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Abstract

Offline-to-online RL is typically studied assuming the offline dataset
and online deployment environment come from the same MDP. In
2026-era deployments (robot personalization, continual updates, sim-
to-real), this assumption is routinely violated: offline data are col-
lected under different dynamics or rewards than those encountered
online. Building on the stability–plasticity lens and regime taxonomy
from prior offline-to-online work, we introduce transfer-aware regimes
defined by the on-environment performance of two priors: the offline-
pretrained policy π0 and a behavior-cloned policy πBC trained on the
offline dataset. We show that naively replaying offline transitions for
value learning can be provably harmful under dynamics shift: Bell-
man backups computed from off-dynamics induce a bias scaling with
the shift magnitude. We propose Transfer-Weighted Bellman Replay
(TWBR), which uses online data to estimate a confidence-bounded
mismatch score and selectively weights (or filters) offline transitions in
critic learning while using offline data primarily as a behavioral prior.
In linear MDPs, TWBR achieves a stability floor relative to the best
transferable prior J∗

tr and a near-optimality bound with an explicit
additive shift term, and we provide a matching lower bound show-
ing the shift term is unavoidable without correction. We outline how
modern deep RL implementations can instantiate the same principle
via ensemble-based mismatch diagnostics and evaluate on controlled-
shift benchmarks; such experiments would strengthen the practical
relevance beyond the theory.
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1 Background and Source Connection: stability–
plasticity decomposition under shift

We adopt the stability–plasticity viewpoint for offline-to-online reinforce-
ment learning: during online interaction we would like to (i) remain stable,
in the sense of never performing substantially worse than a reasonable base-
line that is already available from offline training, while (ii) remain plastic,
in the sense of using the online samples to adapt toward optimality in the
online environment. Formally, stability is encoded by a performance floor of
the form

min
0≤t≤N

Jon(πt) ≥ J∗
tr − ε

with high probability, whereas plasticity is encoded by a final performance
guarantee comparing πN to an online optimal policy π∗.

The source formulation motivating our approach (in the no-shift set-
ting) decomposes offline-to-online fine-tuning into regimes determined by a
comparison between the offline-pretrained policy π0 and the data-generating
behavior πD itself. In that classical viewpoint, the offline dataset D is as-
sumed to arise from the same MDP on which performance is measured,
and the quantity J(πD) is treated as a meaningful reference point capturing
“how good the dataset is.” One then distinguishes three qualitatively differ-
ent cases: roughly, a regime where π0 is already better than πD, a regime
where π0 is comparable to πD, and a regime where π0 is worse than πD. In
these regimes, the appropriate degree of conservatism differs: if π0 is already
strong, the main risk is catastrophic forgetting or destructive exploration; if
π0 is weak relative to the data, then exploiting the dataset more aggressively
may be beneficial.

Our contribution is not to dispute the utility of this decomposition, but
to make explicit that its central comparator, J(πD), becomes ill-defined or
insufficient once we leave the same-MDP assumption and allow an offline-to-
online shift. Indeed, under shift we must separate the MDP that generated
the dataset from the MDP on which we evaluate performance. The behavior
policy πD is defined only through the distribution of trajectories in Moff ,
while our goal concerns returns in Mon. The natural analogue of the classical
comparator would be Jon(πD), but this quantity is typically not available
from D and, without additional assumptions, cannot be reliably inferred.
There are two obstructions.

First, πD is usually an abstract mixture (e.g., a nonstationary data-
collection protocol, multiple human demonstrators, or an exploration policy
that changes over time). Even in the same-MDP case, identifying a single
stationary πD may be a modeling convenience rather than a faithful descrip-
tion; under shift, this convenience becomes harmful if we attempt to treat
Jon(πD) as a well-posed number. Second, even if we postulate a stationary
πD, the offline dataset encodes samples from Poff and Roff , whereas Jon(πD)
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depends on Pon and Ron. Estimating returns in Mon for a policy that we have
never executed in Mon is an off-policy evaluation problem under dynamics
shift. Absent strong structure, this is not merely difficult; it is information-
theoretically impossible under support mismatch, since the occupancy donπD
may concentrate on parts of the state–action space that are not covered by
the online interaction we can afford, and the offline data are generated under
the wrong transition kernel.

For these reasons, we replace the original regime comparator by a transfer-
aware baseline that is directly measurable in the online MDP. Concretely,
we restrict attention to policies that (a) can be produced from D without
querying Mon, and (b) can be executed in Mon and evaluated (with uncer-
tainty) using a small number of online rollouts. We use two such policies:
the offline-pretrained policy π0, and a behavior cloning policy πBC trained
on D. The latter plays the role of an operational proxy for πD: while πBC

is not the true data-collection policy, it is a stationary policy we can deploy
online, and its performance Jon(πBC) is therefore well-defined and estimable
from online interaction.

This leads to the transferable offline baseline

J∗
tr := max{Jon(π0), Jon(πBC)},

which serves two simultaneous purposes in our framework. From the stabil-
ity perspective, J∗

tr is the floor against which we certify safety: we require
that online fine-tuning never drops substantially below the better of the two
available offline-derived policies. From the regime-identification perspective,
the comparison between Jon(π0) and Jon(πBC) substitutes for the original
comparison between J(π0) and J(πD). That is, in the presence of shift we
no longer ask whether π0 is better than the (hypothetical) behavior policy
in the evaluation MDP; instead, we ask whether π0 is better than a deploy-
able imitation of the dataset behavior when both are executed in Mon. This
replacement is conservative but principled: it uses only quantities that can
be grounded in the online environment, and it avoids the unidentifiability
inherent in Jon(πD).

Once we adopt J∗
tr as the stability anchor, the stability–plasticity de-

composition becomes algorithmically enforceable. Stability is maintained by
ensuring that each deployed policy πt has an online lower confidence bound
exceeding J∗

tr−ε, and by reverting to a prior policy (either π0 or πBC) when-
ever the bound fails. Plasticity then concerns how we exploit online data to
improve beyond J∗

tr, and, crucially, how we reuse offline transitions in critic
learning without incurring shift-induced Bellman bias. This is the point at
which the shift-aware filtering/weighting mechanism enters: rather than re-
lying on the offline dataset as if it were sampled from Mon, we treat it as
a potentially misspecified source whose influence must be modulated by an
estimated mismatch signal.
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In summary, the source regimes are preserved in spirit—they still govern
how conservative the online updates should be—but their central compara-
tor must be altered under shift. By replacing J(πD) with Jon(πBC) and
anchoring stability at J∗

tr, we obtain a regime decomposition that is both op-
erational (measurable in Mon) and compatible with the theoretical obstacles
posed by dynamics mismatch.

2 Problem Setup: a two-MDP model and transfer-
able offline baselines

We formalize offline-to-online transfer under dynamics shift by positing two
discounted Markov decision processes (MDPs) that share the same state–
action spaces and discount, but may differ in their dynamics and rewards:

Moff = (S,A, Poff , Roff , γ), Mon = (S,A, Pon, Ron, γ), γ ∈ (0, 1).

The offline dataset is generated exclusively in Moff . Concretely, D consists
of a multiset of trajectories (or, equivalently for our purposes, transitions)

(s, a, r, s′) ∼ rollouts in Moff

collected under an unknown data-collection mechanism. We denote by πD an
abstract behavior policy (possibly a mixture over time or across demonstra-
tors) that induces the distribution of D in Moff . We emphasize that πD is
not assumed to be known, stationary, or even well-defined as a single Markov
policy; it is merely a notational handle for the data-generating process.

Our goal is to output a sequence of policies {πt}Nt=0—or, in its simplest
form, a final policy πN—that is evaluated on Mon, after N steps of online
interaction with Mon. For any policy π, we write Jon(π) for its expected dis-
counted return in Mon (from the task’s initial-state distribution, suppressed
in notation). When needed, we also use the discounted occupancy measure
donπ induced by π in Mon.

Offline-derived policies available at time 0. We assume that an offline-
pretrained policy π0 is given. This policy may have been produced by any
offline RL procedure applied to D (potentially with an associated critic),
and we do not assume that π0 is optimal or even safe under the online
dynamics. In addition, we construct a behavior cloning (BC) policy πBC

trained by supervised learning on the state–action pairs in D. The role
of πBC is operational rather than epistemic: it is a stationary policy that
imitates the observed behavior in D and, crucially, can be executed in Mon

to obtain genuine online performance estimates.
This pair of policies is the basis for our transfer-aware stability anchor.

Since Jon(πD) is generally unidentifiable from D under shift, we refrain from
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using it as a comparator. Instead, we define the transferable offline baseline

J∗
tr := max

{
Jon(π0), Jon(πBC)

}
,

which is well-defined because both π0 and πBC are deployable in Mon. In
practice, Jon(π0) and Jon(πBC) may be estimated by a modest number of
online rollouts (or by an online off-policy evaluation routine equipped with
uncertainty quantification). The salient point is that the baseline is anchored
in Mon rather than inferred from D.

Stability and objective under online interaction. We consider online
fine-tuning procedures that, for t = 1, 2, . . . , N , deploy a policy πt−1 in Mon,
collect transitions into an online buffer, and update the actor/critic to pro-
duce πt. The overarching objective is to maximize Jon(πN ) (or maxt≤N Jon(πt)),
subject to a high-probability stability floor

min
0≤t≤N

Jon(πt) ≥ J∗
tr − ε,

for a user-specified slack ε > 0. The stability constraint reflects the stability–
plasticity desideratum: plasticity is encoded by improvement toward the
online optimum, whereas stability requires that online updates do not catas-
trophically underperform relative to the best available offline-derived refer-
ence.

Linear-MDP structure and shift magnitude. For theoretical analysis
we impose a linear MDP model on Mon: there exists a known feature map
ϕ : S ×A → Rd with ∥ϕ(s, a)∥2 ≤ 1 and unknown parameters wR ∈ Rd and
Mon ∈ Rd×d such that

Ron(s, a) = ⟨wR, ϕ(s, a)⟩, and E
[
ϕ(s′, a′) | s, a, π

]
= M⊤

onϕ(s, a),

where a′ ∼ π(· | s′). We likewise posit an offline transition parameter Moff

that governs the analogous conditional feature expectation under Moff . We
quantify the (feature-space) dynamics shift by

∆ := ∥Mon −Moff∥2.

The value of ∆ is unknown, but online interaction permits the construction
of a high-probability upper confidence bound ∆̂t (and, more locally, upper
bounds on ∥(Mon−Moff)

⊤ϕ(s, a)∥2) via standard least-squares concentration
arguments.

What it means to reuse offline transitions under shift. A central
modeling decision is how to incorporate D during online fine-tuning. In
the absence of shift, a common approach is to reuse offline transitions for
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Bellman backups or TD regression as if they were drawn from the online
environment. Under shift, this identification is incorrect: offline transitions
are sampled according to Poff , whereas the critic we require for online control
should reflect Pon. The induced error is not merely a finite-sample artifact;
it manifests as a Bellman fixed-point bias whenever Toff is substituted for
Ton in value estimation.

Accordingly, in our setup offline transition reuse is conditional. We al-
low the learning algorithm to draw from D during critic updates only after
applying a transfer filter or transfer weighting that depends on an online-
estimated mismatch signal. Formally, at online time t we associate to each
offline state–action pair (s, a) an upper confidence mismatch proxy Ut(s, a)
satisfying (with high probability)

Ut(s, a) ≥ ∥(Mon −Moff)
⊤ϕ(s, a)∥2, ∀(s, a) appearing in D.

Given a threshold τ ≥ 0, we declare an offline transition admissible at time
t if Ut(s, a) ≤ τ (hard filtering), or else we assign it a weight that decays
with Ut(s, a) (soft weighting). The parameter τ thus directly encodes the
maximum admitted misspecification in offline Bellman targets: smaller τ
yields more conservative reuse (less bias, potentially higher variance), while
larger τ yields more aggressive reuse (lower variance, potentially larger bias).
This formalizes the notion that D is a potentially misspecified replay buffer
whose influence must be modulated by online evidence about the current
environment.

The resulting problem is therefore neither purely offline RL nor standard
online RL with a replay buffer. It is an online control problem in Mon with
(i) a transferable stability anchor J∗

tr derived from deployable offline policies,
and (ii) an auxiliary, shift-filtered offline dataset D that may be used to
accelerate critic learning only to the extent permitted by online-estimated
mismatch. This is the setting in which our subsequent algorithmic choices
and guarantees are stated.

3 Problem Setup: a two-MDP model and transfer-
able offline baselines

We study offline-to-online transfer in the presence of a potential mismatch
between the environment that generated the offline dataset and the envi-
ronment faced during deployment. To make this explicit, we posit two dis-
counted MDPs sharing state space, action space, and discount factor,

Moff = (S,A, Poff , Roff , γ), Mon = (S,A, Pon, Ron, γ), γ ∈ (0, 1),

but allowing (Poff , Roff) and (Pon, Ron) to differ. Throughout, performance
is measured only in Mon.
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Offline data and the behavior policy abstraction. The offline dataset
D is generated entirely in Moff . For our purposes, we treat D as a multiset
of transitions (s, a, r, s′) extracted from trajectories, where

(s, a, r, s′) ∼ rollouts in Moff .

We attach to D an abstract data-generating mechanism πD, which should
be read as a notational proxy rather than a well-specified stationary Markov
policy. In particular, πD may be non-stationary, history-dependent, or a
mixture across demonstrators. This viewpoint is convenient because it sep-
arates what is observable (the empirical distribution of the collected transi-
tions) from what is unidentifiable under shift (the true online performance
of the data generator).

Online interaction and the performance criterion. We are granted N
steps of interaction with Mon. An algorithm produces a sequence of policies
{πt}Nt=0 (or only the terminal πN ) by iterating: deploy πt−1 in Mon, collect
an online transition, and update. For any policy π, we denote its online
discounted return by

Jon(π) := E

[ ∞∑
k=0

γkrk

∣∣∣∣∣π,Mon

]
,

with the initial-state distribution suppressed. When needed, we use the
discounted occupancy measure donπ (over S × A) induced by executing π in
Mon.

Our objective is to maximize Jon(πN ) (or maxt≤N Jon(πt)) while prevent-
ing catastrophic regressions relative to a conservative reference available at
time 0. We encode this stability requirement via a high-probability floor: for
a user-specified slack ε > 0,

min
0≤t≤N

Jon(πt) ≥ J∗
tr − ε,

with probability at least 1− δ for a chosen δ ∈ (0, 1).

Two deployable offline-derived policies at time 0. We assume the ex-
istence of an offline-pretrained policy π0, produced by any offline RL method
on D. We do not require that π0 be optimal (or even adequate) in Mon, since
dynamics shift may break the implicit modeling assumptions under which
π0 was trained.

In addition, we define a behavior cloning policy πBC by supervised learn-
ing on the state–action pairs appearing in D. We view πBC as an operational
baseline: while it may be suboptimal, it is a well-defined stationary policy
that can be executed in Mon to obtain empirical online returns. This dis-
tinction matters because, under shift, the online value of the data-generating
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mechanism πD is generally not recoverable from D without further coverage
assumptions.

Transferable offline baseline. Because both π0 and πBC are deployable
in Mon, their online returns are well-defined quantities. We therefore define
the transferable offline baseline

J∗
tr := max

{
Jon(π0), Jon(πBC)

}
.

In practice, Jon(π0) and Jon(πBC) may be estimated with a modest number
of online rollouts (or via an online OPE routine equipped with uncertainty
quantification), but conceptually J∗

tr is anchored in the true online environ-
ment rather than inferred from the offline data distribution. This choice is
deliberate: under dynamics shift and potential support mismatch, even the
sign of Jon(πD)− Joff(πD) may be unknowable from D alone.

Linear-MDP structure and a feature-space measure of shift. For
theoretical guarantees we impose a linear MDP model on Mon. We assume
a known feature map ϕ : S×A → Rd satisfying ∥ϕ(s, a)∥2 ≤ 1, and unknown
parameters wR ∈ Rd and Mon ∈ Rd×d such that

Ron(s, a) = ⟨wR, ϕ(s, a)⟩, E
[
ϕ(s′, a′) | s, a, π

]
= M⊤

onϕ(s, a),

where a′ ∼ π(· | s′). The second condition is a compact way to encode
linear transition structure for policy evaluation/control in feature space. We
likewise posit an offline transition parameter Moff governing the analogous
conditional feature expectation under Moff , and we quantify dynamics shift
by

∆ := ∥Mon −Moff∥2.

Although ∆ is unknown, online data allow us to build confidence sets for
Mon (hence for Mon − Moff) by least-squares regression and standard con-
centration inequalities, yielding time-dependent upper bounds ∆̂t and, more
importantly for transfer decisions, state–action dependent mismatch proxies.

What it means to reuse offline transitions under shift. A recur-
ring algorithmic pattern in offline-to-online fine-tuning is to incorporate D
into critic learning via TD regression or fitted Q-iteration, treating offline
transitions as additional samples for Bellman backups. Under shift, this
identification is not benign: offline transitions are governed by Poff , whereas
the Bellman operator relevant for evaluation/control in Mon depends on Pon.
To make the mismatch explicit, for a fixed policy π we may write Bellman
evaluation operators T πoff and T πon, and observe that substituting T πoff for T πon
perturbs the contraction fixed point by an amount that does not vanish with
more offline data when Poff ̸= Pon. Thus, unfiltered reuse of D can introduce

9



an irreducible bias in the learned critic, which in turn can misdirect policy
improvement.

Accordingly, we treat D as a replay buffer that is potentially misspecified
for the online task, and we only reuse offline transitions after applying a
transfer-aware filter or weight. Concretely, at online time t we associate
to each offline state–action pair (s, a) an upper-confidence mismatch proxy
Ut(s, a) such that, on a high-probability event,

Ut(s, a) ≥ ∥(Mon −Moff)
⊤ϕ(s, a)∥2, ∀(s, a) appearing in D.

We then impose an admissibility rule parameterized by a mismatch threshold
τ ≥ 0:

wt(s, a) := 1{Ut(s, a) ≤ τ} (hard filter), or more generally wt(s, a) ∈ [0, 1] decreasing in Ut(s, a) (soft weight).

The effect is to construct critic targets from a mixture of online transitions
and transfer-certified offline transitions. The threshold τ plays a dual role:
it bounds the maximum misspecification admitted into offline Bellman tar-
gets (hence controlling bias), while also controlling how much offline data
are available for regression (hence controlling variance). This bias–variance
tradeoff is intrinsic to transfer under shift: setting τ = 0 yields the most con-
servative behavior (offline reuse only when dynamics are certified to match
at the feature level), whereas larger τ enables more aggressive reuse at the
cost of a larger residual shift term.

Finally, we emphasize the separation between dataset usage and pol-
icy anchoring. The baseline J∗

tr is defined solely from deployable policies
evaluated on Mon, and is therefore meaningful even when D is severely mis-
matched. By contrast, the influence of D on critic learning is explicitly gated
by the mismatch proxies Ut(s, a) and the threshold τ . This separation is the
structural feature that enables both the stability floor (through conserva-
tive deployment relative to J∗

tr) and the near-optimality analysis (through
controlling the shift-induced Bellman bias contributed by admitted offline
transitions).

4 Transfer-Aware Regimes: priors, mismatch, and
prescriptions

Our algorithmic decisions at online time 0 are governed by two orthogonal
questions: (i) which offline-derived policy is the safer anchor for deployment,
and (ii) to what extent is the offline dataset D transferable as a source of
Bellman targets for critic learning. We formalize these questions as two
axes, yielding a small set of regimes with distinct prescriptions for policy
regularization, critic training, and exploration.
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Axis I (policy-anchor axis): π0 versus πBC on Mon. Since both π0 and
πBC are deployable, we can compare them using online interaction. Define
the online return gap

∆Jtr := Jon(π0)− Jon(πBC).

In principle, the sign of ∆Jtr determines which policy should serve as the
initial stabilizing prior. In practice, ∆Jtr is estimated from a small number
of online rollouts and thus is noisy; accordingly, we introduce an indifference
margin δ0 > 0 and treat the cases |∆Jtr| ≤ δ0 as statistically ambiguous.
When ambiguity occurs, we adopt a mixture prior (e.g., a logit-averaged
mixture) or choose the prior that is simpler to stabilize (often πBC due to
lower variance), while continuing to refine the estimate online. Formally, at
time t we define

πprior,t ∈ arg max
π∈{π0,πBC}

Ĵon,t(π),

with ties (or near-ties) resolved by a conservative rule, and we penalize policy
updates away from πprior,t via a KL term with weight λt.

Axis II (dataset-transfer axis): mismatch/overlap as an online-
measurable quantity. Even when a policy is safe to deploy, it does not
follow that D is safe to reuse for Bellman backups. We therefore distinguish
policy anchoring (stability) from dataset anchoring (critic sample reuse).
The latter depends on how much of D is certifiably compatible with Mon

under our mismatch proxies. Given Ut(s, a) and threshold τ , define the
admitted set and its mass

Dadm
t := {(s, a, r, s′) ∈ D : Ut(s, a) ≤ τ}, αt :=

|Dadm
t |
|D|

∈ [0, 1].

We interpret αt as an overlap fraction: large αt indicates that a substantial
portion of the offline coverage is transfer-certified (hence useful for variance
reduction in critic regression), whereas small αt indicates that offline replay
is either largely inadmissible or would induce large misspecification bias if
admitted. Complementarily, we track a scalar mismatch indicator such as
∆̂t (global) or max(s,a)∈D Ut(s, a) (worst-case). For regime identification, it
suffices to binarize this axis into

low mismatch / high overlap: αt ≥ αmin, high mismatch / low overlap: αt < αmin,

for a chosen αmin ∈ (0, 1) (or an equivalent rule based on ∆̂t), with the un-
derstanding that the classification may evolve over time as online confidence
sets tighten.
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A 2 × 2 regime map. Combining the two axes yields four regimes. For
compactness we present them as a table, with each cell prescribing (i) the
prior policy πprior,t, (ii) the strength schedule λt of the KL penalty, (iii) the
aggressiveness of offline replay as governed by τ (or soft weights), and (iv)
the degree of plasticity in online updates (actor step sizes, exploration, and
rollback frequency).

low mismatch / high overlap high mismatch / low overlap
Jon(π0) ≥ Jon(πBC) Regime I (trust π0, reuse D) Regime II (trust π0, distrust D)
Jon(π0) < Jon(πBC) Regime III (trust πBC, reuse D cautiously) Regime IV (trust πBC, minimize D)

Regime I: π0 is better online and D is transferable. Here we are in the
favorable case: the offline RL policy is already superior to cloning in Mon,
and a nontrivial fraction of offline transitions are certified by Ut(s, a) ≤ τ .
We therefore set πprior,t = π0 and keep λt moderate: it serves to prevent
abrupt departures from π0 while allowing steady improvement. For critic
learning, we choose τ relatively large (or equivalently use a soft weight-
ing with a slower decay), since the residual shift bias is controlled by the
low-mismatch assumption and the main benefit of D is variance reduction.
Plasticity can be high: we can run multiple critic updates per online step
using Dadm

t , and allow larger actor steps, because rollback to π0 remains
available if the stability monitor detects degradation.

Regime II: π0 is better online but D is not transferable. This case
reflects a common situation: an offline policy generalizes acceptably to the
online environment, but the offline transitions are mismatched enough that
naive replay would corrupt Bellman targets. We again choose πprior,t =
π0, but we increase λt (or make it adaptive) to constrain updates more
tightly, since the critic must be learned primarily from online data and is
therefore noisier early on. Critic training should either (i) exclude D entirely
(set τ small so that αt ≈ 0), or (ii) include only a narrow slice of D with
stringent filtering, effectively using offline data as a regularizer rather than as
a source of Bellman backup mass. Plasticity is moderate: exploration should
be cautious (e.g., small entropy bonuses, limited deviation from π0), and
the stability floor is enforced primarily by conservative policy improvement
rather than by trusting the critic extrapolations supported by offline replay.

Regime III: πBC is better online but D is transferable. When cloning
outperforms π0 in Mon, we interpret π0 as potentially overfit to idiosyn-
crasies of Moff or as having exploited spurious value estimates. Nevertheless,
if αt is large, the dataset is still informative about online dynamics at the
feature level. We therefore set πprior,t = πBC for stability, but continue to
reuse Dadm

t for critic learning, with an important modification: we bias the
actor updates toward incremental improvements over πBC (larger λt than in
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Regime I), and we may initialize the actor from πBC even if π0 is available.
In this regime, dataset anchoring is beneficial, but policy anchoring must be
conservative because the offline RL policy has empirically failed the online
comparison.

Regime IV: πBC is better online and D is not transferable. This is
the most adversarial regime: offline replay is unreliable and the offline RL
policy is inferior to cloning in the online environment. The prescription is
correspondingly conservative. We set πprior,t = πBC and maintain a large
λt until sufficient online data are accumulated to justify deviations; early
updates are therefore close to behavior-regularized online RL. We set τ small,
making αt negligible, and treat D only as a source of representation learning
or auxiliary regularization (if at all), not as a source of Bellman targets.
Plasticity is low initially (small actor steps, frequent evaluation/LCB checks),
then gradually increases as online uncertainty decreases. In effect, TWBR
reduces to a stability-constrained online learner warm-started from πBC.

Dynamics of regime transitions and practical triggers. The regime
classification is not static. As t increases, two quantities typically change:
the confidence radius underlying Ut shrinks, increasing αt for a fixed τ , and
the estimated return gap ∆̂J tr,t concentrates, clarifying the choice of πprior,t.
We therefore treat the regime as a state updated online: whenever πprior,t
switches (because Ĵon,t(π0) overtakes Ĵon,t(πBC) or vice versa), we reset λt
upward to avoid abrupt distributional shifts in the replay buffer; whenever αt
crosses αmin upward, we gradually relax τ (or soften the weights) so that the
critic can benefit from offline variance reduction without introducing a dis-
continuous bias. These transitions are governed by the same principle: policy
anchoring is decided by online return comparisons, while dataset anchoring
is decided by mismatch certification. The next section formalizes why this
separation is necessary by exhibiting the failure mode of naive offline replay
under shift in terms of Bellman-operator mismatch.

5 Failure of Naive Offline Replay Under Shift: Bellman-
operator mismatch and bias

We now isolate the precise failure mode that necessitates our separation be-
tween policy anchoring (deploying π0 or πBC) and dataset anchoring (reusing
D for Bellman backups). The essential obstruction is that Bellman operators
depend on the transition kernel; thus, when Poff ̸= Pon, treating offline tran-
sitions as if they were sampled from Pon induces a systematic (non-vanishing)
bias in critic learning. This bias persists even with infinite offline data and
manifests as value loss on Mon.
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Bellman-operator mismatch. Fix a stationary policy π. Let T πon and
T πoff denote the policy-evaluation Bellman operators on Mon and Moff , re-
spectively:

(T πonQ)(s, a) := Ron(s, a) + γ Es′∼Pon(·|s,a), a′∼π(·|s′)
[
Q(s′, a′)

]
,

(T πoffQ)(s, a) := Roff(s, a) + γ Es′∼Poff(·|s,a), a′∼π(·|s′)
[
Q(s′, a′)

]
.

For the present discussion we suppress reward shift by assuming Ron = Roff

(or, more generally, we may add an additive ∥Ron−Roff∥∞ term everywhere
below). Define the transition shift in total variation as

∆P := sup
s,a

∥∥Pon(· | s, a)− Poff(· | s, a)
∥∥
1
.

Lemma 5.1 (Operator difference bound). For any bounded Q : S ×A → R
and any policy π, ∥∥T πonQ− T πoffQ

∥∥
∞ ≤ γ∆P ∥Q∥∞.

The proof is immediate from the dual characterization of total variation: for
each (s, a),∣∣EPon [f(s

′)]− EPoff
[f(s′)]

∣∣ ≤ ∆P ∥f∥∞, f(s′) := Ea′∼π(·|s′)Q(s′, a′).

Fixed-point bias induced by offline replay. Let Qπ
on and Qπ

off de-
note the unique fixed points of T πon and T πoff . Since both operators are γ-
contractions in ∥ · ∥∞, a standard perturbation argument yields

∥Qπ
on −Qπ

off∥∞ =
∥∥T πonQπ

on − T πoffQ
π
off

∥∥
∞

≤
∥∥T πonQπ

on − T πonQ
π
off

∥∥
∞ +

∥∥T πonQπ
off − T πoffQ

π
off

∥∥
∞

≤ γ ∥Qπ
on −Qπ

off∥∞ + γ∆P ∥Qπ
off∥∞,

hence

∥Qπ
on −Qπ

off∥∞ ≤ γ

1− γ
∆P ∥Qπ

off∥∞ ≤ γ

(1− γ)2
∆P Rmax,

where Rmax := ∥R∥∞ and we used ∥Qπ
off∥∞ ≤ Rmax/(1 − γ). In particular,

any critic-learning procedure that converges (with abundant offline data) to
the offline fixed point Qπ

off while being deployed in Mon necessarily incurs
an irreducible Θ(∆P /(1 − γ)2) value-scale discrepancy. This discrepancy is
not a statistical error; it is a misspecification bias originating from the wrong
Bellman operator.
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Bias in the linear MDP parameterization. In the linear MDP set-
ting, mismatch admits a more refined, feature-local expression. Writing the
conditional expectation of next-step features under π as

µπon(s, a) := E
[
ϕ(s′, a′) | s, a, π,Mon

]
= M⊤

onϕ(s, a), µπoff(s, a) := M⊤
offϕ(s, a),

we have for any linear critic Qw(s, a) := ⟨w, ϕ(s, a)⟩,

(T πonQw)(s, a)− (T πoffQw)(s, a) = γ
〈
w, µπon(s, a)− µπoff(s, a)

〉
= γ

〈
w, (Mon −Moff)

⊤ϕ(s, a)
〉
.

Consequently,∣∣(T πonQw)(s, a)−(T πoffQw)(s, a)
∣∣ ≤ γ ∥w∥2 ∥(Mon−Moff)

⊤ϕ(s, a)∥2 ≤ γ ∥w∥2∆.

This inequality shows why a global shift magnitude ∆ is not, by itself, suffi-
cient for safe reuse of D: even when ∆ is moderate, the critic bias depends
on where ϕ(s, a) lies relative to the shift direction, motivating a state–action
dependent certificate Ut(s, a) and a threshold τ .

An explicit counterexample family (matching lower-bound phe-
nomenon). We now exhibit a family of MDP pairs in which naive offline
replay can force Ω(∆/(1−γ)2) suboptimality, even with infinite offline data.
Consider an MDP with a single decision state s and two absorbing states g
(good) and b (bad). The action set is A = {1, 2}. From g the agent remains
in g forever and receives reward 1 each step; from b the agent remains in
b forever and receives reward 0 each step. From the decision state s, the
immediate reward is 0.

Define the offline MDP Moff by setting, for both actions a ∈ {1, 2},

Poff(g | s, a) = 1, Poff(b | s, a) = 0.

Thus, under Moff both actions appear equally optimal and yield value
Voff(s) = γ/(1− γ).

Now define two online MDPs M(+)
on and M(−)

on which share the same
rewards as above and differ only in the transition from s:

M(+)
on : P (g | s, 1) = 1, P (g | s, 2) = 1− η, P (b | s, 2) = η,

M(−)
on : P (g | s, 2) = 1, P (g | s, 1) = 1− η, P (b | s, 1) = η,

where η ∈ (0, 1) is a shift parameter (we may identify η with ∆ up to
constants in an appropriate feature embedding; in total variation, ∆P ≥ η).
In M(+)

on , action 1 is optimal; in M(−)
on , action 2 is optimal. The optimal

online value at s is
V ∗
on(s) =

γ

1− γ
.
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If the agent instead chooses the wrong action (the one with η probability of
falling into b), the value becomes

V wrong
on (s) = γ

(
(1− η) · 1

1− γ
+ η · 0

)
=

γ(1− η)

1− γ
,

and therefore

V ∗
on(s)− V wrong

on (s) =
γη

1− γ
= Ω

(
η

1− γ

)
.

To obtain the canonical Ω(η/(1− γ)2) scaling, we can equivalently shift the
value scale by replacing the good-state reward 1 with (1−γ)−1 (still bounded
for fixed γ away from 1), in which case the good-state value is (1 − γ)−2

and the gap becomes Ω(η/(1 − γ)2). This normalization is standard when
expressing lower bounds in terms of the horizon scale (1− γ)−1.

The crucial point is informational: the offline dataset D generated from
Moff is identical regardless of whether the true online environment is M(+)

on

or M(−)
on , since both share the same Moff . Hence, any algorithm that per-

forms Bellman backups on D as if its transitions were from Pon and does
not incorporate an explicit online mismatch correction cannot, before seeing
informative online transitions, distinguish which action is unsafe. In par-
ticular, with infinite offline data it will learn a critic consistent with Poff ,
for which both actions at s are equivalent; any deterministic tie-breaking
selects one action, which is necessarily suboptimal in one of the two online
instances. This establishes a worst-case value loss proportional to the shift
magnitude, matching the lower-bound phenomenon that an additive shift
term is information-theoretically unavoidable without mismatch detection.

Implication for algorithm design. The above counterexample is delib-
erately elementary, but it captures the general mechanism: Bellman-target
bias arises from substituting Toff for Ton. The linear-MDP mismatch expres-
sion makes clear that the safest remedy is not to forbid offline data, but to
gate it by an online-certified bound on (Mon−Moff)

⊤ϕ(s, a), thereby control-
ling the operator bias locally. This observation leads directly to the design of
Transfer-Weighted Bellman Replay in the next section: we estimate a confi-
dence set for Mon, convert it into per-sample mismatch certificates Ut(s, a),
and filter/weight offline transitions so that admitted Bellman backups incur
at most a controlled residual bias τ .

6 Algorithm: Transfer-Weighted Bellman Replay
(TWBR)

We now formalize the fine-tuning procedure suggested by the preceding mis-
match analysis. The design requirement is twofold: (i) we must control the
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Bellman-target bias induced by reusing D under Pon ̸= Poff , and (ii) we
must maintain a stability floor relative to the best transferable offline policy,
namely J∗

tr := max{Jon(π0), Jon(πBC)}, up to slack ε. TWBR implements (i)
by assigning each offline transition a time-varying transfer certificate Ut(s, a)
and using only those samples whose certified mismatch is below a threshold
τ (or by downweighting them smoothly), and it implements (ii) by conserva-
tive actor updates with an explicit rollback rule based on a lower confidence
bound for Jon.

Estimating online dynamics and a confidence set. In the linear MDP
model, the quantity governing Bellman mismatch for linear critics is (Mon−
Moff)

⊤ϕ(s, a). Thus, TWBR maintains an online estimate Mon,t of Mon and
a high-probability confidence set around it. Concretely, for each online step
i ≤ t we record zi := ϕ(si, ai) and a “next-feature” target

yi := ϕ(s′i, a
′
i), a′i ∼ πi−1(· | s′i),

so that E[yi | si, ai, πi−1] = M⊤
onzi holds by assumption. With ridge param-

eter λ > 0, define the online Gram matrix

Vt := λI +
t∑
i=1

ziz
⊤
i ,

and let Mon,t be the regularized least-squares solution minimizing
∑t

i=1 ∥yi−
M⊤zi∥22 + λ∥M∥2F . Standard self-normalized concentration yields a (time-
uniform) event E of probability at least 1− δ on which, for all t,

∥(Mon,t −Mon)
⊤x∥2 ≤ βt∥x∥V −1

t
for all x ∈ Rd, (1)

for an explicit radius βt = Õ(
√
d log(1/δ)) depending on noise bounds and λ.

We emphasize that (1) is the only property needed to certify per-sample mis-
match; the specific estimator may be replaced by any procedure producing
such a confidence relation.

Offline mismatch certificates and transfer weights. Given (1) and
a fixed offline transition parameter Moff (estimated once from D by the
analogous regression), we define the per-sample certificate

Ut(s, a) :=
∥∥(Mon,t −Moff)

⊤ϕ(s, a)
∥∥
2
+ βt∥ϕ(s, a)∥V −1

t
. (2)

On the event E , (2) upper bounds the true feature-space mismatch:∥∥(Mon −Moff)
⊤ϕ(s, a)

∥∥
2
≤ Ut(s, a),
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by the triangle inequality and (1). TWBR then defines a transfer weight for
each offline sample (s, a, r, s′) ∈ D by the hard filter

wt(s, a) := 1{Ut(s, a) ≤ τ}, (3)

or, in a smooth variant useful in practice,

wt(s, a) := exp{−κUt(s, a)}, (4)

with temperature κ > 0. The role of τ is algorithmic: it caps the admissible
Bellman mismatch when treating an offline transition as a surrogate for an
online transition. The slack βt∥ϕ∥V −1

t
has a complementary role: it shrinks

as online coverage grows, so that samples are admitted not only when the
estimated shift is small, but also when our uncertainty about the online shift
is small.

Critic learning with transfer-weighted replay. TWBR updates a critic
on a mixture of online and (weighted) offline transitions. For clarity we de-
scribe the linear-critic instantiation Qw(s, a) = ⟨w, ϕ(s, a)⟩, although the
same weighting logic applies to general function approximation. Let Bt de-
note the online buffer at time t and let Dt := {(s, a, r, s′) ∈ D : wt(s, a) > 0}
be the admitted offline subset. A generic fitted Bellman regression step
updates w by minimizing∑
(s,a,r,s′)∈Bt

(
⟨w, ϕ(s, a)⟩−

[
r+γ V̂ (s′)

])2
+ α

∑
(s,a,r,s′)∈D

wt(s, a)
(
⟨w, ϕ(s, a)⟩−

[
r+γ V̂ (s′)

])2
+ ρ∥w∥22,

(5)
where V̂ (s′) is a target computed from the current policy (policy evaluation)
or via maxa′⟨w, ϕ(s′, a′)⟩ (control), α controls the relative offline mass, and
ρ is an additional regularization parameter. The filter (3) ensures that any
residual Bellman bias contributed by offline transitions is bounded (in the
sense made explicit by the mismatch inequalities in the previous section) by
a term scaling with τ rather than with the ambient shift ∆.

Regime-dependent policy priors and actor regularization. We main-
tain two candidate priors: the given offline-pretrained π0 and the behavior
cloning policy πBC. Since the online shift may invalidate one but not the
other, we select a time-dependent prior

πprior,t ∈ {π0, πBC} with πprior,t ∈ arg max
π∈{π0,πBC}

ĴLCB
on (π),

where ĴLCB
on (π) is an online lower confidence bound (defined below). The

actor update then solves, approximately, a KL-regularized improvement step:

πt ≈ argmax
π

E
s∼d̂on

[
Ea∼π(·|s)Q̂t(s, a)

]
− λt Es∼d̂on

[
DKL(π(· | s) ∥πprior,t(· | s))

]
,

(6)
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with λt chosen adaptively. Intuitively, when the stability monitor indicates
risk, λt is increased (and the step size is decreased) so that the update
becomes conservative and remains close to πprior,t. Conversely, when certified
performance is comfortably above the floor and online coverage is sufficient
(so that Ut is small on a large portion of D), λt may be reduced to permit
faster improvement.

Stability monitor, lower confidence bounds, and rollback. To en-
force the constraint min0≤t≤N Jon(πt) ≥ J∗

tr−ε with high probability, TWBR
deploys only policies whose performance is certified by a lower confidence
bound. One concrete implementation uses periodic on-policy evaluation roll-
outs of πt in Mon producing an empirical return Ĵon(πt) and a concentration-
based deviation term ct such that

ĴLCB
on (πt) := Ĵon(πt)− ct ≤ Jon(πt) w.p. ≥ 1− δ.

The deployment rule is then:

if ĴLCB
on (πt) ≥ J∗

tr − ε, deploy πt; else revert to πprior,t and increase λt.

In addition, upon triggering we may tighten transfer by decreasing τ (or
setting α = 0 in (5) temporarily), ensuring that subsequent critic updates
cannot be dominated by potentially misaligned offline backups during an
identified high-risk regime.

Offline usage modes. It is useful to separate three modes that TWBR
interpolates between via (τ, α, λt): (1) online-only learning (α = 0), which
eliminates shift bias but pays higher variance; (2) shift-filtered replay (α > 0
with (3) or (4)), which reduces variance while incurring at most τ -controlled
bias; and (3) policy anchoring without dataset anchoring, in which D is used
only to define πBC (and possibly as a behavioral regularizer), while Bellman
targets rely primarily on online transitions. The algorithm transitions among
these modes according to the certified mismatch and stability signals: as on-
line confidence increases, the admitted set Dt expands automatically through
(2), while the stability monitor guarantees that any aggressive update can
be vetoed in favor of the best empirically transferable baseline.

7 Main Theorems

We collect the principal guarantees implied by the mismatch-controlled re-
play mechanism and the conservative deployment rule. Throughout, we work
on the time-uniform high-probability event E on which the online confidence
relation (1) holds simultaneously for all t ≤ N , and we assume bounded
rewards (e.g. |Ron(s, a)| ≤ 1) and conditionally sub-Gaussian noise in the
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linear regression targets so that P(E) ≥ 1 − δ by standard self-normalized
martingale concentration. For readability, we suppress logarithmic factors
via Õ(·).

7.1 Bellman mismatch and the necessity of transfer control

The first result formalizes the central obstruction: reusing offline transitions
as if they were drawn from Pon induces an operator bias that persists even
with infinite offline data. While we implement mismatch control in feature
space, the phenomenon is most transparent in total variation.

Theorem 7.1 (Bellman mismatch bias bound). Fix a policy π and let Ton

and Toff denote its Bellman evaluation operators under Mon and Moff , re-
spectively. Assume rewards are shared (or that reward shift is treated sepa-
rately) and suppose

∆P := sup
s,a

∥∥Pon(· | s, a)− Poff(· | s, a)
∥∥
1
< ∞.

Then for any bounded Q,

∥TonQ− ToffQ∥∞ ≤ γ∆P ∥Q∥∞.

Consequently, if an algorithm computes (exactly or approximately) the fixed
point of Toff while deploying in Mon, the induced evaluation error is lower
bounded as

∥Qπ
on −Qπ

off∥∞ = Ω

(
γ∆P

1− γ

)
,

and the corresponding value loss scales as Ω(∆P /(1−γ)2) in the worst case.

The proof is a direct operator-difference bound via total variation and the
contraction property of Bellman evaluation. The message is that controlling
statistical error alone is insufficient; a transfer mechanism must also control
misspecification error induced by Pon ̸= Poff .

7.2 Near-optimality under linear dynamics with a shift term

We now state the performance guarantee for TWBR under the linear MDP
assumption in the enclosing scope. The role of transfer is encapsulated by
the admitted mismatch level τ , which upper bounds the feature-space shift
for any offline transition used in Bellman targets on the event E , via (2) and
(3).

Theorem 7.2 (TWBR near-optimality in linear MDPs). Assume Mon is a
linear MDP with known feature map ϕ and unknown parameters (wR,Mon).
Suppose TWBR (i) maintains an estimator Mon,t satisfying (1) on E, and
(ii) performs fitted value iteration / Bellman regression updates in which any
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offline transition (s, a, r, s′) ∈ D is used only with transfer weight wt(s, a)
supported on {Ut(s, a) ≤ τ}. Then with probability at least 1 − δ, the final
policy πN satisfies

Jon(πN ) ≥ Jon(π
∗) − Õ

(
d

(1− γ)2
√
N

+
τ

(1− γ)2

)
,

where π∗ is an optimal policy for Mon.

We briefly unpack the bound. The term Õ
(
d/((1−γ)2

√
N)

)
is the usual

estimation error from N online transitions in a d-dimensional linear model.
The additive term Õ

(
τ/(1−γ)2

)
is the residual shift bias: by design, TWBR

may still treat admitted offline transitions as approximately on-distribution,
but only up to mismatch τ . In particular, if we drive τ → 0 (e.g. by rejecting
all offline transitions, or by only admitting those with essentially identical
feature transitions), the shift term vanishes and we recover an online-only
rate, whereas larger τ yields more reuse of D at the cost of a controlled bias.

The proof proceeds by combining: (a) the confidence relation (1) to cer-
tify per-sample mismatch; (b) a misspecified Bellman regression analysis in
which each admitted offline target contributes a bounded perturbation pro-
portional to τ ; and (c) standard propagation of value-function error through
Bellman contraction and a performance-difference argument to convert critic
error into return loss.

7.3 Stability floor via certified deployment

We next formalize the stability constraint. The algorithmic mechanism is
minimal: we only deploy a candidate policy if it passes a lower confidence
bound (LCB) check against the transferable baseline J∗

tr; otherwise we revert
to a prior policy and increase conservatism.

Theorem 7.3 (Stability floor guarantee). Assume that at each deployment
time t we compute an LCB ĴLCB

on (πt) such that

ĴLCB
on (πt) ≤ Jon(πt) for all t ≤ N

with probability at least 1− δ. If TWBR enforces the rule

deploy πt only if ĴLCB
on (πt) ≥ J∗

tr − ε, else deploy πprior,t ∈ {π0, πBC},

then with probability at least 1− δ,

min
0≤t≤N

Jon(πt) ≥ J∗
tr − ε.

The proof is an induction on deployment times conditioned on the event
that all LCBs are valid. Since every deployed policy satisfies the certified
inequality, the minimum deployed performance is bounded below by the same
floor. Notably, this theorem is agnostic to how πt is produced (actor-critic,
fitted iteration, etc.); only the correctness of the LCB and the deployment
rule matter.
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7.4 Matching lower bound: an unavoidable shift penalty

We finally record that an additive shift term is not an artifact of analysis: it is
information-theoretically necessary if one attempts to reuse offline transitions
for Bellman backups without correcting for mismatch.

Theorem 7.4 (Unavoidable shift term without mismatch correction). There
exists a pair of linear MDPs (Moff ,Mon) with shared (S,A, γ, ϕ) and ∥Mon−
Moff∥2 = ∆, and an offline dataset D (even with infinite size), such that any
algorithm that performs Bellman backups on D as if generated by Pon (i.e.
without estimating/filtering/correcting mismatch) outputs a policy π̂ obeying

Jon(π
∗)− Jon(π̂) ≥ Ω

(
∆

(1− γ)2

)
.

The construction follows an indistinguishability argument: we build two
candidate online dynamics consistent with the same offline data distribution
but with opposite optimal actions under Mon. Any offline-backup-based
method that does not interrogate online dynamics cannot distinguish these
candidates and must fail on one of them. Thus, a term scaling with the
online–offline shift cannot be eliminated unless we incorporate online infor-
mation in a way that explicitly controls mismatch (as TWBR does via Ut)
or we avoid offline Bellman reuse altogether.

7.5 Optional: sequential regime identification for π0 versus
πBC

The transferable baseline J∗
tr depends on which of π0 or πBC performs better

on Mon. Since this comparison is itself an online question, we may perform
a sequential test using on-policy rollouts.

Theorem 7.5 (Sequential test complexity for baseline selection). Let ∆Jtr :=
Jon(π0) − Jon(πBC). Suppose single-trajectory returns are σ2-sub-Gaussian
around their means. Fix an indifference margin δ0 > 0. Then there exists a
sequential two-sided test that, with probability at least 1−δ, identifies whether
|∆Jtr| > δ0 (and selects the better policy when separated) using

Õ

(
σ2

δ20
log

1

δ

)
online rollouts in expectation; moreover, any procedure requires Ω

(
σ2δ−2

0 log(1/δ)
)

rollouts in the worst case.

This result justifies the regime-dependent prior selection in TWBR: de-
termining the better transferable baseline is statistically comparable to esti-
mating a difference of two means, and it can be done with vanishing online
cost relative to long-horizon fine-tuning, while still supporting the stability
floor guarantee through an appropriately calibrated LCB.
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8 Complexity and Implementation Notes

We record the computational footprint of TWBR in the linear instantiation
and then discuss how the same design principles can be instantiated in deep
actor–critic systems. We end by isolating which assumptions of the analysis
are most fragile in practice and how we would operationally compensate for
their failure.

Linear setting: arithmetic cost and data structures. Fix a feature
dimension d, an offline dataset size n := |D| (counting transitions), and N
online interaction steps. In the linear MDP model, the basic primitives are
(i) least-squares estimation of the linear transition parameter Moff from D,
(ii) incremental least-squares estimation of Mon from online data, and (iii)
repeated value-function regressions whose targets mix online transitions with
a filtered subset of offline transitions.

A convenient implementation maintains regularized covariance matrices

Voff := λI +
∑

(s,a)∈D

ϕ(s, a)ϕ(s, a)⊤, Vt := λI +
t∑
i=1

ϕ(si, ai)ϕ(si, ai)
⊤,

together with the corresponding cross-covariances needed to solve for Moff

and Mon,t by normal equations. Forming these sums costs O(nd2) offline
and O(Nd2) online. If we recompute matrix inverses naively, we incur an
additional O(d3) per refit; however, in the online loop we may update V −1

t

incrementally via Sherman–Morrison in O(d2) per step, which dominates the
per-step cost in the linear setting.

Once Moff and Mon,t are available, the per-transition transfer test Ut(s, a)
can be evaluated in O(d2) time if it involves a quadratic form in V −1

t , and in
O(d) time if it only uses Euclidean norms. A typical upper bound consistent
with self-normalized concentration takes the form

Ut(s, a) :=
∥∥(Mon,t −Moff)

⊤ϕ(s, a)
∥∥
2︸ ︷︷ ︸

empirical shift

+ βt ∥ϕ(s, a)∥V −1
t︸ ︷︷ ︸

estimation uncertainty

,

where βt is the radius of the confidence set induced by the online regres-
sion. In this form, evaluating Ut for all offline samples at each t would be
prohibitively expensive (O(nd2) per step). We therefore do not intend a
literal full rescan of D each iteration. Instead, we either (a) compute Ut
only for offline samples that appear in a sampled minibatch for the current
critic regression, or (b) refresh Ut on a coarse schedule (every K online steps)
while caching the most recent weights. Under either strategy, the incremen-
tal overhead of transfer control is a constant factor on top of whatever fitted
value iteration / regression cost we already pay.
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In summary, in the linear instantiation with incremental updates, the
dominant arithmetic costs scale as

O
(
(n+N)d2

)
for the regressions and confidence maintenance,

plus the cost of the chosen fitted value iteration routine on the mixed batch.
Memory usage is similarly modest: we store D and the online buffer (or
streaming sufficient statistics) and a constant number of d× d matrices, i.e.,
O(n+N + d2) transitions/parameters.

Deep RL instantiation: constructing practical mismatch signals.
In deep actor–critic systems, we no longer have known features nor a para-
metric linear transition operator, so Ut(s, a) must be approximated. The
role of Ut in TWBR is purely instrumental : it gates (or weights) offline
transitions to control the bias induced by using D to form Bellman targets
for Mon. Thus, any signal that (i) increases with offline–online transition
disagreement and (ii) is conservative in the sense of rarely declaring a mis-
matched offline sample as “safe” can serve as a surrogate.

We highlight three families of instantiations.

• Dynamics-ensemble disagreement. We train an ensemble {fk}Kk=1 of
one-step predictive models on the online buffer (optionally warm-started
from D), where fk maps (s, a) to a distribution over next-state features
(e.g. the parameters of a Gaussian in a learned latent space). We then
define

Ut(s, a) ≈ StdDev
(
{fk(s, a)}Kk=1

)
,

or a similar epistemic-uncertainty proxy such as the ensemble variance
of the predicted next latent. Offline samples with high disagreement
are downweighted or rejected. This approach is straightforward to
implement and aligns with the intended meaning of “mismatch” as
unpredictability of online dynamics at offline points.

• Domain discrimination / density-ratio surrogates. We train a classifier
cψ(s, a) to distinguish whether a state–action pair came from the online
buffer or from D. Under standard reductions, this yields an estimate
of a density ratio between online and offline marginals. We may then
set a weight

wt(s, a) ∝ clip

(
p̂on(s, a)

p̂off(s, a)
, 0, wmax

)
,

or more directly use cψ(s, a) as a softness factor. While this does not
measure transition mismatch directly, it guards against reusing offline
samples that lie outside the region supported by the (current) online
state distribution, which is a frequent precursor to harmful Bellman
extrapolation.
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• Latent-space moment matching. We learn a representation z = gη(s)
(e.g. the critic encoder), and estimate a discrepancy between condi-
tional next-latent distributions under offline and online data using an
integral probability metric (e.g. MMD) locally around (s, a). In prac-
tice, one uses minibatch estimates and obtains a soft score Ut that
correlates with local nonstationarity.

Once a proxy Ut is fixed, the remainder of TWBR is standard engineering:
we maintain two replay sources (offline and online), and in the critic update
we compute a weighted TD loss on a mixed minibatch, e.g.

LTD = E(x,y)∼Bon

[
ℓTD(x, y)

]
+ E(x,y)∼D

[
wt(x) ℓTD(x, y)

]
,

where x abbreviates (s, a) and y abbreviates (r, s′). Hard filtering cor-
responds to wt ∈ {0, 1} with threshold τ , while smooth weighting (e.g.
wt = exp(−βUt) with clipping) is often numerically more stable.

Which assumptions fail in practice (and what we do about it). The
theory leans on (i) correct linear parametrization with known ϕ, (ii) reliable
high-probability concentration to produce a conservative Ut, and (iii) a valid
lower confidence bound for deployment. In deep control, each can fail:

• Model misspecification. Learned features are nonstationary and the
environment may be far from linear in any fixed representation. We
treat Ut as a heuristic safety signal and bias it toward conservatism
by (a) using ensembles, (b) applying strong clipping to weights, and
(c) adopting a schedule that initially privileges online data and only
gradually increases the contribution of admitted offline transitions.

• Overconfidence of uncertainty proxies. Ensembles and classifiers can be
miscalibrated, especially under distribution shift. We therefore sepa-
rate critic learning from deployment : offline reuse may accelerate value
estimation, but the stability rule should be enforced by direct online
evidence whenever possible (e.g. periodic on-policy evaluations, boot-
strap confidence over multiple critics, or pessimistic aggregations such
as taking a lower quantile over an ensemble of value estimates).

• Support and partial observability. If the online system visits states
that are absent from D (or vice versa), no amount of offline replay can
substitute for online coverage, and domain classifiers may confound
novelty with shift. Practically, we ensure the algorithm can fall back
to an online-only mode (equivalently τ → 0), and we treat offline replay
as optional acceleration rather than a requirement.

• Reward shift. The linear analysis isolates transition mismatch; in appli-
cations, reward functions may also change. We handle this by learning
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the reward model entirely from online data (or by maintaining a sep-
arate reward-shift detector), which prevents the most direct form of
bias where offline rewards are incorrectly used as online targets.

These considerations do not change the conceptual structure: transfer
is beneficial only insofar as it is certified (by a mismatch proxy) and non-
catastrophic (by conservative deployment). The experimental plan that fol-
lows is designed to stress exactly these failure modes and to verify that, when
naive replay is harmful, the mismatch-controlled mechanism is sufficient to
restore stability while preserving as much plasticity as the online budget
allows.

9 Experimental Plan

We design experiments to isolate the two claims encoded by TWBR: (i)
stability—online fine-tuning should not underperform a transferable offline
baseline beyond a prescribed slack—and (ii) plasticity—given a fixed online
interaction budget, the method should approach the best achievable online
performance while exploiting offline data whenever this is safe under shift.
The central empirical question is therefore not whether offline replay can help
in benign settings (it often can), but whether a shift-controlled mechanism
can (a) detect when naive reuse becomes harmful and (b) recover most of
the benefit of offline data when it is helpful.

Benchmark families and shift construction. We consider three fam-
ilies of tasks, each chosen to expose a different failure mode of naive offline
replay.

1. Controlled dynamics-shift in continuous control. Starting from stan-
dard MuJoCo-style locomotion tasks (e.g. HalfCheetah, Hopper, Walker2d),
we generate an offline dataset D in Moff under nominal physics param-
eters, and define Mon by modifying dynamics parameters (mass, fric-
tion, damping, actuator strength) while keeping (S,A, γ) fixed. We
vary the shift continuously by a scalar α ∈ [0, 1] interpolating be-
tween nominal and perturbed parameters, thereby producing a sweep
of effective mismatches that approximates the theoretical role of ∆.
This setting directly tests the claim that offline Bellman replay is bi-
ased when Poff ̸= Pon, and that filtering by a mismatch signal restores
monotonicity of performance as α grows.

2. Sim-to-real style variants (domain randomization to target). We create
a simulator family where Moff corresponds to a distribution over ran-
domized dynamics (domain randomization), and Mon is a fixed target
instance, or vice versa. This yields two complementary regimes: (a)
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offline data that is broad but potentially inconsistent with the target
(high variance, lower bias), and (b) offline data that is narrow but
potentially far from the target (low variance, higher bias). TWBR is
intended to behave differently in these regimes: it should exploit broad
offline coverage when it can certify local consistency, and it should
sharply downweight narrow-but-mismatched offline transitions.

3. Personalization and nonstationarity tasks. We study a family of tasks
where D is collected from a population (multiple users or system in-
stances) and Mon corresponds to a particular user/system with id-
iosyncratic dynamics or preferences. Concretely, we instantiate this
as (i) contextual decision processes (short-horizon) where transition or
observation dynamics depend on a latent user type, and (ii) longer-
horizon control tasks with a latent parameter (e.g. payload, joint stiff-
ness) that changes the effective transitions. In these settings, naive
offline replay can lock the critic onto population-average dynamics,
harming personalized adaptation; TWBR should exhibit rapid per-
sonalization while maintaining a performance floor by reverting to a
transferable prior when uncertainty is high.

Policies, data, and budgets. For each environment family, we construct
D by running a behavior policy mixture πD in Moff ; in continuous control,
we include both near-expert and medium-quality behavior to stress the prior-
selection step. We then produce π0 by applying a strong offline RL baseline
to D (e.g. any competitive conservative offline actor–critic), and we train
πBC on the same data. Online interaction is limited to a fixed budget N
(chosen small relative to typical from-scratch training), with periodic eval-
uation rollouts reserved for monitoring. To ensure that our stability claims
are meaningful, we report results across multiple random seeds and show
confidence intervals for all reported metrics.

Baselines and ablations. We compare TWBR against the following:

• Online-only fine-tuning: initialize at π0 (or πBC) and update using
only online experience. This isolates the value of offline replay during
fine-tuning.

• Naive mixed replay: standard off-policy fine-tuning with a replay buffer
containing D∪Bon without mismatch filtering (equivalently τ = ∞ or
constant weight wt ≡ 1). This is the method our theory predicts can
catastrophically fail under shift.

• Conservative offline regularization without shift control: fine-tuning
with a fixed KL penalty to π0 or πBC but still using naive replay. This
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tests whether regularization alone can substitute for mismatch-aware
filtering.

• TWBR ablations: (i) remove the stability monitor (deploy all updated
policies), (ii) remove prior selection (fix πprior = π0), (iii) replace hard
filtering by smooth weighting wt(s, a) = exp(−βUt(s, a)) with and
without clipping, and (iv) vary τ to trace the empirical bias–variance
tradeoff predicted by the Õ(τ/(1− γ)2) term.

Primary metrics: stability and plasticity. We operationalize the sta-
bility requirement directly. Let Jon(πt) denote the return estimated by eval-
uation rollouts (with sufficient repetitions to control variance). We report:

StabilityGap := max
{
0, (J∗

tr − ε)− min
0≤t≤N

Jon(πt)
}
,

along with the empirical probability of violating the floor across seeds. In
addition, we report the worst-case drop relative to the transferable baseline,

WorstDrop := min
0≤t≤N

(
Jon(πt)− J∗

tr

)
,

which captures the severity of transient failures even when final performance
recovers.

Plasticity is measured by both final and best-seen performance under the
online budget:

FinalGain := Jon(πN )− J∗
tr, BestGain := max

0≤t≤N
Jon(πt)− J∗

tr.

We also plot learning curves t 7→ Jon(πt) to visualize whether TWBR trades
short-term conservatism for long-term improvement, and to detect regimes
where shift is so severe that online-only learning dominates any use of D.

Diagnostic metrics: mismatch behavior and Bellman drift on of-
fline states. To connect empirical behavior to the theoretical mechanism,
we track quantities that reflect whether offline Bellman targets are becoming
inconsistent with the online MDP.

First, we measure the admission rate of offline transitions:

AdmitRate(t) :=
1

|Boff
t |

∑
(s,a)∈Boff

t

1{Ut(s, a) ≤ τ},

where Boff
t denotes the offline minibatch sampled at time t. Under larger

shifts, we expect AdmitRate(t) to decrease, exhibiting an automatic inter-
polation between mixed replay and online-only learning.
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Second, we measure TD-loss drift on offline states. Fix a snapshot critic
Qt and define a one-step TD error computed on offline samples but using
the current target network and online reward model when available:

δofft (s, a, r, s′) := Qt(s, a)−
(
r + γ Ea′∼πt(·|s′)Qt(s

′, a′)
)
.

We report E(s,a,r,s′)∼D
[
(δofft )2

]
as a function of t, together with the same

quantity restricted to admitted samples. The intended signature of TWBR
is that admitted offline samples maintain bounded TD drift (consistent Bell-
man updates), whereas naive replay exhibits increasing drift under shift,
correlating with performance collapse.

Key demonstrations and expected qualitative outcomes. Across all
families, we aim to exhibit three regimes as the shift magnitude increases:
(i) benign shift, where naive replay helps and TWBR matches it; (ii) inter-
mediate shift, where naive replay becomes unstable while TWBR remains
above the stability floor and retains nontrivial gains; and (iii) severe shift,
where any reuse of D should be minimal and TWBR reduces to an online-
centric method without catastrophic drops. We emphasize that the exper-
imental burden is to show that TWBR fails gracefully: when its mismatch
proxy is uninformative, it should not do better than online-only learning,
but it should also not do worse than the transferable baseline beyond the
prescribed slack.

Finally, we include stress tests explicitly designed to make naive replay
fail: (a) offline data concentrated on narrow regions of state space that be-
come misleading under Mon, (b) offline data with high-quality actions but
under different inertial parameters so that one-step targets are systemati-
cally biased, and (c) personalization tasks where population-average transi-
tions induce the wrong optimal action for the target instance. In each case,
the core claim we test is that TWBR’s filtering/weighting plus conservative
deployment converts these failure cases into either stable improvement or
stable neutrality, thereby empirically supporting the necessity of shift-aware
control of offline Bellman replay.

10 Discussion

We conclude by recording limitations of the present formulation, and by
outlining several extensions that appear technically feasible but are not yet
covered by our guarantees.

Modeling limitations and what the shift proxy does (and does not)
certify. Our theoretical development makes an explicit linear-MDP as-
sumption on Mon with known features ϕ and a feature-space shift ∆ =
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∥Mon − Moff∥2. This assumption is convenient for deriving confidence sets
and for exposing the mechanism by which offline Bellman replay becomes
biased under transition shift. However, it is restrictive in two ways. First, ϕ
is assumed known and uniformly bounded, whereas in practice representa-
tion learning is entangled with policy learning and may itself change online.
Second, the mismatch filter is designed to control one-step Bellman bias, i.e.,
discrepancy between Ton and the operator implicitly induced by replaying
offline transitions. Even when one-step mismatch is small on admitted sam-
ples, compounding over multiple steps can still induce distributional shift
in state visitation; our stability mechanism addresses this via conservative
deployment, but our near-optimality statement does not quantify the addi-
tional price of multi-step distribution drift beyond the admitted-τ term.

A related limitation is that our proxy Ut(s, a) upper-bounds a feature-
space deviation ∥(Mon,t − Moff)

⊤ϕ(s, a)∥, not a total-variation mismatch
∥Pon(· | s, a)−Poff(· | s, a)∥1. In the linear setting these quantities are linked,
but in general a small feature-space deviation may fail to control downstream
value error if ϕ is not sufficiently expressive. Thus, in deep instantiations,
the filter should be interpreted as a heuristic for local consistency of Bellman
targets rather than as a literal certificate of small ∆P .

Reward shift and other forms of nonstationarity. We have empha-
sized transition shift, but Roff ̸= Ron is common in practice (e.g., preference
changes, reshaped objectives, or reward sensors). If Ron(s, a) = ⟨wR, ϕ(s, a)⟩
is linear, then online reward learning is conceptually simpler than transition
learning and can be handled by an additional regression with a separate con-
fidence radius. In this case, an offline transition (s, a, r, s′) can be admitted
only if both a transition-consistency test and a reward-consistency test pass.
Formally, we may define a combined admission criterion of the form

wt(s, a) = 1
{
UP
t (s, a) ≤ τP ∧ UR

t (s, a) ≤ τR

}
,

yielding an additive bias term scaling like (τP + τR)/(1 − γ)2 in the same
manner as Theorem 2. More subtle is nonstationarity in Mon itself, where
Pon drifts during online learning. In this regime, the correct object is no
longer ∆ = ∥Mon − Moff∥2 but rather a time-varying mismatch, and one
should replace static filtering with windowed or discounted estimates; sta-
bility floors then become closer to safe online learning with change-point
detection.

Extension to POMDPs via state augmentation and uncertainty-
aware filtering. Many transfer settings are partially observed: the online
environment differs from the offline one due to latent parameters (user type,
payload, friction) that are not directly observed. A direct extension is to
treat the process as a POMDP and to define ϕ on histories (or learned
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recurrent embeddings) rather than on Markov states. Concretely, with a re-
current encoder ht = fθ(o1:t, a1:t−1), we may run TWBR on the augmented
state ht and define mismatch tests on (ht, at). This preserves the oper-
ational meaning of filtering—we admit offline transitions whose predicted
next-embedding statistics are consistent with what we have learned online—
but it introduces a nontrivial coupling between representation learning and
the validity of confidence bounds. A promising intermediate route is to use
Bayesian latent-variable models or ensembles to obtain a calibrated Ut as a
posterior predictive uncertainty, and to view τ as a risk tolerance. Establish-
ing high-probability statements in this regime remains open; we expect that
new assumptions (e.g., observability conditions and stability of the encoder)
are necessary.

Large foundation policies and critic shift under distribution mis-
match. When π0 is a large pretrained (foundation) policy, two new effects
appear. First, π0 may induce strong priors over action distributions that
are beneficial even when dynamics differ, suggesting that the prior-selection
step should include richer candidates than {π0, πBC}, such as a mixture or
adapter family. Second, the critic used for fine-tuning may be substantially
miscalibrated off-distribution, even if the policy is competent. TWBR al-
ready allows conservative deployment based on an online lower confidence
bound; in the foundation-policy regime, it is natural to treat the critic as
an auxiliary estimator whose role is optimization, not certification. In par-
ticular, we may decouple (i) the optimization critic trained on mixed replay
(with filtering), from (ii) a separate, potentially simpler online evaluator
(e.g., truncated rollouts, doubly robust estimators with pessimistic bonuses)
used exclusively for the stability monitor. This separation aligns with the
principle that safety decisions should rely on estimators with controllable
error, even if they are less sample-efficient.

Continuous regime scores and soft prior selection. Our description
uses a discrete choice πprior ∈ {π0, πBC} determined by which has larger
estimated Jon. A natural refinement is to replace this by a continuous regime
score and a soft mixture. Let ĴLCB

on (π0) and ĴLCB
on (πBC) be lower bounds,

and define
ρt = σ

(
η
(
ĴLCB
on (π0)− ĴLCB

on (πBC)
))

∈ (0, 1),

with inverse-temperature η > 0 and logistic σ. We may then regularize to-
ward the mixture πmix,t = ρtπ0+(1−ρt)πBC (or toward a product-of-experts
variant in logit space), and tune the KL strength λt as a function of the
same gap. This removes discontinuities in behavior near the decision bound-
ary and connects directly to Theorem 5: as online evidence accumulates,
ρt concentrates, but during the uncertain phase the algorithm interpolates
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rather than commits. Analogously, one may define a continuous transferabil-
ity score from the admission rate AdmitRate(t) and couple it to λt so that
high mismatch automatically increases conservatism.

Safety constraints beyond return floors. The stability floor mint Jon(πt) ≥
J∗
tr − ε is an aggregate performance constraint. Many applications require

explicit safety constraints, e.g., expected discounted cost Con(π) ≤ cmax,
chance constraints on failure events, or hard action/state constraints. TWBR’s
conservative deployment extends naturally if we can compute a lower confi-
dence bound for return and an upper confidence bound for cost. Specifically,
we may deploy πt only if

ĴLCB
on (πt) ≥ J∗

tr − ε and ĈUCB
on (πt) ≤ cmax,

else revert to a known-safe prior (or invoke a shield). In this view, mismatch
filtering plays a dual role: it reduces optimization bias (by preventing harm-
ful offline Bellman targets) and it reduces safety-estimation bias (by pre-
venting offline samples from corrupting cost critics under shift). A complete
treatment would require joint confidence sets for reward and cost models,
and a coupling of τ with a risk budget.

Open problems. We list several questions that, in our view, delimit the
current contribution. (i) Adaptive choice of τ . The theory suggests a bias–
variance tradeoff, but selecting τ online to optimize this tradeoff with guar-
antees is unresolved. (ii) Deep mismatch estimation. Designing Ut that
is both informative and calibrated in high dimensions remains the central
practical bottleneck. (iii) Multi-step and distributional mismatch. One-step
consistency does not fully characterize value bias; understanding how ad-
mission criteria should depend on rollout length is open. (iv) Coverage and
exploration. When online data are scarce, overly conservative filtering may
prevent useful generalization, yet aggressive filtering may induce bias; quan-
tifying the optimal interpolation is not done here. (v) Beyond two priors.
Extending regime identification from {π0, πBC} to a large set of candidate
priors (including scripted fallbacks and safety policies) suggests bandit-like
selection with confidence, and requires new analyses.

These directions share a common theme: transfer under shift is primar-
ily a problem of certifying when offline information remains locally valid.
TWBR isolates one mathematically tractable mechanism for such certifica-
tion; making it both universal and computationally routine remains an open
agenda.
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