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Abstract
Mechanistic interpretability methods that inspect attention pat-

terns scale quadratically with context length, making million-token
analysis infeasible. Recent work (STREAM/SPARSE TRACING) uses
hierarchical sparse attention to prune 90–99
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1 Introduction

A large portion of contemporary long-context interpretability proceeds by
replacing a dense attention computation with a proxy and then evaluating
the proxy by a token-matching criterion: one reports whether the proxy pre-
serves the argmax next token, the top-k set, or a small overlap score between
the proxy and baseline predictions. Such criteria are convenient, but they
are brittle in the sense that they conflate semantic agreement with distribu-
tional agreement. In particular, the map from logits to the predicted token is
discontinuous: an arbitrarily small ℓ∞ perturbation of the logits may flip the
argmax whenever two candidates are close. Consequently, token-matching
can declare failure for a proxy whose induced distribution is essentially iden-
tical to the baseline, and it can declare success for a proxy that substantially
reshapes the probability mass while leaving the top prediction unchanged.
When the purpose of the proxy is interpretability—to attribute model be-
havior to specific context positions or blocks—this brittleness is not a benign
artifact of evaluation; it obscures whether a purported “explanation” is faith-
ful to the mechanism being explained.

The long-context regime exacerbates these issues. For a sequence of
length T , dense attention is a quadratic object, and any attempt to trace
“which past tokens matter” must, at a minimum, select a subset of keys/values
to retain or inspect. When T is large, the space of possible subsets is enor-
mous and the score landscape can be highly non-uniform: there may ex-
ist many moderately relevant tokens whose collective contribution is non-
negligible even if no single token dominates. A proxy that retains only the
apparent maxima may therefore mis-estimate the contribution of the tail,
while a proxy that retains a large random sample may be expensive and still
lack a meaningful correctness guarantee. From the interpretability perspec-
tive, we wish to isolate a small set of context blocks that suffices to reproduce
the model’s predictive distribution up to a specified tolerance, and we wish
to do so without constructing the dense attention matrix.

These considerations motivate a different target: rather than asking
whether a proxy matches the baseline token, we ask for certifiable distri-
butional fidelity. Concretely, we view the next-token prediction as a prob-
ability vector obtained by a softmax of logits, and we adopt a divergence
such as KL to measure discrepancy between the baseline distribution and
the proxy distribution. The critical point is that this objective admits a
route to sound certification. If we can upper-bound the deviation in logits
under a proxy computation, then stability properties of the softmax map
convert this into a bound on distributional error. This shift replaces an un-
stable, discontinuous notion of correctness by a stable one, and it permits us
to reason about approximation error by inequalities rather than by empirical
token-level coincidence.

Our focus is the central computational bottleneck: attention. We con-
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sider the task of constructing a sparse attention mask that retains only a
small number of key blocks per query block, while provably controlling the
resulting error in downstream logits and hence in the next-token distribu-
tion. The naive approach—materialize all attention scores, compute the
exact omitted mass, and then certify the proxy—is precisely what is infea-
sible at large T . Thus the key technical requirement is to estimate, without
dense materialization, an upper bound on the softmax probability mass as-
signed to keys that we discard. Once such a tail-mass bound is available, we
can translate it into a bound on the difference between the dense attention
output and the sparse, renormalized output, and finally into a bound on
logit perturbation.

The algorithmic challenge is therefore twofold. First, we must find a
sparse set of blocks that plausibly contains the dominant attention contrib-
utors, with time and memory near-linear in T . Second, we must certify that
the remaining, unevaluated part of the attention computation cannot collec-
tively change the logits by more than a user-specified tolerance. These tasks
are naturally coupled: the certificate should improve monotonically as we
refine the sparse set, and refinement should prioritize precisely those omit-
ted branches that contribute most to the current upper bound on tail mass.
In this way, the procedure behaves as an anytime algorithm: it begins with
a small candidate set, computes a conservative certificate, and selectively
expands the candidate set until the desired fidelity criterion is met.

We instantiate this program via a certified sparse tracing method built
on hierarchical pruning in the style of STREAM/HiP. Hierarchical organi-
zation of key blocks allows us to reason about branches of the key space,
maintaining for each discarded branch an upper bound on the maximum
attention score within that branch. Such bounds need not be tight to be
useful; they need only be sound. Summing the resulting exponential upper
bounds yields a conservative upper bound on the omitted log-sum-exp, and
hence on omitted softmax mass. Importantly, this computation is compati-
ble with streaming: we evaluate scores only for retained blocks, keep a small
set of branch statistics, and never store a T × T object. The certificate is
computed in the same pass as the sparse attention itself, and its monotone
dependence on the retained set provides a principled stopping rule.

Contributions. We summarize our contributions as follows.

1. We formulate certified sparse tracing for attention as the problem of
constructing a block-sparse mask together with a sound upper bound
on the induced ℓ∞ logit error, sufficient to guarantee a target KL tol-
erance for the next-token distribution.

2. We provide a certification mechanism based on (i) an upper bound
on omitted softmax mass derived from hierarchical score bounds, and
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(ii) a conversion of omitted mass into an attention-output error bound
under a uniform bound on value norms. This yields a closed-form
certificate that is computable without dense attention.

3. We integrate certification with hierarchical pruning to obtain an effi-
cient algorithmic procedure that runs in near-linear time (up to poly-
logarithmic factors), uses linear memory, and refines adaptively until
the fidelity target is met.

4. We discuss compositional extensions beyond the last-layer substitution
setting by propagating certified perturbation bounds through subse-
quent linear maps via explicit Lipschitz constants, and we delineate
where additional assumptions are required for soundness.

5. We complement the algorithmic results with a hardness perspective:
even in simplified settings, selecting a minimum-size faithful subset
can be computationally intractable, which justifies the emphasis on
efficient heuristics equipped with conservative certificates rather than
exact optimality.

The resulting viewpoint is that interpretability-oriented sparsification
should be judged not by whether it reproduces a particular sampled token,
but by whether it provably preserves the predictive distribution to within
a stated tolerance. By coupling sparse selection to an explicit certificate,
we obtain a method that is both practically implementable in long-context
settings and mathematically accountable in the sense that it never underes-
timates its own approximation error under the stated hypotheses.

2 Preliminaries and background

We fix an input sequence x = (x1, . . . , xT ) of length T and consider a
decoder-only transformer in which each position t produces a representa-
tion by attending to a set of valid key positions. We encode validity by a
binary mask C ⊆ [T ] × [T ], where (t, j) ∈ C denotes that key position j
is visible to query position t. In the standard causal setting, (t, j) ∈ C if
and only if j ≤ t, possibly with additional constraints (padding, document
boundaries, local windows). For a fixed query position t we write the valid
key set as Jt := {j ∈ [T ] : (t, j) ∈ C}.

Single-head attention. For a single attention head with head dimension
d, we write qt ∈ Rd for the query at position t and (kj , vj) ∈ Rd ×Rd for the
key/value at position j. The (scaled) score of key j for query t is

stj := ⟨qt, kj⟩,
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where the conventional 1/
√
d scaling may be absorbed into the vectors.

Dense attention assigns weights

ptj :=
exp(stj)∑
i∈Jt

exp(sti)
(j ∈ Jt),

and produces the output vector

ot :=
∑
j∈Jt

ptj vj ∈ Rd.

Our subsequent analysis is headwise; multi-head attention is handled by ap-
plying the same reasoning per head and combining the resulting perturba-
tion bounds by triangle inequalities and explicit operator norms. Since our
certificates ultimately target the next-token logits, we emphasize that the
attention computation enters only through ot and that the central difficulty
is to approximate ot without evaluating all scores stj .

Block partitioning and blocked primitives. To obtain near-linear com-
plexity, we impose a block structure on both queries and keys. Fix query
and key block sizes (bq, bk). We partition positions into consecutive query
blocks Q(a) of bq tokens and key blocks K(r), V (r) of bk tokens. Concretely,
if block a contains query positions t ∈ Ia with |Ia| = bq, we collect the cor-
responding queries into a matrix Q(a) ∈ Rbq×d; similarly, if block r contains
key positions j ∈ Jr with |Jr| = bk, we collect keys and values into matrices
K(r), V (r) ∈ Rbk×d. The score submatrix between blocks is then the blocked
dot product

S(a,r) := Q(a)(K(r))⊤ ∈ Rbq×bk .

The causal mask induces a blockwise validity pattern (and, within a partially
valid block, a triangular submask). The computational constraint relevant
for long context is that we may compute selected blocks S(a,r) and perform
partial reductions (e.g. log-sum-exp and weighted sums with V (r)), but we
do not store or traverse all (a, r) pairs. In particular, we avoid materializing
any dense T × T score matrix.

Sparse retention and renormalization. Given a query position t (or
a query block a), we will retain only a subset S ⊆ Jt of keys (typically
structured as a subset of key blocks). The corresponding renormalized sparse
weights are

pStj :=
exp(stj)∑
i∈S exp(sti)

(j ∈ S),

and the sparse attention output is

ot,S :=
∑
j∈S

pStj vj .
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Renormalization is the natural choice when the sparse computation is in-
tended to approximate the dense conditional distribution over keys rather
than to approximate the unnormalized sum; it also yields a clean dependence
of output error on the omitted probability mass.

Hierarchical pruning (STREAM/HiP style). The purpose of hierar-
chical pruning is to locate high-scoring keys and to upper-bound the con-
tribution of the unevaluated remainder using only coarse information. We
view the key blocks as leaves of a rooted tree over indices r ∈ {1, . . . , T/bk},
typically a balanced binary tree whose internal nodes correspond to unions
of consecutive leaf blocks. For a fixed query block, a branch B denotes an in-
ternal node and its associated set of leaf indices; we write |B| for its number
of keys (or, equivalently, bk times the number of leaf blocks). A pruning pro-
cedure adaptively expands a small number of promising branches, evaluates
exact score blocks for selected leaves, and discards the rest while maintaining,
for each discarded branch B, an upper bound

uB ≥ max
j∈B

stj

for every query token t under consideration (or a uniform bound for all t in
the query block, depending on implementation). The mechanism by which
uB is obtained is method-dependent: one may use norm inequalities (e.g.
⟨qt, kj⟩ ≤ ∥qt∥2∥kj∥2 together with precomputed bounds on ∥kj∥2 within B),
or sampled/probed scores augmented by a safety margin. For certification,
the only essential requirement is soundness of the inequality above; tightness
affects efficiency but not correctness.

Streaming log-sum-exp bookkeeping. For a retained set S (keys or
blocks) and a partition {B} of the discarded keys, we will repeatedly use
two scalars: an exact retained log-sum-exp

Lkeep := log
∑
j∈S

exp(stj),

and an upper bound on the discarded log-sum-exp

Udisc := log
∑
B

|B| exp(uB).

Both quantities admit stable streaming computation using repeated log(exp(a)+
exp(b)) updates; crucially, Udisc depends only on the branch bounds and
sizes, not on per-key scores. This separation is what permits us to upper-
bound omitted softmax mass without inspecting each discarded key.
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Fidelity metrics: logits, total variation, and KL. Ultimately we mea-
sure fidelity at the level of the next-token distribution. Let z, z′ ∈ R|V| be two
logit vectors (baseline and proxy) and let p = softmax(z), q = softmax(z′).
We will certify an ℓ∞ logit perturbation bound ∥z − z′∥∞ ≤ η, because
(i) it composes cleanly through linear maps and (ii) it yields distributional
guarantees via softmax stability. In particular, a standard stability argu-
ment shows that ∥z − z′∥∞ ≤ η implies pointwise likelihood-ratio control
pi/qi ≤ e2η and therefore KL(p∥q) ≤ 2η. If desired, one may also translate
the same logit bound into total variation distance TV(p, q) := 1

2∥p − q∥1
using either direct bounds in terms of eη factors or via Pinsker’s inequality
TV(p, q) ≤

√
KL(p∥q)/2. Our algorithmic certificate will therefore be stated

in terms of η (specialized later to ∆̂), with KL as the primary distributional
metric.

From attention-output error to logit error. To connect attention ap-
proximation to distributional fidelity, we recall the standard last-layer rela-
tionship: in a single-layer setting, or when only the final attention layer is
modified, the next-token logits take the form z = Wo + b for some readout
matrix W and bias b, where o denotes the relevant attention output (or a
linear function of it). Thus if o′ is a proxy attention output, then

∥z − z′∥∞ = ∥W (o− o′)∥∞ ≤ ∥W∥∞→2 ∥o− o′∥2,

where ∥W∥∞→2 := maxi ∥Wi:∥2 is the operator norm from ℓ2 to ℓ∞ given by
the maximum row norm. This reduction motivates bounding ∥o − oS∥2 for
renormalized sparse attention outputs. In the subsequent development, this
bound will be expressed in terms of the omitted softmax mass and a uniform
bound Vmax on value norms, thereby closing the loop from hierarchical score
bounds to certified KL fidelity.

3 Problem formulation: certified sparse tracing (CST)

We formalize the task of replacing dense attention by a block-sparse surrogate
while certifying that the induced change in next-token predictions is small.
Throughout, the baseline computation is the model output on the given input
x, and the proxy computation differs only by restricting certain attention
computations to a sparse, validity-respecting mask.

Objects being approximated. Fix a layer/head and a query position
(or query block) under the validity mask C. Let z(x) ∈ R|V| denote the
baseline next-token logits produced by the model on input x, and let zM (x)
denote the logits produced when we substitute a sparse attention operator
according to a mask M (with renormalization on the retained keys) at the
designated locations. The mask M is structured at the block level: for
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each query block index a we retain a subset of key block indices r, and
within partially valid blocks we still respect the induced submask from C.
We measure fidelity primarily via the logit perturbation ∥z(x) − zM (x)∥∞,
since it admits a direct stability implication for the softmax distribution (cf.
Thm. 1) and composes through linear maps.

The certified sparse tracing problem. Given a tolerance ε > 0, our
goal is to construct a sparse mask M together with a certificate ∆̂ such that
the certificate is sound and strong enough to imply the desired distributional
guarantee. Concretely, we require

∥z(x)−zM (x)∥∞ ≤ ∆̂ and KL(softmax(z(x)) ∥ softmax(zM (x))) ≤ 2∆̂ ≤ ε.
(1)

The point of the certificate is that it is computed from information available
to the tracing algorithm (e.g. score upper bounds on discarded branches
and exact statistics on retained blocks) and does not rely on evaluating the
dense attention matrix. We emphasize that ∆̂ is an upper bound : it may
be conservative, but it must never underestimate the true error under the
stated hypotheses.

Decision and optimization variants. It is useful to distinguish three
related problem statements.

1. Decision-CST (fidelity feasibility). Given (x, ε) and a sparsity budget
B (e.g. a bound on the number of retained key blocks per query block,
or an upper bound on total block evaluations), decide whether there
exists a validity-respecting block-sparse mask M of cost at most B
such that (1) holds. We do not attempt to solve this decision problem
exactly; it serves to clarify the meaning of “minimality” and to motivate
hardness phenomena.

2. Optimization-CST (minimal sparsity). Given (x, ε), find a mask M
minimizing a chosen cost functional cost(M) subject to 2∆̂(M) ≤ ε,
where ∆̂(M) is a sound certificate computable without dense attention.
Typical costs are (i) total number of retained key blocks across all query
blocks, (ii) total number of evaluated score blocks, or (iii) a weighted
proxy for FLOPs.

3. Constructive-CST (any feasible certified mask). Given (x, ε), output
some mask M and certificate ∆̂ satisfying (1), with near-linear resource
usage. Our algorithmic focus is on this constructive variant, with an
implicit secondary objective of producing a small mask via adaptive
refinement.

As discussed later via a reduction, exact minimality in Optimization-CST is
intractable in general; consequently, we seek efficient procedures that return
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a certified feasible mask and allow monotone refinement when the initial
sparsity is insufficient.

What the algorithm is allowed to compute. We adopt a streaming/random-
access RAM model with GPU-like blocked linear algebra primitives. For each
head/layer where we sparsify attention, the algorithm may: (i) compute se-
lected blockwise score products S(a,r) = Q(a)(K(r))⊤ for chosen query/key
block pairs (a, r); (ii) perform stable partial reductions over selected scores,
including log-sum-exp updates and weighted sums with V (r); (iii) maintain
per-branch upper bounds uB in a hierarchical partition over key blocks, using
any sound bounding method (norm-based, sampled plus margin, or other);
(iv) perform top-k style selection over a small number of branch or block
scores to decide which portions of the hierarchy to refine next. The algo-
rithm is not allowed to materialize the full T × T score matrix, nor to store
per-query dense attention weights. In particular, any step that implicitly
requires enumerating all key blocks for each query block is disallowed.

Resource targets. Our target complexity is O(T polylog(T )) time and
O(T polylog(T )) space, with the canonical instantiation achieving O(T log T )
dot-product work and O(T ) auxiliary memory per head/layer (up to constant
factors depending on bq, bk). The space budget covers (a) the retained block
indices for M , (b) running statistics needed for certification (e.g. retained
log-sum-exp scalars and discarded-branch bound accumulators), and (c) the
bookkeeping required by hierarchical pruning. The salient constraint is that
memory must scale essentially linearly in context length; we cannot cache
dense activations indexed by all (t, j) pairs.

Outputs and certificates. For each sparsified attention instance (typi-
cally per head and query block), the algorithm outputs:

• a block-sparse retained set S (or equivalently a mask M) satisfying
validity constraints induced by C;

• a numerical certificate, either directly as ∆̂ or via intermediate certified
quantities (e.g. an upper bound P̂tail on omitted softmax mass) that
deterministically imply ∆̂ under explicit norm bounds.

When multiple heads contribute additively to a residual stream, we com-
bine headwise certificates by triangle inequality and explicit operator norms.
When sparsifying multiple layers, we require either (i) a last-layer-only sub-
stitution (where earlier computations match exactly), or (ii) a compositional
analysis with stated Lipschitz constants that upper-bound how perturbations
propagate through subsequent layers. The constructive output is therefore
a mask plus a proof obligation in numeric form: the certificate must be
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checkable from the traced quantities without appealing to inaccessible dense
computations.

Separation of mask search from certification. Although mask con-
struction and certification are intertwined in our implementation, it is con-
ceptually useful to separate them. Mask search proposes a retained set S
by hierarchical exploration of high-scoring regions, while certification upper-
bounds the contribution of the unexplored remainder. The key requirement
is soundness under partial information: the algorithm must be able to cer-
tify that the unexplored region cannot carry enough softmax mass to violate
the target tolerance. This is precisely why we insist on maintaining explicit
upper bounds on discarded branches rather than relying on heuristic score
proxies alone.

Summary. CST asks for an efficiently computable, validity-respecting block-
sparse substitution of attention together with a rigorous numerical certificate
of next-token distribution fidelity. The decision/optimization variants clarify
that (i) we seek feasibility with guarantees rather than exact minimality, and
(ii) the algorithm must operate under strict streaming constraints. In the
next section we show how hierarchical score upper bounds yield tail-mass
certificates, which in turn imply explicit bounds on attention-output error,
logit error, and KL divergence.

4 Certificates from softmax tail bounds

We now derive the certificate that accompanies a block-sparse attention sub-
stitution. The argument is local to a single attention instance (one head, one
query position or query block) and then aggregates across heads (and, when
applicable, across layers). Throughout this section we treat the retained set
S as given; in §5 we explain how S is constructed and refined while main-
taining the same certified quantities online.

4.1 From score upper bounds to omitted softmax mass

Fix a query vector (or query block) and let J denote the set of valid key
indices under the causal/validity mask. Write the attention scores as {sj}j∈J
and the dense attention weights as

pj =
esj∑
i∈J esi

.
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Given a retained subset S ⊆ J (typically block-structured), the central
quantity controlling approximation error is the omitted probability mass

Ptail :=
∑
j /∈S

pj =

∑
j /∈S esj∑
i∈J esi

.

Our goal is to upper-bound Ptail without enumerating all j /∈ S.
To do so, we assume that the discarded indices J \ S are covered by a

collection of disjoint “branches” {B}B∈D arising from a hierarchical partition
over key blocks (for instance, a binary tree over contiguous blocks). For each
discarded branch B, the tracing procedure maintains a scalar upper bound
uB satisfying the soundness condition

uB ≥ max
j∈B

sj . (2)

The method by which uB is obtained is deliberately left abstract here: norm-
based bounds, sampled estimates with deterministic safety margins, and
other head-specific bounding schemes are admissible provided (2) holds.

We combine exact retained statistics with upper bounds for the remain-
der. Define the retained log-sum-exp

Lkeep := log
∑
j∈S

esj , (3)

which is computable exactly while streaming over retained blocks (using the
standard stable two-term update for log-sum-exp), and define the discarded
upper log-sum-exp

Udisc := log
∑
B∈D

|B| euB , (4)

where |B| denotes the number of valid keys in branch B (or, at block gran-
ularity, the number of valid positions after applying the mask restricted to
that branch). By (2), we have the deterministic domination∑

j /∈S

esj =
∑
B∈D

∑
j∈B

esj ≤
∑
B∈D

∑
j∈B

euB =
∑
B∈D

|B| euB = eUdisc .

Consequently, the omitted mass admits the upper bound (cf. Thm. 2)

Ptail =

∑
j /∈S esj∑

j∈S esj +
∑

j /∈S esj
≤ eUdisc

eLkeep + eUdisc
=: P̂tail . (5)

We emphasize two practical properties of (5). First, it is streaming-friendly :
Lkeep is accumulated from retained score blocks, and Udisc is accumulated
from branch summaries, neither of which requires materializing the dense
score matrix. Second, it is monotone under refinement : any refinement
step that evaluates additional blocks and tightens (or replaces) some of the
branch bounds can only increase Lkeep and/or decrease Udisc, hence can only
decrease P̂tail.
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4.2 From omitted mass to attention-output error

Let vj ∈ Rd denote the value vectors and assume a uniform bound

∥vj∥2 ≤ Vmax ∀j ∈ J , (6)

which is readily obtained (and typically conservative) from the value activa-
tions at the relevant layer/head. Define the dense attention output and the
renormalized sparse output by

o :=
∑
j∈J

pjvj , oS :=
∑
j∈S

pSj vj , pSj :=
esj∑
i∈S esi

.

Write α := 1−Ptail =
∑

j∈S pj . Then the restriction of the dense distribution
to S is pj/α for j ∈ S, hence

µS :=
∑
j∈S

pj
α
vj = oS .

Similarly, defining µtail :=
∑

j /∈S
pj

Ptail
vj when Ptail > 0, we have the convex

decomposition
o = αµS + Ptailµtail .

Eliminating µS = oS and using α = 1− Ptail yields

o− oS =
Ptail

1− Ptail
(µtail − µS) . (7)

By (6), both µtail and µS are convex combinations of vectors with ℓ2-norm
at most Vmax, so ∥µtail∥2 ≤ Vmax and ∥µS∥2 ≤ Vmax, hence ∥µtail − µS∥2 ≤
2Vmax. Combining with (7) gives the quantitative bound (cf. Thm. 3)

∥o− oS∥2 ≤ 2Vmax Ptail

1− Ptail
≤ 2Vmax P̂tail

1− P̂tail

. (8)

The dependence on P̂tail is sharp in the sense that it captures the correct
first-order behavior: for small tail mass, the right-hand side is 2VmaxP̂tail +
O(P̂ 2

tail). The singularity as P̂tail ↑ 1 simply reflects that renormalization is
ill-posed if essentially all softmax mass lies outside S; in practice we ensure
that the mask-search stage retains at least one nontrivial region per query
block so that P̂tail is bounded away from 1.

4.3 From attention-output error to logit and KL certificates

We first treat the setting where the sparsified attention output is fed into a
linear readout (either because we analyze a single attention layer as a base
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case, or because we sparsify only the final attention layer so that all earlier
computations match exactly). Let W ∈ R|V|×d and b ∈ R|V| be such that

z = Wo+ b, zS = WoS + b .

For each logit coordinate i, |(z− zS)i| = |⟨Wi,:, o− oS⟩| ≤ ∥Wi,:∥2 ∥o− oS∥2.
Taking the maximum over i yields

∥z − zS∥∞ ≤ ∥W∥∞→2 ∥o− oS∥2, ∥W∥∞→2 := max
i

∥Wi,:∥2 . (9)

Combining (8) and (9), we obtain the explicit certificate

∆ := ∥z − zS∥∞ ≤ ∆̂ := ∥W∥∞→2 ·
2Vmax P̂tail

1− P̂tail

, (10)

which is exactly the quantity checked by CST-ATTN in the single-layer /
last-layer-substitution regime (cf. Thm. 4).

Finally, the certificate (10) translates into a distributional guarantee via
softmax stability (Thm. 1). If p = softmax(z) and q = softmax(zS) and
∥z − zS∥∞ ≤ ∆̂, then

KL(p∥q) ≤ 2∆̂. (11)

Thus it suffices to enforce 2∆̂ ≤ ε to obtain an ε-KL faithful substitution.

Aggregation across heads and (optionally) layers. When multiple
heads contribute additively to a residual stream at a fixed layer, we may
compute a headwise ∆̂h of the form (10) (possibly with head-specific Vmax,h

and P̂tail,h) and combine them by triangle inequality after applying the ap-
propriate linear maps; in the simplest shared-readout case this reduces to
summing headwise ∥oh − oS,h∥2 bounds before applying ∥W∥∞→2. For mul-
tiple sparsified layers, a sound extension requires explicit Lipschitz constants
for the intervening computations; we treat this compositional case as an op-
tional add-on and focus algorithmically on the last-layer-certified substitu-
tion where (10) and (11) are directly applicable.

The remaining question is algorithmic: how do we propose S so that P̂tail

(hence ∆̂) is small while keeping the number of evaluated blocks near-linear?
We answer this by a hierarchical refinement procedure that maintains Lkeep

and Udisc online and refines exactly those discarded branches that dominate
(4). This is the content of §5.

5 Algorithm: CST-ATTN via hierarchical pruning
and online certification

We describe the certified sparse tracing procedure (CST-ATTN) for a single
attention instance (one head, one query block) in the single-layer / last-
layer-substitution regime, and then indicate the standard aggregation across
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heads. The input to the procedure is a query block Q ∈ Rbq×d, a collection
of key/value blocks {(Kr, Vr)}T/bkr=1 , and the validity mask restricted to the
query–key block pair. The output is a retained set S of key blocks together
with the certificate ∆̂ defined in (10). Our design constraint is that we never
materialize the dense T × T score matrix; instead, we evaluate only a small
number of key blocks per query block and bound the contribution of the
remainder using a hierarchical partition.

5.1 Hierarchical partition and branch bounds

We fix a rooted tree T over key-block indices (e.g., a balanced binary tree
over contiguous block ranges). Each node B ∈ T corresponds to a set of key
indices (at token granularity) or a set of key blocks (at block granularity);
we write |B| for the number of valid keys in that node after applying the
causal/validity constraints for the current query block. Leaves of T corre-
spond to single key blocks, so that evaluating a leaf means computing the
exact scores for that query block against that key block.

For each node B that we do not evaluate exactly, we maintain a scalar
bound uB satisfying the soundness condition (2). Concretely, the algorithm
requires a bounding oracle that, given the query block and a node B, returns
(uB, |B|) with uB ≥ maxj∈B sj . One admissible instantiation is norm-based:

uB = max
t∈qblk

∥qt∥2 ·max
j∈B

∥kj∥2,

where maxj∈B ∥kj∥2 can be precomputed per node in T (or per key block and
aggregated up the tree). Our analysis and certificate use only (2); any tighter
deterministic bound improves performance without affecting soundness.

5.2 Maintained state and streaming updates

For a fixed query block, CST-ATTN maintains three pieces of state.

(i) Retained statistics. As we evaluate key blocks and add them to S,
we update the retained log-sum-exp Lkeep from (3) exactly. Operationally,
evaluating a key block entails forming the block score matrix SQ,r = QK⊤

r

(masked), and then applying a numerically stable log-sum-exp reduction
across its entries to update Lkeep. In the same pass we may accumulate the
unnormalized numerator needed for the sparse output,

Nkeep :=
∑
j∈S

esjvj ,

stored in a stable (e.g., log-scaled) representation; at termination, the sparse
output is oS = Nkeep/ exp(Lkeep).
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(ii) Discarded statistics. For nodes not in S, we maintain a set D of
disjoint discarded branches covering J \ S. We update Udisc from (4) by
maintaining the sum

∑
B∈D |B|euB in log-space. When we refine a branch

B into children ch(B), we remove the contribution of B and insert the con-
tributions of its children, thereby decreasing (or leaving unchanged) Udisc.

(iii) A refinement priority. To decide which discarded region to refine,
we store a priority queue keyed by a proxy for each node’s contribution to
the tail bound, e.g.,

ρ(B) := log |B|+ uB,

since
∑

B∈D |B|euB is dominated by nodes with large ρ(B). Any rule that
selects nodes in nonincreasing order of estimated contribution yields the
monotonicity properties below.

Given (Lkeep, Udisc), we compute P̂tail by (5) and then compute ∆̂ by
(10). The stopping rule is 2∆̂ ≤ ε.

5.3 Refinement loop

We initialize D to consist of a small number of coarse nodes that cover all
valid keys (for instance, the children of the root, or a fixed-depth partition),
and initialize S = ∅ (or include a mandatory local window, if desired, as a
heuristic only). For each initial discarded node B we compute uB and insert
it into the priority queue.

The core loop repeats:

1. Compute P̂tail and ∆̂. If 2∆̂ ≤ ε, we terminate and output S and ∆̂.

2. Otherwise, extract from the queue a highest-risk node B⋆ (e.g., maxi-
mizing ρ(B)), and refine it.

3. If B⋆ is internal, replace it in D by its children; for each child B
compute its bound uB and insert it into the queue.

4. If B⋆ is a leaf (a single key block), we evaluate that key block exactly:
compute masked scores sj for j ∈ B⋆, update Lkeep and Nkeep, and
add the block to S (removing it from D).

Optionally, we may evaluate a small batch of leaves per iteration (top-k by
ρ) to amortize kernel launches; this changes only constant factors.

5.4 Invariants and soundness

The procedure maintains the following invariants for every iteration.
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• Branch soundness: Every node B ∈ D satisfies uB ≥ maxj∈B sj (by the
bounding oracle). Hence Udisc is an upper bound on the discarded log-
sum-exp, and P̂tail computed from (5) upper-bounds the true omitted
mass.

• Exact retained mass: Lkeep equals log
∑

j∈S esj for the currently re-
tained set, since it is updated only by exact evaluations of retained
blocks.

• Monotonicity under refinement: Replacing a discarded node by chil-
dren can only decrease Udisc (because

∑
j∈B esj ≤

∑
B′∈ch(B) |B′|euB′ ≤

|B|euB need not hold, but the maintained quantity remains an upper
bound and can be tightened), while evaluating a leaf and moving it to
S can only increase Lkeep. Consequently, P̂tail and ∆̂ are nonincreasing
over iterations.

By the results of §4, these invariants imply that ∆̂ is a sound bound on ∥z−
zS∥∞ and that 2∆̂ upper-bounds the KL divergence between the dense and
sparsified next-token distributions in the single-layer / last-layer-substitution
setting.

5.5 Complexity

Let n = T/bk be the number of key blocks. For each query block, each re-
finement step touches O(1) nodes, and each evaluated leaf triggers one block
dot product QK⊤

r plus masked reductions. Since the tree depth is O(logn),
a STREAM/HiP-style search that expands only a polylogarithmic number of
nodes per level yields O(log n) to O(polylog(n)) evaluated leaves per query
block in typical regimes, and O(logn) priority-queue operations per refine-
ment step. Summed across the T/bq query blocks, this gives O(T log T )
block-level dot-product work (up to block-size constants) and O(T ) auxil-
iary memory for storing bounds and sparse indices when computed layer-by-
layer. The certificate computation itself adds only constant-factor overhead:
maintaining Lkeep and Udisc is O(1) per evaluated block or refined node.

Finally, for multi-head attention within a single layer, we run the above
procedure headwise (potentially sharing the same hierarchical tree) and ag-
gregate the resulting headwise output-error bounds via triangle inequality
after the head output projections; this does not change the asymptotic com-
plexity.

6 Theoretical results: certified correctness, branch
bounds, and lower bounds

We collect the guarantees underlying CST-ATTN. Throughout, we fix a
query (or query block) and the associated valid key set J determined by
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the causal/validity mask, and we write scores {sj}j∈J with dense softmax
weights pj = exp(sj)/

∑
i∈J exp(si). For a retained set S ⊆ J we write

the renormalized sparse weights pSj = exp(sj)/
∑

i∈S exp(si) for j ∈ S, the
dense output o =

∑
j∈J pjvj , and the sparse output oS =

∑
j∈S pSj vj . The

central quantity is the omitted mass Ptail :=
∑

j /∈S pj , which is not directly
computable without dense normalization, and which we upper-bound by P̂tail

computed from (Lkeep, Udisc) as in (5).

From logit perturbations to KL. We first isolate the final step that
converts a certified ℓ∞ logit error into a KL guarantee. If p = softmax(z)
and q = softmax(z′) with ∥z− z′∥∞ ≤ η, then for each coordinate i we have

e−η ≤ ez
′
i−zi ≤ eη and e−η ≤

∑
k e

z′k∑
k e

zk
≤ eη,

hence log pi
qi

≤ 2η and therefore KL(p∥q) =
∑

i pi log(pi/qi) ≤ 2η. Conse-
quently, it suffices to certify ∥z − zS∥∞ ≤ ∆̂ and enforce 2∆̂ ≤ ε.

Tail-mass upper bounds from hierarchical score bounds. Let the
discarded region J \ S be partitioned into disjoint branches D, and assume
that for each B ∈ D we maintain a scalar uB satisfying the branch soundness
condition

uB ≥ max
j∈B

sj . (12)

Define
Lkeep := log

∑
j∈S

esj , Udisc := log
∑
B∈D

|B| euB ,

where |B| counts valid keys in B (after masking). Then∑
j /∈S

esj =
∑
B∈D

∑
j∈B

esj ≤
∑
B∈D

∑
j∈B

euB =
∑
B∈D

|B|euB = eUdisc .

Since the softmax normalizer is
∑

j∈J esj = eLkeep +
∑

j /∈S esj , we obtain the
computable bound

Ptail =

∑
j /∈S esj

eLkeep +
∑

j /∈S esj
≤ eUdisc

eLkeep + eUdisc
=: P̂tail.

This is the formal justification of the online computation in (5). Importantly,
no assumptions on the score distribution are required: (12) alone implies
P̂tail ≥ Ptail.
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Output error controlled by omitted mass. Assume a uniform value
norm bound ∥vj∥2 ≤ Vmax for all valid keys. Write the dense output as a
convex mixture over retained and omitted regions:

o = (1− Ptail)µS + Ptail µtail, µS :=
∑
j∈S

pSj vj , µtail :=
∑
j /∈S

pj
Ptail

vj .

By construction oS = µS . Using ∥µS∥2, ∥µtail∥2 ≤ Vmax, we have

o− oS =
Ptail

1− Ptail
(µtail − µS), ∥o− oS∥2 ≤

Ptail

1− Ptail
2Vmax.

Substituting P̂tail yields the certified bound

∥o− oS∥2 ≤ 2Vmax P̂tail

1− P̂tail

. (13)

This estimate is tight in the sense that, given only a bound on the omitted
mass and value norms, the factor 2Vmax cannot be improved in general.

End-to-end certificate for last-layer substitution. In the single-layer
setting (or when we sparsify only the last attention layer and keep all previous
computation fixed), logits satisfy z = Wo+ b and zS = WoS + b. Therefore

∥z − zS∥∞ ≤ ∥W∥∞→2 ∥o− oS∥2,

and combining with (13) gives exactly the certificate form (10):

∆̂ := ∥W∥∞→2 ·
2Vmax P̂tail

1− P̂tail

⇒ ∥z − zS∥∞ ≤ ∆̂.

Applying the logit-to-KL implication above yields

KL(softmax(z) ∥ softmax(zS)) ≤ 2∆̂,

so the stopping rule 2∆̂ ≤ ε is sufficient for ε-KL fidelity. Soundness is
immediate: every inequality is one-sided in the conservative direction, and
the only hypothesis is the correctness of the branch bounds and the value
norm bound.

Bounding oracles: deterministic and sample-aided variants. The
only algorithm-dependent component in the preceding chain is (12). A simple
deterministic oracle is norm-based: for a node B and query block, one may
return

uB := max
t∈qblk

∥qt∥2 ·max
j∈B

∥kj∥2,
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which upper-bounds maxj∈B⟨qt, kj⟩ for each t and hence the masked score
maxima after taking the maximum over valid (t, j) pairs. The key norms
maxj∈B ∥kj∥2 can be preaggregated along the tree. In practice, tighter
bounds can be obtained by evaluating a small sample of keys in B to es-
timate a local maximum score and then adding a safety margin chosen to
dominate the worst-case deviation; when such margins are derived from dis-
tributional assumptions, the resulting certificate becomes high-probability
rather than absolute. A conservative hybrid is to use the sample-aided es-
timate but take uB as the minimum of that estimate plus margin and the
deterministic norm bound, which restores unconditional soundness while typ-
ically improving tightness.

Lower bounds: streaming necessity and subset-selection hardness.
Two complementary lower bounds explain why CST-ATTN targets certi-
fied, near-linear procedures rather than exact minimal masks. First, any
algorithm that outputs a nontrivial input-dependent certificate must inspect
Ω(T ) information in the worst case: if some position is never queried (di-
rectly or through an equivalent computation), an adversary can alter the
corresponding key/value so as to change o and hence z while leaving all in-
spected quantities unchanged, invalidating any claimed bound. Thus Ω(T )
time is information-theoretically necessary even when d is fixed.

Second, finding the smallest retained set meeting a tight fidelity con-
straint is computationally intractable in general. Even in a degenerate in-
stance with uniform scores (so pj is uniform) and scalar values encoding
a multiset {aj}, deciding whether there exists a subset S of a prescribed
size whose renormalized sparse output equals the dense average reduces to
Partition. Concretely, with |S| = n/2 one requires

2

n

∑
j∈S

aj =
1

n

n∑
j=1

aj ⇐⇒
∑
j∈S

aj =
1

2

n∑
j=1

aj ,

which is exactly the Partition feasibility condition. Hence, absent addi-
tional structure, we should not expect a polynomial-time method to compute
an optimal sparsity pattern for a given ε; the appropriate goal is instead what
we implement: efficient construction of a mask together with a certificate
that is sound by design and tight enough to be useful.

Extensions: compositional multi-layer certificates. The preceding
analysis is exact when the sparse substitution occurs in the final attention
layer (or in a single-layer model), because the readout map o 7→ z is lin-
ear and known. When we sparsify attention in multiple layers, we require
a mechanism to transport a certified perturbation at an intermediate repre-
sentation to a certified perturbation on the final logits. We proceed by an
explicit Lipschitz composition bound.
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Let the transformer be written as a composition of blocks

h(0) := E(x), h(ℓ+1) := Fℓ(h
(ℓ)) (ℓ = 0, . . . , L− 1), z := R(h(L)),

where each Fℓ is a standard decoder block (pre/post-norm is immaterial to
the algebra) and R is the final linear readout. Suppose we produce, for
a set of layers Lsp, sparse substitutes F̃ℓ that differ from Fℓ only in one
attention subroutine, yielding a perturbed trajectory h̃(ℓ) and logits z̃. For
each sparsified layer ℓ ∈ Lsp we can certify a bound∥∥Fℓ(h

(ℓ))− F̃ℓ(h
(ℓ))

∥∥
2
≤ δ̂ℓ, (14)

where δ̂ℓ is obtained from P̂tail via the analogue of (13) together with the
linear maps internal to the attention sublayer (multi-head concatenation and
output projection). Concretely, if the attention sublayer output is a(ℓ) ∈
Rdmodel and we certify ∥a(ℓ) − ã(ℓ)∥2 ≤ α̂ℓ, then we may take δ̂ℓ := α̂ℓ for a
residual-add block, or δ̂ℓ := ∥Jpost∥2 α̂ℓ if a subsequent fixed linear map Jpost
is included before the residual connection.

Now assume we have Lipschitz constants Lip(Fm) for each block Fm with
respect to ∥ · ∥2, i.e.,

∥Fm(u)− Fm(v)∥2 ≤ Lip(Fm) ∥u− v∥2.

Define the downstream product

Λℓ := Lip(R) ·
L−1∏

m=ℓ+1

Lip(Fm),

interpreting an empty product as 1. A standard telescoping argument then
gives the sound global logit bound

∥z − z̃∥∞ ≤
∑
ℓ∈Lsp

Λℓ δ̂ℓ, (15)

and therefore KL(softmax(z)∥softmax(z̃)) ≤ 2
∑

ℓ Λℓδ̂ℓ by the same logit-to-
KL implication used earlier.

The appeal of (15) is that it isolates all multi-layer interaction into
explicit constants Lip(Fm) and Lip(R). For R(h) = Wh + b we have
Lip(R) = ∥W∥∞→2 when we transport ℓ2 hidden-state errors to ℓ∞ logit
errors exactly as in the last-layer case. For the blocks Fm, a conservative
but fully explicit choice is obtained by bounding each constituent map: lin-
ear maps by spectral norms (or Frobenius norms when one is content with
a weaker but cheaper bound), residual additions by 1 + Lip(sublayer), and
elementwise nonlinearities by their global slope bounds. Layer normalization
can be bounded on a restricted domain: if we guarantee that the per-token
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pre-normalization standard deviation is bounded below by σmin > 0, then the
corresponding normalization map is Lipschitz with constant at most on the
order of γ/σmin (where γ denotes the learned scale), and we may treat σmin

as a model- and data-dependent calibration constant. When such a lower
bound is unavailable, we recommend either (i) certifying only last-layer sub-
stitutions (where no block Lipschitzes are required), or (ii) adopting a hybrid
certificate that is unconditional but loose (taking a worst-case σmin) and then
reporting empirical tightness.

Budgeting ε across layers and heads. Equation (15) suggests a natural
allocation strategy: choose per-layer targets εℓ such that

∑
ℓ∈Lsp

εℓ ≤ ε, and
enforce the sufficient conditions

2Λℓ δ̂ℓ ≤ εℓ for all ℓ ∈ Lsp.

Within a layer, one may similarly sum per-head contributions (triangle in-
equality after the output projection) and enforce headwise budgets. This
yields a practical stopping rule that is local (each head/layer refines until its
own allocated tolerance is met) while remaining globally sound by construc-
tion.

Variable-k schedules and adaptive refinement. CST-ATTN is natu-
rally cast as an anytime procedure: at any intermediate refinement stage we
have a retained set S and a valid certificate ∆̂, and refinement can only de-
crease ∆̂. This supports variable-k schedules in which k is not fixed a priori
but is chosen per query block and per layer to meet the target tolerance with
minimal work.

A simple schedule is to initialize with a small k0 for every query block,
compute P̂tail and the resulting ∆̂, and then iteratively refine only those
query blocks whose certificates violate the target. Since refinement is driven
by the largest contributors to Udisc, we may implement a priority queue keyed
by branch contributions (or by the current per-block ∆̂) so that additional
dot products are spent where they reduce the bound the most. Two common
constraints are easily incorporated: (i) a global compute budget B, in which
case we stop when the queue is exhausted or B is reached and output the
best certificate achieved; and (ii) a latency constraint, in which case we cap
the number of refinement rounds and report the achieved ∆̂ as an explicit
quality indicator.

We also note an interaction with decoding-time temperature. If the de-
ployed next-token distribution is softmax(z/τ) for τ > 0, then an ℓ∞ logit
perturbation ∥z − z̃∥∞ ≤ η becomes a τ -scaled perturbation after division,
and the same stability argument yields KL(softmax(z/τ)∥softmax(z̃/τ)) ≤
2η/τ . Thus higher temperatures admit larger certified logit error at fixed KL
tolerance; variable-k schedules may exploit this by dynamically loosening or
tightening ε as a function of τ .
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Practical calibration to reduce conservatism (while preserving sound-
ness). The dominant looseness in certificates typically comes from worst-
case norm bounds and from branch upper bounds uB. We can reduce con-
servatism without sacrificing soundness by replacing global constants with
instance-conditioned (but still certified) bounds. For example, Vmax may
be taken as maxj∈J ∥vj∥2 computed on the fly for the relevant layer/head
and query block, since this requires only streaming access to the same val-
ues already touched by sparse attention; similarly, ∥W∥∞→2 (or the spectral
norms of fixed projections) can be precomputed exactly from weights.

For branch bounds, we recommend a conservative hybrid oracle: for
each branch B, compute a cheap deterministic upper bound udetB (e.g., via
∥q∥2maxj∈B ∥kj∥2), and optionally compute a sample-aided estimate usamp

B

by evaluating a small subset of scores in B and adding a calibration margin
mB. We then set

uB := min{udetB , usamp
B }.

Because udetB is unconditionally sound, the minimum remains sound, while
the sample-aided term often tightens Udisc substantially. The calibration
margin mB may be chosen empirically from a held-out calibration set by
taking a high quantile of observed underestimation errors and then adding
a union-bound correction over the maximum number of branches consid-
ered; we emphasize that such a purely empirical choice makes usamp

B high-
probability rather than absolute, hence the inclusion of udetB is the mechanism
that restores unconditional correctness.

In summary, multi-layer substitution is feasible with explicit Lipschitz
bookkeeping; variable-k schedules are a direct consequence of the monotone
refinement invariant; and most of the practical gap between certified and
observed errors can be traced to conservative constants that admit principled,
instance-adaptive tightening without changing the logical structure of the
certificate.

7 Experiments

We describe an experimental protocol whose purpose is to validate two claims
simultaneously: (i) that CST-ATTN achieves large reductions in attention
compute at long context while remaining accurate, and (ii) that the ac-
companying certificate is sound and sufficiently tight to be operational as
a stopping rule. Throughout, we compare a dense reference forward pass
(materialized only for evaluation) against our certified sparse substitution
(materialized at runtime), and we report both the measured error and the
certified upper bound produced online.
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Evaluation metrics. For each evaluated token position (or query block)
we record: (a) the measured logit deviation

∆ := ∥z − zS∥∞,

(b) the measured distributional deviation KL(softmax(z)∥softmax(zS)), and
(c) the certificate ∆̂ computed from P̂tail and the relevant operator norms.
We summarize tightness via (i) the ratio ρ := ∆̂/∆ (defined only when
∆ > 0), (ii) the empirical slack in KL, namely ε̂ := 2∆̂ versus the measured
KL, and (iii) the success rate of the implication ∆ ≤ ∆̂, which should be
identically 1 up to numerical tolerance.

Certificate tightness versus measured error. The primary plot is a
scatter of ∆ and KL against ∆̂ across tokens and across contexts. Since
the certificate is derived from (a) a tail-mass bound P̂tail and (b) worst-case
value and readout norms, we expect ∆̂ to be systematically conservative, yet
monotone under refinement. We therefore additionally plot ∆̂ as a function
of refinement work (e.g. number of evaluated key blocks per query block),
and we report the smallest attained sparsity for which 2∆̂ ≤ ε.

A useful diagnostic is to isolate the contributions of each inequality in
the chain

Ptail ≤ P̂tail ⇒ ∥o−oS∥2 ≤ 2VmaxP̂tail

1− P̂tail

⇒ ∆ ≤ ∥W∥∞→2 ∥o−oS∥2,

by reporting (i) an estimate of the true omitted mass Ptail computed from
dense attention (evaluation only), (ii) the realized value norms ∥vj∥2 in the
instance, and (iii) the realized local linear gain of the readout on the er-
ror direction. This decomposition indicates whether looseness is dominated
by hierarchical score bounds (uB), by value-norm bounds, or by the global
operator norm ∥W∥∞→2.

Comparison to heuristic search without certificates (e.g. nmatch-
based). We compare CST-ATTN to a representative heuristic that selects
blocks by approximate similarity without maintaining a sound tail-mass
bound. Concretely, an “nmatch” baseline may (i) retrieve candidate key
blocks using an approximate maximum-inner-product or nearest-neighbor
routine, (ii) retain the top-k candidates by sampled scores, and (iii) option-
ally increase k until a measured proxy criterion stabilizes (e.g. change in
attention output on a small validation subset). Such methods can be com-
petitive in average accuracy but do not provide a worst-case certificate for a
given instance.

We therefore evaluate both methods under a common budget axis (eval-
uated blocks per query block, or achieved wall-clock time), and we compare
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the Pareto frontier of (measured KL, compute). For CST-ATTN we addition-
ally report the achieved certified frontier (certificate value versus compute).
The key question is whether the certificate is tight enough that the certi-
fied stopping rule 2∆̂ ≤ ε yields nearly the same compute as an oracle that
stops when the measured KL first falls below ε. We recommend reporting
the overhead of certification itself; operationally this is the additional cost of
maintaining Lkeep and Udisc and performing occasional branch refinements,
which should be negligible relative to dot products.

Robustness across decoding temperature and sampling. Since de-
ployment often uses temperature scaling and stochastic sampling, we test
certificate behavior under a range of decoding parameters. For temperature
τ > 0 we evaluate the KL between tempered distributions softmax(z/τ) and
softmax(zS/τ) and verify the scaling predicted by the logit perturbation
lemma, namely that an ℓ∞ error bound η implies

KL(softmax(z/τ)∥softmax(zS/τ)) ≤ 2η

τ
.

Empirically, this suggests that higher τ permits larger ∆̂ at fixed KL toler-
ance, hence lower compute. We validate this by running identical prompts
across a grid of (τ, top-p, top-k) and measuring (i) the achieved sparsity at
the same certified tolerance and (ii) the realized change in sampled outputs
(e.g. match rate of sampled next tokens). The latter is not certified, but it
quantifies practical impact.

Long-context evaluations: RULER and structured long traces. To
test long-range behavior, we recommend evaluating on benchmarks designed
to probe retrieval and long-context reasoning (e.g. RULER-style tasks), where
attention must locate sparse but decisive evidence. For each input length T
we report: (i) accuracy on the benchmark task, (ii) average retained blocks
per query block, (iii) achieved ∆̂ distribution, and (iv) scaling of runtime
with T . The principal claim is that hierarchical pruning yields subquadratic
work while certificates remain feasible, i.e. that P̂tail can be driven small
without exhaustively scanning keys.

Separately, we recommend long chain-of-thought and tool-use traces (multi-
turn dialogues, code execution logs, or agent trajectories) where attention
patterns are often highly localized but occasionally exhibit bursts of long-
range dependency. Here we report token-wise compute adaptivity: the dis-
tribution of retained blocks as a function of position, and the frequency
with which refinement triggers additional retrieval. This setting is a stress
test for any fixed-k scheme, and it illustrates the advantage of an anytime,
certificate-driven procedure.
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Ablations: instance-conditioned constants and branch-bound de-
sign. Finally, we recommend ablations that isolate the practical impact
of tightening constants while preserving soundness: (i) global Vmax versus
instance-wise Vmax computed on the fly, (ii) purely deterministic uB versus
the hybrid uB = min{udetB , usamp

B }, and (iii) different hierarchical partition
granularities. For each ablation we report the change in median ρ = ∆̂/∆
and the compute required to satisfy 2∆̂ ≤ ε. This directly tests whether
certificate conservatism is a fundamental limitation or largely an artifact of
avoidable worst-case bounds.

8 Limitations and open problems

Our guarantees are strongest in the setting where the sparse substitution
is confined to a single attention map whose output is followed by an affine
transformation, or more generally to a “last-layer-only” substitution in which
all preceding computations coincide. In this regime the certificate reduces to
bounding a single attention-output perturbation and then applying a stable
readout bound together with softmax stability. The principal limitation is
that the moment we sparsify attention in intermediate layers, the perturba-
tion must be propagated through residual streams, normalization, and MLP
blocks, and the resulting certificates can become loose unless we control the
relevant operator norms with much greater precision.

Tightness in deep networks. A compositional extension via Lipschitz
constants is sound but typically conservative. Concretely, if an intermediate
attention output is perturbed by δo and the remainder of the network (from
that point to the logits) is upper bounded by a global Lipschitz constant
Λ in a suitable norm, then ∥z − zS∥∞ ≤ Λ∥δo∥. While such constants ex-
ist in principle (e.g. products of spectral norms for linear maps, together
with bounds for layer normalization and activation functions on a bounded
domain), they can be vacuous in practice: (i) the product-of-norms effect
scales poorly with depth, (ii) layer normalization is only Lipschitz on regions
excluding vanishing variance, and (iii) the “right” norm for tight propagation
is instance-dependent because the perturbations introduced by sparsifying
attention are structured and often low-dimensional. We therefore view deep-
network certification as an open problem of instance-wise sensitivity analy-
sis: we would like bounds that resemble ∥J(x)δ∥ where J(x) is a Jacobian
of the remaining computation at the current activation point, rather than
supx ∥J(x)∥ over a large set. A promising direction is to certify local gains
using admissible upper bounds on ∥J(x)∥ obtained from inexpensive power
iterations, automatic differentiation with interval arithmetic, or semidefinite
relaxations applied layerwise. The difficulty is to maintain soundness with-
out paying a cost comparable to the dense forward pass.
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Best possible certificates for attention outputs. Even in the single-
layer setting, our bound ∥o− oS∥2 ≤ 2VmaxP̂tail

1−P̂tail
is intentionally worst-case: it

depends only on omitted probability mass and a uniform value-norm bound.
When the values within S and outside S are well aligned, the true error can
be far smaller than 2VmaxPtail/(1 − Ptail). Tightening this step while pre-
serving a streaming implementation is nontrivial because it amounts to cer-
tifying geometric information about the value vectors in the omitted region.
One could imagine maintaining additional sufficient statistics for discarded
branches, such as bounds on the mean of vj or on the diameter of the value
set within a branch, yielding a refined inequality of the form

∥o− oS∥2 ≤
Ptail

1− Ptail
· diam({vj : j ∈ J }),

or a branchwise sum of diameters. However, any such refinement must be
computable without scanning all values in discarded branches; thus one is
led to hierarchical value summaries, certified range bounds, or precomputed
per-block envelopes. Determining which summaries yield the largest prac-
tical gains for the smallest overhead remains open, as does the question of
whether there exist “universal” summaries (independent of the query) that
significantly tighten worst-case bounds.

Bounding the tail mass without losing too much. Our control of P̂tail

depends on score upper bounds uB for discarded branches. Deterministic
bounds based on norm inequalities (e.g. ⟨q, k⟩ ≤ ∥q∥2∥k∥2) are sound but
often loose; sharper bounds can be obtained by storing per-branch extrema
of projected keys, by maintaining bounding boxes in a rotated basis, or
by using multi-probe upper bounds as in maximum inner product search.
The open problem is to design branch bounds that are simultaneously (i)
tight in the typical regimes encountered in transformer attention, (ii) cheap
to update under refinement, and (iii) robust to quantization and numerical
error. In particular, any bound used inside log-sum-exp must account for
floating-point roundoff conservatively. A related question concerns data-
dependent certificates: one may wish to use sampled maxima to tighten uB,
but then soundness requires either a worst-case correction term (which may
erase the gain) or a probabilistic statement. Developing a principled “PAC-
certificate” variant, with explicit failure probability δ and a tight dependence
on δ, would be valuable for deployment settings where a vanishingly small
risk of violation is acceptable.

Hardness barriers and the limits of optimal sparsity. There is a fun-
damental distinction between (a) producing a sound certificate for a chosen
mask and (b) finding the sparsest mask satisfying a given tolerance. Even in
highly simplified attention instances, selecting an exact or near-exact subset
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under renormalization constraints is NP-hard by reductions from classical
subset-sum or PARTITION-type problems. Consequently, one should not
expect a polynomial-time algorithm that always returns an optimal minimal
mask unless P = NP. This motivates the algorithmic posture taken here:
we focus on efficient heuristics guided by upper bounds that monotonically
improve under refinement. An open theoretical question is whether one can
prove instance-optimal or constant-factor bicriteria guarantees for hierarchi-
cal refinement procedures under realistic assumptions on score distributions
(e.g. subgaussian tails, margin conditions, or clusterability of keys). Such
results would bridge the gap between worst-case hardness and the strong
empirical structure exploited by approximate retrieval.

Streaming constraints and cross-query reuse. Our computational
model prohibits materializing dense T × T attention, and we have an Ω(T )
lower bound for any nontrivial instance-dependent certificate. Within these
constraints, it remains open whether the O(T log T ) work suggested by hi-
erarchical pruning is optimal up to constants, or whether one can provably
reduce the logarithmic factor for typical contexts by amortizing computation
across neighboring query blocks. Attention exhibits strong locality across
queries: adjacent queries often share salient key blocks, suggesting that one
can reuse retained sets and branch bounds, or maintain a persistent index
over keys. Establishing sound reuse rules that preserve the monotonicity and
soundness invariants, while handling the causal mask and query drift, is a
technically delicate problem.

Beyond last-layer substitution. Finally, we note that sparsifying mul-
tiple layers simultaneously poses a compounded certification challenge: the
sparsity decisions in early layers can change the very queries and keys used
to form later attention scores, invalidating any certificate that assumes fixed
Q,K, V . A fully end-to-end certificate would need to bound not only atten-
tion output errors but also the induced perturbations in subsequent atten-
tion scores, which feed back nonlinearly through softmax. We view this as
the central open problem for certified sparse tracing: to develop a tractable
bound-propagation calculus that can follow the transformer computation
graph with acceptable overhead and without collapsing to vacuous constants.

9 Conclusion

We have introduced certified sparse tracing for transformer attention: a pro-
cedure that constructs an input-dependent block-sparse attention mask to-
gether with a sound a posteriori certificate controlling the deviation in next-
token predictions. The central object of certification is an ℓ∞ bound on the
logit perturbation ∆ = ∥z−zM∥∞, which, by softmax stability, immediately
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yields a bound on the induced divergence between next-token distributions.
Operationally, this reframes sparse attention from a purely heuristic accelera-
tion technique into a verifiable approximation: for each input and each query
block, we either return a sparse mask with a certified fidelity guarantee, or
we refine the mask until the certificate meets a user-specified tolerance.

Our main technical contribution is a certificate that can be computed
in the same streaming pass that forms the sparse attention output, with-
out materializing dense T × T score matrices. The certificate rests on two
quantities. First, we compute an exact log-sum-exp over the retained set S,

Lkeep = log
∑
j∈S

esj ,

which is available whenever we explicitly evaluate the scores of retained
blocks. Second, we maintain an upper bound on the discarded log-sum-exp,

Udisc = log
∑
B∈D

|B|euB ,

where D is a partition of the discarded region into hierarchical branches and
each uB satisfies uB ≥ maxj∈B sj . These two scalars produce a computable
tail-mass upper bound

P̂tail =
eUdisc

eLkeep + eUdisc
,

which is sound by construction. We then convert tail mass into an attention-
output perturbation bound under a uniform value-norm hypothesis ∥vj∥2 ≤
Vmax, and finally into a logit certificate via an explicit readout operator norm
∥W∥∞→2. In the single-layer (or last-layer-only substitution) setting, these
steps yield an end-to-end inequality of the form

KL
(
softmax(z)

∥∥ softmax(zM )
)
≤ 2∆̂ ≤ ε,

thereby turning a target KL tolerance into an implementable stopping crite-
rion. The certificate is monotone under refinement: as we evaluate additional
key blocks, Lkeep can only increase while Udisc can only decrease, hence P̂tail

and ∆̂ decrease. This monotonicity aligns naturally with hierarchical search
strategies and supports a practical “anytime” behavior: we may stop early
with a weaker certificate under tight compute budgets, or continue refine-
ment until the prescribed tolerance is met.

Algorithmically, we instantiate these ideas in a STREAM/HiP-style hi-
erarchical pruning routine (CST-ATTN) that searches over key blocks using
branch score bounds. The certificate computation adds only constant-factor
overhead relative to standard hierarchical retrieval, because it requires main-
taining the scalars Lkeep and Udisc and a small collection of branch meta-
data. Under a balanced hierarchy of depth O(log(T/bk)), this yields the
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target O(T log T ) dot-product work and O(T ) auxiliary memory (per head
and layer, up to block-size constants), respecting the constraint that dense
attention must never be formed or stored. From a systems perspective,
the decomposition is compatible with GPU kernels based on blocked ma-
trix products and streaming log-sum-exp reductions: the retained blocks are
processed exactly, while discarded branches contribute only through inex-
pensive bound updates. In particular, the certificate is not an afterthought;
it is computed online and can guide which branches to refine next (e.g. by
selecting the branches with largest contributions to Udisc).

Conceptually, our results clarify what can be certified efficiently and what
cannot. The certification problem—bounding the error of a given sparse
mask—admits simple, composable upper bounds driven by omitted softmax
mass and linear readout stability. By contrast, the optimization problem
of finding a sparsest faithful mask is in general computationally intractable:
even stylized attention instances encode NP-hard subset selection problems
under renormalization constraints. This separation justifies a pragmatic
methodology: we do not seek globally optimal masks; instead, we develop
refinement rules that preserve soundness and steadily tighten a certificate
until it meets a specified tolerance. In this sense, certified sparse tracing
is best understood as an interface between approximation and verification:
approximate retrieval proposes candidates cheaply, while the certificate en-
forces correctness with respect to a chosen fidelity metric.

The present framework also suggests several concrete directions for con-
tinued work. On the theory side, the most immediate opportunity is to
tighten the attention-output perturbation bound by incorporating additional
geometric information about the value vectors beyond a uniform norm bound,
while retaining streaming computability. On the algorithmic side, there
is room to improve the sharpness of branch score bounds uB using richer
per-branch summaries or multi-probe upper bounds, and to exploit cross-
query structure by reusing retained sets and bounds across neighboring query
blocks without compromising soundness. On the integration side, it is natu-
ral to combine certified pruning with existing fast attention implementations,
quantization schemes, and paging strategies for long contexts, with the cer-
tificate serving as a principled control signal for adaptive compute. Finally,
extending certification beyond last-layer substitution remains an important
objective: an end-to-end transformer certificate must reason about how ear-
lier perturbations alter later queries, keys, and therefore the attention scores
themselves.

In summary, we have shown that one can sparsify transformer atten-
tion in a streaming setting while producing a per-input, per-query certificate
that provably controls next-token distribution drift in KL. The resulting
view is neither purely worst-case nor purely heuristic: it is a verifiable ap-
proximation scheme whose computational cost scales near-linearly in context
length and whose fidelity can be tuned continuously via an explicit tolerance
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parameter. We expect certified sparse tracing to be useful both as a de-
ployment primitive—where guarantees matter—and as a research tool for
probing which parts of the context are truly responsible for a model’s pre-
dictions under quantitatively controlled approximations.
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