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Abstract

Mechanistic interpretability techniques that inspect attention pat-
terns scale quadratically in context length T , making million-token
analysis infeasible. STREAM (Rosser et al., 2025) leverages hier-
archical sparse attention masks to trace salient long-context atten-
tion in near-linear time, but exhibits a systematic failure mode un-
der causal masking: pruning becomes effectively more aggressive for
late queries, degrading retrieval near the end of long contexts (e.g.,
needle-in-a-haystack). We formalize this as a position-induced bias
caused by the expanding set of admissible causal keys. We introduce
PA-STREAM, a position-adaptive sparsity schedule k(q) (optionally
per layer/head) that increases mildly with query position, preserving
uniform retrieval and tracing fidelity across the entire context while
retaining near-linear scaling. Our theory models hierarchical prun-
ing as selection under noisy branch-score estimates and proves that
k(q) = Θ(log |V(q)|) is sufficient—and in a natural sense necessary—for
uniform retention of behavior-critical branches when only O(1) rep-
resentatives per branch are scored. Empirically (to be added), PA-
STREAM eliminates STREAM’s late-context degradation on RULER
and improves long-context tracing stability on real RAG corpora while
still pruning >95
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1 Introduction

We consider the problem of scaling mechanistic interpretability and long-
context evaluation for decoder-only transformers beyond regimes where dense
attention is computationally convenient. In such settings, it is natural to re-
place the dense causal attention pattern with a learned or data-dependent
sparse mask that preserves a prescribed notion of fidelity while reducing run-
time and memory. The particular fidelity notion we have in mind is position-
uniform: for query positions near the output of the model, the sparse com-
putation should retain the blocks that carry behavior-critical information
(e.g. the block containing a “needle” token in retrieval benchmarks, or the
blocks supporting a specific causal influence path) with probability at least
1− δ, uniformly as the context length T increases. This uniformity require-
ment is not cosmetic. If failure probability increases with position, then any
long-context conclusion derived from sparse masking becomes systematically
biased toward early tokens, and interpretability claims cease to extrapolate
to the long-context regime of interest.

Hierarchical mask estimators in the style of STREAM/HiP are appeal-
ing because they admit a streaming, blockwise implementation: for each
query block one does not score all admissible key blocks, but rather orga-
nizes them into a refinement tree and progressively narrows attention to a
subset of promising candidates using representative sampling. In practice,
such procedures can achieve substantial acceleration while often maintain-
ing good empirical accuracy on short and moderate contexts. However, in
the causal setting there is a structural asymmetry that becomes dominant
at long context length: the admissible region for a query expands mono-
tonically with position, forming a causal triangle in the token–token plane
(and its blockwise analog). As a consequence, the number of admissible key
blocks |V(q)| grows with q. Any method that retains a position-independent
number k of key blocks per query block therefore allocates a vanishing frac-
tion k/|V(q)| of the admissible past to late queries. In the absence of strong
additional side information that reliably localizes behavior-critical blocks,
this induces a position bias: late queries are intrinsically harder, and sparse
estimators tuned for early queries will eventually fail on late ones.

The same phenomenon persists even when the estimator is adaptive in a
limited sense. A hierarchical method may be able to focus computation on a
subset of branches whose estimated scores M̂ are large, but if these estimates
are derived from a constant number of representatives per branch, they in-
herit nontrivial noise. In the long-context regime the number of competing
branches increases, and extreme-value effects imply that some noncritical
branch will be spuriously overestimated with nonnegligible probability. If
we prune aggressively by keeping only a sublogarithmic number of branches
at any refinement level, then the critical branch can be eliminated early,
after which later refinements cannot recover it. Thus there are two coupled
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sources of degradation under causal masking: (i) the combinatorial growth
of admissible keys with position, and (ii) the statistical growth of misleading
competitors under noisy branch estimation. Taken together, these effects
explain a characteristic failure mode observed in practice: sparse attention
may appear faithful on shallow needles and early positions, yet exhibit sharp
drops in retrieval or behavioral preservation at late positions, even when av-
erage accuracy metrics remain acceptable.

Our approach is to make this failure mode explicit and to design a sched-
ule that neutralizes it by allocating sparsity budget as a function of position.
Concretely, we propose a position-adaptive variant of STREAM, which we
refer to as PA-STREAM, that assigns to each query block q a budget k(q)
that increases with the number of admissible key blocks. The guiding princi-
ple is that the budget should be just large enough to control the probability
that the behavior-critical branch is pruned at any refinement level, while
remaining sufficiently small that the total number of retained block interac-
tions is near-linear up to polylogarithmic factors. This yields a sparse mask
that is still structured and efficiently computable, but does not implicitly
privilege early positions.

The contributions of this work are as follows.

• Position bias under causal masking. We formalize the causal-triangle
bias as an information-theoretic obstruction: when a query has |V(q)|
admissible key blocks and the estimator has no reliable distinguisher
for the critical one, retaining at most k blocks yields worst-case success
probability at most k/|V(q)|. In particular, any constant-k policy has
success probability tending to 0 for late queries as T grows. This
statement is independent of STREAM, and isolates the source of failure
as the growth of the admissible set itself.

• PA-STREAM: a logarithmic position-adaptive schedule. We introduce
a sparsity schedule of the form

k(q) = k0 +
⌈
α
(
log(1 + |V(q)|) + log(1/δ)

)⌉
,

together with a corresponding hierarchical pruning procedure that uses
this budget at each query block. The schedule increases slowly (log-
arithmically) with position, so the total retained interactions scale as
O(Nq logNq) rather than O(N2

q ), while enabling uniform control of
failure probability across the sequence.

• Matching necessity under noisy branch estimates. We establish a lower
bound for hierarchical selection with sub-Gaussian estimation noise
and constant representatives per branch: if at some refinement level
the estimator keeps k(q) = o(log |V(q)|) branches, then there exist
instances with a constant separation margin in which the probability
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of pruning the critical branch is bounded below by a constant. This
shows that the logarithmic growth of k(q) is not merely sufficient but
asymptotically necessary (up to constants) for uniform success in the
long-context regime under the stated noise model.

• Empirical validation plan. We outline an evaluation protocol tailored
to position-uniform fidelity. Rather than reporting a single aggregate
score, we propose measuring retrieval or behavioral preservation as
a function of needle depth (or query block index), and comparing
fixed-k STREAM, PA-STREAM, and ablations that remove either the
log |V(q)| term or the log(1/δ) term. We further propose reporting
wall-clock speedups and memory usage under a blockwise implemen-
tation, to ensure that the improved uniformity does not come at the
cost of negating sparsity benefits.

The net effect is a sparse attention masking strategy that is aligned with
the combinatorics of causal attention: as the admissible past grows, we in-
crease the budget just enough to keep the probability of losing behavior-
critical information controlled. The remainder of the paper develops the
formal model, states the hierarchical pruning abstraction we analyze, and
proves the claimed guarantees and lower bounds before turning to experi-
mental validation.

2 Preliminaries and Notation

We work with a decoder-only transformer on a length-T token sequence. Fix
a layer ℓ and head h and suppress (ℓ, h) when unambiguous. Let Q,K, V
denote the usual attention matrices with per-token rows Qi,Kj ∈ Rd (and
Vj ∈ Rdv). The masked attention output at token i is

Attn(i) =

T∑
j=1

πijVj , πij ∝ exp
(

1√
d
⟨Qi,Kj⟩

)
Cij ,

where C ∈ {0, 1}T×T is a token-level validity mask. In the causal setting
Cij = 1{j ≤ i}, so each query token may attend only to its prefix. Our focus
is not on approximating πij for all pairs, but on selecting a structured subset
of valid key positions that is sufficient for a specified fidelity criterion.

Block partitioning. We partition tokens into query blocks of size bq and
key blocks of size bk, writing Nq = T/bq and Nk = T/bk (divisibility assumed
for simplicity). Query block q ∈ {1, . . . , Nq} contains token indices (q −
1)bq+1, . . . , qbq, and similarly key block r ∈ {1, . . . , Nk} contains (r−1)bk+
1, . . . , rbk. We use the block matrices

Qq ∈ Rbq×d, Kr ∈ Rbk×d, Vr ∈ Rbk×dv .
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A blockwise sparse mask is an indicator M(q, r) ∈ {0, 1} that decides whether
query block q is permitted to interact with key block r. Such a mask induces
a token-level mask by allowing precisely those token pairs whose blocks are
retained, subject to the original validity constraints.

To respect the original token-level mask C, we define a block validity
predicate Cblk ∈ {0, 1}Nq×Nk by

Cblk(q, r) = 1 ⇐⇒ ∃ i ∈ q, j ∈ r such that Cij = 1,

where i ∈ q denotes that token i lies in query block q, and similarly j ∈ r.
For causal C and aligned blocks, Cblk(q, r) = 1 for r ≤ q and 0 otherwise.
We write the admissible key-block set for query block q as

V(q) := {r ∈ {1, . . . , Nk} : Cblk(q, r) = 1},

so V(q) = {1, . . . , q} in the causal case.

Block scores and maxima. Hierarchical sparse attention procedures do
not typically compute all blockwise interactions QqK

⊤
r . Instead, they use

a cheap score α(Qq,Kr) that is intended to upper bound, approximate, or
correlate with the best token-token affinity between the blocks. A canonical
example (used in STREAM-style methods) is the block maximum

α(Qq,Kr) := max
1≤i≤bq , 1≤j≤bk

⟨Qq,i,Kr,j⟩,

although our abstraction permits other monotone surrogates (e.g. a log
∑

exp
proxy). The objective of masking is then phrased in terms of retaining those
key blocks whose contributions to downstream behavior are large or oth-
erwise behavior-critical, rather than reproducing the full dense distribution
πij .

Hierarchical pruning abstraction (STREAM/HiP). Fix a query block
q. We view the set V(q) of admissible key blocks as the leaves of a refinement
tree. At refinement level i ∈ {0, 1, . . . , nit}, the admissible leaves are grouped
into Bi(q) disjoint branches, each branch corresponding to a contiguous range
of key-block indices (for example, a binary partition of {1, . . . , |V(q)|}). A
branch b at level i contains a subset Ri,b(q) ⊆ V(q) of key blocks. The true
branch maximum is

Mi,b(q) := max
r∈Ri,b(q)

α(Qq,Kr).

Hierarchical pruning proceeds by estimating Mi,b(q) for each branch using a
small number of representatives, ranking branches by their estimated max-
ima, retaining only a limited number of branches, and then refining retained
branches to the next level.
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Concretely, for each branch b we sample at most r = O(1) representatives
r(1), . . . , r(r) ∈ Ri,b(q) (uniformly, or by a fixed deterministic rule), compute
their block scores, and form an estimate M̂i,b(q) intended to approximate
Mi,b(q), e.g.

M̂i,b(q) := max
t∈{1,...,r}

α(Qq,Kr(t)).

We treat M̂i,b(q) as noisy evidence about Mi,b(q). The estimator then re-
tains the k(q) branches with the largest M̂i,b(q) among those consistent with
Cblk, discards the others, and refines only the retained branches. After nit
refinement levels, each remaining branch corresponds to a small number of
candidate key blocks; the final selection S(q) ⊆ V(q) is obtained by keeping
at most k(q) key blocks (for example, by selecting the best leaf from each
surviving branch or by a final top-k(q) over remaining leaves). The key point
for our purposes is that once a branch is pruned at some intermediate level,
all key blocks it contains are irrevocably removed.

Behavior-critical blocks and success. We formalize fidelity through a
set of behavior-critical key blocks R⋆(q) ⊆ V(q) for each query block q. The
definition of R⋆(q) depends on the task: in a retrieval benchmark, R⋆(q)
may contain the block holding the needle token(s); in a mechanistic tracing
setting, R⋆(q) may contain the blocks that lie on a specified causal influence
path. We say the masking procedure succeeds at q if it retains at least one
critical block:

Succ(q) :=
{
S(q) ∩R⋆(q) ̸= ∅

}
,

and fails at q otherwise. Since hierarchical pruning can eliminate critical
blocks early, we also consider the stronger event that the critical block(s)
remain in the retained set of branches at every refinement level; under the
usual refinement-tree semantics, this stronger event implies Succ(q).

These preliminaries isolate the objects we will optimize and analyze: ad-
missible sets V(q) induced by causal masking, a hierarchical branch-and-
refine estimator driven by noisy maxima M̂ , and a success criterion defined
by retention of behavior-critical blocks. In the next section we express these
components as a constrained sparsification problem and as a noisy branch-
selection problem, and we make precise how causal growth of |V(q)| induces
position-dependent difficulty.

3 Clean Problem Formulation

We now recast hierarchical sparse mask estimation as (i) a constrained spar-
sification problem with a uniform fidelity requirement across positions, and
(ii) a sequence of noisy branch-selection subproblems induced by hierarchi-
cal refinement. This formulation isolates the mechanism by which causal
masking creates position-dependent difficulty.
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3.1 Uniform-fidelity sparse tracing as constrained sparsifica-
tion

Fix a layer/head (ℓ, h) and suppress (ℓ, h) when convenient. For each query
block q ∈ {1, . . . , Nq} we must output a retained set S(q) ⊆ V(q) of key
blocks, encoded equivalently by a block mask M ∈ {0, 1}Nq×Nk with

M(q, r) = 1{r ∈ S(q)}.

Mask feasibility is expressed by the validity constraint S(q) ⊆ V(q), and
the local sparsity constraint |S(q)| ≤ k(q). If we allow a (possibly optional)
global budget B, we may further require

∑Nq

q=1 |S(q)| ≤ B; our subsequent
analysis does not rely on this global form, but it is useful when comparing
methods at matched compute.

To express fidelity, we use the critical-set abstraction from the prelimi-
naries: for each q there is a set R⋆(q) ⊆ V(q) of behavior-critical key blocks.
The success event is Succ(q) = {S(q) ∩R⋆(q) ̸= ∅}. The key requirement in
long-context inference is not merely high average success, but uniform suc-
cess over positions (especially those near the output region). We therefore
study constraints of the form

∀q ∈ Qeval : P
(
Succ(q)

)
≥ 1− δ, (1)

where Qeval ⊆ {1, . . . , Nq} is the set of query blocks at which we demand
fidelity, and the probability is over any algorithmic randomness (e.g. repre-
sentative sampling) and/or a data distribution (e.g. random placement of
needles), as appropriate for the evaluation protocol.

With (1) in hand, sparse tracing becomes a constrained minimization:

min
{S(q)}

Nq∑
q=1

|S(q)| subject to S(q) ⊆ V(q), |S(q)| ≤ k(q), (1). (2)

We emphasize two structural features. First, (1) couples sparsification to the
causal growth of |V(q)|: late query blocks are constrained against a larger
admissible set. Second, the constraint is existential in R⋆(q): it suffices to
retain one critical block, which is precisely the regime in which hierarchical
pruning is attractive but also fragile (since an early pruning decision can
remove all critical candidates at once).

3.2 Hierarchical masking as branch selection under noisy
maxima

We now express the hierarchical procedure for a fixed query block q as a
noisy selection problem. At a refinement level i, the admissible set V(q)
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is partitioned into Bi(q) branches {Ri,b(q)}
Bi(q)
b=1 . Each branch has a true

maximum score
Mi,b(q) = max

r∈Ri,b(q)
α(Qq,Kr),

and the algorithm observes only an estimate M̂i,b(q) computed from r = O(1)

representative samples. Abstractly, we treat M̂i,b(q) as a noisy statistic of
Mi,b(q); the salient point is that branch ranking is performed using M̂i,b(q),
not Mi,b(q).

Suppose there exists a behavior-critical block r⋆ ∈ R⋆(q), and let b⋆ =
b⋆(i, q) denote the unique branch at level i containing r⋆. Because pruning
is irrevocable, the algorithm succeeds only if b⋆ is retained at every level.
Thus, even when R⋆(q) contains a single block, the multi-level procedure
induces a conjunction of branch-retention events:

Succ(q) ⊇
nit⋂
i=0

{
branch b⋆(i, q) is among the retained branches at level i

}
.

At each level, the decision rule is a top-k(q) selection among estimated scores
{M̂i,b(q)}b restricted to valid branches. Hence the per-level failure mecha-
nism is clear: b⋆ is pruned if sufficiently many noncritical branches receive
upward fluctuations large enough to outrank it, or if b⋆ itself is underesti-
mated. The role of a separation margin ∆ is likewise transparent: if Mi,b⋆(q)
exceeds competitors by ∆, then only estimation error can cause misranking.

This reduction motivates analyzing the estimator in terms of (a) concen-
tration of M̂i,b(q) −Mi,b(q), and (b) extreme-value effects across the Bi(q)
noncritical branches. The latter is the central obstruction: even modest
upward noise becomes significant when amplified by a large number of com-
petitors, which is precisely the regime encountered at late positions where
|V(q)| (and therefore Bi(q)) is large.

3.3 Effective sparsity and causal position bias

We now formalize the notion that a fixed per-query budget implicitly be-
comes more stringent at later positions. Define the effective retention ratio
(or effective sparsity level) at query block q by

ρ(q) :=
k(q)

|V(q)|
. (3)

Under causal masking with aligned blocks, |V(q)| = q. Consequently, if
k(q) ≡ k is constant then ρ(q) = k/q → 0 as q → ∞. This decay is not a
cosmetic artifact of normalization: it reflects a genuine increase in combina-
torial difficulty. In the absence of additional information distinguishing the
critical block(s), selecting k admissible key blocks at random yields success
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probability exactly ρ(q) when |R⋆(q)| = 1 is uniformly distributed over V(q).
Any method that cannot reliably separate critical from noncritical blocks by
score must contend with this baseline.

Causal masking therefore induces an intrinsic position bias: a sparsifier
with constant k allocates a vanishing fraction of the admissible set to late
query blocks. Hierarchical pruning does not remove this bias; rather, it
changes its manifestation. Early in the hierarchy, Bi(q) grows with q, so the
number of noisy competitors grows as well, increasing the probability that
some noncritical branch attains an anomalously large M̂ . Thus, even if the
critical branch enjoys a fixed true-score advantage ∆, a constant retained-
branch budget can be overwhelmed by the multiplicity of branches at large
q.

In summary, (2) with the uniform constraint (1) forces us to confront the
causal growth of |V(q)|. The branch-selection view explains why noise and
extreme values jointly degrade late-position performance when k(q) is not
allowed to increase. In the next section we make this obstruction formal by
proving lower bounds showing that fixed-k (or, more generally, sublogarith-
mic k(q)) cannot maintain uniform success as T grows.

4 Why Fixed-k Fails (Formal)

We now make precise the sense in which a position-independent sparsity bud-
get is incompatible with uniform-fidelity requirements under causal masking.
The obstruction has two layers: an information-theoretic limitation that al-
ready holds in the absence of score structure, and a distinct extreme-value
limitation that persists even when the critical branch enjoys a constant true-
score advantage but branch scores are observed through noisy sampling.

4.1 Monotone growth of admissible keys under causal mask-
ing

Under (H1) we have, in block indices,

V(q) = {1, . . . ,min(q,Nk)}, hence |V(q)| = min(q,Nk),

which is nondecreasing in q. In the common aligned regime Nq = Nk this
simplifies to |V(q)| = q. Consequently, any schedule k(q) ≡ k induces an
effective retention ratio ρ(q) = k/|V(q)| that decays as 1/q for late positions.
This monotone growth is the sole causal ingredient needed for the lower
bounds below; it is independent of how hierarchical refinement partitions
V(q) at intermediate levels.
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4.2 Worst-case lower bound: constant k cannot yield uni-
form success

We first isolate the most basic impossibility: if the algorithm has no reli-
able side-information distinguishing which admissible key block is behavior-
critical for the given query block, then selecting only k admissible blocks
necessarily fails with high probability at large q.

Formally, fix q and suppose |R⋆(q)| = 1, writing R⋆(q) = {r⋆}, with
r⋆ ∈ V(q). Consider any (possibly randomized) selection rule outputting
S(q) ⊆ V(q) with |S(q)| ≤ k. If r⋆ is worst-case (adversarial) among the
admissible candidates, then we can force failure whenever r⋆ /∈ S(q), and
thus the worst-case success probability satisfies

inf
r⋆∈V(q)

P
(
r⋆ ∈ S(q)

)
≤ k

|V(q)|
,

since E[|S(q)|] ≤ k and the average inclusion probability over r⋆ ∈ V(q)
equals E[|S(q)|]/|V(q)|. In particular, under |V(q)| = q we obtain the lower
bound 1−k/q on failure probability, which is precisely the content of Thm. 1
in our notation.

A direct consequence for uniform fidelity is immediate. If Qeval contains
some q with |V(q)| large, then the constraint P(Succ(q)) ≥ 1− δ forces

k ≥ (1− δ) |V(q)|. (4)

Thus, a fixed budget k cannot satisfy a uniform requirement supq∈Qeval
P(Fail(q)) ≤

δ as T grows unless we let k scale at least linearly with the latest evaluated q.
This is a purely combinatorial statement: it does not depend on hierarchical
structure, score distributions, or the particular implementation of α(·, ·).

4.3 Distributional lower bound: random critical location still
forces growth

The same phenomenon persists under a simple distributional model in which
the critical location is random. Assume r⋆ is uniformly distributed on V(q),
independent of any algorithmic randomness. Then for any (measurable)
selection rule with |S(q)| ≤ k,

P
(
Succ(q)

)
= P

(
r⋆ ∈ S(q)

)
= E

[ |S(q)|
|V(q)|

]
≤ k

|V(q)|
.

Under |V(q)| = q, the best achievable success probability under this model
is at most k/q, which vanishes for constant k as q → ∞. In particular, for
any fixed δ ∈ (0, 1), achieving P(Succ(q)) ≥ 1 − δ again implies (4). The
distributional statement is useful as a baseline when arguing that empirical
late-position degradation is not merely an artifact of adversarial construc-
tions: even benign random placement of a single required dependency forces
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k(q) to grow with |V(q)| unless scores provide additional exploitable struc-
ture.

4.4 Noisy hierarchical refinement: extreme values force at
least logarithmic growth

One might hope that hierarchical pruning circumvents the preceding bounds
by using score structure to concentrate probability mass on a small subset of
admissible keys. However, under (H2) the algorithm does not observe true
branch maxima M , but noisy estimates M̂ computed from only r = O(1)
representatives per branch. In this regime, the dominant failure mode is not
the absence of signal, but the multiplicity of competitors: as the number of
branches Bi(q) grows, the maximum upward fluctuation among noncritical
branches becomes significant even when each individual deviation is sub-
Gaussian.

Thm. 2 captures this phenomenon in a simplified, level-wise abstraction:
with B branches and r = O(1) samples per branch, there exist instances
(with a constant separation margin ∆ = Θ(1) between the critical branch
maximum and competitors) such that retaining k = o(logB) branches by
M̂ prunes the critical branch with constant probability. Translating to our
masked attention setting, observe that for late q we necessarily have large
candidate sets, hence some refinement level i with Bi(q) polynomial in |V(q)|
(e.g. Bi(q) ≍ |V(q)|/2i for dyadic partitioning). Therefore, unless k(q) grows
at least on the order of logBi(q), we incur a constant lower bound on per-
level failure, and hence on overall failure (since the multi-level procedure
requires retaining the critical branch at every level).

In particular, since Bi(q) is typically Ω(|V(q)|γ) for some γ > 0 at an
early level of refinement, we obtain the qualitative necessity

k(q) = Ω
(
log |V(q)|

)
to prevent late-position failure probabilities from being bounded away from
zero under fixed r. This lower bound is compatible with the information-
theoretic limitation above: score structure and separation can reduce the
required growth from linear to logarithmic, but cannot remove growth alto-
gether when branch maxima are estimated noisily and the number of com-
peting branches increases with q.

Collecting these statements, fixed-k sparsification is untenable under
uniform-fidelity constraints in long-context causal settings, and even sublog-
arithmic schedules cannot control the extreme-value effect induced by noisy
branch ranking. This motivates the position-adaptive schedules in the next
section, where we choose k(q) to track the growth of |V(q)| sufficiently to
offset both combinatorial dilution and noisy-competition amplification.
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5 PA-STREAM: Position-Adaptive Sparsity Sched-
ules and Practical Variants

We now specify the mask-estimation procedure we analyze. The guiding
design choice is that the per-query budget must depend on the size of the
admissible set V(q) (and, optionally, on a cheap proxy for attention “diffi-
culty”), while remaining implementable in a single streaming pass with O(T )
working memory.

5.1 Base algorithmic skeleton (one layer/head)

Fix a layer–head pair (ℓ, h) with ℓ > ℓd. We partition the sequence into
query blocks and key blocks, and compute the block validity mask Cblk.
For each query block q, we run a hierarchical refinement procedure in the
style of STREAM/HiP over the admissible key blocks V(q), where at each
refinement level we (i) group candidates into branches, (ii) estimate each
branch score by sampling at most r = O(1) representatives and forming an
estimated branch maximum M̂ , and (iii) retain only the top-kℓ,h(q) branches
by M̂ , recursing until we reach the leaf (block) level. The output is the
selected set Sℓ,h(q) ⊆ V(q), which we materialize as a sparse mask Mℓ,h with
Mℓ,h(q, r) = 1 iff r ∈ Sℓ,h(q).

The only aspect not fixed by the baseline STREAM template is the sched-
ule kℓ,h(q). PA-STREAM is the rule that chooses kℓ,h(q) as a nondecreasing
function of the admissible candidate count |V(q)| (or an equivalent proxy),
together with minor bookkeeping to ensure validity and budget invariants.

5.2 Logarithmic schedule from candidate counts

Our default schedule is

kℓ,h(q) = min
{
kmax, k0 +

⌈
αℓ,h log

(
1 + |V(q)|

)
+ βℓ,h log

(
1/δ

)⌉}
, (5)

with k0 ≥ 1, αℓ,h, βℓ,h ≥ 0, and an optional cap kmax determined by hardware
limits. Under the causal block mask (H1) we have |V(q)| = min(q,Nk),
hence kℓ,h(q) grows like log q until saturation. This growth is the minimal
structural response to the increasing multiplicity of competitors under noisy
branch ranking (cf. the lower bound discussed earlier), while remaining far
from the linear growth that would be required absent score structure.

In practice we often enforce monotonicity explicitly by post-processing

kℓ,h(q)← max{kℓ,h(q), kℓ,h(q − 1)},

which removes small nonmonotonic fluctuations due to discretization or
mixed regimes (Nq ̸= Nk) and simplifies implementation in fused kernels.
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5.3 Entropy-based and hybrid schedules

Candidate-count growth is necessary under (H1), but it is not always suffi-
cient for best empirical accuracy at fixed compute: some query blocks exhibit
unusually flat attention (many comparable keys), while others have a sharply
peaked pattern. To adapt to this heterogeneity without full score material-
ization, we may compute a proxy Ĥℓ,h(q) from the same sampled representa-
tives used in the hierarchical search. One concrete choice is to form a small
multiset of sampled block scores {sm}mm=1 (e.g. maxima or averages within
sampled token pairs) and define a normalized entropy

Ĥℓ,h(q) = −
m∑

m=1

p̂m log p̂m, p̂m =
exp(sm/τ)∑m
j=1 exp(sj/τ)

,

with temperature τ > 0 fixed. We then set

kℓ,h(q) = min
{
kmax, k0 +

⌈
αℓ,h log

(
1 + |V(q)|

)
+ γℓ,hĤℓ,h(q)

⌉}
, (6)

where γℓ,h controls how aggressively we respond to flatness. The point of (6)
is not to change the asymptotic growth in |V(q)|, but to reallocate budget
among positions at fixed average cost.

5.4 Per-layer and per-head calibration

Different layers and heads exhibit different separations ∆ and effective noise
scales σ in their branch score estimates (and, empirically, different sensitivity
of downstream behavior to pruning). Accordingly, we allow αℓ,h, βℓ,h, γℓ,h to
depend on (ℓ, h). A lightweight calibration procedure is to run PA-STREAM
on a short calibration set, sweep αℓ,h over a small grid, and choose the
smallest value for which the observed failure metric (e.g. needle retrieval
or next-token deviation) stays below a target. Since ℓ ≤ ℓd is kept dense
by design, this calibration is restricted to ℓ > ℓd and typically exhibits a
monotone “accuracy versus αℓ,h” curve.

5.5 Global budgeted variant

If a global constraint
∑

q kℓ,h(q) ≤ Bℓ,h is required, we can impose it by a
Lagrangian scaling of the baseline schedule. Concretely, define unnormalized
demands

u(q) = k0 + αℓ,h log
(
1 + |V(q)|

)
+ βℓ,h log(1/δ)

(or the entropy-augmented analogue), and choose a multiplier λ ≥ 0 such
that

kℓ,h(q) = min{kmax, max{k0, ⌊λu(q)⌋}} satisfies
∑
q

kℓ,h(q) ≤ Bℓ,h.
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Since u(q) is nondecreasing under (H1), λ-scaling preserves monotonicity and
can be found by a one-dimensional search. This provides a simple knapsack-
like allocation while keeping the analysis anchored to a schedule that grows
with |V(q)|.

5.6 Implementation notes: dense prefix and block-size inter-
actions

We keep the first ℓd layers dense. Operationally this means that PA-STREAM
is invoked only for ℓ > ℓd, and the dense prefix supplies stable intermediate
representations in which score separations are typically larger; empirically,
this reduces the required αℓ,h in later layers. Mask storage is streamed: we
write out Sℓ,h(q) as indices (or compressed ranges when contiguity emerges)
and avoid storing full Nq ×Nk masks.

Finally, block sizes bq, bk influence both candidate counts and the fidelity
of branch scoring. Increasing bk reduces Nk and hence |V(q)|, permitting
smaller kℓ,h(q) at the block level; however, it also makes each block less
homogeneous, so a representative-based α(Qq,Kr) can become noisier, ef-
fectively increasing σ. Conversely, smaller bk increases Nk and the number
of competing branches, strengthening the need for logarithmic growth in
kℓ,h(q) but improving localization. Our main theorems in the next section
make these tradeoffs explicit: they state sufficient conditions, in terms of
σ,∆, r and the schedule parameters, under which the behavior-critical branch
is retained uniformly over q, together with the corresponding runtime and
memory bounds.

6 Main Theorems (Upper Bounds)

We now state sufficient conditions under which PA-STREAM achieves uni-
form retention of behavior-critical information across query positions, to-
gether with the resulting time and space bounds. Throughout we fix a
pruned layer–head pair (ℓ, h) with ℓ > ℓd, and we consider one query block
q with admissible key blocks V(q) under the causal mask (H1). We write
nq := |V(q)|, and we let nit := ⌈log2Nk⌉ denote the number of refinement
levels until leaf blocks are reached.

6.1 Uniform retention for a single query block

We formalize “behavior-critical retention” at the level of branches in the hi-
erarchical refinement. At refinement level i ∈ {1, . . . ,nit}, the admissible
candidates V(q) are partitioned into Bi(q) valid branches. For a branch b
at level i, let Mi,b(q) denote its true branch maximum score (the maximum
of α(Qq,Kr) over leaf blocks r contained in b), and let M̂i,b(q) denote the
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estimated maximum computed from at most r = O(1) sampled representa-
tives as in (H2). We say a branch b⋆ is critical at level i if it contains at
least one behavior-critical key block for query q. The failure event at level i
is that b⋆ is not among the top-kℓ,h(q) branches by M̂i,b(q), hence is pruned
and cannot re-enter at deeper levels.

Theorem 6.1 (Uniform per-query retention under logarithmic schedules).
Assume (H2): for every level i and branch b, the estimation error M̂i,b(q)−
Mi,b(q) is sub-Gaussian with parameter σ, uniformly over q. Assume (H3):
with probability at least 1− δ0, for every level i the critical branch maximum
exceeds the (kℓ,h(q)+ 1)-st largest noncritical branch maximum by margin at
least ∆ > 0. Fix a target δ ∈ (0, 1). If we choose the budget

kℓ,h(q) ≥ k0 +
⌈
α
(
log(1 + nq) + log(1/δ)

)⌉
(7)

with α ≥ c σ2/∆2 for an absolute constant c > 0 and k0 large enough to
cover the base branching factor at the top level, then PA-STREAM prunes
all behavior-critical key blocks for query q with probability at most δ + δ0.

Proof sketch. We condition on the (H3) separation event, which con-
tributes the additive δ0. Fix a level i, and let b⋆ be the critical branch at
this level, with true maximum M⋆ := Mi,b⋆(q). Let {Mj}Bi(q)−1

j=1 be the true
maxima of noncritical branches. By (H3) we have Mj ≤ M⋆ − ∆ for all
but at most kℓ,h(q) branches (equivalently, M⋆ exceeds the (kℓ,h(q) + 1)-st
largest by ∆). Define the threshold τ := M⋆−∆/2. Failure at level i occurs
only if either (a) the critical branch is underestimated below τ , i.e. M̂⋆ ≤ τ ,
or (b) at least kℓ,h(q) noncritical branches satisfy M̂j ≥ τ . By sub-Gaussian
concentration,

P(M̂⋆ ≤M⋆ −∆/2) ≤ exp

(
− ∆2

c1σ2

)
for an absolute c1. For noncritical branches with Mj ≤M⋆−∆, we similarly
have

P(M̂j ≥M⋆ −∆/2) ≤ exp

(
− ∆2

c2σ2

)
.

A union bound over the Bi(q) branches upper bounds the probability that
kℓ,h(q) or more noncritical branches cross τ by a binomial-tail bound con-
trolled by Bi(q) exp(−∆2/(c2σ

2)). Choosing kℓ,h(q) as in (7) ensures this
probability is at most δ/nit for all levels, using Bi(q) ≤ nq and absorbing
constants into α. Finally, we apply a union bound over levels i ∈ {1, . . . , nit}
to obtain failure probability at most δ conditioned on (H3).
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6.2 Runtime and storage consequences

We next translate Theorem 6.1 into total retained interactions and mask-
estimation runtime. The relevant point is that under (H1) we have nq =
min(q,Nk), so kℓ,h(q) grows at most logarithmically in q until saturation at
kmax.

Corollary 6.2 (Near-linear total budget and polylog overhead). Assume
kℓ,h(q) ≤ k0 +α log(1+ q) + β log(1/δ) for all q ≤ Nq (e.g. (7) under (H1)).
Then

Nq∑
q=1

kℓ,h(q) = O(Nq logNq) +O
(
Nq log(1/δ)

)
.

Moreover, if STREAM-style refinement uses O(logNk) levels and performs
O(kℓ,h(q)) top-k branch selections per level, then the PA-STREAM mask-
estimation time per layer/head is

O

 Nq∑
q=1

kℓ,h(q) logNk

 = O
(
Nq logNk logNq

)
(up to constants and log(1/δ) terms).

Mask storage as block indices is O(
∑

q kℓ,h(q)), while working memory re-
mains O(T ) when masks are streamed.

6.3 Tradeoffs between budget, representatives, and failure
probability

Theorem 6.1 isolates the role of σ, which is the effective noise scale in
M̂ . When M̂ is computed from r i.i.d. representatives, standard concen-
tration suggests that the sub-Gaussian parameter improves as σr ≍ σ/

√
r

for averaged estimators (and more generally decreases with r for robust max-
ima/quantile estimators). Substituting σr into Theorem 6.1 yields the qual-
itative tradeoff

kℓ,h(q) = Θ

(
σ2

r∆2

(
log(1 + nq) + log(1/δ)

))
, (8)

up to additive k0 and absolute constants. Thus we may reduce kℓ,h(q) by
increasing r, or conversely we may hold r constant and accept the loga-
rithmic growth in kℓ,h(q) required for uniform success. The dependence on
log(1/δ) is similarly unavoidable in this concentration-based analysis: de-
manding smaller failure probability forces either larger budgets kℓ,h(q), more
representatives r, or larger separations ∆.

Finally, we note that when we require uniform retention simultaneously
over many query blocks and over multiple (ℓ, h), we may set per-instance
targets δℓ,h,q so that

∑
ℓ,h,q δℓ,h,q ≤ δtot, and then apply a union bound. In
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the simplest symmetric allocation one takes δℓ,h,q = δtot/((L − ℓd)HNq),
which introduces an additional additive log((L − ℓd)HNq) term inside the
log(1/δ) factor of (7). This completes the upper-bound picture: logarithmic
growth in the admissible-set size suffices for uniform retention under (H2)–
(H3), with near-linear total budget and polylogarithmic runtime overhead.

7 Lower Bounds and Tightness

We complement the upper bounds by exhibiting explicit instance families
in which hierarchical selection from noisy branch estimates cannot succeed
uniformly unless the retained-branch budget grows at least logarithmically in
the number of admissible candidates. The point is not merely information-
theoretic indistinguishability (as in Theorem 1), but rather a noisy-ranking
phenomenon: even when the critical branch is separated by a fixed margin at
the level of true branch maxima, a procedure that (i) estimates each branch
from only r = O(1) representatives and (ii) retains only the top-k branches
by the resulting noisy estimates must take k = Ω(logB) at some refinement
level with B branches, or else incur constant failure probability.

7.1 An explicit hard family at a single refinement level

Fix a refinement level and suppress i, q from the notation. We consider B
candidate branches, exactly one of which is critical. The algorithm observes
estimated maxima {M̂b}Bb=1 (computed from at most r representatives per
branch) and retains the k branches with largest M̂b. We now construct an
instance where the true maxima satisfy a constant margin, yet the critical
branch is pruned with constant probability unless k ≳ logB.

Theorem 7.1 (Logarithmic budget is necessary under r = O(1)). Fix
∆ ∈ (0, 1/2] and an integer B ≥ 16. There exists a family of branch-score
instances with the following properties:

1. There is a unique critical branch b⋆ with true maximum Mb⋆ = 1.

2. There are s := ⌈c logB⌉ noncritical branches with true maximum Mb =
1−∆, and the remaining B− 1− s noncritical branches have Mb = 0,
for an absolute constant c > 0.

3. For each branch b, the estimation error M̂b−Mb is sub-Gaussian with a
constant parameter σ = O(1) (uniform in B), and M̂b can be generated
by sampling at most r = O(1) representatives from within the branch.

For this family, any top-k retention rule that keeps only the k largest M̂b has
failure probability bounded below by a constant whenever k < s; in particular,
if k = o(logB) then for all sufficiently large B,

P
(
b⋆ is pruned

)
≥ 1

4
.
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Construction. We take the s “strong” noncritical branches to be noise-free
at the estimate level: set M̂b ≡Mb = 1−∆ for those s branches, and M̂b ≡
Mb = 0 for the remaining weak noncritical branches. For the critical branch
b⋆, we implement a representative-sampling estimator as follows. Inside b⋆

place m leaf blocks, with one distinguished leaf having score 1 and all other
leaves having score 0; define M̂b⋆ as the maximum score among r uniformly
sampled representatives (with replacement) from these m leaves. Then

M̂b⋆ ∈ {0, 1}, P(M̂b⋆ = 1) = 1−
(
1− 1

m

)r

.

Choosing m as a sufficiently large constant multiple of r makes p := P(M̂b⋆ =

1) ≤ 3/4, hence P(M̂b⋆ = 0) ≥ 1/4. Moreover, the error M̂b⋆−Mb⋆ ∈ {−1, 0}
is bounded; consequently M̂b⋆ −Mb⋆ is sub-Gaussian with an absolute con-
stant parameter (a bounded random variable is sub-Gaussian after center-
ing). All other branches have deterministic errors 0, which are trivially
sub-Gaussian.

Why this forces k = Ω(logB). On the event {M̂b⋆ = 0}, all s = ⌈c logB⌉
strong noncritical branches have estimates M̂b = 1 − ∆ and thus strictly
outrank b⋆. Therefore any rule that retains only the top k < s branches
must discard b⋆ on this event. Hence

P(b⋆ is pruned) ≥ P(M̂b⋆ = 0) ≥ 1

4
.

This proves Theorem 7.1.

7.2 A complementary lower bound: constant k forces r =
Ω(logB)

The preceding construction shows that even with a fixed margin ∆, underes-
timation of the critical branch can force a logarithmic k when only r = O(1)
representatives are available. A separate (and more classical) phenomenon
shows that, for natural unbiased estimators, overestimation among many
competitors forces r to grow at least like logB if one insists on constant k.

Proposition 7.2 (Representatives needed for k = O(1)). Fix ∆ ∈ (0, 1)
and consider B branches with Mb⋆ = 0 for the critical branch and Mb = −∆
for all noncritical branches. Suppose M̂b is the empirical mean of r i.i.d.
1-sub-Gaussian samples with mean Mb, so that M̂b −Mb is O(1/

√
r)-sub-

Gaussian. If the selection rule retains only the single best branch (k = 1),
then

P(b⋆ is selected) ≤ exp
(
−c1r∆2

)
B

for an absolute constant c1 > 0. Consequently, achieving P(b⋆ is selected) ≥
3/4 requires r = Ω(logB/∆2).
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Proof sketch. For a fixed noncritical branch b, sub-Gaussian tails give
P(M̂b ≥ 0) ≤ exp(−c1r∆2). By a union bound over B − 1 noncritical
branches, the probability that some noncritical branch attains M̂b ≥ 0 is at
most (B − 1) exp(−c1r∆2). On this event, the top-1 selection fails (ties can
be handled by an arbitrarily small perturbation). Rearranging yields the
stated requirement.

7.3 Implications for causal attention and tightness of PA-
STREAM schedules

We now translate the single-level lower bounds into a statement about causal
attention with |V(q)| = nq. At some refinement level i, the number of
valid branches Bi(q) is at most nq and, for standard balanced hierarchical
partitions, is Θ(nq) at the top levels. Applying Theorem 7.1 with B =
Bi(q) shows that any hierarchical estimator that (a) uses only r = O(1)
representatives per branch and (b) hopes to maintain a constant per-level
success probability uniformly in q must allow

kℓ,h(q) = Ω(logBi(q)) = Ω(log nq) = Ω(log |V(q)|),

up to absolute constants (and ignoring additional log(1/δ) factors demanded
by high-probability rather than constant-probability guarantees). Proposi-
tion 7.2 gives the complementary tradeoff: if one insists on constant kℓ,h(q),
then one must drive the effective noise scale down by increasing representa-
tives r, and r = Ω(log |V(q)|) is necessary in general.

Comparing with Theorem 6.1, we conclude that PA-STREAM’s logarith-
mic schedule kℓ,h(q) = Θ(log(1+nq)+log(1/δ)) is optimal in its dependence
on |V(q)| within the model class captured by (H2) and hierarchical top-k
refinement. Any improvement would require additional structure beyond
(H2)–(H3) (e.g. stronger priors restricting which branches can be competi-
tive, or estimators whose error tails shrink faster than sub-Gaussian under
the available compute), or else a compensating increase in r that is itself at
least logarithmic in |V(q)|.

8 Experimental Design (Strengthening Evidence)

We now specify an experimental protocol whose purpose is to test, under
controlled and realistic settings, whether the position-adaptive schedule in
PA-STREAM achieves (i) uniform long-context fidelity under causal mask-
ing and (ii) near-linear resource growth, and to isolate which design choices
are responsible for any observed gains. Throughout, we compare against
fixed-budget hierarchical pruning (“fixed-k STREAM”) and, when feasible, a
dense-attention reference run (or the strongest dense-prefix surrogate avail-
able at the target length).
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8.1 Long-context stress tests via RULER depth–vs–length
sweeps

We adopt the RULER family of long-context tasks as a systematic stress
test because it provides explicit control over both sequence length T and
the depth at which behavior-critical information is placed. For each target
length T ∈ {214, 215, . . . , 220} (up to the largest feasible T on the target
hardware), we generate prompts with a single “needle” (e.g. a key-value fact,
a short string to be retrieved, or a constrained instruction) inserted at a
controlled depth. We parameterize depth both in tokens and in block indices:
if the needle begins at token position t, we record its query-relative depth as
t/T ∈ (0, 1) and its block depth as ⌈t/bk⌉. We then evaluate a grid of depth
settings, e.g. t/T ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 0.97}, to probe the regime where
|V(q)| is large and Theorem-level position bias becomes most severe for fixed
budgets.

The principal comparison is between (a) fixed-k STREAM, in which
kℓ,h(q) ≡ k for all q in pruned layers/heads, and (b) PA-STREAM with the
schedule kℓ,h(q) = k0 + ⌈α(log(1 + |V(q)|) + log(1/δ))⌉. To avoid confound-
ing from total budget differences, we include a matched-budget condition in
which fixed-k is tuned so that

∑
q k =

∑
q k(q) (up to rounding), thereby

testing whether adaptivity across q matters beyond total retained mass. We
also include an “oracle budget” sweep in which we vary a global multiplier γ
and set k(q) = ⌈γ log(1 + |V(q)|)⌉ to test sensitivity to the constant factor
predicted by σ2/∆2-type scaling.

8.2 Realistic retrieval-augmented generation corpora

Synthetic needles are necessary but not sufficient: we also require evaluation
on naturally occurring long contexts arising from retrieval-augmented gener-
ation (RAG). We therefore construct long-context inputs by concatenating
retrieved passages from a large text corpus (e.g. encyclopedic and technical
sources) together with a user query that requires multi-passage synthesis.
We generate retrieval contexts at multiple lengths by varying the number of
passages and truncating/packing to a target token budget T . In this setting,
behavior-critical information is not a single needle but rather a sparse set of
evidential spans whose locations are determined by the retriever; this probes
whether PA-STREAM preserves multiple long-range dependencies simulta-
neously.

To connect the evaluation to the mask level, we log (for each query block
q) the distribution of selected key-block indices Sℓ,h(q) and compute sum-
mary statistics such as the median retained key distance (in blocks) and
the fraction of retained blocks that fall within the earliest ρ-prefix of V(q)
for ρ ∈ {0.1, 0.2}. These diagnostics help distinguish “attention-sink”-like
behavior (mass concentrated on early blocks) from genuinely depth-aware
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retention.

8.3 Metrics: task success, fidelity, and resources

We report four metric families.

(i) Retrieval/task success. For RULER-style tasks, we use exact-match
(or constrained-format) success, aggregated as a function of both T and
depth t/T . For RAG-style corpora, we use answer quality metrics appropri-
ate to the task (exact match / F1 when labeled, and otherwise verifier-based
correctness), but we additionally include a citation-precision proxy: whether
the generated answer contains a substring uniquely identifying the support-
ing passage(s), which is sensitive to long-range access.

(ii) Logit-level fidelity. To measure whether sparse attention preserves
the model’s local behavior beyond task-specific needles, we compute the per-
token KL divergence between the dense-reference next-token distribution
pdense(· | x1:t) and the sparse distribution psparse(· | x1:t),

KL
(
pdense ∥ psparse

)
=

∑
v

pdense(v) log
pdense(v)

psparse(v)
.

We average this KL over a fixed window near the output (e.g. the last W
tokens) and also report top-1 agreement and the change in log-probability
assigned to the dense model’s greedy token. When a full dense run is infea-
sible at the target T , we use a strong proxy reference (e.g. dense attention
for the final layers and/or a smaller T matched by truncation) and interpret
results accordingly.

(iii) Mask sparsity. We measure the realized sparsity as the average num-
ber of retained key blocks per query block,

k :=
1

Nq

Nq∑
q=1

|Sℓ,h(q)|,

and also report the total retained interactions
∑

q |Sℓ,h(q)| as a function of
T . To ensure that sparsity is not achieved by violating validity, we verify
that all selected pairs satisfy Cblk(q, r) = 1.

(iv) Wall-clock time and memory. We measure end-to-end inference
latency (including mask estimation) and peak device memory, both as func-
tions of T , and we report the slope with respect to T in the long-context
regime. We use a fixed hardware/software stack and include separate tim-
ings for (a) mask construction and (b) sparse attention application, since
PA-STREAM changes both.
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8.4 Ablations: schedules, block sizes, and dense early layers

To identify which components are essential, we run the following ablations.

Schedule variants. We compare (1) constant k(q) ≡ k, (2) linear k(q) =
k0 + γq (a pessimistic control), (3) square-root k(q) = k0 + γ

√
q, (4) loga-

rithmic k(q) = k0+⌈α log(1+q)⌉, and (5) entropy/proxy-adaptive schedules
k(q) = k0 + ⌈αĤ(q)⌉ where Ĥ(q) is computed from the sampled branch
scores used by PA-STREAM. For each variant, we either match

∑
q k(q) or

report Pareto curves trading fidelity against sparsity.

Block sizes (bq, bk). We sweep bq, bk over powers of two (e.g. 64, 128, 256)
to test whether PA-STREAM’s gains are robust to coarser partitions that
reduce Nk but potentially increase within-block heterogeneity. We record
how the optimal α and the observed success-vs-depth curves shift with bk,
since |V(q)| is block-granular.

Dense-prefix depth ℓd. We vary the number of initial dense layers ℓd ∈
{0, 2, 4, . . .} to test the hypothesis that early layers benefit from dense mixing
while later layers can be aggressively sparsified. We report fidelity metrics as
a function of ℓd at fixed total sparsity, thereby separating “where to prune”
from “how much to prune.”

Finally, we standardize all stochastic components (sampling within branches,
tie-breaking in top-k) by fixing random seeds and reporting confidence inter-
vals across runs. This isolates the intrinsic variance induced by representative
sampling from task-level variance in the prompts.

9 Discussion

We discuss implications of position-adaptive hierarchical sparsification for
monitoring and control at million-token scale, articulate regimes in which
logarithmic growth of the retained budget can be insufficient, relate the
schedule to empirical phenomena such as retrieval heads and attention sinks,
and delineate the limitations of an attention-only analysis under the separa-
tion/noise assumptions.

Implications for million-token monitoring. A primary motivation for
a schedule of the form k(q) = k0 + ⌈α(log(1 + |V(q)|) + log(1/δ))⌉ is that it
keeps the per-position risk of pruning behavior-critical context approximately
uniform as the context grows, rather than allowing failure probability to drift
upward with q as predicted by position-bias lower bounds for constant k. At
T ≈ 106, the number of blocks Nq = T/bq is typically on the order of 104 for
common bq ∈ [64, 256], so logNq remains modest; the resulting

∑
q k(q) =
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Θ(Nq logNq) scaling is compatible with streaming mask construction and is,
in our computational model, a plausible substrate for monitoring in which
we seek to certify that certain evidential spans remain reachable by late-layer
queries. In particular, if we treat “monitoring” as the task of ensuring that
a sparse controller (the mask) does not erase designated information paths,
then the schedule provides a concrete knob—δ—that can be set according to
an application-level tolerance, with the understanding that the runtime and
retained interactions increase only polylogarithmically in the long-context
regime. This is the sense in which PA-STREAM is suited to million-token
settings: it does not promise that every dependence is preserved, but rather
that dependencies that manifest as consistently high-scoring branches under
the model’s own Q,K geometry are unlikely to be pruned uniformly over
position.

When log-growth may be insufficient. The preceding statement is con-
ditional, and it is important to isolate the failure modes in which Θ(log |V(q)|)
retained branches does not suffice even in principle for uniform success. First,
our sufficient condition depends on an effective separation margin ∆ between
a behavior-critical branch maximum and competing branches at each refine-
ment level. In realistic long contexts, ∆ may deteriorate with q (e.g. be-
cause many semantically similar passages appear as the context grows), and
the required constant α scales as σ2/∆2; thus a schedule with fixed α may
under-allocate k(q) precisely where the model becomes least separated. Sec-
ond, the sub-Gaussian noise model captures bounded-variance estimation
error from representative sampling, but it does not cover heavy-tailed or
state-dependent errors that can arise when the representative set is system-
atically uninformative for certain branches. In such cases, increasing k(q)
alone may be inefficient; instead one may need to increase the number of
representatives r, or to adopt estimators with variance reduction (e.g. strat-
ified sampling within branches), effectively trading additional dot-products
for tighter concentration of M̂ . Third, behavior-critical information need
not be localized to a single branch; it may be combinatorial (multiple spans
jointly required), in which case preserving only the top branch at each level
is not the correct objective. One expects then that the appropriate bud-
get is governed by a multi-target analogue of the separation condition, and
may scale with the number of simultaneously required branches, not merely
log |V(q)|.

Relation to retrieval heads and attention sinks. Empirically, decoder-
only transformers often exhibit heads that behave like retrieval mechanisms,
with attention patterns that sharply localize on specific prior spans, as well as
“attention sinks” in which early tokens attract disproportionate mass across
many queries. PA-STREAM’s schedule addresses a structural issue that
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is orthogonal to these phenomena: under causal masking, the candidate set
|V(q)| grows with position, so any fixed per-query budget induces an increas-
ing combinatorial disadvantage for deep retrieval, irrespective of whether
the model has specialized retrieval heads. Thus, to the extent that retrieval
heads exist, a position-adaptive budget can be interpreted as supplying these
heads with the degrees of freedom required to express long-range selection
uniformly across q. At the same time, the existence of attention sinks compli-
cates the interpretation of retained blocks: if a sink branch consistently yields
high estimated maxima, a purely score-driven procedure will retain it, poten-
tially crowding out mid-context evidence when the budget is small. In this
sense, PA-STREAM should not be viewed as a complete remedy for sink-like
behavior; it is a mechanism for avoiding a budget-induced depth collapse, not
for correcting model-internal biases. A natural extension, compatible with
the present framework, is to incorporate mild reweighting or constraints at
the branch-scoring stage (e.g. penalizing extremely early blocks or enforcing
diversity across distance bins) while retaining the same logarithmic scaling
needed to control the probability of pruning genuinely critical late branches.

Limitations of attention-only tracing. Our guarantees are stated in
terms of retaining behavior-critical key blocks under an attention-based no-
tion of influence. This is necessarily incomplete: modern transformers route
information not only through attention but also through residual pathways
and MLP sublayers, and “behavior-critical” dependence can be mediated by
features that do not correspond to a single high-attention edge. Accordingly,
even a perfect attention mask is not a full causal certificate of functional
equivalence; it is a controlled approximation that preserves certain attention-
mediated interactions with high probability under assumptions. Moreover,
the block score α(Qq,Kr) is itself a proxy: maxima or sampled maxima are
chosen for computational convenience, but they may correlate imperfectly
with the downstream contribution of Vr after softmax normalization, head
mixing, and residual addition. This mismatch is a fundamental limitation of
mask construction from partial score observations, and it suggests that logit-
level fidelity (or other functional metrics) should be treated as a first-class
target, not merely an evaluation afterthought.

Dependence on separation and noise assumptions. Finally, we em-
phasize that the separation/noise hypotheses should be interpreted as mod-
eling assumptions rather than universal truths. Separation may hold with
high probability for many queries and yet fail on rare but important ones;
likewise, sub-Gaussian estimation error may hold on average but break un-
der distribution shift or adversarially constructed contexts. In practice, one
may wish to estimate σ online from the dispersion of sampled scores, and to
detect potential violations of separation by monitoring the empirical gaps be-
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tween top-ranked branches; such diagnostics could trigger adaptive increases
of k(q) or r on a per-query basis. These considerations motivate, in the
subsequent conclusion, the development of mask-selection procedures that
couple adaptive schedules with explicit fidelity certificates and with tracing
mechanisms that extend beyond attention alone.

10 Conclusion and Future Work

We have formalized a position-adaptive view of hierarchical attention sparsi-
fication under causal masking, in which the combinatorial growth of admis-
sible keys with depth forces any uniformly reliable procedure to increase its
retained budget with q. Within a blocked/streaming computational model,
PA-STREAM couples STREAM-style hierarchical pruning with a sparsity
schedule k(q) that scales logarithmically in |V(q)| (and in log(1/δ)), yielding
near-linear total retained interactions and polylogarithmic runtime overhead.
Under sub-Gaussian branch-score estimation noise and a separation mar-
gin at each refinement level, this schedule suffices to bound the probability
of pruning behavior-critical key blocks uniformly over position; conversely,
with r = O(1) representatives, retaining k(q) = o(log |V(q)|) branches at
some level is asymptotically incompatible with bounded failure probability
on explicit hard instances. We therefore regard logarithmic growth not as an
aesthetic choice but as a structural response to causal position bias in long
contexts.

Adaptive schedules with variable per-iteration branching. A first
extension is to make the schedule sensitive not only to |V(q)| but also to
the effective branching structure encountered during refinement. In practice
the number of valid branches Bi(q) at level i depends on causal truncation,
padding, and implementation details (e.g. unequal block sizes near bound-
aries), and may vary substantially with q. Our current statement uses the
worst-case proxy log |V(q)| ≈ log q to control a union bound across levels,
but a sharper allocation is possible: one may define per-level budgets ki(q)
and distribute a target failure probability δ as

∑
i δi ≤ δ, choosing

ki(q) ≈ k0,i +
⌈
α
(
log(1 +Bi(q)) + log(1/δi)

)⌉
,

so that refinement levels with small Bi(q) do not inherit unnecessarily large
k. Such a scheme suggests an analysis in the style of confidence sequences:
rather than fixing δi a priori, we may adapt δi online based on observed
empirical gaps between the highest estimated branch scores. This would
convert the fixed logarithmic schedule into a data-dependent one that is still
worst-case safe (by reserving a minimum budget) but that reduces work on
“easy” queries where separation is strong. A corresponding open problem
is to characterize the minimal

∑
i ki(q) sufficient for uniform success when
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the Bi(q) are random (e.g. induced by variable-length inputs) and when
refinement trees are unbalanced.

From attention retention to logit-faithful certificates. A second di-
rection is to replace an attention-centric notion of fidelity by a certificate
at the level of model outputs. Mask construction from partial score obser-
vations is ultimately instrumental: we care about preserving behavior, not
merely retaining edges with large α(Qq,Kr). This motivates certificates that
bound the change in logits (or in a task-specific functional) under masking.
One natural approach is to treat sparsification as a structured perturbation
and to upper bound its effect via local smoothness of the mapping from at-
tention weights to the residual stream. Concretely, given a candidate sparse
mask M , we may seek bounds of the form

∥∆zℓ∥ ≤
∑
h

Lipℓ,h · ∥∆Aℓ,h∥, ∥∆logits∥ ≤ Lipout ·
∑
ℓ

∥∆zℓ∥,

where ∆Aℓ,h is the difference between dense and sparse attention probabil-
ity matrices at head (ℓ, h), and Lipℓ,h are computable (possibly conservative)
Lipschitz-like constants derived from operator norms of value projections and
downstream mixing. While worst-case operator-norm bounds are typically
loose, the certificate can be made empirically meaningful by estimating these
constants on the current input (or calibrating them on a validation distri-
bution) and by tying them to δ-style risk parameters. An alternative, more
distributional, route is randomized certification: sample multiple masks from
a controlled family around the selected S(q), and use concentration to certify
stability of logits under mask perturbations. In either case, the central ques-
tion is to connect our probabilistic retention guarantee for “critical branches”
to a quantitative guarantee on functional deviation, and to identify when the
separation condition (H3) is a useful proxy for logit robustness.

Incorporating residual and MLP tracing. A third extension is to
broaden the traced objects beyond attention edges. Even if we retain the
correct key blocks, information can propagate through residual pathways,
layer normalization, and MLP sublayers in ways not captured by attention-
only influence. We therefore view sparse attention masks as one component
of a larger tracing problem on the transformer computation graph. One
promising formulation is to define a set of behavior-critical features in the
residual stream and to track their dependence across layers via linear probes
or causal scrubbing operations, then to impose constraints on the mask so
that these features remain reconstructible. Operationally, this could take
the form of augmenting branch scores with feature-based signals (e.g. cor-
relations with a monitored direction in activation space), or of allocating
budget not only over key blocks but also over MLP “experts” or neurons in
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architectures where such structure exists. A minimally invasive variant is to
keep PA-STREAM as the attention selector but to add a post hoc verifica-
tion step: patch out (or ablate) the retained blocks and measure the induced
change in intermediate activations at designated sites, iteratively increasing
k(q) or r until the measured deviation falls below a tolerance. The math-
ematical challenge is then to develop a compositional analysis in which the
uncertainty from attention selection and the uncertainty from feature tracing
can be jointly controlled under a global failure probability.

Systems and empirical questions. Finally, several practical issues re-
main open even within the attention-only setting. We would like tight con-
stant factors relating α to σ2/∆2 in regimes where branch-score noise is
heteroskedastic and depends on token content; we would like schedules that
respect a global budget

∑
q k(q) ≤ B while preserving uniform risk guar-

antees (necessitating a coupling argument across q); and we would like ex-
tensions beyond purely causal masks to sliding windows or hybrid retrieval
caches where V(q) is not simply {1, . . . , q}. Empirically, the central ques-
tion is whether the branches that are “critical” under the model’s own score
geometry coincide with the branches that are critical for downstream be-
havior, and how this alignment varies across layers and heads. A mature
monitoring story at million-token scale will therefore combine (i) principled
position-adaptive schedules that neutralize causal position bias, (ii) refine-
ment procedures that adapt to realized branching and uncertainty, and (iii)
certificates and tracing mechanisms that speak directly to functional behav-
ior rather than to attention structure alone.
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