
after routine retraining; the resulting mapping is often well-approximated
locally by a diagonal gain and bias when inspected in the coordinates rele-
vant to the downstream policy. In all these cases, the environment transition
kernel and reward function may remain effectively unchanged, yet the con-
trol performance deteriorates because the policy is evaluated on a distorted
representation of the state.

A natural response is to seek robustness by augmenting training with
random affine transformations or by learning policies that are invariant to
such transformations. Such approaches, however, can be overly conserva-
tive: the policy may discard information in dimensions where scale matters
for optimal control, or it may require substantial additional data coverage to
avoid pathological invariances. Another response is online system identifica-
tion: estimate (Aj , bj) from the observation stream and invert the transform.
This is also nontrivial in the offline setting, because the policy is frozen and
cannot actively excite the system to reveal the transform, and because the
observation model is confounded with latent state evolution. In particular,
without sufficient state variation within an episode, the affine parameters
are not identifiable, and any method that claims uniform recovery must fail
on such instances.

We propose AFORL, an inference-time method designed to sit between a
frozen offline policy and a drifting affine observation stream. The method is
organized around a simple principle: rather than attempting to directly in-
fer (Aj , bj) from raw observations, we construct transform-invariant features
from short windows of experience and use these features to recover a belief
over the latent state in the coordinate system on which π was trained. Con-
cretely, we consider windowed differences ∆ot to eliminate the episode-wise
bias bj , and we apply per-dimension logarithms and within-window centering
to eliminate the additive effect of log aj,d under positive diagonal gains. This
produces a feature map ϕ(τ(t, w)) whose distribution is (up to controlled nu-
merical smoothing) the same under the clean training observations and the
affine-distorted test observations. Thus, a conditional model trained offline
to approximate p(st | ϕ) remains applicable at test time without retraining
and without access to ground-truth affine parameters.

AFORL then combines this invariance with a candidate-selection mech-
anism that restores global consistency. Since ϕ(τ) is invariant, it cannot on
its own determine the absolute scale and location of the latent state. We
therefore treat state inference as a multimodal belief problem: from ϕ(τ) we
sample k candidate latent states (or short latent trajectories) using a condi-
tional generative model trained on the offline dataset. For each candidate,
we fit the best episode-wise affine parameters via closed-form least squares
over the same window and score the candidate by a Bayesian criterion that
incorporates an episode-start forecast prior over (Aj , bj). The prior term is
intended to exploit auxiliary information that is often available in deploy-
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ment: calibration metadata, historical telemetry, or a time-series model that
predicts drift patterns across episodes. The residual term enforces within-
window agreement between the candidate latent trajectory and the observed
trajectory under a single affine map, thereby preferring candidates that ad-
mit a coherent explanation of the data.

Our technical contributions are correspondingly threefold. First, we for-
malize and prove the invariance property of the log-centered delta features
under diagonal positive gains and additive bias, with explicit control of the
smoothing parameter used to avoid singularities at small deltas. This in-
variance is the key to transferring an offline-trained conditional belief model
to the test-time observation regime. Second, we establish an identifiability
and stability statement for the episode-wise affine parameter fit given a can-
didate latent trajectory: under a mild excitation condition (nondegenerate
empirical variance in each dimension over the window), the least-squares so-
lution is unique and varies continuously with candidate error. This yields
a principled way to score candidate trajectories and to quantify how state
estimation error propagates into the inferred affine parameters. Third, we
combine these elements into an end-to-end selection guarantee: if the learned
conditional generator is within total variation ε of the true conditional and
if the Bayesian selector enjoys a score margin separating the true mode from
spurious explanations, then the expected state-estimation error is bounded
by a term scaling with ε, a term capturing forecast-prior miscalibration, and
a term determined by the scoring noise parameter. Finally, to avoid over-
claiming, we complement the upper bounds with a lower bound showing the
necessity of excitation: when the state exhibits negligible variation along a
dimension within an episode, neither the affine parameters nor the latent
state can be uniformly recovered from observations, and any estimator must
incur non-vanishing error on an appropriate family of instances.

The practical implication is that offline policies need not be retrained, nor
must we assume access to clean states at deployment. Instead, we treat the
deployment problem as one of fast, bounded-memory inference: from a short
observation-action window we compute invariant statistics, generate a small
set of plausible latent states, and select the one whose implied affine map
is both internally consistent and externally plausible under a forecast prior.
This approach is explicitly designed to match the operational constraints of
offline RL deployment: fixed policies, limited online compute, episodically
changing sensing conditions, and evaluation criteria that include not only
mean performance but also tail risk induced by transient miscalibration.

2 Problem Setup

We formalize the deployment mismatch of interest as a discrepancy in the
observation map, while keeping the underlying controlled Markov process
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fixed between training and test. Throughout, the continuous latent state
space is S ⊂ Rn and the continuous action space is A ⊂ Rm. The (train and
test) dynamics are given by a transition kernel T (· | s, a) on S, and rewards
are given by a measurable function R : S × A → R. Episodes start from an
initial distribution ρ0 over S (typically uniform over S when specified by a
benchmark, but not assumed known in closed form).

Offline training environment and dataset. The training environment
is an episodic MDP

Mtrain = (S,A, T,R, ρ0),

equipped with the identity observation map, i.e., the agent observes st itself
at training time. We assume access to an offline dataset

D = {(st, at, st+1, rt)},

collected by some behavior policy (not necessarily known) interacting with
Mtrain. In particular, D contains clean state coordinates in the representa-
tion in which the downstream controller is intended to operate. From D we
train (by any offline RL procedure) a policy π(· | s), which is then frozen
and will not be updated online. We emphasize that our setting is not online
adaptation in the RL sense: we do not change π at test time, and we do not
assume access to rewards or dynamics beyond what is implied by interaction.

Test-time environment as a sequence of episodic POMDPs. At
test time the agent faces a sequence of episodes indexed by j ∈ {1, 2, . . . }.
The latent controlled process within each episode is governed by the same
(S,A, T,R, ρ0) as in training; thus, if the agent could observe st, the op-
timality properties of π would transfer in the usual stationary sense. The
distribution shift arises because the agent no longer observes st directly. In-
stead, within episode j the agent receives observations ot ∈ Rn generated
deterministically by an episode-wise affine map

ot = Ajst + bj , t = 0, 1, . . . , (1)

where Aj ∈ Rn×n is diagonal and bj ∈ Rn. We write Aj = diag(aj,1, . . . , aj,n)
and assume strict positivity and boundedness

0 < amin ≤ aj,d ≤ amax for all d ∈ {1, . . . , n},

where amin, amax are fixed constants known to the agent. The pair (Aj , bj)
is constant over timesteps within episode j but can vary arbitrarily across
episodes; in particular, the sequence {(Aj , bj)}j is not assumed Markovian
nor stationary. We allow the change to be abrupt at episode boundaries,
modeling resets, recalibrations, or per-episode preprocessing choices.
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This defines a POMDP for each j (latent state st, observation ot), coupled
across episodes by the nonstationary parameter sequence (Aj , bj). We stress
that the environment does not provide (Aj , bj) during the episode, and we do
not assume delayed reveals. Consequently, the agent must act under partial
observability induced purely by the sensing map (1).

Forecast priors over affine parameters. In addition to the online ob-
servation stream, we assume that at the start of each episode j the agent is
given a probabilistic forecast prior Πj over (Aj , bj). This prior is intended
to capture auxiliary information external to the MDP interaction—for ex-
ample, calibration metadata, a time-series model predicting drift patterns
across episodes, or historical statistics from similar deployments. Formally,
Πj is a distribution supported on diagonal A with entries in [amin, amax] and
on some bounded region for b (or more generally, a distribution for which
evaluation of log pΠj (A, b) is available). We do not assume that Πj is cali-
brated; indeed, part of the analysis later will quantify how mis-specification
in Πj impacts inference and control.

Interface to the frozen policy. The frozen policy π expects an input
in the clean state coordinate system. At test time, however, the agent only
sees ot and must construct an estimate ŝt ∈ S to feed into π. We therefore
introduce an estimator (or belief-update rule) E which, at each time t in
episode j, maps the available history and the episode prior to an estimated
latent state:

ŝt = E(Πj , o0:t, a0:t−1) ,

where a0:t−1 are the actions actually executed (possibly randomized under
π). The deployed controller is the composition π ◦ E : at time t it selects
at ∼ π(· | ŝt) and the environment transitions according to T (· | st, at) and
yields reward R(st, at).

While the estimator may be history-dependent, we will ultimately be
interested in estimators implementable under bounded online resources, e.g.
using a sliding window of length w and bounded per-step compute. These
constraints matter operationally: the estimator must run in real time, and
it must not require storing the entire episode history.

Evaluation criteria: estimation and control. We evaluate performance
along two axes: the quality of state reconstruction and the induced control
performance of the frozen policy when driven by reconstructed states.

First, for state estimation, we consider per-timestep losses such as ℓ2 er-
ror ∥ŝt−st∥2 and its expectation under the test-time interaction distribution.
Because deployment failures are often dominated by rare but severe miscali-
brations, we also consider tail metrics, such as the expected maximum error
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within an episode,
E
[
max
0≤t≤T

∥ŝt − st∥2
]
,

or high quantiles of ∥ŝt − st∥2 over time. These metrics are sensitive to
transient inference failures (e.g. during the first few steps of an episode,
when little information is available).

Second, for control performance, let V π,oracle denote the value (expected
discounted return, or finite-horizon return as specified by the benchmark)
achieved by the frozen policy when it is provided the true latent state st at
test time, and let V π◦ŝ denote the value when the policy is instead driven
by ŝt produced by E . Our primary control metric is the value loss

V π,oracle − V π◦ŝ,

with expectation taken over the randomness of ρ0, transitions T , policy
sampling, and any randomness in the estimator. This comparison isolates the
effect of observation drift and inference error from any intrinsic suboptimality
of π.

Finally, although our goal is to supply ŝt to π, it is often operationally use-
ful to also output an episode-wise estimate of the affine parameters (Aj , bj),
together with uncertainty. Such estimates can be used for monitoring, de-
bugging, or triggering safe fallback modes. We treat this as an optional
byproduct; the primary requirement is accurate state reconstruction for con-
trol.

What makes the problem nontrivial. Two structural aspects drive the
difficulty. First, the affine parameters are confounded with the latent state:
observing ot alone does not identify st without additional assumptions or
information. Second, the policy is frozen and cannot be modified to actively
excite the system for identification; the action sequence is endogenous to the
estimator via π(· | ŝt), so inference errors can compound into future trajec-
tories. Any successful method must therefore (i) leverage offline information
from D about plausible state evolution, (ii) exploit the within-episode con-
stancy of (Aj , bj), and (iii) incorporate the episode-start forecast prior Πj

whenever it is informative, while remaining robust when it is not. The next
section develops the transform-invariant features that allow us to connect
offline training distributions to the test-time observation stream.

3 Transform-Invariant Features

Our estimator must connect two distributions: the offline distribution in
which we observed clean states st, and the test-time distribution in which
we observe ot = Ajst + bj with (Aj , bj) unknown. Since we will not update
the policy online, the only viable route is to build a representation of the
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test-time history whose law is (approximately) the same as a corresponding
representation computed offline. We therefore construct features ϕ(τ) that
are invariant to the episode-wise bias bj and to the per-dimension gains aj,d
in the diagonal matrix Aj .

Windowed histories. Fix a window length w ≥ 1. For t ≥ 1 define the
observation differences

∆ot := ot − ot−1, ∆st := st − st−1.

We will form features from a sliding window of recent deltas and actions.
Concretely, for t ≥ w we define the windowed history tuple

τ(t, w) :=
(
(∆ot−w+1, at−w), (∆ot−w+2, at−w+1), . . . , (∆ot, at−1)

)
,

and write τ(t, w) = {(∆oi, ai−1)}ti=t−w+1 when convenient. (Any consistent
alignment of actions within the window suffices; we use ai−1 to emphasize
that ∆oi is induced by the transition generated under ai−1.)

Bias invariance by differencing. Within a fixed episode j, the observa-
tion map is constant, so for all t ≥ 1,

∆ot = ot − ot−1 = Ajst + bj − (Ajst−1 + bj) = Aj∆st.

Thus differencing eliminates bj exactly. This is the first invariance: any
statistic of (∆ot−w+1:t, at−w:t−1) depends on (Aj , bj) only through Aj .

Diagonal scale invariance by log-centering. Because Aj is diagonal
with strictly positive entries, the dth coordinate satisfies

∆ot[d] = aj,d∆st[d], aj,d > 0.

A direct normalization ∆ot[d]/∥∆ot[d]∥ is unstable in one dimension, and
ratio-based normalizations are sensitive to small denominators. We instead
use a log-amplitude representation, which turns multiplicative gains into
additive offsets that can be removed by centering.

Fix a small smoothing constant η > 0 (discussed below) and define, for
each t and coordinate d,

ut,d := log
(
|∆ot[d]|+ η

)
.

Over the window i ∈ {t− w + 1, . . . , t}, let

ūt,d :=
1

w

t∑
i=t−w+1

ui,d, zt,d := ut,d − ūt,d.
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We then define the feature map as the collection of centered log-deltas paired
with actions:

ϕ(τ(t, w)) :=
{
(zi, ai−1)

}t

i=t−w+1
, zi = (zi,1, . . . , zi,n) ∈ Rn. (2)

The role of the centering is that, ignoring η for the moment,

log |∆ot[d]| = log aj,d + log |∆st[d]|.

Averaging over the window adds the same log aj,d term, so subtraction cancels
it. Hence zt,d depends on the latent deltas ∆st−w+1:t[d] but not on the
unknown gain aj,d, and it already does not depend on bj because we started
from ∆o. In particular, when η = 0 and ∆si[d] ̸= 0 over the window,

zt,d = log |∆st[d]| −
1

w

t∑
i=t−w+1

log |∆si[d]|.

Therefore the random variable ϕ(τ(t, w)) computed from test-time observa-
tions has the same distribution as the same construction computed offline
from clean deltas, provided that the latent process (st, at) follows the same
controlled dynamics.

Stability near zero and the choice of η. The logarithm requires care
when |∆ot[d]| is small. The additive smoothing η serves two purposes: it
makes ut,d well-defined, and it controls the sensitivity of the feature to small
perturbations in ∆ot[d]. Indeed, the map x 7→ log(|x| + η) is globally Lips-
chitz with constant 1/η:∣∣log(|x|+ η)− log(|y|+ η)

∣∣ ≤ 1

η
|x− y|.

Thus, for deterministic observations, η also controls numerical stability; for
stochastic observations (or modeling noise), it regularizes high-variance re-
gions where ∆ot[d] ≈ 0. The trade-off is that large η reduces invariance
fidelity: when |∆ot[d]| ≪ η across the entire window, all ut,d concentrate
near log η and the centered features zt,d become nearly 0, carrying little in-
formation about ∆st[d]. This loss of information is not merely an artifact
of the feature design: it corresponds to a genuine lack of excitation along
coordinate d over the window, which we later show implies a statistical non-
identifiability barrier.

Operationally, one may choose η as a small quantile of empirical |∆st[d]|
magnitudes in the offline dataset (possibly per dimension), or adopt a con-
servative global η and augment (2) with simple flags such as 1{|∆ot[d]| < η}
to indicate low-signal regimes. A robust variant replaces the window mean
ūt,d by a median or Huberized mean, which is less sensitive to outliers in
|∆ot[d]| (e.g., spikes caused by saturations or resets) while preserving the
cancellation of the additive log aj,d shift.
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Handling sign changes and negative gains (optional extension).
Our primary development assumes aj,d > 0 so that a scale change does
not flip signs. If negative gains are possible, then ∆ot[d] = aj,d∆st[d] implies

sign(∆ot[d]) = sign(aj,d) sign(∆st[d]),

so the sign carries an additional discrete ambiguity. One can extend ϕ by
(i) keeping the centered log-amplitude features defined above (which depend
only on |aj,d|) and (ii) adding sign features such as sign(∆ot[d]) or short
sign patterns over the window. At inference time, sign(aj,d) may be treated
as an episode-wise latent variable with a prior (potentially part of Πj), or
marginalized by enumerating sign configurations in low dimension.

Why invariance matters for offline-to-test transfer. The key point
is that ϕ(τ(t, w)) is computable from test-time data but does not depend
on the unknown episode-wise affine nuisance parameters. Consequently, we
can train a conditional model on offline data that predicts (or samples) the
latent state given ϕ without ever seeing the affine shift at training time.
Concretely, from the offline dataset we can compute the same feature map
using clean deltas:

uofft,d := log(|∆st[d]|+ η), zofft,d := uofft,d −
1

w

t∑
i=t−w+1

uoffi,d,

and set ϕoff(τ) := {(zoffi , ai−1)}. Under matched dynamics, ϕoff and ϕ are
identically distributed (up to the controlled effect of η), which justifies learn-
ing p(st | ϕ) offline and applying it at deployment.

Optional extension: structured non-diagonal Aj. The diagonal as-
sumption yields per-coordinate invariants. If Aj is not diagonal, exact invari-
ants of the same simplicity typically do not exist without further structure.
Nevertheless, two structured extensions are often tractable.

First, for block-diagonal Aj with small blocks, the above construction
applies blockwise after an appropriate choice of coordinates (or after group-
ing coordinates into blocks and replacing per-coordinate log-amplitudes by
log-norms within each block).

Second, for low-rank deviations from diagonal, one may combine the
diagonal-invariant features with a small set of projection-based statistics.
For example, let P ∈ Rr×n be a fixed random projection with r ≪ n, and
define projected deltas ∆õt := P∆ot. If Aj ≈ Dj is approximately diagonal,
then the per-coordinate invariants still stabilize the dominant nuisance, while
the projected features provide weak residual information about off-diagonal
coupling. In such cases we treat ϕ as a partially invariant representation:
it removes the leading confounders exactly (bias and per-coordinate scaling)
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and leaves a controlled residual mismatch that can be absorbed as modeling
error in the subsequent conditional belief model. Our analysis and algorith-
mic development will focus on the diagonal case, where invariance is exact
and the remaining inference problem can be cleanly separated into (i) learn-
ing a conditional belief over st given ϕ and (ii) selecting among candidates
by fitting episode-wise affine parameters.

4 AFORL: Belief Generation, Affine Fitting, and
Bayesian Selection

We now describe the full deployment-time estimator. The construction in
Section 3 gives us a window feature map ϕ(τ(t, w)) whose law matches be-
tween offline training (clean states) and test-time deployment (affine ob-
servations), up to the controlled smoothing effects of η. AFORL uses this
invariant representation to (i) sample a conditional belief over latent states
from an offline-trained generative model, and then (ii) select among sam-
pled candidates by fitting episode-wise affine parameters and scoring them
against a forecast prior.

Objects learned offline and frozen at deployment. Offline, we assume
we have already trained a policy π on the clean-state dataset D; crucially,
π is fixed at deployment and expects a state input in S (not an observation
input in the transformed space). In addition, AFORL trains a conditional
generative model (a “belief generator”) on the same offline data:

pθ(st | ϕ(τ(t, w))) ≈ p(st | ϕ(τ(t, w))),

where ϕ is computed from clean deltas ∆s (not from ∆o) during training.
Any expressive conditional density model is admissible (normalizing flow,
diffusion model, autoregressive model, or a mixture model), and we empha-
size two requirements: (1) the model must support efficient sampling, since
test-time inference is sampling-based; and (2) the model should represent
multimodality, since the invariant features necessarily discard information
about (Aj , bj) and thus cannot always determine st uniquely.

In practice we may choose to condition on the full window ϕ(τ(t, w)) =
{(zi, ai−1)}ti=t−w+1 and output either (a) a distribution over st only, or (b) a
joint distribution over the state window st−w+1:t. The latter is slightly more
expensive but simplifies scoring, since affine fitting is naturally a windowed
regression.

Test-time inputs and the per-episode forecast prior. At the start of
episode j we receive a forecast prior Πj over the nuisance parameters (Aj , bj).
We treat Πj as an external source of information, potentially miscalibrated,
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which is used only in a Bayesian selection step. We do not assume that Πj

is correct, only that it can sometimes break symmetries that remain after
applying ϕ.

Within episode j, at time t we have the history of observations and
actions, but only through a bounded window: we maintain a FIFO buffer
of the most recent pairs (∆oi, ai−1). From this we compute ϕ(τ(t, w)) using
(2). The output at each step is a state estimate ŝt which is then fed into the
frozen policy π(· | ŝt) to select at.

Warm start before the window is full. For t < w the invariant window
is not yet available. We therefore use the forecast prior as a bootstrap mech-
anism: for example, letting (Āj , b̄j) denote a representative point estimate
from Πj (mean, MAP, or median), we set

ŝt := Ā−1
j (ot − b̄j),

where the inverse is taken coordinate-wise since Āj is diagonal. This warm
start is not meant to be statistically optimal; it simply ensures that the
policy receives a state-like input immediately, while AFORL accumulates
enough evidence to switch to invariant-feature inference.

Candidate generation from invariant features. Once t ≥ w, we form
ϕ(τ(t, w)) and sample k candidate latent states:

s
(1)
t , . . . , s

(k)
t ∼ pθ( · | ϕ(τ(t, w))).

When affine fitting is performed on a whole window (as it will be below),
we require candidate latent values across the same indices as the observation
window. There are two compatible implementations.

1. Window-trajectory sampling. Train the belief generator to sample

(s
(r)
t−w+1:t)

k
r=1 ∼ pθ( · | ϕ(τ(t, w))),

i.e., directly output a joint sample of the state window given the feature
window. This makes the scoring step immediate.

2. Particle-style propagation. Maintain k particles across time, storing
their recent windows, and at each step resample or rejuvenate them
using pθ(· | ϕ). This amortizes the cost of producing window trajecto-
ries but requires additional bookkeeping.

For clarity of exposition we proceed with the window-trajectory view; the
analysis in the next section depends only on having candidate state windows
with non-degenerate variation.
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Per-candidate affine fitting by closed-form OLS. Fix a candidate
window s

(r)
t−w+1:t and the corresponding observation window ot−w+1:t. Since

Aj is diagonal, we fit each coordinate independently by ordinary least squares.
For each dimension d ∈ {1, . . . , n} we solve

(âr,d, b̂r,d) ∈ arg min
a∈R, b∈R

t∑
i=t−w+1

(
oi[d]− a s

(r)
i [d]− b

)2
.

Writing s̄r,d := 1
w

∑t
i=t−w+1 s

(r)
i [d] and ōd := 1

w

∑t
i=t−w+1 oi[d], the uncon-

strained OLS solution has the familiar closed form

âr,d =

∑t
i=t−w+1(s

(r)
i [d]− s̄r,d)(oi[d]− ōd)∑t

i=t−w+1(s
(r)
i [d]− s̄r,d)2

, b̂r,d = ōd − âr,ds̄r,d,

provided the denominator is nonzero. This is precisely where an excitation
condition enters: if the candidate state is (nearly) constant along a coordi-
nate over the window, the regression becomes ill-conditioned, and the affine
parameters are effectively unidentifiable from that coordinate alone. In im-
plementation we may stabilize by adding a small ridge term to the denomi-
nator, but the theory will later show that this corresponds to an irreducible
statistical barrier in the truly unexcited regime.

Because we assume aj,d ∈ [amin, amax] with amin > 0, we also project the
fitted slope into this interval:

âr,d ← min{amax,max{amin, âr,d}},

and recompute b̂r,d = ōd − âr,ds̄r,d. Collecting coordinates yields Âr =

diag(âr,1, . . . , âr,n) and b̂r = (b̂r,1, . . . , b̂r,n).

Bayesian scoring with a forecast prior. We next score each candidate
by combining (i) its empirical consistency with the observation window under
the best-fitting affine map, and (ii) its plausibility under the episode prior
Πj . We introduce a small noise level σ2 > 0 purely as a scoring temperature
(even when ot = Ajst + bj is deterministic), and define the residual

residr :=
t∑

i=t−w+1

∥∥oi − Ârs
(r)
i − b̂r

∥∥2
2
.

The Bayesian score is then

scorer := log pΠj (Âr, b̂r) −
1

2σ2
residr,

where pΠj denotes a density (or unnormalized score) for the prior. The term
residr favors candidates that admit a single episode-wise affine map matching
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the window, while the prior term favors candidates whose implied (Âr, b̂r) are
consistent with the forecast. This combination is essential in regimes where
ϕ is invariant but not fully informative: several distinct latent windows can
yield similar ϕ, yet only one of them induces affine parameters that are both
consistent over time and plausible under Πj .

We then select

r⋆ ∈ arg max
r∈{1,...,k}

scorer, ŝt := s
(r⋆)
t .

Optionally, we also output (Âj , b̂j) := (Âr⋆ , b̂r⋆) as an episode-wise estimate,
and we may smooth these estimates across overlapping windows to reduce
variance.

Control using the frozen policy. Having produced ŝt, we act by com-
posing π with the estimator:

at ∼ π( · | ŝt),

and execute at in the environment. No policy gradients, value updates, or
online system identification loops are performed. All adaptation is confined
to state estimation. This separation is deliberate: it allows us to express the
control impact of estimation error through Lipschitz properties of the frozen
value function (cf. Theorem 4), and it avoids the instability of online RL
under misspecified observations.

Computational remarks. The OLS fitting step admits an O(n)-per-
candidate implementation if we maintain sufficient statistics over the window
(sums of s(r)i [d], s(r)i [d]2, oi[d], and s

(r)
i [d]oi[d]). The dominant cost is typ-

ically sampling from pθ. For this reason AFORL is naturally compatible
with few-step flows or distilled diffusion models, and with moderate sample
counts k.

The next section formalizes the two core facts that make AFORL analyz-
able: (i) the invariance property of ϕ, and (ii) identifiability (and stability)
of the affine fit given a candidate state window with sufficient excitation.

5 Theory I: Invariance and Identifiability

This section isolates the two structural facts on which AFORL rests. First,
the window features ϕ(τ(t, w)) computed from test-time observations are
(approximately) distributionally identical to the same construction com-
puted from clean offline states. Second, conditional on a candidate latent
window, the episode-wise affine nuisance parameters are identifiable (and
stably estimable) provided the candidate exhibits sufficient variation over
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the window. We also record the main symmetries and pathologies that ex-
plain why the belief generator must represent multimodality and why an
excitation condition is unavoidable.

5.1 Invariance of the window feature map

We recall that within a fixed episode j the observation map is

ot = Ajst+bj , Aj = diag(aj,1, . . . , aj,n), aj,d ∈ [amin, amax], amin > 0,

and we compute deltas ∆ot = ot − ot−1. Bias cancels immediately:

∆ot = Aj∆st.

Thus, for each coordinate d, ∆ot[d] = aj,d∆st[d]. The feature map used for
belief generation is based on log-magnitudes, stabilized by η > 0,

ut,d := log(|∆ot[d]|+ η), zt,d := ut,d −
1

w

t∑
i=t−w+1

ui,d,

and ϕ(τ(t, w)) collects the window {(zi,·, ai−1)}ti=t−w+1 (we suppress minor
indexing choices).

Lemma (feature invariance up to smoothing). Fix an episode j and a
coordinate d. Define ust,d := log(|∆st[d]|+η) and the corresponding centered
quantity zst,d := ust,d −

1
w

∑t
i=t−w+1 u

s
i,d. Then

zt,d = zst,d + ξt,d,

where ξt,d is a deterministic correction induced by η satisfying the uniform
bound

|ξt,d| ≤
η

min{|∆st[d]|, |∆st−w+1[d]|, . . . , |∆st[d]|}+ η
+

1

w

t∑
i=t−w+1

η

|∆si[d]|+ η
.

In particular, whenever |∆si[d]| ≫ η throughout the window, we have |ξt,d| ≪
1 and zt,d ≈ zst,d.

Proof sketch. For a > 0, log(|ax| + η) = log a + log(|x| + η/a). Center-
ing over the window cancels the constant log a, leaving only the difference
between using η and η/a. The displayed bound follows from the Lipschitz
estimate | log(y+α)− log(y+β)| ≤ |α−β|/(y+min{α, β}) with y = |x|. □
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Consequence for offline-to-online transfer. The lemma implies that,
up to the controlled perturbation ξ, the random variable ϕ(τ(t, w)) computed
from (∆o, a) at test time has the same law as the corresponding feature com-
puted from (∆s, a) in the offline environment (under the same policy-induced
trajectory distribution). This is the sense in which an offline-trained condi-
tional model pθ(st | ϕ) remains applicable at deployment: the conditioning
signal has been “factored” to remove the episode-wise nuisance (Aj , bj).

Two qualifications are essential. First, invariance is per-coordinate and
uses diagonality of Aj ; for non-diagonal Aj , ∆ot[d] mixes coordinates and
the log-centering trick no longer isolates a single log aj,d. Second, the sign
of aj,d matters: the above uses aj,d > 0. If gains may be negative, one
must either (i) model sign(aj,d) as an additional latent and incorporate sign
features sign(∆ot[d]), or (ii) restrict to magnitude-only objectives and accept
an inherent sign ambiguity.

5.2 Identifiability of episode-wise affine parameters given a
candidate

AFORL does not attempt to infer (Aj , bj) directly from ϕ; rather, it uses ϕ to
generate candidate latent windows and then checks which candidates admit
a single affine map consistent with the observation window. This motivates
the following elementary identifiability statement.

Proposition (per-coordinate OLS is unique under excitation). Fix
a coordinate d and a window {t−w+ 1, . . . , t}. Given any candidate latent
values {s̃i[d]}ti=t−w+1 and observed values {oi[d]}ti=t−w+1, consider the least-
squares fit

(âd, b̂d) ∈ arg min
a,b∈R

t∑
i=t−w+1

(
oi[d]− a s̃i[d]− b

)2
.

If the empirical variance of the candidate regressor is nonzero,

t∑
i=t−w+1

(
s̃i[d]− ¯̃sd

)2
> 0, ¯̃sd :=

1

w

t∑
i=t−w+1

s̃i[d],

then the minimizer is unique and equals the usual closed form. Moreover,
if the true relation is oi[d] = aj,dsi[d] + bj,d and the candidate satisfies
maxi |s̃i[d]− si[d]| ≤ δs, then

|âd − aj,d| ≤
C∑

i(s̃i[d]− ¯̃sd)2
δs, |b̂d − bj,d| ≤ C ′ δs,

for explicit constants C,C ′ depending on maxi |oi[d]− ōd| and the candidate
variance (and, after slope projection, on amin, amax as well).
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Interpretation. The condition
∑

i(s̃i[d] − ¯̃sd)
2 > 0 is precisely a win-

dowed excitation condition. Without it, (a, b) are not identifiable even if
the candidate were correct: if si[d] ≡ c in the window, then oi[d] = a c + b
is constant, and infinitely many pairs (a, b) yield the same constant. The
stability estimate exhibits the same phenomenon quantitatively: as the can-
didate variance shrinks, the slope estimate becomes arbitrarily sensitive to
small candidate errors.

This is not merely an artifact of least squares. The pathology is information-
theoretic: if the latent state does not vary along coordinate d, then the ob-
servation stream contains no leverage to separate scaling from bias in that
coordinate. This is the origin of the lower bound we later state as a necessity
of excitation.

5.3 Symmetries, multimodality, and failure modes

The invariance of ϕ is deliberately achieved by discarding information, and
this inevitably introduces symmetries. We record the ones most relevant for
understanding why AFORL combines a multimodal belief generator with a
forecast prior.

Residual symmetries after applying ϕ. Even in the diagonal, positive-
gain setting, ϕ is not injective in general: distinct latent windows can induce
identical centered log-delta patterns, especially when the underlying dynam-
ics admit sign flips, periodicity, or near-linear regimes where ∆s takes values
from a small set. Consequently, the conditional distribution p(st | ϕ) can be
genuinely multimodal, and any unimodal predictor (e.g. a conditional mean)
can be arbitrarily misleading for control.

Sign ambiguity and near-zero deltas. Because ϕ uses log(|∆o| + η),
it is insensitive to the sign of ∆o unless sign is separately included. When
∆s frequently changes sign, magnitude-only features can identify a set of
plausible states but not a unique one. Moreover, when |∆s| is frequently
below η, the smoothing correction in Section 5.1 dominates and the features
become less informative; empirically this manifests as degraded candidate
quality from pθ(· | ϕ) unless η is tuned to the noise/scale of deltas.

Affine fitting can be vacuous without excitation. The scoring step
penalizes candidates that cannot be explained by a single affine map over
the window. However, if a candidate window is nearly constant in a coordi-
nate, then any affine parameters can fit that coordinate well, so the residual
offers no discrimination. In such regimes the selector must rely on other
coordinates (if excited) and on the prior Πj . This clarifies why we do not
view Πj as optional ornamentation: in ambiguous regimes it supplies the
only principled tie-breaker among symmetry-related candidates.
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Why diagonality matters for identifiability. In the diagonal case, each
coordinate admits an independent two-parameter regression, and excitation
can be checked coordinate-wise. For a general full matrix Aj , identifiability
would couple coordinates and require significantly stronger conditions (e.g.
persistent excitation in multiple directions plus structural constraints such as
sparsity or low rank). AFORL is therefore designed to exploit the diagonal
structure in both the invariance map and the affine fitting step.

The next section uses the invariance and identifiability facts above as
inputs: we propagate approximation error of the learned conditional belief
and mis-specification of the forecast prior into explicit state-estimation and
value-loss bounds, and we relate the excitation requirement to a matching
minimax lower bound.

6 Theory II: Error and Value Bounds

We now propagate the two imperfect ingredients of AFORL—(i) approxima-
tion error of the learned conditional belief generator and (ii) mis-specification
of the episode-start forecast prior—into explicit state-estimation and control-
performance bounds. The resulting statements are “plug-in” in the sense
that they treat the invariance and per-candidate identifiability facts from
Section 5 as black-box inputs.

6.1 From conditional belief error to candidate coverage

Fix a test episode j and a time t ≥ w. Let ϕt := ϕ(τ(t, w)) denote the in-
variant feature computed from the observation window and executed actions.
Let p(· | ϕt) denote the true conditional distribution of the latent state st
induced by the MDP dynamics and the policy-induced trajectory distribu-
tion, and let p̂θ(· | ϕt) be the learned conditional belief generator used by
AFORL. We quantify statistical mismatch by the total variation bound

TV(p̂θ(· | ϕt), p(· | ϕt)) ≤ ε.

We emphasize that ϕt is computed from test observations o but is distribu-
tionally aligned with the offline construction (up to the controlled smoothing
perturbation), so ε should be interpreted as an offline generalization error
rather than a domain-shift error.

The first step is to convert ε into a statement that among k i.i.d. samples
from p̂θ(· | ϕt), at least one is near the true st with high probability. We
formalize “near” by an arbitrary measurable target set Gt ⊂ S (e.g. an ℓ2
ball around st) and use only the elementary inequality

p̂θ(Gt | ϕt) ≥ p(Gt | ϕt) − ε.

19



If we draw {s(r)t }kr=1
i.i.d.∼ p̂θ(· | ϕt), then conditional on ϕt,

P
(
∃r ≤ k : s

(r)
t ∈ Gt

∣∣∣ ϕt

)
= 1−(1− p̂θ(Gt | ϕt))

k ≥ 1−(1− p(Gt | ϕt) + ε)k .

(3)
Thus, for any level α ∈ (0, 1), choosing k ≳ log(1/α)/(p(Gt | ϕt)−ε) ensures
α-failure probability as soon as p(Gt | ϕt) > ε. This calculation is the only
place where k enters the analysis: increasing k increases the chance that
AFORL “covers” at least one candidate from each relevant mode of the true
conditional.

6.2 Bayesian selection with a miscalibrated forecast prior

Given each candidate sample s
(r)
t , AFORL fits nuisance parameters (Âr, b̂r)

by per-coordinate OLS over the same observation window and scores the
candidate by

scorer := log pΠj (Âr, b̂r) −
1

2σ2
residr, residr :=

t∑
i=t−w

∥oi−Ârs
(r)
i −b̂r∥

2
2,

where σ2 > 0 is a modeling noise used only for scoring. In the idealized
case where (a) the candidate window equals the true latent window and
(b) the OLS step is well-posed by excitation in each coordinate, we have
residr = 0 and (Âr, b̂r) = (Aj , bj). More generally, the stability part of the
identifiability result from Section 5.2 implies that if a candidate trajectory
window is uniformly close to the true one, then the implied affine parameters
and the residual are correspondingly small. We therefore reduce selection
correctness to a score margin condition: there exists γ > 0 such that, in
expectation conditional on ϕt, the (near-)true candidate has score at least γ
larger than any alternative mode that can explain ϕt but induces inconsistent
affine parameters across time.

To expose the effect of forecast error, we introduce an abstract mis-
specification measure δΠ controlling log-density error in a neighborhood of
the true parameters:∣∣∣log pΠj (A, b)− log pΠ⋆

j
(A, b)

∣∣∣ ≤ δΠ for all (A, b) in a set containing (Aj , bj) and the competing fits.
(4)

Here Π⋆
j denotes an “oracle” prior that would correctly reflect the episode-

wise distribution of (Aj , bj). Condition (4) is deliberately weak: it does not
require calibration, only that the log prior not arbitrarily distort the relative
ordering of plausible parameter pairs.

Under a margin condition and (4), the selector inherits robustness: an
additive perturbation of the log prior by at most δΠ can reduce the effective
margin by at most O(δΠ), while the residual term contributes an additional
perturbation on the order of σ through the factor (2σ2)−1. Combining these
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with the coverage bound (3) yields the qualitative form recorded in Theo-
rem 3: the state error is controlled by a term proportional to ε (candidate
coverage), a term proportional to δΠ (tie-breaking distortion), and a term
proportional to σ (selection noise floor).

6.3 A bound on state-estimation error

We state the consequence in the form we will use downstream. Fix t ≥ w and
let ŝt be AFORL’s chosen sample. Assume: (i) TV(p̂θ, p) ≤ ε, (ii) windowed
excitation holds so that OLS is unique and stable per coordinate for any can-
didate within a neighborhood of the truth, and (iii) a separability/margin
condition as described above. Then there exist constants C1, C2, C3 (de-
pending on the margin γ, window length w, the candidate-OLS stability
constants, and mild tail properties of the score) such that

E∥ŝt − st∥2 ≤ C1 ε + C2 δΠ + C3 σ, (5)

where the expectation is taken over the trajectory randomness and the sam-
pling randomness in AFORL. The dependence on k is implicit in C1 through
the coverage probability (3): for fixed Gt one may write C1 = C1(k) with
C1(k)→ 0 as k →∞ when p(Gt | ϕt) is bounded away from 0.

Equation (5) should be read as a decomposition rather than a sharp
constant-level inequality: ε reflects how well the offline-trained generator
captures the true conditional under invariant features; δΠ reflects forecast
quality; and σ reflects the “temperature” of the Bayesian selection rule.

6.4 From state error to value loss for frozen policies

We now translate state-estimation error into performance degradation when
deploying the frozen policy π on ŝt rather than st. Let V π,oracle denote the
return obtained by executing π with access to the true latent state, and let
V π◦ŝ denote the return when π is fed the estimated state ŝt at each step.

A convenient sufficient condition is Lipschitz regularity of the action-
value function. Suppose that for the true latent MDP,

sup
a∈A

∣∣Qπ(s, a)−Qπ(s′, a)
∣∣ ≤ LQ ∥s− s′∥2 for all s, s′ ∈ S.

Then, writing at ∼ π(· | st) for the oracle action and ât ∼ π(· | ŝt) for the
deployed action, the one-step suboptimality induced by estimation can be
bounded (in expectation) by the mismatch in the argument of Qπ, yielding a
per-step loss O(LQE∥ŝt−st∥2). Standard discounted telescoping then implies
the episodic/discounted return gap bound recorded abstractly as Theorem 4:

V π,oracle − V π◦ŝ ≲
LQ

1− γ
sup
t

E∥ŝt − st∥2, (6)
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up to the usual compounding terms if one insists on uniform-in-time rather
than average-in-time bounds. Substituting (5) into (6) yields an explicit
control-level decomposition into generative, forecast, and scoring contribu-
tions.

6.5 Matching lower bounds: necessity of excitation

Finally, we clarify why the excitation condition is not merely technical. If,
along some coordinate d, the latent state is (nearly) constant over the win-
dow, then the observation stream contains no information to separate gain
from bias: many pairs (aj,d, bj,d) explain the same oi[d]. This creates an
irreducible ambiguity in st[d] itself because st[d] = (ot[d]− bj,d)/aj,d depends
on both unknowns.

Theorem 5 formalizes this as a minimax lower bound in one dimension:
for any estimator based only on (o0:t, a0:t−1), if the latent trajectory has van-
ishing empirical variance, then there exist distinct parameter pairs within the
admissible class that produce identical observations, forcing a non-vanishing
worst-case state error. Two corollaries are immediate for our setting. First,
no algorithm—including AFORL—can guarantee uniform recovery without
excitation; at best one can rely on other excited coordinates or on prior
information. Second, in regimes where excitation intermittently fails, the
forecast prior Πj is not optional: it is the only principled mechanism avail-
able to break symmetries that are information-theoretically unbreakable from
in-episode data alone.

In summary, the theory presents a coherent triad: invariance makes
offline-to-online conditioning feasible; excitation makes affine nuisance esti-
mation well-posed; and conditional belief quality together with forecast qual-
ity determines the quantitative state and value degradation through bounds
of the form (5)–(6).

7 Complexity and Practical Considerations

We now record the computational profile of AFORL and several implemen-
tation choices that materially affect wall-clock performance at deployment.
Throughout, we consider a fixed episode j, dimension n = dim(S), window
length w, and k candidate samples per step for t ≥ w.

Per-step runtime decomposition. At each step, AFORL performs three
conceptually separate computations: (i) update invariant features, (ii) gener-
ate candidate latent states from the conditional belief model, and (iii) score
candidates by fitting (Aj , bj) over the window (or by maintaining equivalent
sufficient statistics) and taking an argmax. Writing Cgen for the cost of one
forward evaluation of the conditional generator and N for the number of
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denoising steps (if the generator is a diffusion model), the per-step cost for
t ≥ w admits the coarse bound

time(t) = O(nw) + O(kN Cgen) + O(knw) (naive OLS on a length-w window).
(7)

The first term accounts for feature computation: deltas, per-dimension log-
transform, and window-centering. This term is typically memory-bandwidth
limited and scales linearly in both n and w. The second term is typically
dominant when the belief model is a high-capacity diffusion sampler. The
third term is the candidate-wise regression and residual computation.

A simple but important observation is that the OLS fitting can be re-
duced from O(knw) to O(kn) by maintaining per-candidate sufficient statis-
tics over the sliding window. For each candidate r and dimension d, define

S
(r)
1 [d] =

t∑
i=t−w

s
(r)
i [d], S

(r)
2 [d] =

t∑
i=t−w

s
(r)
i [d]2, O1[d] =

t∑
i=t−w

oi[d], SO(r)[d] =

t∑
i=t−w

s
(r)
i [d] oi[d],

together with the window length ℓ = w+1. Then the closed-form regression
coefficients in each coordinate are

âr,d =
SO(r)[d]− 1

ℓS
(r)
1 [d]O1[d]

S
(r)
2 [d]− 1

ℓ (S
(r)
1 [d])2

, b̂r,d =
1

ℓ
O1[d]− âr,d

1

ℓ
S
(r)
1 [d], (8)

whenever the denominator is nonzero (the excitation condition). Because a
sliding window update changes each sum by “add newest, remove oldest,”
the statistics can be updated in O(n) per candidate, yielding

time(t) = O(nw) + O(kN Cgen) + O(kn), (9)

where the residual residr can also be computed from maintained sums (or
computed approximately, cf. below) rather than re-iterating over the full
window.

Memory footprint and buffering. The strictly necessary episode-local
memory consists of (a) the observation/action history of length w (or equiva-
lently the delta history), and (b) the information needed to score candidates.
If one stores raw buffers, the history cost is O((n+m)w). Candidate storage
depends on whether we retain a candidate trajectory window {s(r)t−w:t} for
each r. The most direct implementation stores the full window per candi-
date, costing O(knw), which may be prohibitive when k and w are both
large.

In practice, we can often avoid storing the full candidate trajectory by
choosing a belief model that outputs a window of latent states in one shot,
i.e. sampling s

(r)
t−w:t ∼ p̂θ(· | ϕt) jointly. This shifts complexity from memory
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to sampling but enables one-pass computation of sufficient statistics. Alter-
natively, if the belief model produces only s

(r)
t at each step, then maintaining

candidate-wise sufficient statistics requires a consistent notion of candidate
identity over time; this can be implemented by a particle-like mechanism
(propagate candidates forward under a learned dynamics model, or resam-
ple with ancestor tracking). When such temporal bookkeeping is undesirable,
the simplest reliable strategy is to sample short windows (rather than single
states) and accept the associated increase in generator output dimension.

Reducing sampling cost: adaptive k, early pruning, and amortized
scoring. The dependence on k enters only through candidate coverage and
selection. Consequently, we can treat k as a runtime dial and adjust it online.
A straightforward rule is to begin each episode with a small k and increase
it only when the selector is uncertain, e.g. when the top scores are close:

k(t+ 1) =

{
k(t) if score(1) − score(2) ≥ ∆conf ,

min{kmax, ⌈αk(t)⌉} otherwise,

where score(1) ≥ score(2) are the best two candidate scores and ∆conf > 0
is a tunable confidence gap. A complementary heuristic is early pruning :
compute a cheap proxy score first, discard a large fraction of candidates, and
run full OLS and residual evaluation only on the surviving set. For instance,
one may first fit (Âr, b̂r) on a subsampled set of indices in the window (say
every other timestep), or compute only the prior term log pΠj (Âr, b̂r) after
a quick fit, then evaluate residr precisely only for the best few.

When n is large, the OLS stage itself can become nontrivial. Because
Aj is diagonal, the fitting and residual decomposes over dimensions; we can
therefore prune dimensions as well. If the forecast prior strongly concentrates
some coordinates of Aj (or if some observation coordinates are known to be
stable), we may fix those dimensions to prior means and fit only the uncertain
subset, reducing both compute and variance.

Few-step belief models as an optional add-on. The generator cost
O(kN Cgen) is the primary deployment bottleneck when N is large. We
therefore view few-step conditional samplers as a practically important spe-
cialization. Two standard choices are: (i) a conditional normalizing flow or
autoregressive model, for which N = 1 (or a small constant), and (ii) a diffu-
sion model distilled into a small-number-of-steps sampler (e.g. by progressive
distillation), reducing N substantially at the expense of an additional offline
training stage.

The salient requirement for our theory is not the sampling mechanism
but the conditional approximation property TV(p̂θ(· | ϕ), p(· | ϕ)) ≤ ε.
Empirically, we expect few-step models to trade increased ε for reduced
runtime. AFORL exposes this trade-off transparently: one may increase
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k to compensate for a larger ε when runtime permits, or decrease k when
the sampler is accurate enough that candidate coverage is not the limiting
factor. This suggests a natural operating envelope: on hardware-constrained
platforms, we prefer a low-N generator and moderate k; on high-throughput
accelerators, we can afford larger k (and possibly larger w) even with a
heavier sampler.

Numerical and systems considerations. We note four low-level choices
that tend to dominate stability in real deployments. First, the log feature
uses log(|∆o| + η); the smoothing η should be chosen to avoid numerical
explosion near ∆o = 0 while not washing out informative small deltas. Sec-
ond, the OLS denominator in (8) should be regularized (or clamped) when
empirical variance is small, both for numerical stability and to reflect the
information-theoretic lower bound under weak excitation. Third, it is typi-
cally beneficial to constrain fitted gains by projection onto [amin, amax] after
OLS:

âr,d ← Π[amin,amax](âr,d),

which reduces the influence of pathological candidates whose implied scaling
is implausible. Fourth, the entire scoring loop over r = 1, . . . , k is embarrass-
ingly parallel; a vectorized implementation that batches candidate evaluation
is often the difference between real-time feasibility and failure.

In summary, AFORL is computationally dominated by conditional sam-
pling and can be made efficient by (a) maintaining sliding-window sufficient
statistics for diagonal OLS, (b) using adaptive sampling and early prun-
ing, and (c) optionally adopting few-step conditional belief models. These
modifications do not change the logical structure of the method; they alter
only the constants implicit in (7)–(9) and the effective approximation error
ε induced by the chosen generator family.

8 Experimental Design (Recommended)

We outline an experimental protocol intended to isolate the deployment-
time difficulty induced by episodically varying affine observation maps, while
keeping the underlying MDP and the offline policy π fixed. The guiding
principle is that training is always performed under identity observations
(as in the offline dataset D), and only test-time observations are affinely
transformed. This separation prevents conflating robustness to sensor drift
with standard generalization or policy-learning effects.

A benchmark suite for episodic affine drifts. Given any continuous-
control benchmark with state st ∈ Rn and action at ∈ Rm, we propose
a derived test suite, denoted informally by AffineDrift, constructed as
follows. We take the canonical offline dataset D = {(st, at, st+1, rt)} collected
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under identity observation, train a policy π on st (any offline RL algorithm
may be used), and then freeze π for all subsequent evaluation. At test time
we replace the identity observation by

ot = Ajst + bj , Aj = diag(aj,1, . . . , aj,n), aj,d ∈ [amin, amax],

with (Aj , bj) held constant within episode j and resampled (or evolved)
across episodes.

To make the suite diagnostically useful, we recommend reporting results
under at least three drift families:

1. I.i.d. episode maps: sample aj,d ∼ Unif[amin, amax] and bj,d ∼
Unif[−B,B] independently across episodes. This stresses per-episode
adaptation without temporal forecasting structure.

2. Smooth drifts (forecastable): evolve latent parameters by a stable
AR(1) process in log-space, e.g. log aj+1,d = λ log aj,d+(1−λ)ξj,d with
ξj,d i.i.d., and similarly bj+1,d = λbj,d + (1− λ)ζj,d. This is the setting
in which a forecast prior Πj is meaningful.

3. Adversarial regime shifts: alternate between a small set of modes
(e.g. “nominal sensors” and “miscalibrated sensors”), which induces
multimodality in (Aj , bj) and tests whether the inference stage can
resolve aliasing using in-episode evidence.

We further recommend two structural variants: uniform scaling (Aj = ajI)
as an easier special case, and diagonal scaling as the default. When reporting
diagonal results, it is useful to include a setting in which only a subset of
coordinates drift (e.g. aj,d = 1 for d /∈ I), since in many practical systems
only certain sensors are miscalibrated.

Forecast priors and controlled miscalibration. Because AFORL ex-
plicitly consumes an episode-start prior Πj over (Aj , bj), the benchmark
should vary prior quality in a controlled way. We recommend three prior
sources: (i) an oracle prior centered at the true parameters with known co-
variance (upper bound on performance), (ii) a learned forecaster trained on
past revealed parameters or proxy signals (realistic), and (iii) a uninforma-
tive prior (e.g. product uniform over admissible ranges). To parameterize
miscalibration continuously, one may define a prior family Π

(β)
j that inter-

polates between informative and uninformative priors, e.g. by tempering the
oracle log-density or inflating covariance by a factor β ≥ 1. We then report
performance as a function of β (or any other scalar proxy for δΠ in The-
orem 3), since this directly probes the robustness of Bayesian selection to
forecast error.
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Baselines (comparison set). To evaluate the contribution of each com-
ponent, we suggest the following baselines, all acting through the same frozen
π:

1. Oracle state (upper bound): feed st to π. This isolates control
difficulty from state estimation.

2. No correction: feed ot directly to π (equivalently, pretend Aj =
I, bj = 0). This quantifies the raw brittleness of offline policies under
affine sensor drift.

3. Prior-only inversion: use the prior mean (or MAP) (Āj , b̄j) and
set ŝt = Ā−1

j (ot − b̄j). This measures what forecasting alone can do
without in-episode adaptation.

4. Online diagonal regression with a dynamics prior: estimate
(Aj , bj) online by regressing ot on a one-step predicted s̃t obtained
from a learned dynamics model trained on D. This baseline captures
the classical “predict-then-calibrate” approach, but is sensitive to model
bias in T .

5. Recurrent estimator on raw observations: train an RNN/transformer
to output ŝt from (o0:t, a0:t−1), supervised on identity data (where
ot = st) and evaluated under affine drift. This tests whether generic se-
quence models implicitly learn invariances, and typically fails without
explicit augmentation.

6. AFORL (full): invariant features ϕ, conditional generator, OLS fit-
ting, and Bayesian selection with Πj .

Where feasible, we also recommend a domain-randomized training baseline:
retrain the policy (or the estimator) with synthetic affine augmentations dur-
ing offline training. This is not comparable as a deployment-only method,
but it clarifies the extent to which robustness can be “baked in” versus “in-
ferred at test time.”

Core ablations. We suggest ablations aligned with the logical structure
of AFORL:

1. Invariant features vs. raw deltas: replace ϕ(τ) by the uncentered
raw delta history {(∆oi, ai−1)}, or by centered deltas without the log
transform. This isolates the effect of Theorem 1’s scale cancellation.

2. Diagonal vs. uniform scaling: evaluate the same method family
under Aj = ajI and under diagonal Aj . The gap quantifies how much
difficulty arises from per-coordinate ambiguity rather than a single
global gain.
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3. Forecast quality: sweep the prior miscalibration parameter (e.g. co-
variance inflation) and report sensitivity, since AFORL’s selector ex-
plicitly combines likelihood (residual) and prior.

4. Window length w: sweep w on a logarithmic grid. Small w tests
fast adaptation but weak identifiability; large w improves stability but
may introduce lag under nonstationary latent dynamics. This sweep
is also the cleanest empirical probe of the excitation requirement in
Theorem 5.

5. Candidate budget (k, σ): sweep k and the scoring noise σ2 to quan-
tify the practical trade-off between compute and candidate coverage.
We recommend reporting both mean performance and tail risk (e.g.
CVaR over episodes) as k varies.

Metrics and reporting. If the simulator provides access to st (common
in benchmarks), we recommend reporting (i) E∥ŝt − st∥2 aggregated over
timesteps and episodes, (ii) a tail metric such as maxt ∥ŝt− st∥2 per episode
(or its percentile), and (iii) induced control loss, measured by episodic return
under π ◦ ŝ compared to the oracle return under π with true st. Because the
failure modes under affine drift are often episodic (catastrophic miscalibra-
tion in a minority of episodes), we recommend reporting not only the mean
return but also quantiles (median, 10th percentile) and CVaR.

Finally, for reproducibility and interpretability, we recommend logging
the per-episode fitted parameters (Âj , b̂j) and comparing them to ground
truth when available, as well as reporting the selector’s score gap score(1) −
score(2) as a proxy for epistemic uncertainty. These diagnostics help distin-
guish errors due to insufficient excitation (small OLS denominators), genera-
tor mismatch (no candidate explains the observations), and prior miscalibra-
tion (the correct candidate is penalized by Πj), which correspond to distinct
theoretical terms in our bounds.

9 Related Work

Offline RL under deployment shift. A recurring theme in offline re-
inforcement learning is that a policy learned from a fixed dataset can be
brittle when deployed under distribution shift, even when the latent dy-
namics (T,R) remain unchanged; see, e.g., surveys of offline RL and OOD
generalization ??. Our setting isolates a particular and practically common
shift: a change in the observation map rather than in the MDP itself. This
differs from standard covariate shift analyses that assume the same seman-
tics for the state coordinates at train and test time. Here, the semantics are
preserved at the latent level (the state st), but the policy only receives an
affine proxy ot = Ajst+ bj whose parameters vary by episode. The technical
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consequence is that the offline policy π is not merely queried off-distribution;
it is queried on inputs that are systematically miscalibrated by a structured,
episodically constant transform.

Robustness to observation corruption and sensor drift. There is
extensive work on robustness to corrupted observations in RL, including ad-
ditive noise, partial observability, missingness, and adversarial perturbations
??. A typical remedy is to train policies to be invariant via data augmen-
tation or adversarial training, or to train recurrent policies that can denoise
through temporal aggregation. In the offline setting, robustness is often
pursued via conservative objectives, uncertainty penalties, or model-based
regularization ??. These approaches are not tailored to the episodically con-
stant affine structure: in our problem the corruption is not i.i.d. per time
step, and its parameters are shared across all timesteps within an episode.
We exploit precisely this shared structure by (i) constructing per-window
features ϕ(τ) invariant to the nuisance parameters (Aj , bj) and (ii) perform-
ing episode-wise parameter fitting given candidate latent trajectories. This
is closer in spirit to classical calibration than to generic robustification.

FORL and forecasting-augmented RL. A separate line of work (which
we refer to broadly as forecasting-augmented RL, or FORL) studies non-
stationary environments in which exogenous, slowly varying parameters af-
fect either dynamics or rewards, and one seeks to forecast these parameters
and condition control on the forecast ??. In such methods, the forecast is
typically used to adapt the policy itself (e.g., by conditioning on a context
variable, updating a belief state, or performing online RL). Our use of a
forecast prior Πj is different in two respects. First, Πj concerns observation
parameters rather than the latent MDP, so the optimal control law in latent
space is unchanged; what changes is the map from observations to the inputs
expected by the frozen policy. Second, we treat the forecaster as providing
a prior in a Bayesian selection step rather than as an oracle context: the
in-episode evidence, summarized by residuals under candidate explanations,
is allowed to override a miscalibrated forecast. This interplay between a pos-
sibly wrong prior and in-episode likelihood is central to our guarantees (cf.
the explicit δΠ term).

Non-stationary RL, meta-RL, and online adaptation. Non-stationary
RL and meta-RL address settings where the environment changes across
episodes and agents must adapt, often by learning a latent context and
updating it online ???. Many such methods train policies end-to-end to
incorporate adaptation mechanisms (e.g., RNN policies or gradient-based
adaptation). By contrast, we impose the deployment constraint that the
policy π is frozen (as is typical when π is a safety-certified controller or a
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costly-to-retrain model). Consequently, adaptation must occur in an esti-
mator that feeds ŝt to π, rather than in the policy parameters. This shifts
the technical focus from regret-style adaptation bounds to state-estimation
error and induced value loss bounds for a fixed policy.

POMDP filtering, learned observers, and belief compression. Our
test-time problem is a POMDP with deterministic observation function ot =
Ajst + bj and an episode-level latent variable (Aj , bj). Classical filtering
would maintain a belief over (st, Aj , bj) given (o0:t, a0:t−1), which is generally
intractable except for linear-Gaussian models (Kalman filters) or specific
conjugate families ?. Contemporary approaches learn neural observers or
latent-state models and infer beliefs via amortized inference (e.g., variational
RNNs, sequential VAEs) ??. Our method can be viewed as an amortized
filter with two design choices motivated by structure: (i) we compress the
history into transform-invariant features ϕ(τ) so that a generator trained
under identity observations remains valid at test time, and (ii) we separate
candidate generation (a learned conditional prior over st) from episode-wise
calibration (OLS fitting of (Aj , bj) and Bayesian scoring). This modularity is
largely absent in monolithic learned filters, which tend to entangle dynamics,
observation, and calibration in a single network and thus require training-
time exposure to the corruption family.

Classical system identification with unknown sensor gain/bias. The
subproblem of estimating (Aj , bj) from paired signals resembles sensor cal-
ibration and errors-in-variables regression ?. In control and signal process-
ing, one often estimates sensor gains using known excitation signals, ref-
erence measurements, or redundant sensors (anchors). In our setting, we
have neither reference sensors nor direct access to st; instead, we obtain
hypothesized latent trajectories from a learned conditional model and then
fit gains/biases by regression. This is reminiscent of blind calibration and
self-calibration problems, where identifiability hinges on excitation and non-
degeneracy conditions. Our Theorem 5 aligns with this classical necessity:
if the latent signal has vanishing empirical variance in a coordinate, then
gain/bias are not identifiable. Theorem 2 may be seen as a stability state-
ment for the regression step under perturbations in the regressor (here, the
candidate s̃).

Blind inverse problems and structural restrictions. If Aj were an un-
restricted full matrix, the decomposition ot = Ajst+bj would become a blind
linear inverse problem closely related to blind deconvolution, ICA, and ma-
trix factorization; without further structure one expects non-identifiability
and computational obstacles ??. The diagonal (or block/low-rank) restric-
tion on Aj plays the same role as incoherence or sparsity assumptions in
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those literatures: it reduces the hypothesis class to one where both iden-
tifiability and efficient estimation are plausible. Our use of per-dimension
log-centering is specifically tuned to diagonal positive gains, providing an
invariance that would not hold for generic mixing matrices.

Invariant representation learning and test-time adaptation. A closely
related conceptual thread is invariant representation learning, where one
aims to remove nuisance variation while preserving task-relevant information
?. In vision and robotics, explicit invariances (e.g., to illumination, contrast,
or affine transforms) are often engineered, while recent approaches seek to
learn invariances by augmentation. Our feature map ϕ(τ) is an explicit in-
variance derived from the affine structure and the episode-wise constancy
of (Aj , bj): differencing removes bj , and window-centering in log-space re-
moves log aj,d. This differs from generic test-time adaptation methods that
update normalization statistics or model parameters at deployment ?; we
adapt beliefs over latent states while keeping both π and the generator fixed.

Summary of the distinction. Across these literatures, the closest ana-
logues combine (i) an estimator that maps corrupted observations to latent
states and (ii) a control policy operating in latent space. The distinctive fea-
ture of our approach is that the estimator is designed to be trainable only on
identity-observation offline data while remaining applicable under episodic
affine drift via analytic invariances and a structured Bayesian selection step
incorporating a forecast prior. This design choice is what allows us to cleanly
separate the learning problem (approximating p(st | ϕ) under the station-
ary MDP) from the deployment problem (resolving episode-wise calibration
ambiguity under (Aj , bj)).

10 Limitations and Extensions

We conclude by delineating the boundary of the present analysis and several
directions in which the AFORL template plausibly extends. Our aim is not
to assert that the same proofs go through verbatim, but rather to make
explicit which parts of the construction are structural (and thus robust) and
which are tuned to the diagonal, strictly-positive affine family.

Beyond diagonal gains: block structure and low rank. The pivotal
simplification in our feature invariance is that, for each coordinate d, the ob-
servation difference obeys ∆ot[d] = aj,d∆st[d], so that log-centering cancels
log aj,d coordinate-wise. If Aj is block-diagonal with blocks of size p > 1,
then ∆o

(b)
t = A

(b)
j ∆s

(b)
t mixes coordinates within a block. In this case a

coordinate-wise scalar invariance is unavailable, but one may still hope to
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construct block-wise invariants. One candidate is to work with norms or
singular values: for a block b,

log
(
∥∆o

(b)
t ∥2 + η

)
= log

(
∥A(b)

j ∆s
(b)
t ∥2 + η

)
,

whose centered version removes only a scalar component (an “average gain”)
rather than the full matrix. More informative invariants can be built from ra-
tios ∥∆o

(b)
t ∥/∥∆o

(b)
t′ ∥ or from Gram matrices ∆o

(b)
t1:tw

(∆o
(b)
t1:tw

)⊤, which trans-
form as A

(b)
j Gs(A

(b)
j )⊤. Such constructions suggest a natural extension of

AFORL in which ϕ(τ) comprises block-wise statistics and the episode-wise
fitting step replaces per-dimension OLS with a structured regression over
each block (possibly with a low-rank or orthogonality prior). However, iden-
tifiability becomes more delicate: if A(b)

j is an arbitrary p × p matrix, then
without additional restrictions (e.g., symmetry, positive definiteness, spar-
sity, or known eigenvectors) one generally cannot expect uniqueness from a
short window.

A related extension is to low-rank perturbations around diagonal struc-
ture, e.g. Aj = Dj + UjV

⊤
j with rank(UjV

⊤
j ) = r ≪ n. Here one may

preserve the diagonal invariance approximately by treating UjV
⊤
j ∆st as an

additional “noise” term whose magnitude depends on excitation along the
low-rank subspace. This motivates a two-stage selector: (i) diagonal AFORL
to obtain an initial ŝt and implied (D̂j , b̂j), and (ii) a refinement step that
fits (Uj , Vj) via regularized least squares on the residuals. A rigorous analy-
sis would require controlling the interaction between generator error and the
low-rank fit, and quantifying when the low-rank component is distinguish-
able from sampling noise and model mismatch.

Nonlinear observation effects: clipping, saturation, and monotone
distortions. Many sensors exhibit saturation or clipping, leading to ob-
servations of the form

ot = clip(Ajst + bj ; ℓ, u),

or, more generally, ot = gj(Ajst + bj) for a monotone nonlinearity gj that is
constant within an episode. Our invariance arguments rely on affine structure
and on the algebra of differences and logarithms; clipping breaks both, since
differencing does not remove bj once saturation occurs and the mapping
is no longer injective. That said, several partial remedies appear feasible.
First, one can detect saturation by checking whether ot lies near ℓ or u for
many consecutive steps, and then downweight those timesteps in the fitting
objective or excise them from the window. Second, if gj is monotone and
smooth (e.g. a sigmoid-like sensor response), then order statistics and rank-
based features are invariant to monotone transforms, suggesting a different
choice of ϕ(τ) built from within-window ranks of ∆ot[d] rather than centered
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log-magnitudes. This would trade off quantitative information (magnitudes)
for robustness (ordering), and would likely increase the sample complexity
in w needed to localize st.

An open theoretical issue here is to characterize the minimal conditions
under which one can still recover useful control-relevant state information
when the observation map is only approximately affine on the encountered
range. In practice, one expects local linearization to be adequate provided
st remains in a regime where gj is nearly linear and the forecaster prior Πj

keeps the inferred affine parameters away from degenerate values.

Action-dependent or time-varying drift within an episode. We as-
sumed that (Aj , bj) is constant within episode j. If the sensor drift depends
on action or evolves slowly in time, e.g. ot = Aj,tst + bj,t with Aj,t follow-
ing a smooth process, then the window-centering step no longer cancels a
constant log aj,d, and the OLS fit produces parameters that average across
the window. A modest extension is to posit a parametric drift model, such
as aj,t,d = aj,0,d + αj,dt (or an AR(1) process), and to replace OLS by a re-
gression that fits (aj,0,d, αj,d, bj,0,d, βj,d) on the window. The Bayesian score
can then incorporate a forecast prior over drift coefficients. The price is that
identifiability requires stronger excitation: one must now distinguish genuine
state changes from changes in the observation map, which is impossible if
both are allowed to vary arbitrarily.

The action-dependent case, Aj,t = A(at), is qualitatively harder because
the corruption is then coupled to the control channel. In that regime, the
estimator risks “explaining away” inconsistencies in ot by attributing them to
the action-dependent sensor, which can induce a feedback loop. A principled
treatment would likely require either (i) known functional form for A(a), (ii)
occasional calibration actions, or (iii) additional instrumentation (anchors).
We view this as a natural frontier where purely observational invariances are
insufficient.

Partial anchors and occasional ground truth. Our formulation ex-
plicitly avoids reliance on reference measurements. Nonetheless, many de-
ployments provide partial anchors : some state coordinates may be trusted
(unaffected by drift), or one may occasionally observe a calibrated snapshot
(e.g. at episode start), or receive delayed reveals of (Aj , bj) for a subset of
episodes. Each of these anchors can be integrated into AFORL by adding
terms to the score or by constraining the regression fit. For example, if a
subset of coordinates I ⊂ [n] is known to have aj,d = 1 and bj,d = 0, then
candidates inconsistent with ot[d] = st[d] for d ∈ I can be rejected immedi-
ately, reducing multimodality and improving identifiability for the remaining
coordinates through dynamic coupling. Similarly, if we observe a single cal-
ibrated pair (sref , oref) at some time, then bj = oref − Ajsref collapses part
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of the ambiguity, leaving only Aj to infer; the regression then becomes more
stable, especially under short windows.

From a theoretical standpoint, anchors effectively supply excitation ex-
ternally, circumventing the lower bound in Theorem 5. Quantifying how
many anchors (in time or in coordinates) suffice to guarantee a desired error
level remains an appealing question, particularly when anchors are noisy and
intermittent.

Modeling and algorithmic limitations. Our bounds depend on a gener-
ator accuracy parameter ε and on a separability margin γ in the Bayesian se-
lector. In complex environments, the true conditional p(st | ϕ) may be highly
multimodal, and the margin between modes may be small; then the required
sample count k can be prohibitive. Moreover, our scoring step treats each
candidate window independently except through the fitted (Âj , b̂j), whereas
the true posterior over (s0:t, Aj , bj) is temporally coupled. One extension is
to maintain a particle filter over (Aj , bj) across time, with AFORL-style con-
ditional generation providing proposals for st; this would replace the per-step
argmax by a resampling-and-weighting scheme and could reduce variance at
the cost of additional computation.

A second limitation is that we implicitly assume the offline state dis-
tribution is sufficiently rich that the generator can learn p(st | ϕ) from
identity-observation data alone. If the offline dataset D lacks coverage of
the trajectories induced at test time by π ◦ ŝ, then even perfect invariance
cannot prevent extrapolation error. This is not unique to AFORL; it is the
classical offline RL coverage problem manifesting in the estimator rather
than in the policy.

Open problems. We highlight several concrete questions. (i) Can one
characterize minimal excitation conditions for structured (block/low-rank)
Aj that parallel Theorem 5, and derive sharp stability constants for the corre-
sponding regression step? (ii) Can one replace the heuristic score resid/(2σ2)
by a likelihood consistent with the generator and obtain end-to-end cali-
brated posteriors over (st, Aj , bj)? (iii) How should one choose the win-
dow length w adaptively, trading bias (non-stationarity within the window)
against variance (insufficient excitation)? (iv) Finally, can one design policies
π (still trained offline) that are implicitly probing in the sense that, while
optimizing reward, they also induce the excitation needed for calibration,
thereby mitigating the necessity result when anchors are absent?

These extensions, while technically nontrivial, preserve the organizing
principle of our approach: separate (a) an invariance-informed compres-
sion of recent history, (b) a learned conditional generator trained under the
identity observation map, and (c) an explicit episode-wise calibration step
that adjudicates among candidate explanations using a forecast prior and
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in-episode evidence.
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