Real-Time Sparse Tracing at Million-Token
Context: I0-Optimal Compiled STREAM Kernels
for Consumer GPUs

Liz Lemma Future Detective

January 18, 2026

Abstract

Mechanistic interpretability for long-context LLMs is bottlenecked
by the quadratic cost of materializing attention maps. STREAM
(Rosser et al., 2025) makes sparse attention tracing feasible in near-
linear time by hierarchically pruning to top-k key blocks per query
block, but its current implementation is not optimized for hardware
and can be too slow for interactive use. We present a systems+algorithms
co-design that compiles STREAM into fused GPU kernels that jointly
(1) estimate hierarchical sparse masks, (2) apply masks to produce
sparse attention summaries for interpretability, and (3) stream the re-
sulting edges/weights to a lightweight tracing interface—without stor-
ing dense attention. We formalize sparse tracing as a streaming, block-
wise top-k selection problem under a causal validity mask and analyze
it in an external-memory/IO model. Our implementation achieves O(T
log(T/b_k)) arithmetic work and O(T) memory for constant block
sizes and sparsity, while its HBM traffic matches a natural lower bound
up to constant factors. Empirically, we show interactive tracing for
100k—1M token contexts on consumer GPUs, with correctness verified
against a reference STREAM specification and fidelity validated on
long-context retrieval and reasoning traces. We release an open-source,
reproducible benchmark suite and kernel library.

Table of Contents

1. 1. Introduction: long-context interpretability bottleneck; why asymp-
totics are not enough; goal of real-time sparse tracing; summary of
contributions and guarantees.

2. 2. Background and Reference Spec: attention, sparse masks, STREAM /HiP
hierarchical pruning; what needs to be computed for interpretability
(masks, scores, flow edges).



10.

11.

. 3. Problem Formulation: streaming sparse tracing under causal masks;
define outputs (mask indices, weighted edges), fidelity hooks, and per-
formance targets (latency, memory).

4. Computational /IO Model: GPU memory hierarchy model (regis-
ter/shared/HBM), block-sparse kernels, compilation constraints; de-
fine cost metrics (FLOPs, bytes moved, kernel launches).

5. Kernel Design I — Mask Estimation: fused branch scoring +
top-k selection; causal validity handling; deterministic tie-breaking;
warp/block mapping; persistent kernels.

6. Kernel Design II — Mask Application and Trace Emission: apply
masks to attention computation (or to score summaries) and stream
interpretability artifacts; overlap compute and output.

7. Scheduling and Batching Strategies: head batching, layer pipelining,
asynchronous prefetch, KV-cache interactions; handling variable k(q)
(optional extension) without divergence blowups.

8. Theoretical Analysis: work bounds, memory bounds, IO upper
bounds; IO lower bounds and near-optimality; discussion of what is
and is not provably optimal.

9. Experimental Plan (for strengthening): profiling methodology; cor-
rectness checks vs reference; end-to-end latency and memory; scaling to
1M tokens; benchmark tasks (RULER, long CoT) and stability across
hardware.

10. Limitations and Future Work: generality beyond attention-only;
multi-GPU /distributed; certified fidelity; variable sparsity schedules;
integration with interpretability toolchains.

Appendices: reference spec, tie-breaking rules, kernel pseudocode de-
tails, reproducibility checklists.



1 Introduction

In decoder-only transformers with context length 7" in the range 105106,
interpretability procedures that rely on attention access encounter an im-
mediate external-memory bottleneck: even if one avoids backpropagation
and computes only forward-pass quantities, any attempt to log or post-
process dense attention requires addressing ©(T?) token pairs. On commod-
ity GPUs, both HBM capacity and HBM bandwidth make such a strategy
infeasible. The obstruction is not merely algorithmic in the RAM model,
but structural in an external-memory model: producing T2 scores entails
Q(T?) writes, and reading the keys required to form them entails commen-
surate traffic. Consequently, for long-context tracing, the central question is
not how to accelerate dense attention, but how to change the output inter-
face so that the amount of information emitted is itself subquadratic while
remaining faithful to a precisely specified notion of sparse interpretability.

We therefore adopt the viewpoint that an interpretability-oriented at-
tention procedure should output a sparse object of size O(Tk), where k is
a fixed (or scheduled) sparsity parameter, together with optional streamed
edge weights, and should do so without materializing the dense score matrix
S = QK. However, asymptotic sparsity alone does not deliver an imple-
mentable method. Two further issues dominate at 7' > 10°. First, the GPU
cost is governed by global-memory traffic rather than floating-point through-
put, so a method that is asymptotically sparse but revisits HBM repeatedly
can still be dominated by 10. Second, interpretability pipelines are sensi-
tive to nondeterminism: small perturbations in sparse selection rules (e.g.,
from race conditions in parallel top-k) can lead to qualitatively different
trace graphs, obstructing reproducibility and regression testing. For these
reasons we insist on a reference-equivalent specification with deterministic
tie-breaking, and on an implementation strategy whose IO can be compared
to information-theoretic lower bounds.

Our goal is real-time sparse tracing: for each layer and head, we seek to
(i) estimate a block-sparse causal mask by selecting at most k key blocks
per query block, (ii) optionally apply the resulting mask to compute sparse
summaries or emit an edge list, and (iii) do so with auxiliary memory
O(T) rather than O(T?). We formalize this goal using a block structure
with query block size by, key block size by, and a block-level validity mask
Chix € {0, 1}(T/bq)X(T/b’<) capturing causal and task-specific constraints. The
resulting output is an index tensor I € N(T/b)*k giving the retained key-
block indices per query block (or empty entries when no valid key exists).

The contributions of this work are systems-theoretic and specification-
driven. We present a compilation-friendly, GPU-executable implementation
of STREAM-style hierarchical pruning that operates by iterative branch re-
finement over the key-block range, scoring only O(k log(1/by)) representative
key blocks per query block. The implementation is designed to be persis-



tent and tiled: each query block loads @ once into on-chip storage, streams
only the representative K blocks required by the refinement, performs per-
candidate scoring via blockwise maxima of dot products in R%, and performs
exact top-k selection with a fixed tie-breaking rule 7 that induces a total or-
der on candidates. Under these constraints, we obtain three guarantees. (1)
Reference-equivalence: the emitted indices I are bitwise identical to those of
a reference STREAM specification under 7. (2) Asymptotic efficiency: for
constant (by, by, k, d), mask estimation has work O(T log(T'/b)) and auxil-
iary space O(T') per head/layer, with no dense T' x T buffers. (3) Near-
optimal 10: the HBM traffic for mask estimation is within a constant factor
of an information-theoretic lower bound that accounts for reading ) and
accessing the selected key blocks. These guarantees jointly justify that in-
teractive tracing at long context is attainable on a single consumer GPU only
by avoiding dense attention materialization and by enforcing deterministic,
specification-aligned sparsity throughout.

2 Background and Reference Specification

We work with a decoder-only transformer layer and fix a head. Let T" be the
context length and d the per-head embedding dimension. The layer provides
query, key, and value matrices

Q. K,V e RT*,
stored in HBM. The dense attention score matrix would be
S = QKT € RTXT: St,s = <Qt,:7Ks,:>7

and a token-level validity mask C' € {0,1}7*T enforces causal constraints
(and optional task masks). Dense interpretability procedures that require
access to S or to the dense attention probabilities softmax(S ® C) are ex-
cluded by our constraints; hence we formalize a sparse interface that never
requires materializing S.

We impose a block structure. Fix query-block and key-block sizes b,
and by, and assume padding so that T" is divisible by lem(by, by). We write
the query-block index as ¢ € {1,...,T/b;} and the key-block index as r €
{1,...,T/b;}. The block-level validity mask

Chic € {0, 1}T/ba)*(T/bx)

summarizes C at block resolution (e.g. Cpilg,7] = 1 if and only if there
exists at least one valid token pair (¢, s) with ¢ in query block ¢ and s in key
block r). For causal masking, Chk[g,r] = 0 when key block r lies strictly to
the right of query block ¢, with the usual boundary conventions.



A sparse mask is specified by indices rather than by a dense binary ma-
trix. Fix a sparsity parameter k (or a known schedule k(gq)). The primary
interpretability object for a head/layer is an index tensor

I € N(T/ba)xk,

where I[q,j] = r indicates that key block r is retained for query block ¢
(and entries may be empty when no valid key blocks exist). This induces a
token-level sparse mask M conceptually defined by

M s=1 <= dje{l,... k} such that s € block I[q(?), j],

where ¢(t) is the query-block index of token t. We emphasize that M is not
materialized densely; it is represented by I and used only through stream-
ing/tiled application.

We now fix a reference selection rule, in the style of STREAM /HiP hi-
erarchical pruning, to make the sparse interface deterministic and testable.
For each query block ¢, we consider the ordered range of key-block indices
{1,...,T/b;} and maintain k disjoint branches, each being a contiguous sub-
range of key-block indices. Initially these branches cover the full range in a
fixed manner (e.g. equal-length partitioning, with a deterministic convention
for remainders). For ny, = [logy(T'/by)] iterations, each branch is split into
two sub-branches, producing 2k candidate subranges. Each candidate c is
assigned a representative key block r(c) defined as the first key-block index
in the subrange that is valid under Cpik[g, *]; if no such index exists, the
candidate is invalid.

FEach valid candidate receives a scalar score intended to proxy the best
achievable token-level interaction within that representative block:

SCOI'G(C) = max <Qt(q,m)7:7 Ks(r(c),n),:>7

1<m<b,
1<n<by,
Clt(g;m), s(r(c),n)]=1

where t(q,m) and s(r,n) denote the corresponding token indices within
blocks. Candidates are then filtered to the top-k by score, with ties bro-
ken by a fixed total order T over candidates (equivalently, over (g, ¢) pairs).
The retained k sub-branches define the next iteration. After n;; refinements,
we output I[g, 1..k] as the first valid key-block index within each final branch
(or empty if none exists). This reference specification is purely functional:
it defines I uniquely from (Q, K, Cyx, by, by, k, 7).

Finally, interpretability often requires more than indices. Given I, we
may stream trace artifacts such as a sparse edge list over blocks, e.g. tuples
(q,m,w) where r € I[g,*] and w is either the representative score above, a
blockwise reduction of masked attention probabilities, or a downstream flow
quantity. The essential constraint is that all such weights are computed by
iterating only over retained blocks and by streaming @, K,V tiles, never
forming dense T' x T intermediates.



3 Problem Formulation: Streaming Sparse Tracing
Under Causal Masks

We formalize the systems task induced by sparse interpretability in a decoder-
only layer as a streaming map from per-head/layer activations and masks to
a compact trace. The inputs are the matrices (Q, K, V) € RT*4 residing in
HBM together with the token-level validity mask C' € {0, 1}7*7T (including
causality) and its block summary Ch, as well as fixed parameters (bg, by, k)
(or a known schedule k(g)) and a deterministic tie-breaker 7. The output
is required to be representable with O(T') auxiliary space per head/layer
and must be computable without materializing dense score or probability
matrices.

Primary output: block index mask. For each query blockq € {1,...,T/b,}
we must output exactly k retained key-block indices (or empties when no
valid keys exist), assembled as

I € NT/ba)xk,

We allow a fixed sentinel (e.g. 0) to denote an empty entry. The indices must
satisfy the validity invariant

I[q’]] 7& 0 = Cblk[Qv-[[QajH = ]-7

and must be reference-equivalent: for every (Q, K, Chy) the produced I is
bitwise identical to the indices returned by the functional reference spec-
ification of the previous section, under the same padding convention and
tie-breaking rule 7. This reference-equivalence requirement is the fidelity
hook that makes the procedure testable: it reduces correctness to equality
with a deterministic oracle that can be evaluated for moderate T

Secondary output: streamed trace artifacts. In addition to I, we
permit (and in interpretability settings often require) a streaming edge list
over retained blocks. Formally, for each head/layer we may emit a sequence

E={(g,r,w)}  with re{Ilg1),...,1[g K]},

where the weight w is computed by an explicitly specified per-edge func-
tional. We restrict admissible weight functionals to those evaluable by tiled
streaming over the corresponding query and key/value blocks without dense
intermediates. Concretely, w must be of the form

w = ‘1’<Q3q<q>,:= Kby, VBir),» CBq(quk(r))v

where By(q) and By(r) denote the token index sets in the respective blocks.
Typical choices include: (i) the representative selection score used during



mask estimation; (i) a blockwise attention mass, e.g. > e g_(g) 2ose B, (r) Pts
where p = softmax(S ® C) is evaluated only on the masked support induced
by I; or (iii) a blockwise value summary such as Ztqu(q) ZseBk(T) Dt,s Vs,
The interface permits either writing £ into a device buffer of size O((17'/b,)-k)
or emitting it through a streaming sink (e.g. host-mapped memory), but in
all cases the algorithm must not allocate O(T?) storage.

Streaming and composability constraints. We treat mask estimation
and mask application/edge emission as a single end-to-end workload. The
implementation may fuse phases, reorder within a head/layer, and pipeline
across query blocks, but it must respect the following global constraints: (a)
neither S = QKT nor any dense mask/probability matrix may be material-
ized; (b) extra HBM allocations beyond the outputs and O(1) staging buffers
are disallowed; and (c) the produced indices and weights must be determin-
istic functions of inputs under 7, independent of parallel scheduling.

Performance targets. Our objective is to minimize end-to-end latency
for producing (I,€) for all query blocks, heads, and layers. Since long-
context regimes are bandwidth dominated, we treat global-memory traffic
as the primary cost to optimize, subject to keeping arithmetic work and
synchronization overhead controlled. We thus target (i) HBM reads/writes
close to the minimum implied by reading @ and the necessary key/value
blocks, (ii) auxiliary space linear in the number of emitted edges, and (iii)
a small number of kernel launches and global synchronization points so that
tracing remains interactive at 7' € [10°,10%] on a single GPU.

4 Computational and IO Model

We analyze STREAM-style mask estimation and trace emission in a GPU
external-memory model with three storage levels: registers (REG), shared
memory (SMEM), and high-bandwidth memory (HBM). We treat REG and
SMEM as fast, explicitly managed caches with bounded capacity per thread
block, whereas HBM is large but bandwidth limited. Our algorithms are
required to stream through activations stored in HBM and to maintain only
O(1) on-chip state per concurrent query block, so that asymptotic feasibility
is governed by HBM traffic rather than capacity.

Tiled block-sparse execution. All computation is organized around query
blocks of b, consecutive tokens and key blocks of by consecutive tokens. For
each head and layer, we conceptually partition Q, K,V € RT*? into blocks

Qq R, KV, e R%X,



indexed by ¢ € {1,...,T/bs} and r € {1,...,T/b;}. The masking constraint
is given at block resolution by Cpy € {0, 1}(T/ ba)x(T/br) - which subsumes
causality and any additional user masks. The implementation is permitted
to examine only a small, adaptively chosen subset of key blocks per query
block, and must never form dense intermediates of size T' x T'.

Cost metrics. We account for three costs. First, arithmetic work Work(+)
measured in floating-point operations; this includes dot products, reduc-
tions (e.g. top-k selection), and any masked softmax/value projections used
to produce trace weights. Second, global-memory traffic IO(-) measured in
bytes transferred between HBM and the GPU (reads and writes), including
both activation loads and output stores. Third, launch and synchronization
overhead, measured by the number of kernel launches and any global bar-
riers between phases. In long-context regimes, we assume runtime is well
approximated by

Time = max{IO/BVVHBM7 Work/FLOPpeak} + Overheadaunch /sync:

with the understanding that effective bandwidth depends on coalescing and
reuse.

HBM as the dominant bottleneck. Since T is large and d, by, by, k are
moderate constants, the primary opportunity is to reduce redundant HBM
reads of key /value blocks and to avoid writing large intermediate tensors. We
therefore design kernels around (i) loading each @, once into SMEM (or REG
fragments), (ii) streaming only the representative key blocks required by the
hierarchical procedure, and (iii) emitting only O((7'/b,) - k) outputs (indices
and optional edge weights). The resulting objective is to make IO close to the
unavoidable reads of @) and the necessary reads of the selected K/V blocks,
and to ensure that any additional reads (e.g. for candidate evaluation during
refinement) are bounded by polylogarithmic factors in 7'/by.

On-chip workspace constraints. For a thread block responsible for one
query block (or a small fixed number thereof), the admissible on-chip foot-
print is on the order of

O(byd) for Q; + O(bd) for one streamed K, (and optionally V) + O(k) scalars,

along with temporary storage for reductions. This requirement rules out
buffering many key blocks simultaneously; instead we pipeline: load a key
block, compute its score contribution against )4, reduce to a scalar repre-
sentative score, and discard the block before loading the next.



Compilation-friendly specialization. We assume that (d, b, b;) and ei-
ther k or a small discrete family of schedules k(q) are known at compile time
(or selected from a small menu), enabling kernel specialization with static
loop bounds, fixed SMEM allocation, and predictable register pressure. This
assumption is not merely stylistic: exact top-k selection and deterministic
tie-breaking 7 are simplest to implement efficiently when k is small and
fixed, so that the reduction network and comparison order can be compiled
into straight-line or lightly branched code. Similarly, tensor-core utilization
benefits from fixed d and tile shapes, allowing dot-product fragments to be
scheduled without dynamic shape handling.

Determinism under parallelism. We treat determinism as a systems
constraint that interacts with the cost model. Reductions over candidate
scores must be performed in a fixed associative order with explicit tie-
breaking 7, avoiding nondeterministic outcomes due to race conditions or
unspecified warp scheduling. Practically, this means that within each query
block we employ structured reduction patterns (warp-level primitives and
block-level merges) whose comparison order is fixed by program structure;
the extra comparisons required to enforce 7 are counted in Work(-) but are
negligible relative to the dot-product evaluation for moderate bybyd.

Implications for kernel structure. Under this model, the intended im-
plementation strategy is to minimize (a) the number of distinct key blocks
touched per query block during refinement and application, and (b) the num-
ber of passes over ();. Consequently, we favor persistent or quasi-persistent
kernels that keep ()4 resident on chip while iteratively streaming candidate
K, blocks, performing branch scoring and top-k selection in situ, and emit-
ting indices (and optionally weights) without materializing dense masks.
These design commitments are instantiated concretely in the next section,
where we specify the fused mask-estimation kernel and its mapping to warps
and thread blocks.

5 Kernel Design I: Mask Estimation

We now specify the fused GPU kernel that computes the sparse mask indices
I[g,1..k] for each query block ¢ without materializing either dense scores
S = QK" or a dense mask M. The implementation we target is reference-
equivalent: for fixed (by, by, k), padding, and tie-breaking rule 7, the emitted
indices coincide bitwise with the reference STREAM procedure described in
the global specification.

Fused refinement: branch scoring plus top-k. For a fixed head/layer,
we launch a (quasi-)persistent kernel over query blocks ¢ € {1,...,T/b,}.



Each thread block (CTA) is responsible for one ¢ (or a small fixed number),
loads @, € R%*4 once into SMEM (or REG fragments), and then performs
niy = [logy(T'/by)] refinement iterations. At iteration ¢, the kernel maintains
k active branches, each corresponding to an interval of key-block indices.
We split each branch into two sub-branches, producing 2k candidates, and
compute for each candidate ¢ a scalar score

max  (Q[q,m,:], K[r,n,:]), r = firstValid(q,range(c)),
m<bg, n<by,
SCOI“G[C] = token-valid

—00, if no valid r exists in range(c),

where firstValid is the deterministic representative rule (first valid key block
in the sub-branch), and “token-valid” subsumes the token-level constraint
C restricted to the chosen blocks. We then select the top-k candidates by
(score, 7) and proceed with those k sub-branches.

Causal and user validity at block resolution. We assume a block mask
Chiklg,r] € {0,1} is available (bit-packed in HBM), encoding causality and
any additional user constraints. For each candidate interval [a, b], we must (i)
decide whether any valid r € [a, b] exists, and (ii) if so, find the smallest such
r to satisfy the representative rule. We implement both using deterministic
word-level scans over the packed row Chk[g, *]: an “any” test is a fixed-order
OR reduction over machine words covering [a, b], and firstValid is a fixed-
order scan for the first set bit. Since interval sizes halve each iteration, these
scans contribute at most a polylogarithmic overhead and, crucially, do not
require storing per-q auxiliary structures beyond a small constant amount of
on-chip state.

Tensor-core scoring without dense materialization. Given (), res-
ident on chip and a streamed key block K, € RP%*? we must compute
max, »(Q[q, m,:], K[r,n,:]) without forming the b, x b, matrix. We proceed
by tiled MMA: interpret @), and K, as fragments and compute products for
small tiles (e.g. 16 x 16) using tensor cores, but immediately reduce each
produced tile to a running maximum in registers. Thus the only persistent
per-candidate state is a small set of maxima scalars (one per thread or per
warp, then reduced), rather than an explicit score matrix.

Warp/block mapping and pipelining. Within a CTA, warps are as-
signed to candidates in a fixed schedule: for moderate k, we map one warp
to one candidate when 2k < W (number of warps per CTA), otherwise we
process candidates in rounds. Each warp iterates over tiles of @, and K,
accumulating a local maximum, followed by a fixed-order warp reduction
and a fixed-order block reduction to obtain score[c]. To reduce HBM stalls,

10



we pipeline key-block loads with compute (e.g. double-buffer K, in SMEM
and use asynchronous copies where available), while keeping @), stationary.

Deterministic top-k with tie-breaking 7. Top-k selection is performed
on the 2k scalar scores using a fixed comparison network whose comparison
order is independent of runtime scheduling. We impose 7 by comparing
lexicographically on a tuple such as

(score [c], —r(c), —branchId(c)) )

or any other globally fixed total order consistent with the reference specifi-
cation; the precise fields are compile-time fixed and ensure that equal scores
yield a unique winner. Implementationally, we keep the 2k tuples in regis-
ters, apply a deterministic bitonic/odd-even network (or an unrolled partial
selection for small k), and retain the first £ entries. Because both the reduc-
tion of scores and the selection network have fixed associativity /ordering, the
result is invariant to warp interleavings, satisfying the determinism invariant
required by Theorem 1.

Persistent-kernel rationale. The salient systems property is that each
(4 is loaded once and reused across all refinement iterations, while only
O(kny) representative key blocks are streamed per query block. This is
precisely the structure needed to make IO(-) approach the lower bound up to
constant factors, while keeping on-chip storage bounded by O(b,d+brd+ k).
The next section uses the computed indices I to apply the resulting sparse
mask and to emit trace artifacts in a similarly streaming fashion.

6 Kernel Design II: Mask Application and Trace
Emission

Given mask indices I[g, 1..k] from the estimation kernel, we next apply the
induced sparse pattern to (i) produce the masked attention output (when re-
quired) and/or (ii) emit token- or block-level trace artifacts for interpretabil-
ity. The central constraint remains that we do not materialize dense T' x T'
scores or probabilities; all computation and emission proceed by streaming
over only the selected key blocks.

Execution model and data movement. For each head/layer we launch
a kernel over query blocks ¢q. Each CTA loads @, € Rb*4 once (or reuses it
if mask estimation and application are fused). Then, fort =1,...,k, it reads
the retained key-block index r = I[q,t] (or skips if empty), streams K, €
RP%*4 and, when producing attention outputs, also streams V, € RPx*dv,
The only global writes are (a) the attention output O, € R%*9 when re-
quested and (b) an O(k)-sized trace record per query block when tracing

11



is enabled. Thus the HBM traffic scales with the touched key/value blocks
rather than with 72.

Sparse attention in a single streaming pass. When we must compute

eXp(gm (r n))
O[q, m, 1] = Cm,(r,n) V[T7 n, :]7 Om,(rn) = ox ’
(T,n)GZMq,m) 22 (¢ yeN(gam) XP (U, (v 1))

we define £, () = (Q[q, m, ], K[r,n,:]) with £ = —oo for token-invalid pairs
under C. Here N (g, m) ranges over the k selected key blocks and their by, to-
kens, restricted by causality and any user mask. We implement a numerically
stable online softmax update (FlashAttention-style) without storing logits:
for each query token m we keep registers (fiy,, Am, 0p) representing the run-
ning maximum, normalization, and partial output. Upon processing a new
block r we compute logits for its n € {1,...,bx}, apply the token-validity
predicate, and update

! 7
o = max(,um, max ém,(,,,n)), N = Ay eHmTHm 4 Z elm.rm) ~Hm
n

ol = Oy et Hm 4 Z elm.rm) =Hm V[, ).
n
After all retained blocks, we output O[q,m,:| = 0y /Am. All dot products
and accumulations are tiled; we use tensor cores for Q K, tiles and im-
mediately reduce to the scalars needed for (ul,,\,) and the weighted V'
accumulation, never storing a by x by, tile beyond registers.

Trace artifacts as streaming edge emission. For interpretability we
optionally emit an edge stream whose granularity is per (g-block, r-block).
For each retained r = I[q,t] we compute a small summary ¢(q,r), e.g.
the blockwise maximum logit max, » £y, (rn), @ blockwise mass contribu-
tion >, (r.n) (accumulated consistently with the online softmax), or a
fixed set of per-head scalars. We then write records

E> (¢, h, q, 7, ¢(q,7))

in the deterministic order induced by ¢ = 1,...,k and the fixed head/layer
schedule. To avoid global synchronization, CTAs reserve output space via
a single atomic increment on a global write pointer, then perform coalesced
writes. If buffering is needed, we use a small SMEM ring buffer and flush in
fixed-size segments; the record order within a CTA is fixed by construction,
hence independent of warp interleavings.

12



Overlapping compute with output. We pipeline (a) loads of K, V,,
(b) MMA-based dot products and softmax updates, and (c) trace writes.
Concretely, we double-buffer K,,V, in SMEM and overlap asynchronous
copies with computation on the previous buffer. Trace records are staged
in registers/SMEM and written while the next key block is being prefetched.
This overlap is essential when tracing is enabled, since the edge stream adds
nontrivial write traffic of ©((T'/by) k) records.

Correctness and invariants. Mask application respects the validity in-
variant by applying C at token resolution within each selected block and
by skipping empty I[q,t]. Determinism holds because (i) the order of visit-
ing retained blocks is fixed by I[g,1..k], (ii) reductions use fixed associativ-
ity /ordering inside each CTA, and (iii) the emitted trace stream is written
in a fixed per-CTA order with a unique reserved output segment. These
properties allow scheduling and batching optimizations in the next section
without changing observable outputs.

7 Kernel Design III: Scheduling and Batching Strate-
gies

We describe schedules that minimize launch overhead and HBM traffic while
preserving the determinism and validity invariants. The guiding constraint
is that we must stream blocks in the fixed order prescribed by (¢, h, ¢,t) and
I|g,t], hence we admit only transformations that do not reorder observable
outputs.

Head and sequence batching. We parallelize primarily over query blocks
q and heads h. For fixed (bg, by, d) we prefer a 2D grid with indices (g, h),
assigning one CTA to one (¢, h) pair. This yields uniform on-chip footprints
(one Qg tile plus one K, /V, tile) and avoids cross-head synchronization.
When the number of heads is small relative to SM count, we batch multi-
ple heads per CTA by storing @4 for each head in registers and sharing the
streamed K, /V, tiles in SMEM (the latter is beneficial only when K,V are
shared across heads, e.g. in MQA/GQA). For multi-sequence batches with
ragged lengths, we treat each sequence as an independent range of blocks and
encode invalid blocks in Chyy; this keeps kernel shapes static while allowing
empty work to be skipped by cheap predicates.

Persistent CTAs and load balancing. Both mask estimation and ap-
plication have per-g work that depends on the number of valid keys (through
Chik) and on the realized pattern I[q,*]. To avoid tail effects we use persis-
tent CTAs: each CTA repeatedly acquires the next available ¢ from a global

13



counter, processes it to completion (including trace emission), and then ac-
quires another. Determinism is unaffected because the observable order is
per-q local (fixed ¢t = 1,...,k), while the global edge stream is ordered by
the reserved output segments rather than by CTA completion time.

Layer pipelining and fusion. Across layers ¢, application depends on
the layer input activations, hence full pipelining is limited by the forward
dependency. Nevertheless, two optimizations are compatible with correct-
ness. First, we fuse mask estimation and application within a single kernel
when tracing requires only ¢(g¢,r) and (optionally) O4: we compute I[q, *]
in registers, immediately stream the corresponding K., V, blocks, and emit
both O, and trace records, thereby avoiding an intermediate write/read of I
from HBM. Second, when indices must be retained (e.g. for later reuse), we
pipeline across heads: while head h performs application for query block g,
head h + 1 can perform estimation for ¢ in a separate CUDA stream, since
the data are disjoint and determinism is enforced by a fixed head schedule
and disjoint output segments.

Asynchronous prefetch and double buffering. For both estimation
and application, the critical path is the streaming of K, (and V) blocks
for the realized representative indices. We therefore employ double-buffered
SMEM tiles and asynchronous copies. Concretely, while computing on buffer
p (MMA for logits and reductions for pu, A, o0 or for candidate scoring), we
prefetch the next required block into buffer 1 — p using asynchronous trans-
actions, and we synchronize only at the tile boundary. This converts HBM
latency into bandwidth-limited throughput provided the arithmetic intensity
of the b, x by, x d tile is sufficient.

KV-cache interactions. In autoregressive decoding, K,V are appended
over time and typically stored in a paged KV cache. Our method is com-
patible provided the mapping from logical block index r to physical address
is deterministic and queryable without synchronization. We store a page
table in HBM (or, when small, in constant memory) and perform address
translation per retained r = I[g,t]. To preserve coalescing, we choose the
cache layout so that each logical block is contiguous and aligned, and we
keep bi equal to the cache block granularity. Causality is enforced by Cpx
(and token-level C' within the block), so the same kernels apply to both
prefill and decode; in decode, only the final query block(s) are active and
persistent CTAs prevent underutilization.

Handling variable k(q) without divergence. When sparsity varies by
query block, we require compilation-friendly control flow. We implement ei-
ther (i) padding: fix a compile-time kpyax, run all loops for t = 1,..., kpax,

14



and treat t > k(q) as empty (scores = —oo, no trace write) while still re-
serving a fixed-size output slot; or (ii) bucketing: partition query blocks into
a small set of buckets by k(q) € {k1,...,ks}, and launch specialized kernels
per bucket. Padding eliminates divergence entirely at the cost of redundant
work, whereas bucketing preserves work-efficiency with a bounded number of
kernel variants. In both cases, tie-breaking 7 and the per-q visitation order
are unchanged, hence reference-equivalence is preserved.

8 Theoretical Analysis: Work, Space, and 10 Bounds

We analyze the compiled STREAM procedure in the external-memory model
described above, under fixed (bg, by, d) and fixed sparsity k (or a known sched-
ule £(q) implemented by padding/bucketing without changing the underlying
control decisions). Let ng := T'/b; denote the number of query blocks and
ng := T'/by, the number of key blocks. The hierarchical refinement depth is

niy = [logyng],

corresponding to repeatedly bisecting a contiguous key-block range until sin-
gle blocks are isolated.

Work bound for mask estimation. For each query block ¢, each re-
finement iteration produces 2k candidate sub-branches. For each candidate,
the compiled kernel selects a representative block index r (the first valid
block under Ch[g, *] in that sub-branch, deterministically), and computes
the representative score

score(q,r) =  max (Qlg,m, ], K[r,n,:]),
1<n<by
C[vakn]zl

which evaluates ©(byb) dot products in R? and then reduces by a maximum.
Hence each candidate score costs ©(bybid) arithmetic operations, and each
iteration costs ©(2k bybrd). Summing over nj; iterations and ng query blocks
yields

Workest = O(ng - k - nig - bbgd) = O(T - k - byd - logo(T /b)),

which is O(T'log(T /b)) for constant parameters, in agreement with The-
orem 2. Exact top-k selection among 2k candidates per iteration incurs
an additional ©(k) comparison cost, which is subsumed by the dot-product
work when b,bd is nontrivial, but is nevertheless asymptotically unavoid-
able in comparison-based models (cf. the top-k lower bound in the hardness
discussion).

15



Auxiliary memory bound. The only asymptotically nonconstant auxil-
iary state that must persist beyond a single query block is the output index
array I € Z"a*k (or ng X kmax under padding). Thus the auxiliary space is
O(ngk) = O(T) integers per head/layer, plus an optional O(ng¢k) edge list
if trace records are stored rather than streamed. On-chip working storage
is O((bg + by)d) for tiles and O(k) for candidate scores/indices; neither de-
pends on T'. In particular, no T' x T score, probability, or mask matrices are
materialized, satisfying the space constraint.

HBM traffic upper bound. We bound global-memory traffic for mask
estimation by accounting for the distinct streamed reads. Each query block
loads its @ tile once, costing O(b,d) elements, hence ©(T'd) overall. For each
query block, each iteration scores 2k candidates, and each scored candidate
requires loading exactly one representative K block of size ©(bid) (amor-
tizing intra-block reuse across threads computing the bg x by, dot products).
Therefore,

0e < O(Td + nq-k:-nit-bkd>

(up to datatype width and constant factors), matching Theorem 3. Any ad-
ditional writes are limited to the output indices (and optional trace records),
i.e. O(ngk) words. For mask application (if we proceed to compute masked
attention summaries), the dominant additional reads are the K /V blocks ref-
erenced by I[g, t]; this contributes O(nqkbid) reads for each of K and V, and
O(Tkd) arithmetic for the sparse projection, consistent with the complexity
summary.

HBM traffic lower bound and near-optimality. We now state what
can be proved optimal under exact reference-equivalence. First, in the worst
case any correct algorithm must read 2(7'd) elements of @: otherwise there
exists an unread entry of ) whose adversarial modification changes the cor-
rect top-k outputs for some query block, contradicting correctness. Second,
emitting k£ retained key-block indices per query block implies an uncondi-
tional output write lower bound of £2(n4k) words. Third, for exact selection,
the algorithm must access (hence read) at least one block of key data per
emitted output in the worst case, giving Q(nqkbyd) reads. Together these
yield Theorem 4:

[0u = Q(Td + nqk:bkd),

up to datatype width. Comparing with the upper bound, our compiled
STREAM estimator is within a factor of niy = [logy (7 /bg)] of this information-
theoretic minimum. We emphasize what is and is not claimed: we do not
assert that the logarithmic factor is globally unavoidable for all conceivable
exact sparse-masking schemes; rather, for the exact STREAM specification
it is intrinsic because the control flow performs nj; refinement steps, and our

16



implementation does not asymptotically increase the number of distinct K
blocks touched beyond those implied by the specification. Thus, within the
class of implementations that are bitwise reference-equivalent under 7 and
that avoid 72 materialization, the dominant HBM traffic is near-minimal
up to the refinement depth, while the remaining optimization space lies in
constant factors (tiling, datatype, coalescing) and in trading exactness for
approximation (which changes the specification and therefore falls outside
the present optimality statement).

9 Experimental Plan

Our experimental goal is to substantiate three claims simultaneously: (i)
bitwise reference-equivalence of the emitted index tensor I under the fixed
tie-breaker 7; (ii) end-to-end latency and memory behavior consistent with
the external-memory analysis (in particular, the absence of T allocations
and the dominance of HBM traffic); and (iii) practical usability at T €
[10°,105] on a single consumer GPU, including representative downstream
workloads.

Profiling methodology. We will profile at the granularity of the ma-
jor pipeline stages: (a) mask estimation (producing I), (b) optional trace
emission (streaming an edge list), and (c) optional mask application (sparse
attention summaries or masked attention outputs). Latency will be mea-
sured with CUDA events around each kernel (warm-up excluded), reporting
medians and tail percentiles over repeated runs with fixed seeds. Global-
memory traffic will be measured using Nsight Compute and /or CUPTT coun-
ters (e.g. DRAM read/write bytes) to estimate IO¢s and separate reads of
Q@ from streamed reads of representative K blocks. We will additionally
record achieved bandwidth, occupancy, and tensor-core utilization to diag-
nose whether performance is bandwidth-limited as predicted for long con-
texts. To avoid confounding factors, we will pin (bg, b, d, k) to a small set
of compile-time-specialized kernels and report results per specialization.

Correctness checks against the reference specification. We will im-
plement a reference STREAM procedure (CPU and GPU versions) that fol-
lows the same branch initialization, bisection schedule, representative selec-
tion rule (“first valid key block”), and top-k with deterministic tie-breaking
7. For small and medium T we will exhaustively compare the emitted in-
dices I for every head and layer, requiring exact equality. For large T" where
full reference execution may be expensive, we will use two strategies: (i)
randomized differential testing on many sampled query blocks ¢ (checking
that all I[g,*] match), and (ii) metamorphic tests that preserve the control
decisions (e.g. permuting invalid keys within masked-out regions of Cyx) to

17



verify that determinism and validity invariants are respected. We will also
validate the validity invariant directly by checking that every emitted key-
block index satisfies Chk[q, I[g,t]] = 1 and that empty outputs occur iff a
query block has no valid keys under Cyy.

End-to-end latency and memory footprint. We will report (1) peak
HBM allocation measured via CUDA memory queries and allocator logs,
and (2) the asymptotic scaling of allocated bytes in T for indices-only and
trace-emission configurations. The key requirement is empirical confirmation
that auxiliary memory scales as O(n,k) rather than O(T?). For latency, we
will present throughput as tokens/s and query-blocks/s, and we will separate
time spent in mask estimation from time spent in any subsequent masked
computation.

Scaling to 7' = 10°. We will conduct strong-scaling sweeps over T while
holding (b, bg,d, k) fixed, and record (i) kernel time, (ii) measured HBM
bytes, and (iii) the number of representative key blocks touched per query
block. We will test both benign masks (pure causal) and adversarial masks
(sparse validity patterns in Ch) to ensure that the representative selection
and branch refinement do not induce pathological divergence. We will com-
pare observed scaling against the predicted O(T log(T'/by)) work trend and
the IO upper bound, with attention to whether the effective multiplicative
factor tracks ny = [logo(T'/by)].

Benchmark tasks and practical stability. To demonstrate utility be-
yond microbenchmarks, we will evaluate on long-context suites such as RULER
and on long chain-of-thought style prompting where attention tracing is di-
agnostically valuable. For each task, we will report (a) overhead relative to
the same model without tracing, (b) stability of the emitted sparse traces
across prompts and seeds (indices I are deterministic for fixed inputs), and
(c) qualitative sanity checks of trace artifacts (e.g. concentration on rele-
vant context regions). Finally, we will repeat the full measurement suite
across several GPUs spanning architectures and memory bandwidth tiers
(e.g. RTX-class consumer GPUs and workstation variants), and report both
absolute performance and normalized bandwidth efficiency to assess portabil-
ity and sensitivity to hardware constraints. These experiments will delineate
the regimes where STREAM-style tracing is reliable and cost-effective, and
thereby motivate the limitations and extensions discussed next.

10 Limitations and Future Work

We delimit the present contribution to a compilation-friendly realization of a
particular sparse tracing primitive: STREAM-style hierarchical selection of

18



key blocks followed by optional masked computation and emission. This fo-
cus yields strong reference-equivalence guarantees under a fixed tie-breaking
rule 7 and enables an external-memory analysis, but it also restricts gener-
ality in several directions.

Generality beyond attention-only tracing. Our current interface as-
sumes that the objects of interest are attention edges (query-block to key-
block relations) induced by (@, K) under a causal and optional task mask
C, and that the downstream consumer is satisfied with indices I (optionally
augmented with scores/weights). Many interpretability questions, however,
concern phenomena not localized to attention alone (e.g. MLP feature activa-
tions, residual stream attribution, or cross-layer circuit motifs). A principled
extension would treat STREAM as a generic sparse-selection subroutine over
any bilinear (or more general) interaction that can be evaluated blockwise
without 72 materialization. The obstruction is that the scoring functional
used here, maxy, »(Qm, Ky), is aligned with attention geometry and admits
efficient tiling; alternative functionals (e.g. integrated gradients along the
residual path) may not admit similarly cheap representatives. We view it
as future work to identify a small family of score functionals that (i) are
interpretable, (ii) preserve a determinism invariant analogous to 7, and (iii)
remain [O-efficient under a streaming model.

Multi-GPU and distributed execution. The present analysis is single-
device: ) and K reside in one HBM domain and the kernel streams rep-
resentative K blocks to on-chip memory. For T' ~ 106 this is plausible on
high-memory consumer devices, but not universal, and it excludes settings
where @, K,V are already sharded (tensor parallelism) or where context is
pipeline-parallel across devices. Extending STREAM to a multi-GPU regime
introduces two coupled difficulties: (a) branch refinement depends on scores
that may require reading remote K shards, and (b) deterministic top-k with
tie-breaking 7 must be maintained across asynchronous collectives. A natu-
ral direction is a two-level scheme in which each device proposes local can-
didates with local T-consistent top-k, followed by a globally deterministic
merge (e.g. via all-gather of (score, index) pairs and a total-order reduction).
The resulting communication cost must be analyzed alongside HBM-10; we
expect regimes where interconnect bandwidth, rather than HBM bandwidth,
becomes the bottleneck.

Certified fidelity and robustness. We claim exact reference-equivalence
with respect to a specified STREAM procedure, but this is not a certificate
of faithfulness to dense attention or to any semantic notion of “ground truth”
importance. In particular, the representative selection rule (first valid key
block in a branch) and the blockwise max score are design choices; they

19



are stable under 7 yet may be brittle under distribution shift or adversarial
masking patterns in Cljx. One line of work is to develop post hoc certificates
stating that omitted key blocks cannot change the top-k decision beyond
a known margin, perhaps using upper bounds from blockwise norms (e.g.
|Q|l2||K||2 bounds) computed cheaply. Another is to formalize and test
robustness properties: Lipschitz-type guarantees of I under small perturba-
tions of @), K, and sensitivity analyses with respect to the mask C'.

Variable sparsity schedules and adaptivity. We have treated k as fixed
(or as a known schedule k(q)). In practice, the effective sparsity required for
faithful tracing may vary by layer, head, and query block; allocating a uni-
form k£ may waste IO on easy regions while under-allocating on hard regions.
Adaptive schedules based on score gaps across candidates, entropy proxies,
or branch-confidence measures are appealing, but they interact subtly with
compilation (static shapes), determinism (the control flow must remain 7-
deterministic), and IO predictability (worst-case reads may increase). We
anticipate a constrained adaptivity model: select k from a small discrete set
per query block with a deterministic rule derived from intermediate scores,
enabling kernel specialization while retaining bounded divergence.

Integration with interpretability toolchains. Finally, utility depends
on how traces are consumed. Existing toolchains often assume dense at-
tention maps or per-token saliency arrays; our outputs are sparse, block-
indexed, and naturally streamed. Bridging this gap requires standardized
trace formats (edge lists with metadata, compression, and indexing), effi-
cient CPU-side consumers, and alignment primitives to map block indices
back to token spans under padding and masking. We also require careful en-
gineering to ensure that trace emission does not dominate runtime (e.g. via
buffered streaming, quantized scores, or on-GPU aggregation). A systematic
integration plan, including APIs and reproducible visualization pipelines, re-
mains an essential component of future work.

11 Appendices: reference spec, tie-breaking rules,
kernel pseudocode details, reproducibility check-
lists.

A Reference Specification

We provide, for completeness and for downstream verification, a reference
STREAM specification against which all compiled kernels are compared.
The specification is stated at the level of query blocks and key blocks, as-
suming padding so that T is divisible by lem(bg, b;). For each query block

20



index ¢ € {1,...,T/b,} and each layer/head pair, the reference procedure
initializes a set of k disjoint branches whose union covers the admissible
key-block interval implied by causality and the user mask. Each refinement
iteration splits every retained branch into two sub-branches, yielding 2k can-
didates, and assigns to each candidate a representative key block r chosen
deterministically as the smallest key-block index in that candidate interval
satisfying Chi[g,7] = 1 (or declares the candidate invalid if none exists).
The candidate score is then

= b ], K|rb :
Score(q, T’) O§m<IbI;,a(§(§n<bk (Q[q q +m, ]7 [T k + 1, ]> )
Clgbqg+m, rbi+n]=1

with the convention that max() = —oo. The reference outputs I[q,1..k]
as the representative indices associated to the final k branches after n; =
[logy(T'/by)] iterations (or an empty entry if no valid key exists). This is the
only correctness target for the compiled implementation; all reported equiv-
alences are with respect to this specification rather than dense attention.

B Tie-Breaking and Total Order 7

Exact reference-equivalence requires that all parallel reductions implement
a fixed total order 7 on candidates. We therefore define 7 as a lexicographic
order on tuples

(score, r, branch id, split_bit),

ordered by decreasing score and then increasing (r, branch id, split bit).
In particular, equal scores must resolve to smaller representative indices,
and any remaining ambiguity is discharged by the stable branch identifiers
induced by the initialization and split schedule. We further fix numerical
corner cases: NaN scores are treated as —oo, and —oo compares below all
finite values. These conventions ensure that top-k selection is determinis-
tic across warp-level and block-level reductions, independent of execution
interleavings.

C Kernel Pseudocode Details

We include pseudocode for the compiled kernel at the granularity required to
reproduce control flow and memory traffic accounting. The implementation
is organized as a persistent kernel over query blocks, with one thread block
responsible for one (or a small constant number of) query blocks. Each
block loads @ for its query block once into SMEM (or registers when b,d
permits), and then streams representative K blocks into a double-buffered
SMEM tile to overlap memory latency with compute. The score functional is
implemented as a fused tiled reduction: tensor-core dot products accumulate

21



partial inner products for (m,n) pairs, followed by a max-reduction over
the by x by grid subject to C. The top-k over 2k candidates uses a fixed
comparator implementing 7 and a deterministic sequence of warp shuffles;
no atomics participate in the ordering.

D Reproducibility Checklist

To make the determinism and IO claims falsifiable, we provide a minimal
checklist. We (i) record (T,d, L, H, by, by, k), padding policy, and the exact
definition of C' and Cyy; (ii) specify datatype and accumulation mode (e.g.
bf16 inputs, fp32 accumulation), along with NaN handling; (iii) fix compila-
tion flags affecting associativity or contraction (e.g. fused multiply-add) and
disable nondeterministic reductions; (iv) report GPU model, driver, CUDA
toolkit, and clock settings; (v) log the emitted indices I and, when enabled,
a checksum of streamed edge lists; and (vi) include a reference CPU imple-
mentation that replays the same 7 order to validate bitwise identity of I on
representative workloads.

22



	Introduction
	Background and Reference Specification
	Problem Formulation: Streaming Sparse Tracing Under Causal Masks
	Computational and IO Model
	Kernel Design I: Mask Estimation
	Kernel Design II: Mask Application and Trace Emission
	Kernel Design III: Scheduling and Batching Strategies
	Theoretical Analysis: Work, Space, and IO Bounds
	Experimental Plan
	Limitations and Future Work
	Appendices: reference spec, tie-breaking rules, kernel pseudocode details, reproducibility checklists.
	Reference Specification
	Tie-Breaking and Total Order 
	Kernel Pseudocode Details
	Reproducibility Checklist

