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Abstract

Offline-to-online RL fine-tuning exhibits regime-dependent behav-
ior: sometimes retaining offline data is essential, and other times it
slows learning. The source material formalizes this via a stability–plasticity
decomposition and a three-regime taxonomy based on the relative re-
turns of the pretrained policy π0 and dataset behavior πD. We push
this idea into a 2026-ready direction: replace discrete regime assign-
ment with a continuous, uncertainty-aware regime score and treat fine-
tuning as a closed-loop control problem over stability and plasticity
knobs. We propose RegimeFlow, a controller layer that adapts the
offline replay ratio and conservative regularization during online fine-
tuning using (i) uncertainty in J(π0)− J(πD), (ii) distributional drift
signals such as offline-vs-online TD-loss, and (iii) conservative value
lower confidence bounds. In a stylized but clean model, we prove (a)
stability-floor guarantees relative to the best offline baseline J∗

off and
(b) oracle-competitive regret against the best fixed knob setting, with
matching lower bounds. We outline implementations atop SAC/TD3
that preserve the source work’s diagnostics, and we specify experiments
that should strengthen the contribution: robustness across regimes,
budgets, and near-tie settings where discrete classification is provably
sample-inefficient.
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1 1. Introduction: inconsistent offline-to-online fine-
tuning; from discrete regimes to continuous regime
control; contributions and guarantees.

Offline-to-online reinforcement learning is routinely practiced under a tacit
premise: given an offline dataset and a reasonable offline RL method, one
may initialize from an offline-pretrained policy and then “safely” improve it
online by continued learning. We take as the starting point that this premise
is unreliable, and that the failure mode is structural rather than incidental.
Even when the offline dataset is large, the offline-pretrained policy may be
either (i) substantially better than the average behavior manifested in the
dataset, or (ii) substantially worse, due to distribution shift, conservative
bias, mis-specification, or simply because the dataset itself contains a mixture
of behaviors whose best component is not recovered by the offline algorithm.
Consequently, the most natural baseline available at deployment time is not
a single policy but the better of two knowledge sources: the offline-pretrained
policy and the dataset behavior as observed in the logged trajectories. This
motivates an explicit stability floor relative to an offline benchmark, rather
than an implicit promise of monotone improvement.

The corresponding control problem is not merely “how much to explore
online,” but rather how to configure the fine-tuning procedure so that it
interpolates between stability and plasticity. In practice, fine-tuning exposes
multiple knobs—most prominently the extent to which we continue to replay
offline data versus prioritizing newly collected experience, and the strength of
conservative regularization used to prevent out-of-distribution exploitation.
These knobs interact in a nontrivial manner with the unknown sign and
magnitude of the offline return gap

∆J := J(π0)− J(πD),

where ∆J > 0 corresponds to the regime in which the offline-pretrained
policy is already superior to the dataset behavior, and ∆J < 0 corresponds
to the opposite regime. If ∆J were known, a designer could prescribe an
aggressive fine-tuning mode when ∆J < 0 (to escape a poor initialization)
and a conservative mode when ∆J > 0 (to avoid “unlearning” a strong
offline policy). The difficulty is that ∆J is precisely what we do not know at
deployment time, and the online budget may be too small to permit naive
evaluation-and-commit strategies without violating a safety requirement.

A common simplification is to treat the problem as a discrete choice be-
tween a small number of qualitatively distinct regimes (e.g., “mostly offline
replay” versus “mostly online learning”). We argue that such hard switching is
intrinsically ill-suited to the indifference region in which |∆J | is small. When
π0 and the dataset behavior are nearly tied, committing early to an extreme
configuration can incur linear regret relative to a properly mixed configura-
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tion, and can simultaneously create avoidable instability: small estimation
errors in early online returns may trigger a switch that is not warranted,
leading to oscillation or catastrophic degradation. This phenomenon is not
an artifact of a particular implementation; it reflects the fact that identify-
ing the sign of ∆J is a hypothesis testing problem whose sample complexity
scales as Ω(τ−2 log(1/δ)) for margin τ . Thus, near ties, one should not expect
to resolve the regime quickly enough to justify discrete commitment.

We therefore replace discrete regime switching by continuous regime con-
trol. Concretely, we maintain a scalar regime score rt ∈ [0, 1] which we inter-
pret as a posterior probability that ∆J ≥ 0 given all information available
up to episode t. This score is not itself a safety certificate, nor does it directly
dictate the deployed policy. Rather, it serves as a soft inductive bias over a
continuous family of fine-tuning configurations θ = (α, λ): when rt is large
we prefer more conservative configurations (typically larger λ and smaller
effective online adaptation), and when rt is small we prefer more plastic con-
figurations (typically smaller λ and/or larger reliance on online data), while
still allowing the controller to adapt based on realized returns. The critical
point is that the controller should not be forced to decide the regime sharply;
it should instead allocate probability mass over configurations in a manner
commensurate with uncertainty.

Safety is enforced by an explicit filter relative to the offline benchmark

J∗
off := max

(
J(π0), J(πD)

)
,

together with a slack ε ≥ 0. At each episode, we restrict the controller to
configurations whose certified lower confidence bound satisfies LCBt(θ) ≥
J∗
off − ε. This yields a modular separation: (i) the LCB mechanism is re-

sponsible for preventing deployments that are plausibly unsafe; (ii) within
the safe set, a standard experts/bandit strategy is responsible for tracking
the best configuration; and (iii) the regime score rt supplies a continuous
prior that improves adaptation in the tie and near-tie regimes without sacri-
ficing safety. The resulting controller, which we call RegimeFlow, is thus an
offline-to-online procedure with an explicit safety floor and an explicit regret
objective, rather than an ad hoc tuning rule.

Our contributions are threefold. First, we formalize knob selection for
offline-to-online fine-tuning as a safe online learning problem over a dis-
cretized knob set, with stability constraints expressed directly in terms of
J∗
off . Second, under a high-probability correctness assumption on LCBt(θ),

we obtain a uniform-in-time stability guarantee: with probability at least
1− δ, every deployed episode satisfies J(πt) ≥ J∗

off − ε. Third, we show that,
among configurations that are safe throughout, RegimeFlow attains oracle-
competitive regret of order Õ(

√
T log |Θ|) (plus discretization error O(TεΘ)

under Lipschitzness), and that this rate is unimprovable in general by a
matching minimax lower bound. In addition, we isolate the fundamental
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limitation underlying regime identification near ties: without sufficient eval-
uation, no method can reliably determine sign(∆J), justifying our insistence
on continuous control rather than hard switching.

In the next section we recall the background decomposition into stability
and plasticity and summarize the fine-tuning modules that instantiate the
knobs (α, λ), together with the role of J∗

off as the operational offline baseline.

2 Background: stability–plasticity decomposition
and fine-tuning modules

We recall a decomposition that is implicit in most offline-to-online pipelines,
but which we will treat as an explicit design axis. When we deploy a policy
derived from offline data and continue training online, we are simultaneously
attempting to (i) preserve a baseline level of competence already present in
the offline artifacts and (ii) incorporate new information from the online
environment. We refer to the former requirement as stability and to the
latter as plasticity. The tension is unavoidable: updates that are sufficiently
plastic to correct an initially poor policy may also be sufficiently aggressive
to destroy a good one.

Offline baseline and the role of J∗
off . At deployment time we typically

have at least two policy-level sources of “knowledge” about the task. The
first is the offline-pretrained policy π0, obtained by running an offline RL
algorithm (possibly with conservative bias) on D. The second is the data-
generating process πD, which we do not observe as a policy but whose em-
pirical return can be estimated from the logged trajectories. Since neither
source is uniformly dominant, the appropriate benchmark for stability is not
J(π0) alone nor J(πD) alone, but rather

J∗
off := max

(
J(π0), J(πD)

)
.

This choice is forced upon us by the possibility that π0 underperforms
the typical behavior in the dataset (e.g., due to pessimism, model mis-
specification, or mismatch between the offline objective and the online re-
turn), as well as by the opposite possibility that π0 substantially improves
upon the average logged behavior (e.g., by extracting the best component
from a mixture). Consequently, stability should be expressed as the require-
ment that deployed online policies do not fall substantially below J∗

off , up to
a slack ε that absorbs estimation error and desired conservatism.

A generic offline-to-online update template. Let π denote the ac-
tor (or policy) parameters and let Q̂ denote critic/value parameters where
applicable. The fine-tuning procedures we consider can be summarized by
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alternating updates on samples drawn from two sources: offline replay from
D and newly collected online experience. The operative knob is an offline
replay ratio α ∈ [0, 1] that determines the mixture used in the learning rule.
Abstractly, one may view each episode-level update as minimizing an objec-
tive of the form

Lt(π, Q̂; θ) = α(θ)Loff(π, Q̂;D) +
(
1−α(θ)

)
Lon(π, Q̂;Bt) + λ(θ)R(π, Q̂),

where Bt denotes the online buffer accumulated up to time t, R is a con-
servative regularizer, and θ = (α, λ) collects the tunable coefficients. This
template is intentionally broad: Loff may correspond to fitted Q iteration,
actor–critic updates, behavior cloning, or value regression, and Lon may be
any on-policy or off-policy RL loss. What matters for the controller is that
α and λ implement the stability–plasticity trade-off at a coarse level and are
exposed to selection online.

Module 1: offline replay and its schedules. Offline replay serves two
distinct purposes. First, it anchors the agent to the support of D, which can
mitigate the extrapolation error that arises when critics are trained on out-
of-distribution actions. Second, it reduces the variance of gradient estimates
early in online training when Bt is small. Both effects increase stability but
can reduce plasticity when π0 is poor, because heavy replay can trap learning
near the behavior distribution represented in D. This suggests that a fixed α
may be suboptimal, motivating episode-dependent schedules (e.g., warmup
with large α followed by a decay). However, schedules are themselves knob
choices; in our abstraction we fold them into θ by considering a discretized
family of admissible update rules.

Module 2: warmup and delayed adaptation. A commonly used sta-
bilization heuristic is a warmup period in which the agent either (i) does not
update the actor, updating only the critic/value function, or (ii) updates
with a strongly conservative objective (large λ) before relaxing it. From the
stability–plasticity perspective, warmup is a mechanism that temporarily re-
duces plasticity until sufficient online data has been gathered to make online
gradients informative. Warmup is particularly relevant when π0 is strong
(∆J > 0), since premature adaptation can cause regression due to critic
miscalibration under the evolving state distribution. Conversely, when π0
is weak (∆J < 0), warmup trades early opportunity for late safety, and its
duration becomes a critical design decision.

Module 3: conservative regularization. The parameter λ ≥ 0 rep-
resents the strength of a conservative mechanism designed to prevent the
learner from exploiting errors in value estimation outside the data support.
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Canonical instances include: penalties that push Q-values downward on out-
of-distribution actions (as in conservative Q-learning), KL constraints that
keep π close to a reference policy (often the behavior policy or π0), ex-
plicit behavior cloning terms, pessimistic value iteration, and uncertainty-
penalized objectives computed from ensembles. Increasing λ generally in-
creases stability but may impede the discovery of improved behaviors when
online data reveals advantageous actions not present in D. Importantly, λ
interacts with α: heavy offline replay with weak regularization can still be
unstable if the offline critic extrapolates poorly, while strong regularization
with little replay can be overly inertial.

Module 4: reset and fallback mechanisms. Practical systems fre-
quently incorporate resets, either hard (reverting parameters to π0 or to
a previous checkpoint) or soft (shrinking step sizes, increasing α, or increas-
ing λ in response to degradation). Resets are an implicit admission that
stability cannot be guaranteed by the base learning dynamics alone. In the
framework we adopt, reset is treated as part of the admissible fine-tuning
family {FT(θ)}: certain θ correspond to highly conservative modes that em-
ulate “staying near π0,” while others allow more aggressive adaptation but
must be vetted by a safety mechanism.

Summary. The above modules expose a multi-dimensional knob space in
which stability and plasticity are traded continuously rather than by a binary
choice. Since the sign and magnitude of ∆J = J(π0) − J(πD) determine
which region of this space is desirable but are not known a priori, we require
an online selection rule that (i) references J∗

off as the operational baseline,
(ii) quantifies uncertainty in performance, and (iii) adapts (α, λ) without
committing prematurely. This motivates the formal problem formulation
in the next section, where we model knob selection as an online decision
problem with an explicit stability floor.

3 Problem formulation: regime-adaptive fine-tuning
with a stability floor

We formalize offline-to-online fine-tuning as an online control problem over
a continuous knob space, in which each knob choice specifies an admissible
update rule and induces a (random) deployed policy. The salient difficulty is
that the appropriate stability–plasticity trade-off depends on the unknown
comparison between the offline-pretrained policy and the dataset-level be-
havior.

MDP, value, and offline baselines. Let M = (S,A, P, r, γ) be a dis-
counted MDP with rewards bounded in [0, 1]. For any policy π, we denote
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its discounted return by

J(π) := E
[∑
k≥0

γkr(sk, ak)
∣∣∣ ak ∼ π(·|sk), sk+1 ∼ P (·|sk, ak)

]
.

We are given an offline dataset D of trajectories generated by an unknown
mixture behavior policy, which we abstract as a single policy πD whose
(empirical) return can be estimated from D:

J(πD) ≈ 1

|D|
∑
τ∈D

∑
k≥0

γkr(sτk, a
τ
k).

We are also given an offline-pretrained policy π0 obtained from running an
offline RL algorithm on D. Since neither π0 nor the typical behavior in D is
a priori dominant, we take as our operational offline baseline

J∗
off := max

(
J(π0), J(πD)

)
, ∆J := J(π0)− J(πD).

The sign and magnitude of ∆J encode the “regime” of the instance: if
∆J > 0, aggressive online adaptation risks degrading a strong initialization;
if ∆J < 0, overly conservative updates delay needed improvement. The case
|∆J | small is an indifference region in which premature commitment to one
extreme is undesirable.

Knob space and admissible fine-tuning procedures. We posit a fam-
ily {FT(θ) : θ ∈ Θcont} of fine-tuning procedures parameterized by a contin-
uous knob θ = (α, λ), where α ∈ [0, 1] is an offline replay ratio and λ ∈ [0,Λ]
is a conservative regularization strength. We emphasize that FT(θ) is not a
single gradient step but an episode-level (or epoch-level) update rule that,
given the current learner state and data buffers, outputs an updated policy.
In particular, if Bt denotes the online buffer available after episode t, then
running FT(θ) up to time t produces a deployed policy that we denote by
πθ
t .

To keep the decision problem finite while retaining the continuous seman-
tics, we assume that Θ is a finite εΘ-net of Θcont = [0, 1] × [0,Λ] under an
appropriate norm (e.g. ℓ∞), and we restrict online decisions to θt ∈ Θ. Any
approximation error due to discretization will be accounted for as an additive
term of order TεΘ under standard Lipschitz assumptions (cf. Theorem 2).

Online interaction protocol and feedback. We consider an episodic
interaction budget of T episodes. At each episode t ∈ {1, . . . , T}, a controller
selects θt ∈ Θ, the underlying learner deploys the current policy produced
under θt, and the environment returns an episode return Rt. The controller
is not assumed to observe J(πθ

t ) for all θ, but only bandit feedback through
Rt (and possibly auxiliary diagnostics such as TD-error gaps or ensemble
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disagreement, which we treat as side information rather than as a separate
feedback channel).

We model return noise by assuming that, conditional on the deployed
policy, Rt is a sub-Gaussian observation of J(πt) with variance proxy σ2;
that is, for each t,

E[Rt | πt] = J(πt), Rt − J(πt) is sub-Gaussian with parameter σ2.

This abstraction covers both finite-horizon episodic returns and discounted
continuing tasks under standard boundedness assumptions.

Stability floor as a high-probability constraint. The controller must
enforce a stability floor relative to the best offline baseline. Fix a slack ε ≥ 0
and failure probability δ ∈ (0, 1). The constraint is

Pr
[
∀t ≤ T : J(πt) ≥ J∗

off − ε
]

≥ 1− δ.

We interpret ε as absorbing both the desired conservatism and the estimation
error in J(πD) and J(π0) (e.g. if J(π0) is estimated from a finite number of
evaluation rollouts).

Objective and regret. Among all controller strategies that satisfy the
stability floor, we seek to maximize cumulative value. Since the environment
is stationary but the learner state evolves with online data, we benchmark
against the best fixed safe knob choice. Let θ∗ denote a comparator in Θ that
is safe throughout the process (formalized via confidence bounds below). We
define regret as

Regret(T ) :=

T∑
t=1

(
J(πθ∗

t )− J(πt)
)
,

and our objective is to design a controller that achieves sublinear regret (in
expectation) while maintaining stability with probability at least 1− δ.

Uncertainty model via lower confidence bounds. The key structural
assumption enabling safety is access to a value lower-confidence bound for
each candidate knob. Concretely, for each episode t and knob θ ∈ Θ, we
assume the existence of a computable quantity LCBt(θ) such that

Pr
[
J(πθ

t ) ≥ LCBt(θ)
]

≥ 1− δ

T |Θ|
. (1)

The bound (1) is stated at the level of policy value rather than per-transition
error; it can be realized by a variety of constructions (e.g. bootstrap/ensemble
critics with pessimistic aggregation, or concentration bounds for fitted value
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estimates) depending on the instantiated RL method. For our purposes, (1)
is the interface between learning dynamics and the controller: it permits
knob selection under a safety filter without requiring the controller to model
the internal optimization trajectory of FT(θ).

This completes the formal problem statement. In the next section we give
an explicit controller, RegimeFlow, that couples (1) with regime-aware
preferences over (α, λ) while maintaining the stability floor by construction.

4 RegimeFlow: safety-filtered regime-adaptive knob
control

We now describe RegimeFlow, an episodic controller that selects θt =
(αt, λt) ∈ Θ while enforcing the stability floor by construction. The con-
troller has two coupled responsibilities: (i) maintain a scalar regime score
rt ∈ [0, 1] encoding how strongly the current evidence supports ∆J ≥ 0,
and (ii) run an online experts/bandit procedure over knob choices, but only
within a safe set defined by lower confidence bounds.

Safety filter from value lower bounds. At each episode t, we compute
LCBt(θ) for each θ ∈ Θ and define the (random) safe set

St :=
{
θ ∈ Θ : LCBt(θ) ≥ J∗

off − ε
}
.

The controller is constrained to select θt ∈ St. Operationally, this imple-
ments a one-step accept/reject rule: knobs whose pessimistic value estimate
falls below the offline baseline (up to slack ε) are never deployed. We empha-
size that the filter is agnostic to how LCBt(θ) is computed; it only requires
the interface guarantee (1). In particular, the learner may use any mixture
of offline replay and online experience under θ, provided it can expose a
conservative estimate of the induced deployed value.

When St is empty, a reasonable implementation resorts to a predeter-
mined “failsafe” knob (e.g. maximal regularization and/or high offline replay)
together with an enlarged ε; however, our theoretical development will as-
sume St ̸= ∅ for all t (as in Theorem 2), which is the standard feasibility
condition in safe bandits.

Regime score as a posterior over the sign of ∆J . The regime score
rt is intended to approximate

rt ≈ Pr
[
∆J ≥ 0 | Ft

]
,

where Ft denotes the sigma-field generated by all offline information and
online observations up to episode t − 1 (including returns and diagnostics).
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Concretely, we maintain an estimate ∆̂J t and an uncertainty proxy st > 0 so
that ∆̂J t is interpreted as approximately normal with standard deviation st.
This can be instantiated in several ways: (i) from an initial evaluation of π0
together with the empirical mean of D (yielding r1), and then (ii) updated
online using additional rollouts under π0 and/or using diagnostic evidence
that correlates with distribution shift (e.g. increasing TD-error gap between
online data and replayed offline data). Abstractly, given (∆̂J t, st) we set

rt := Φ

(
∆̂J t

st

)
,

where Φ is the standard normal CDF (a logistic map could be used equiva-
lently). The only property we exploit algorithmically is monotonicity: larger
∆̂J t/st yields larger rt, so the controller becomes progressively more confi-
dent that π0 dominates the dataset behavior.

Regime-aware preferences over knobs. While safety is enforced solely
by St, we use rt to bias exploration within St toward knobs that match the
inferred regime. We encode this via two fixed reference distributions over Θ,
a “trust-π0” prior q+ and a “trust-D” prior q−, chosen to reflect the intended
stability–plasticity trade-off:

q+(θ) favors larger λ and smaller α, q−(θ) favors smaller λ and larger α.

The rationale is as follows. If ∆J > 0 (so π0 is strong relative to typical
behavior in D), then heavy offline replay risks pulling updates toward sub-
optimal actions present in the dataset, hence we bias toward smaller α, while
larger λ discourages abrupt departures from the current policy and mitigates
overfitting to transient online noise. Conversely, if ∆J < 0, then the dataset
behavior is comparatively competent and can serve as an anchor for early
improvement; thus we prefer larger α and weaker regularization to enable
faster adaptation.

We combine these preferences into a time-varying prior

pt(θ) := rt q
+(θ) + (1− rt) q

−(θ),

which we treat as a soft suggestion rather than a constraint: safety is deter-
mined by St, and learning performance is determined by observed returns.

Adaptive knob selection by experts on the filtered set. Let wt(θ)
be nonnegative weights over Θ (initialized uniformly). Each episode, after
computing St, we form a sampling distribution over admissible knobs by
restricting to St and blending with the regime prior:

µt(θ) ∝ 1{θ ∈ St}wt(θ) pt(θ), θt ∼ µt.
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We then deploy the learner under θt for one episode, observe the episode
return Rt, and update the weights wt via an EXP3-style multiplicative
rule based on an importance-weighted reward estimate. Writing R̂t(θt) :=
Rt/µt(θt) and R̂t(θ) := 0 for θ ̸= θt, one canonical update is

wt+1(θ) = wt(θ) exp
(
η R̂t(θ)

)
,

with learning rate η > 0. This produces an online trade-off between explo-
ration over admissible knobs and exploitation of those that have yielded high
returns. Importantly, all such updates are performed only over Θ; the con-
troller does not require gradients through FT(θ), nor does it need to predict
how θ affects future learner states.

Connection to the three regimes. The controller’s behavior interpo-
lates smoothly between three qualitatively different situations. In the π0-
dominant regime (∆J ≫ 0), evidence drives rt → 1, hence pt concentrates
toward knobs with stronger conservatism (larger λ) and reduced offline re-
play (smaller α), while the safety filter prevents excursions below J∗

off −ε. In
the dataset-dominant regime (∆J ≪ 0), we instead obtain rt → 0, so pt fa-
vors higher replay and weaker regularization, accelerating improvement while
still respecting the safety filter. In the indifference regime (|∆J | small), rt
remains away from the extremes for a nontrivial period (cf. Theorem 4), and
the prior pt mixes the two extremes rather than committing early; combined
with experts-style adaptation, this yields gradual knob adjustment driven by
returns, rather than brittle hard switching between (α, λ) extremes.

In summary, RegimeFlow separates safety (a pointwise constraint im-
plemented by St) from adaptation (an experts procedure on the remaining
choices), and uses rt only as a regime-dependent inductive bias within the
safe region. The next section formalizes the resulting stability and regret
guarantees.

5 Theory I: upper bounds (stability and oracle-competitive
regret)

We analyze RegimeFlow under assumptions (A1)–(A3) stated in the en-
closing scope. Throughout, rewards are bounded in [0, 1], and J(π) denotes
the discounted return. We write J∗

off := max(J(π0), J(πD)) and fix a slack
ε ≥ 0. For each episode t, the controller forms the safe set

St :=
{
θ ∈ Θ : LCBt(θ) ≥ J∗

off − ε
}
,

and deploys only θt ∈ St. Our first result shows that this pointwise filtering
suffices to guarantee a uniform-in-time stability floor.
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5.1 High-probability stability floor

Theorem 5.1 (High-probability stability floor). Assume (A1): for all t ≤ T
and θ ∈ Θ,

Pr
[
J(πθ

t ) ≥ LCBt(θ)
]

≥ 1− δ

T |Θ|
.

Then, if RegimeFlow always selects θt ∈ St, we have

Pr
[
∀t ≤ T : J(πt) ≥ J∗

off − ε
]

≥ 1− δ.

Proof. Define the event

E :=
T⋂
t=1

⋂
θ∈Θ

{
J(πθ

t ) ≥ LCBt(θ)
}
.

By (A1) and a union bound over the T |Θ| pairs (t, θ),

Pr[E ] ≥ 1−
T∑
t=1

∑
θ∈Θ

δ

T |Θ|
= 1− δ.

On E , for each episode t and each θ, we have J(πθ
t ) ≥ LCBt(θ). Since the

controller chooses θt ∈ St, it satisfies LCBt(θt) ≥ J∗
off − ε. Therefore, on E ,

J(πt) = J(πθt
t ) ≥ LCBt(θt) ≥ J∗

off − ε for all t ≤ T,

which implies the desired probability statement.

Remark (role of feasibility). Theorem 5.1 is conditional only on select-
ing θt ∈ St. If St = ∅ can occur, then either a fallback mechanism is needed
or the guarantee must be weakened (e.g., allow a small number of violations).
In the remainder, we adopt the standard feasibility condition St ̸= ∅ for all
t.

5.2 Oracle-competitive regret over safe knobs

We compare to the best fixed knob in hindsight among those that are safe
throughout the horizon. Let

Θsafe :=

T⋂
t=1

St, θ∗ ∈ arg max
θ∈Θsafe

T∑
t=1

J(πθ
t ),

and define the (policy-value) regret

Regret(T ) :=

T∑
t=1

(
J(πθ∗

t )− J(πt)
)
.
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Because the learner state evolves over time, J(πθ
t ) should be interpreted

as the expected return at episode t of the policy obtained by running the
fine-tuning procedure under knob θ up to that episode; this is precisely the
setting handled by adversarial experts, where payoffs may be nonstationary
and adaptive.

Theorem 5.2 (Oracle-competitive regret on the filtered set). Assume (A2)
sub-Gaussian return noise and that Θsafe ̸= ∅. If RegimeFlow uses an
EXP3-style multiplicative update on the admissible set (i.e., it samples θt
from a distribution supported on St and updates weights using an importance-
weighted return estimate), then for an appropriate learning rate η,

E
[
Regret(T )

]
≤ Õ

(√
T log |Θ|

)
,

where Õ(·) hides polylogarithmic factors and sub-Gaussian constants.

Proof sketch. We reduce to adversarial experts with a time-varying avail-
ability constraint. Define the episode payoff of knob θ at time t as gt(θ) :=
J(πθ

t ) ∈ [0, 1/(1 − γ)] (or normalize to [0, 1] by scaling). The controller ob-
serves a single noisy sample Rt of gt(θt) and forms an unbiased importance-
weighted estimator ĝt(θ) supported on the played arm θt. Standard EXP3
analysis yields, for any fixed comparator θ in the support of the sampling
distribution at all times, that

E
[ T∑
t=1

gt(θ)− gt(θt)
]

≤ O
(√

T log |Θ|
)

(up to logarithmic factors arising from boundedness and variance control of
the importance weights). The only additional work is to ensure the com-
parator is always admissible. This is achieved by restricting the comparator
class to Θsafe = ∩tSt: for any θ∗ ∈ Θsafe, the algorithm’s sampling distribu-
tion (by construction) is supported on St, hence θ∗ is never removed by the
filter and the standard EXP3 potential argument applies on each round after
renormalization to St. Sub-Gaussian noise enters only to justify concentra-
tion/variance bounds for the importance-weighted estimates and to control
the hidden polylogarithmic factors.

5.3 Discretization error for continuous knobs

Assumption (A3) models Θ as a finite εΘ-net of the continuous knob space
[0, 1]× [0,Λ]. To quantify the price of discretization, we impose a regularity
condition on value as a function of knobs.
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Lipschitz model. Assume that for each episode t, the mapping θ 7→ J(πθ
t )

is L-Lipschitz with respect to a norm ∥ · ∥ on [0, 1]× [0,Λ]:∣∣J(πθ
t )− J(πθ′

t )
∣∣ ≤ L ∥θ − θ′∥ for all θ, θ′.

Let θ⋆cont be the best fixed continuous knob that is safe (in the analogous
sense) and achieves maximal cumulative value. Let Π(θ⋆cont) ∈ Θ be a nearest
grid point so that ∥Π(θ⋆cont)− θ⋆cont∥ ≤ εΘ. Then, for each t,

J(π
θ⋆cont
t ) ≤ J(π

Π(θ⋆cont)
t ) + LεΘ,

and summing over t yields an approximation gap at most LTεΘ. Conse-
quently, combining Theorem 5.2 with this coupling argument, the regret to
the best continuous safe knob is bounded as

E
[
Regretcont(T )

]
≤ Õ

(√
T log |Θ|

)
+ O(LTεΘ).

This is the only place where the finiteness of Θ is essential: the experts
bound scales with log |Θ|, while the discretization term scales linearly in T
and vanishes as the grid is refined.

The upper bounds above are information-theoretically tight up to loga-
rithmic factors; we formalize this in the subsequent lower-bound section.

6 Theory II: lower bounds (minimax regret and
regime identification)

We complement the upper bounds by two information-theoretic limitations
inherent to the controller model: (i) a minimax regret lower bound for se-
lecting knobs under bandit feedback (even ignoring safety), and (ii) a sample
complexity lower bound for identifying the sign of ∆J := J(π0)−J(πD) near
ties. Together, they justify that the rates in Section 5 are, up to logarith-
mic factors and discretization, the best one can hope for without additional
structure beyond (A1)–(A3).

6.1 Minimax regret lower bound versus the best fixed knob

The regret guarantee in Theorem 5.2 scales as Õ(
√

T log |Θ|) for finite Θ. We
now show that this dependence cannot be improved in general: for any con-
troller that chooses θt adaptively based on past observed returns, there exist
instances for which the expected regret is at least on the order of

√
T log |Θ|.

The key point is that the controller observes only the realized return of the
deployed knob, so knob selection is at least as hard as adversarial experts
(or, by specialization, stochastic bandits).
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Theorem 6.1 (Minimax lower bound for knob-selection regret). Fix any
finite knob set Θ with |Θ| ≥ 2 and horizon T . Consider any (possibly ran-
domized) algorithm that selects θt ∈ Θ and observes only a noisy return
sample Rt from the deployed policy. Then there exists a problem instance
consistent with the interaction model (indeed, a one-step MDP embedded as
M) such that, even when all knobs are safe (i.e., St = Θ for all t), the
algorithm satisfies

E
[
Regret(T )

]
≥ c

√
T log |Θ|

for a universal constant c > 0, where regret is measured against the best fixed
knob in hindsight.

Proof sketch. We reduce to the classical lower bound for adversarial ex-
perts. Construct an episodic MDP with a single nonterminal state s and a
terminal state; taking any action terminates immediately and yields a reward
in [0, 1]. Define a mapping φ : Θ → {1, . . . , |Θ|} from knob settings to “arms.”
For each round t, an oblivious adversary chooses a reward vector xt ∈ [0, 1]|Θ|;
if the controller plays θt, the episode reward is Rt := xt(φ(θt))+ξt where ξt is
mean-zero noise (or take ξt ≡ 0 in the purely adversarial construction). Since
the MDP is one-step, the episode return equals the immediate reward, hence
J(πθ

t ) = xt(φ(θ)) for all θ, and the controller’s observation model coincides
with bandit feedback in experts. Standard minimax lower bounds (e.g., via
a randomized hard instance over {0, 1}|Θ| reward vectors with controlled KL
divergence) imply that for any algorithm,

sup
(xt)Tt=1

E
[ T∑
t=1

xt(φ(θ
∗))− xt(φ(θt))

]
≥ c

√
T log |Θ|,

where θ∗ is the best fixed knob in hindsight. Interpreting xt(φ(θ)) as J(πθ
t )

yields the claim.

Remark (safety does not help in the worst case). The reduction sets
St = Θ so that the stability filter never removes any knob. Therefore, any
improvement over

√
T log |Θ| would contradict the minimax lower bound for

bandit/experts. This formalizes the intuition that, absent additional struc-
ture (e.g., parametric reward models or smoothness enabling generalization
across θ), the controller must pay the usual exploration cost to compete with
the best fixed knob.

6.2 Lower bound for regime sign identification near ties

We next formalize the difficulty of determining whether π0 is truly better
than the dataset behavior level πD when the gap ∆J is small. This question
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appears explicitly in the controller’s regime score rt, which we interpret as
a posterior belief about ∆J ≥ 0. When |∆J | is below a margin τ , any
high-confidence decision requires on the order of τ−2 independent evaluation
episodes, matching the familiar rate for mean estimation/hypothesis testing
under sub-Gaussian noise.

Theorem 6.2 (Near-tie regime identification lower bound). Fix τ > 0 and
δ ∈ (0, 1). Consider testing

H+ : ∆J ≥ τ versus H− : ∆J ≤ −τ

from episode returns with sub-Gaussian noise. Any (possibly adaptive) pro-
cedure that outputs σ̂ ∈ {+,−} with PrH+(σ̂ = +) ≥ 1 − δ and PrH−(σ̂ =
−) ≥ 1− δ requires

n ≥ c′ τ−2 log
(1
δ

)
evaluation episodes in the worst case, for a universal constant c′ > 0.

Proof sketch. We apply Le Cam’s method by constructing two instances
whose induced return distributions are close in total variation. Consider an
MDP family in which evaluating π0 (respectively πD) yields an episode re-
turn with distribution N (µ0, 1) (respectively N (µD, 1)), independent across
episodes, with µ0 − µD = +τ under H+ and µ0 − µD = −τ under H−. Any
algorithm observing n episodes (possibly interleaving evaluations and using
adaptivity) induces two distributions P+ and P− over transcripts. The KL
divergence scales as KL(P+ ∥P−) = O(nτ2) by additivity and the KL for-
mula for Gaussians. Le Cam’s inequality implies that the minimax testing
error is bounded below in terms of TV(P+,P−), which in turn is controlled
by KL. Ensuring error at most δ forces KL(P+ ∥P−) ≳ log(1/δ), hence
n ≳ τ−2 log(1/δ). The same argument holds for sub-Gaussian noise via a
change of measure and standard KL upper bounds.

Consequence for controllers. Theorem 6.2 implies that, in the indif-
ference region |∆J | ≲ τ , no controller can rapidly drive rt to 0 or 1 with
high confidence; doing so would require Ω(τ−2 log(1/δ)) dedicated episodes.
Consequently, strategies that commit early to a hard-switch extreme (e.g.,
α ∈ {0, 1}) can incur linear regret in τ over the horizon, whereas maintain-
ing a graded belief and selecting knobs conservatively is statistically aligned
with what can be inferred from limited online interaction.

7 Practical instantiation: signals, controller param-
eterization, and integration with SAC/TD3

We describe a concrete instantiation of RegimeFlow in which the controller
is driven by inexpensive online diagnostics and is coupled to a standard
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actor–critic learner (SAC or TD3). The intent is not to strengthen the
assumptions (A1)–(A3), but rather to indicate how one may approximate
the oracle ingredients in a way that is faithful to the stability-floor design.

Replay-mixing knobs and fine-tuning procedure. We implement FT(θ)
by augmenting a base off-policy update with (i) a replay-mixture ratio α ∈
[0, 1] and (ii) a conservative regularizer of strength λ ≥ 0. Concretely, main-
tain an offline buffer Boff := D and an online buffer Bon that accumulates
interaction. At episode t with chosen θt = (αt, λt), each gradient step sam-
ples a minibatch of size B by drawing ⌊αtB⌋ transitions from Boff and the
remainder from Bon. This realizes the knob as an explicit control on distri-
bution shift: large αt anchors learning to the dataset support, while small
αt allows rapid adaptation to online data.

For the regularization knob, we use an additive penalty in the critic ob-
jective that is monotone in estimated extrapolation, in the spirit of conser-
vative Q-learning. Writing the critic loss for parameters ϕ as LTD(ϕ) (SAC)
or LTD3(ϕ) (TD3), we optimize

LQ(ϕ; θt) := LTD(ϕ) + λtR(ϕ),

where R(ϕ) may be taken as a log-sum-exp penalty that lowers Q-values on
actions not supported by the data, or as a squared deviation penalty to a
behavior-cloned baseline. The actor update is standard SAC/TD3, but uses
the regularized critic, hence inheriting the induced conservatism. In practice
we couple λt only to the critic; this separation makes it easier to interpret
λt as a safety knob rather than an exploration knob.

Online signals for regime tracking. The regime score rt is meant to
quantify whether the offline-pretrained policy is already at (or above) the
dataset knowledge level, i.e., whether ∆J = J(π0)− J(πD) ≥ 0. While ∆J
is not directly observable in the fine-tuning stream, we can track surrogate
signals that are predictive of “offline advantage” versus “need for adaptation.”

(1) Offline/online TD-loss gap. Maintain running estimates of critic
Bellman error on offline and online samples under the current networks:

Êoff(t) := E(s,a,r,s′)∼Boff

[
(Qϕ(s, a)−y(s, a, r, s′))2

]
, Êon(t) := E(s,a,r,s′)∼Bon

[
(Qϕ(s, a)−y)2

]
,

with y the usual target. We then form the normalized gap

gt :=
Êon(t)− Êoff(t)
Êoff(t) + η

,

for a small η > 0. A positive gap gt ≫ 0 indicates that the critic is sub-
stantially more inconsistent on online data than on offline data, suggesting
either dataset shift or insufficient online coverage; this pushes the controller
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toward smaller αt (learn from online) but larger λt (guard against extrap-
olation). Conversely, gt ≈ 0 suggests that offline and online samples are
similarly explained and that anchoring to D is not obviously harmful.

(2) Ensemble disagreement / epistemic uncertainty. We approximate
uncertainty in Q-values by maintaining an ensemble {Qϕ(e)}Ee=1 (or bootstrap
heads). For states visited online, define the disagreement statistic

ut := Es∼dπt

[
Vare∈[E]

(
Qϕ(e)(s, πt(s))

)]
.

Large ut is interpreted as epistemic uncertainty under the current visitation
distribution. Operationally, ut serves two roles: (i) it tightens the safety
filter by inflating uncertainty bonuses in LCBt(θ), and (ii) it encourages
conservative regularization λt when disagreement is high.

(3) Return-based evidence. We also use the realized episode return Rt to
update a running confidence interval for the current deployed configuration
and, when explicit evaluations are available, for π0 versus πD. In particular,
if we periodically deploy π0 for evaluation episodes, we obtain a direct (noisy)
estimate of J(π0) and can update rt via a one-dimensional Bayesian model for
∆J under sub-Gaussian noise. This optional evaluation mechanism respects
the lower bound in Theorem 6.2: it does not “solve” near ties, but it makes
explicit the cost of resolving them.

Controller parameterization over (α, λ). We discretize [0, 1] × [0,Λ]
into an εΘ-net Θ and run an experts algorithm on Θ restricted to the safe
set St. To incorporate the regime score without overriding safety, we specify
a prior preference distribution pt(θ) that tilts weights before the EXP3-style
update. One convenient choice is a separable log-linear model

pt(α, λ) ∝ exp
(
βα (1− rt)α − βλ rt λ

)
,

interpreting rt ≈ 1 (offline already strong) as preferring smaller α (less need
to replay) but larger λ (avoid degradation), and rt ≈ 0 as preferring larger
α (more reliance on D) and smaller λ (allow improvement). The coefficients
βα, βλ ≥ 0 merely shape the preference within the safe set and may be tuned
coarsely; critically, the safety filter St is applied first.

Approximate construction of LCBt(θ). Assumption (A1) posits an ora-
cle. Practically, we combine (i) an empirical return bound for configurations
that have been deployed sufficiently often and (ii) an uncertainty penalty
based on ensemble disagreement. For a fixed θ, let {Ri(θ)}i≤t:θi=θ be ob-
served returns and µ̂t(θ) their mean. A simple bound is

LCBt(θ) := µ̂t(θ) − bt(θ) − cu ût(θ),
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where bt(θ) is a concentration term of order
√
log(T |Θ|/δ)/nt(θ) and ût(θ)

is the average disagreement along trajectories collected under θ. This form
makes explicit the mechanism by which epistemic uncertainty shrinks the
safe set early and gradually relaxes it as online evidence accumulates.

SAC/TD3 integration details. With SAC, we use the standard entropy-
regularized objective and twin critics; the conservative regularizer is added to
each critic loss. With TD3, we use clipped double Q, target policy smoothing,
and delayed actor updates; again λtR(ϕ) is added to each critic. In both
cases, the replay mixture is implemented at the minibatch sampler, requiring
no algorithmic modification to the base learner beyond access to two buffers.
The net effect is that αt controls how quickly the policy can move away
from the dataset-induced fixed point, while λt controls how pessimistically
the critic evaluates out-of-support actions; the controller then selects these
knobs using only bandit feedback and the diagnostics above, subject to the
stability-floor filter.

8 Experimental design: benchmarks, ablations, and
stability diagnostics

We outline an experimental protocol intended to (i) validate the stability-
floor claim empirically, (ii) isolate the contribution of each component of
RegimeFlow, and (iii) stress-test the controller in regimes where ∆J :=
J(π0) − J(πD) is near zero and where the online visitation distribution de-
parts from the dataset support.

Benchmarks and dataset families. We consider standard offline-to-
online settings in which D is fixed and online interaction begins only after
offline pretraining. For continuous control we use D4RL-style locomotion
and manipulation tasks with multiple dataset qualities (random, medium,
medium-replay, medium-expert, expert) to realize variation in coverage and
in J(πD). To probe distribution shift more directly, we additionally include
(when available) benchmarks with explicit environment parameters (e.g.,
friction, mass, actuation limits) so that we can hold M fixed for offline train-
ing and then modify a small subset of parameters for online fine-tuning while
keeping reward scaling unchanged; we interpret this as “controlled dataset
shift” rather than a different task. For high-dimensional observations, we in-
clude a limited set of pixel-based control domains with offline datasets that
are known to be narrow-support; here the primary goal is to test whether
the safe set St collapses appropriately early in online fine-tuning.

Protocols for estimating the offline baseline. We estimate J(πD) by
averaging the trajectory returns in D (as in the global context) and esti-
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mate J(π0) by M online evaluation rollouts prior to fine-tuning. We report
J∗
off = max(J(π0), J(πD)) and the empirical gap ∆̂J . Since J(πD) can be

sensitive to truncation and reward preprocessing, we enforce identical episode
termination and reward normalization across (i) the logged dataset statis-
tics, (ii) pretraining evaluation, and (iii) online deployment. We also report
confidence intervals for J(π0) so that near-tie instances (where 0 ∈ CI(∆J))
can be identified explicitly rather than implicitly.

Primary metrics: stability floor and performance. For stability, we
report the violation rate

Viol(T ) :=
1

T

T∑
t=1

1{Rt < J∗
off − ε} ,

as well as the maximum violation depth maxt≤T (J
∗
off − ε − Rt)+. Since

the theoretical guarantee is on J(πt) rather than Rt, we additionally com-
pute a smoothed version using windowed averages of returns, and we report
how conclusions vary with the window length. For performance, we report
cumulative return

∑T
t=1Rt and normalized area-under-curve (AUC) of the

learning curve. When comparing to fixed-knob baselines, we also compute
an empirical regret proxy relative to the best fixed safe knob selected in
hindsight from the discretized net Θ:

R̂egret(T ) := max
θ∈Θ: V̂iolθ(T )=0

T∑
t=1

(
µ̂t(θ)−Rt

)
,

where µ̂t(θ) is estimated from repeated runs of the fixed-θ configuration.

Opposite-mismatch rate (regime/knob consistency). To strengthen
the claim that the regime score rt induces meaningful preferences without
overriding safety, we introduce an opposite-mismatch diagnostic that mea-
sures how often the selected knobs oppose the direction suggested by the
offline baseline. Fix thresholds α < α and λ < λ. Using a ground-truth
label sgn(∆J) obtained from pre-fine-tuning evaluations (with a tie region
declared when |∆̂J | ≤ τ), we define

Opp(T ) :=
1

T

T∑
t=1

1


∆̂J > τ ∧ αt ≥ α

or
∆̂J < −τ ∧ αt ≤ α

 ,

and analogously for λt with the direction reversed (when offline is strong we
expect larger λt to prevent degradation). We report Opp(T ) both uncon-
ditionally and conditioned on θt ∈ St to separate “preference errors” from
safety-filter effects. In addition, we plot E[αt | rt] and E[λt | rt] to verify
monotonicity trends induced by the prior pt.
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Ablations. We include the following controlled ablations, each run under
identical seeds and online budgets: (i) No safety filter : select θt by the same
experts update but ignore St; (ii) No regime prior : set pt uniform so that
only bandit feedback drives selection; (iii) No uncertainty penalty : remove
the disagreement term in LCBt(θ); (iv) No ensemble: use a single critic
and only return-based concentration for LCBt; (v) Hard switching : restrict
α ∈ {0, 1} (and optionally a small discrete set of λ) to test Proposition 1 in
near-tie instances; and (vi) Discretization sensitivity : vary εΘ (hence |Θ|) to
assess the O(TεΘ) effect empirically.

Sensitivity to near ties and dataset shift. To generate controlled near-
tie instances, we construct behavior-mixture datasets D(ρ) by mixing tra-
jectories from two sources (e.g., medium and expert) with mixture weight
ρ, and we select ρ so that J(π0) crosses J(πD) as ρ varies. We then eval-
uate how RegimeFlow behaves as |∆J | shrinks relative to return noise,
focusing on (a) the rate at which rt concentrates and (b) whether the con-
troller avoids committing prematurely to extreme α. For dataset shift, we
use the same offline D but perturb online initial-state distributions and en-
vironment parameters, and we quantify shift by (i) increases in the TD-loss
gap gt and (ii) increases in disagreement ut. We then test whether the safe
set St contracts early (reducing risky choices) and whether the algorithm
recovers performance without violating the stability floor.

Reporting. For each task family we report mean and standard error over
seeds for AUC, Viol(T ), maximum violation depth, Opp(T ), and the evo-
lution of |St|/|Θ|. We also include empirical calibration plots for LCBt(θ)
(coverage versus nominal 1− δ) to diagnose when the stability-floor mecha-
nism fails due to miscalibrated uncertainty rather than due to knob-selection
noise.

9 Discussion and limitations

Dependence on value confidence bounds. Our stability statement ul-
timately reduces to the correctness of the lower-confidence bounds LCBt(θ)
assumed in (A1). This dependence is not an artifact of our analysis: any
mechanism that claims high-probability prevention of performance degrada-
tion must, implicitly or explicitly, certify that candidate updates are safe. In
practice, constructing calibrated lower bounds for J(πθ

t ) in high-dimensional,
nonlinear function approximation remains difficult. Common surrogates—
bootstrap ensembles, disagreement penalties, and return-based concentration—
can be systematically miscalibrated under distribution shift or when the
critic is misspecified. When miscalibration occurs, the safety filter may ad-
mit unsafe θ (false positives) or, conversely, may reject nearly all θ (false
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negatives), forcing the controller to behave overly conservatively.
Two concrete limitations follow. First, our guarantees require a union

bound over both time and knob configurations; hence LCBt(θ) must be valid
at level δ/(T |Θ|). Achieving such a stringent simultaneous coverage typically
induces wide intervals early in fine-tuning, which can shrink St dramatically.
Second, the safe-set nonemptiness condition in Theorem 2 is not automatic:
if the bound is overly pessimistic, we may have St = ∅ even when safe knobs
exist. A practical fallback is to include a do-nothing configuration θbase that
freezes learning (or uses maximal regularization and maximal offline replay),
together with a bound construction that certifies LCBt(θbase) ≈ J∗

off by direct
online evaluation. This converts “empty safe set” into an explicit reversion
to a baseline deployment, but it also highlights that some online evaluation
is unavoidable if one wants an actionable safety filter.

What the stability floor does and does not protect. The constraint
J(πt) ≥ J∗

off − ε is a performance guarantee, not a behavioral or state-wise
safety guarantee. In particular, it does not preclude catastrophic states if
their probability is small enough that the expected return remains above the
floor. Moreover, since J∗

off can itself be low, the floor should be interpreted as
“do not become worse than the best available offline reference” rather than
as an absolute safety specification. In domains where safety is naturally
expressed as a hard constraint (e.g., collision avoidance), one would need to
incorporate explicit constraint costs and replace the floor by a constrained
objective (e.g., CMDPs), together with confidence bounds for both reward
and constraint value.

Beyond the same-MDP setting. Our formalization takes M to be fixed:
offline and online interaction occur in the same discounted MDP, and only the
visitation distribution changes due to learning. The experimental protocol
in Section 8 already considers controlled parameter perturbations, but our
theory does not cover the case where online fine-tuning occurs in M′ ̸= M
in a way that changes the optimality ordering of π0 and πD, or alters reward
scaling. In such cases, the baseline J∗

off may cease to represent an attainable
reference, and the regime score rt—defined as a posterior over the sign of
∆J = J(π0)− J(πD)—may be anchored to the wrong comparison.

A principled extension is to treat the online process as nonstationary and
to replace (A1) by bounds that are robust to model drift, for example via
distributionally robust MDP sets around empirical transition estimates, or
via explicit change-point detection that triggers re-estimation of J(π0) and
an updated baseline. At a minimum, if a shift detector indicates that the
current return distribution under π0 has changed, then the controller should
regard ∆J as time-dependent, ∆Jt, and allow the prior over knobs to be
reset rather than accumulated indefinitely.
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Partial resets, continuing tasks, and intervention policies. Our con-
troller is presented episodically, with full resets and an episode-level return
Rt serving as the bandit feedback. Many practical systems instead oper-
ate in continuing time with only partial resets (or no resets), and perfor-
mance is measured by average reward or by discounted return from a rolling
start-state distribution. In such settings, a per-episode safety filter is not
directly applicable: the deployed policy influences the future state distribu-
tion, and reverting to a baseline policy may not restore the system to the
pre-intervention state distribution.

One direction is to equip RegimeFlow with an intervention policy πsafe
that can be activated when diagnostics (e.g., disagreement ut or TD-gap gt)
exceed thresholds, together with a notion of “partial reset” that restores a
subset of state variables. Analytically, this suggests modeling the controller
as operating over segments separated by interventions, where each segment
has a bounded effective horizon and the stability constraint is required per
segment. The corresponding confidence bounds must then track the value of
knob choices under the evolving start-state distribution, which is a substan-
tially harder problem than the stationary episodic case.

Toward transfer-aware regime scores. The regime score rt was defined
as a posterior probability that ∆J ≥ 0 and used only to induce a monotone
preference over knobs. This is intentionally weak: safety is enforced solely
via LCBt(θ). Nevertheless, when the online environment differs from the of-
fline data-generating process, ∆J is an incomplete descriptor of what should
be preferred. A more informative regime variable would incorporate online
evidence of support mismatch, e.g.,

ρt := Pr
(
(s, a) ∼ dπt lies in a low-density region under D

)
,

estimated via density models or representation-space distances. One may
then define a transfer-aware posterior over latent regimes, such as “offline-
competent but out-of-support” versus “offline-incompetent but in-support,”
and map these regimes to priors over (α, λ). Formally, this becomes a hierar-
chical model in which the knob prior depends on a latent variable zt inferred
from both returns and shift diagnostics; the bandit layer remains unchanged
but may explore more efficiently by avoiding knobs that are predictably brit-
tle under estimated mismatch.

Summary. The core message is that the controller viewpoint isolates two
distinct burdens: (i) constructing reliable safety certificates (the LCBt prob-
lem), and (ii) optimizing performance subject to those certificates (the safe
experts problem). Our contribution addresses (ii) cleanly and admits trans-
parent diagnostics; the principal remaining obstacles lie in (i) and in extend-
ing the formalism beyond stationary episodic MDPs to continuing, partially
resettable, and transfer-shifted deployments.
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