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Abstract

Flow-attentional GNNs modify standard graph attention by nor-
malizing attention scores across outgoing neighbors, aligning message
passing with conservation laws in resource-flow graphs. Prior work es-
tablished expressivity gains and strong empirical performance for flow
attention on undirected flow graphs and on DAGs via FlowDAGNN,
but many real infrastructure networks (power transmission, traffic, wa-
ter) contain directed cycles that break sequential DAG processing. We
introduce an implicit (fixed-point) flow-attentive layer for general di-
rected graphs. The layer defines outgoing-normalized attention weights
as a routing kernel and computes node representations as the unique
fixed point of a damped conservation-aware message-passing opera-
tor. Under explicit norm/temperature conditions we prove (i) exis-
tence and uniqueness of the fixed point, (ii) linear convergence of sim-
ple iterations, and (iii) a perturbation stability bound with respect to
node/edge feature changes. We also show that without contractivity
such fixed-point computation is PPAD-hard, motivating the restricted
design. Implementations and experiments on cyclic flow benchmarks
(e.g., AC-like power grid variants, traffic loops) would validate the
practical benefits and quantify the trade-off between expressivity and
guaranteed convergence.
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1 Introduction

Many graph learning problems tacitly conflate two distinct semantics: in-
formational graphs, in which an edge merely indicates that a feature may be
used to predict another feature, and flow graphs, in which edges represent
a directed routing of conserved mass, probability, traffic, or influence. In
an informational graph, the primary requirement is typically permutation
invariance and locality of computation; the update rule may freely amplify
or attenuate signals as it aggregates neighbors. In a flow graph, by contrast,
edges encode a constraint—often implicit rather than explicitly supervised—
that outgoing influence from a node should be distributed among its outgo-
ing edges. This distinction becomes operational when one seeks embeddings
that are interpretable as steady-state quantities (e.g. equilibrium occupan-
cies, conserved routing policies, or stabilized influence scores) rather than
merely transient outputs of a fixed-depth computation.

Cycles are the rule rather than the exception in flow graphs. Feedback
appears in transportation and logistics networks (re-routing and congestion),
in citation and information propagation graphs (mutual reinforcement), in
economic input–output networks, and in dynamical interaction graphs in
biology and control. Even when the original data are acyclic, modeling
choices frequently introduce effective cycles: bidirectional edges for undi-
rected relations, reverse edges for information backflow, or residual pathways
across layers. Consequently, approaches restricted to directed acyclic graphs
(DAGs)—or, more generally, approaches whose correctness or stability relies
on a topological ordering—are structurally mismatched to the phenomena
we wish to represent. A DAG-only method can compute a well-defined for-
ward pass, but it cannot naturally encode equilibria determined by mutual
dependence, since those equilibria are fixed points of a coupled system rather
than values produced by a one-way recursion.

Standard message passing neural networks and attention-based graph
transformers accommodate cycles syntactically, yet their computation is typ-
ically depth-limited : information propagates for a prescribed number of lay-
ers, and the output depends on that truncation. This design choice is often
computationally convenient, but it entangles representation with an arbi-
trary iteration budget and makes it difficult to interpret the result as a
stable graph-derived quantity. Moreover, unnormalized attention can be-
have unlike any conservative routing rule: a node may simultaneously assign
large weights to many outgoing edges, yielding amplification effects that
are at odds with flow semantics and that complicate stability analyses. In
applications where one desires a routing kernel—a probability distribution
over outgoing neighbors for each node—it is natural to impose outgoing nor-
malization, so that each node distributes a fixed unit of influence across its
outgoing edges. This simple architectural constraint aligns the model with
flow conservation and yields an attention mechanism that is interpretable as
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local routing.
Once we adopt a conservative, outgoing-normalized attention, the re-

maining issue is how to reconcile cycles with well-defined computation. If
the attention weights depend on hidden states, then in a cyclic graph the
hidden states and the induced routing kernel are mutually dependent. In
such settings, the appropriate object is not a depth-T representation but
an equilibrium representation: a hidden state assignment consistent with
the update rule everywhere on the graph. This perspective leads naturally
to implicit graph layers defined by fixed-point equations. Rather than un-
rolling a deep stack with potentially unstable dynamics, we compute (or
approximate) the fixed point of a single contractive operator. The resulting
representation is independent of an arbitrary depth parameter and is, by
construction, compatible with cyclic feedback.

The present work develops a flow-attentive implicit layer whose attention
is normalized over outgoing neighborhoods, thereby enforcing exact conser-
vation at every evaluation of the attention kernel. The update is defined
by a damped operator that interpolates between the current iterate and an
undamped message passing map; the damping plays the same conceptual
role as a step size in a dynamical system. Our goal is not merely to propose
this architecture, but to provide explicit conditions under which the resulting
implicit layer is well posed and efficiently solvable on directed graphs with
cycles.

Our technical contributions are organized around three desiderata: (i) ex-
istence and uniqueness of the equilibrium embedding, (ii) efficient computa-
tion to a prescribed accuracy, and (iii) stability with respect to perturbations
of graph data and parameters. To this end we work with a block maximum
norm and track Lipschitz constants of the constituent maps. The scoring
function of attention is assumed to be Lipschitz in the hidden states, and
the message transform is controlled via an explicit spectral norm bound. The
attention temperature and maximum out-degree enter the analysis through
the sensitivity of the outgoing softmax normalization. These ingredients
yield a concrete Lipschitz bound for the undamped map, hence a contrac-
tion criterion for the damped operator.

At a high level, the guarantees we establish are as follows.

• Contractivity and unique fixed point. Under explicit bounds on the
message transform, attention sensitivity, temperature, and graph out-
degree, the damped operator becomes a contraction. By the Banach
fixed-point theorem, it admits a unique fixed point, which we interpret
as the equilibrium node embedding induced by flow-attentive routing
on a cyclic directed graph.

• Linear-time-per-iteration computation and logarithmic iteration com-
plexity. The equilibrium can be approximated by Picard iteration
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(damped fixed-point iteration). Each iteration reduces to sparse edge-
local computations—scoring edges, normalizing per sender, and ag-
gregating incoming messages—and therefore costs time linear in the
number of edges up to the dimensionality factors of the chosen scoring
mechanism. Under contraction, the number of iterations required to
reach accuracy ε grows only logarithmically in ε−1.

• Exact conservation of the attention kernel. Because normalization is
performed over each node’s outgoing neighborhood, the induced atten-
tion weights form a row-stochastic routing kernel wherever out-degree
is nonzero. This property holds at every iterate and therefore at the
fixed point, yielding a principled notion of conserved flow in the learned
representation.

• Perturbation stability. When the operator is contractive, the fixed
point depends Lipschitz-continuously on perturbations of node fea-
tures, edge features, and model parameters. This yields a clean bound
relating representation drift to data drift, with a degradation factor de-
termined by the contraction modulus. Such a statement is unavailable
for general implicit layers without structural control.

• Necessity of restrictions. Finally, we justify why one should not expect
unconditional convergence guarantees for unrestricted implicit graph
layers: without contraction (or comparable monotonicity structure),
approximating fixed points of continuous graph-defined operators is
intractable in the worst case (PPAD-hard), via standard connections
to Brouwer fixed points.

Conceptually, our analysis treats the implicit layer as a controlled dy-
namical system on a high-dimensional product space indexed by nodes. The
outgoing-normalized attention acts as a learned, state-dependent routing
rule, and the damping enforces a quantitative form of stability. The re-
sulting model therefore sits between two classical perspectives: on the one
hand, attention-based message passing as a flexible statistical learner; on
the other, contractive fixed-point iteration as a principled computational
mechanism for equilibria on cyclic networks. In the sequel we formalize the
graph-theoretic notation, clarify the relationship between standard atten-
tion and flow-attention, and introduce the norms and Lipschitz estimates
that make the above guarantees precise.

2 Preliminaries

Directed graphs and neighborhoods. We work with a finite directed
graph G = (V,E) with |V | = n and |E| = m, allowing cycles and self-loops.
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For a node i ∈ V we denote its incoming and outgoing neighborhoods by

Nin(i) := {j ∈ V : (j, i) ∈ E}, Nout(i) := {k ∈ V : (i, k) ∈ E}.

We write ∆max := maxj∈V |Nout(j)| for the maximum out-degree. Node
features are xi ∈ Rdx , and each directed edge (i, j) ∈ E may carry features
aij ∈ Rde . When convenient, we regard node-wise hidden states as a block
vector h = (hi)i∈V ∈ Rn×d.

The algorithmic model we have in mind is sparse adjacency access: at
each iteration we may enumerate Nout(j) for each sender j and Nin(i) for
each receiver i, and we may compute edge-local quantities for each (j, i) ∈ E.
Nodes with Nout(j) = ∅ require a convention for normalization; throughout
we interpret the outgoing-normalized attention weights only on nodes with
nonzero out-degree (equivalently, we may add self-loops to eliminate sinks,
or stipulate that such nodes emit no messages). This choice affects imple-
mentation but not the principal contractivity mechanism, which is driven by
explicit Lipschitz bounds.

Flow conservation and routing kernels. A central object in our devel-
opment is a conservative attention kernel that assigns, for each sender j with
|Nout(j)| > 0, a probability distribution over its outgoing edges. Concretely,
an array β(h) = (βij(h))(j,i)∈E is called outgoing-normalized if∑

i∈Nout(j)

βij(h) = 1 for all j with |Nout(j)| > 0,

and βij(h) ≥ 0 for all edges. Under this condition, β(h) acts as a row-
stochastic routing rule indexed by senders: one may interpret node j as
distributing a unit of mass (or influence) across its outgoing edges according
to the weights βij(h). This is the formal sense in which the attention mech-
anism respects flow conservation at the level of the learned routing kernel.

We emphasize that outgoing normalization is distinct from the normaliza-
tion commonly used in standard attention-based message passing, in which
weights are normalized over a receiver’s incoming neighborhood. Incoming
normalization ensures

∑
j∈Nin(i)

αij = 1 for fixed receiver i, which is ap-
propriate when attention is viewed as a convex combination of candidate
inputs to a node. Outgoing normalization instead enforces conservation at
the sender, aligning the weights with flow semantics on directed graphs.

Standard attention versus flow-attention. Let eθ be an attention scor-
ing function. Given hidden states h and edge features, we form edge scores
for each directed edge (j, i) ∈ E by

sij(h) :=
1

τ
eθ
(
hi, hj , aji

)
,
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where τ > 0 is a temperature parameter. (Larger τ produces smoother, less
sensitive softmax weights.) Standard graph attention typically computes
receiver-normalized coefficients

αij(h) =
exp(sij(h))∑

ℓ∈Nin(i)
exp(siℓ(h))

, j ∈ Nin(i),

so that the aggregation at i is a convex mixture of transformed neighbor
states. In contrast, our flow-attention coefficients are outgoing-normalized:

βij(h) =
exp(sij(h))∑

k∈Nout(j)
exp(skj(h))

, i ∈ Nout(j).

Thus, for fixed sender j, the normalization is taken over the scores associated
with edges leaving j. This is the minimal structural modification needed to
ensure that each node distributes a fixed unit of influence across its outgoing
edges. In particular, if the graph represents a transportation or routing
system, βij(h) can be interpreted as the learned policy assigning probability
of routing from j to i.

The dependence of βij(h) on both hj and the receiver states {hk : k ∈
Nout(j)} is essential: the denominator couples all outgoing edges of a sender.
On cyclic graphs, this coupling propagates globally through the fixed-point
equation and is the reason we adopt an implicit (equilibrium) viewpoint
rather than a finite-depth recursion.

State space, norms, and operator bounds. Our convergence and sta-
bility guarantees are stated using the block maximum norm

∥h∥∞,2 := max
i∈V
∥hi∥2, h ∈ Rn×d.

This choice separates node-wise effects from graph size and allows degree-
dependent factors to appear explicitly. For linear maps acting on a sin-
gle node state we use the spectral norm ∥ · ∥2; for example, ∥Wmhj∥2 ≤
∥Wm∥2 ∥hj∥2.

For a map F : Rn×d → Rn×d we write Lip(F ) for the smallest L such
that

∥F (h)− F (h̃)∥∞,2 ≤ L ∥h− h̃∥∞,2 for all h, h̃.

We repeatedly use standard composition rules: if g and f are Lipschitz,
then Lip(g ◦ f) ≤ Lip(g) Lip(f), and if F = (1 − α)I + αG, then Lip(F ) ≤
(1− α) + αLip(G).

The activation σ : Rd → Rd is assumed to be applied coordinatewise,
bounded, and 1-Lipschitz with respect to ∥ · ∥2. Boundedness implies that
iterates remain uniformly bounded once the update has the form h ← σ(·),
while 1-Lipschitzness ensures that σ does not inflate perturbations intro-
duced by attention or message aggregation.
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Lipschitz assumptions for attention and data dependence. We as-
sume that the scoring function eθ is Lipschitz in its hidden-state argu-
ments uniformly over edge features: there exists Le ≥ 0 such that for all
u, u′, v, v′ ∈ Rd and all admissible a,∣∣eθ(u, v, a)− eθ(u′, v′, a)∣∣ ≤ Le(∥u− u′∥2 + ∥v − v′∥2).
This condition is satisfied, for example, by common dot-product or bilinear
scorers under spectral norm control, and by multilayer perceptrons with
bounded operator norms.

The softmax normalization contributes an additional sensitivity factor.
At a fixed sender j, the map from the score vector (sij)i∈Nout(j) to the prob-
ability vector (βij)i∈Nout(j) is Lipschitz, with modulus scaling like 1/τ and
depending on the neighborhood size |Nout(j)| under the norms used to com-
pare score and probability vectors. In our later bounds this dependence is
summarized by an explicit factor C(∆max) = O(∆max) under ∥·∥∞,2, reflect-
ing that a single-node perturbation can influence multiple outgoing weights
through the shared normalizer.

Finally, we separate two kinds of Lipschitz control: (i) dependence on
hidden states, quantified by Le and the ensuing LΦ for the undamped mes-
sage passing map, and (ii) dependence on data (x, a), quantified by a data-
Lipschitz constant Ldata used in perturbation arguments. The latter captures
how changes in features alter the operator even when the hidden state is held
fixed.

Implicit layer maps and Picard iteration. The undamped flow-attentive
update map Φθ is defined nodewise by

Φθ(h)i := σ
(
Wxxi +

∑
j∈Nin(i)

βij(h)Wmhj + b
)
,

and we introduce damping via

Fθ(h) := (1− α)h+ αΦθ(h), α ∈ (0, 1].

We approximate equilibria by Picard iteration ht+1 = Fθ(h
t). When Φθ

is Lipschitz with constant LΦ and αLΦ < 1, the map Fθ is a contraction,
ensuring both existence and uniqueness of a fixed point h∗ = Fθ(h

∗) and
linear convergence of the iterates. The remainder of our analysis is devoted
to making LΦ explicit in terms of ∥Wm∥2, Le, τ , and ∆max, and to translating
contractivity into computational and stability guarantees.

3 Problem Formulation

Learning on directed flow graphs with cycles. We consider super-
vised and self-supervised learning problems in which the input is a directed
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graph G = (V,E) whose edges encode admissible directions of transport,
influence, or routing. The key regime of interest is cyclic graphs: feedback
loops and recirculation are not treated as exceptional, but rather as the typ-
ical case (e.g. road networks with roundabouts, supply chains with return
flows, or recurrent interaction graphs). In such settings, a finite-depth mes-
sage passing stack is often best understood as an approximate solver of an
underlying equilibrium relation. We therefore frame representation learning
in terms of node states h = (hi)i∈V ∈ Rn×d that are intended to satisfy a
fixed-point condition induced by a flow-aware attention mechanism, and we
train parameters so that the resulting equilibrium embeddings are predictive
for the downstream task.

Concretely, the data consist of node features xi ∈ Rdx and edge features
aij ∈ Rde , and optionally additional markings such as a set of sources S ⊆ V
and sinks T ⊆ V (or, more generally, any side information specifying bound-
ary conditions). Labels may be provided at the node, edge, or graph level.
Our output is an embedding h∗ (nodewise) together with task predictions ŷ
obtained by applying an appropriate head to h∗ (and, for graph-level tasks,
a readout that aggregates {h∗i }i∈V ).

Conservative routing kernels as structural attention. A distinguish-
ing requirement of our setting is that attention weights should be consis-
tent with conservation at senders. Rather than treating attention as a
receiver-side convex combination, we interpret attention as defining, for each
sender j, a distribution over its outgoing edges. Thus the attention array
β(h) = (βij(h))(j,i)∈E is constrained to be outgoing-normalized: for every j
with |Nout(j)| > 0, ∑

i∈Nout(j)

βij(h) = 1, βij(h) ≥ 0.

This constraint turns β(h) into a row-stochastic routing kernel indexed by
senders. In flow-centric applications, βij(h) is naturally interpreted as the
probability (or fraction of a unit of influence) that node j sends along edge
(j, i), conditional on the current state h. The dependence on h is essential:
the routing policy may adapt to congestion-like signals encoded in hidden
states and to local edge features aji, while still respecting conservation.

The conservative constraint is not merely semantic. It enforces a form
of mass preservation at the level of learned routing and thereby reduces de-
grees of freedom that can otherwise destabilize dynamics on cyclic graphs.
Moreover, because normalization couples the outgoing neighborhood of each
sender, conservation introduces structured, local competition among edges
leaving the same node, which is the appropriate analogue of capacity alloca-
tion in many directed systems.
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Equilibrium embeddings and task prediction. Given a parameteriza-
tion of the flow-attentive update map, our representation is defined implicitly
as an equilibrium h∗ satisfying a fixed-point equation

h∗ = Fθ(h
∗),

where Fθ is the (possibly damped) flow-attentive operator specified in the
sequel. From the perspective of learning, this shifts emphasis from layer
depth to solution accuracy : we may compute an approximate equilibrium
hT by an iterative method until a fixed-point residual criterion is met, and
we interpret hT ≈ h∗ as the embedding used by the downstream head.

Let gψ denote a task head with parameters ψ. For node-level prediction
we set ŷi = gψ(h

∗
i ); for edge-level prediction ŷij = gψ(h

∗
i , h

∗
j , aij); and for

graph-level prediction we form a permutation-invariant readout, for example

h̄∗ = READOUT
(
{h∗i : i ∈ V }

)
, ŷ = gψ(h̄

∗),

where READOUT may be a sum/mean pooling or a learned invariant ag-
gregator. The learning objective is to minimize a supervised loss L(ŷ, y), po-
tentially augmented by regularizers encoding contractive design constraints.
Writing (x, a, y) for a training instance, the canonical objective takes the
form

min
θ,ψ

E
[
L(gψ(h∗), y)

]
subject to h∗ = Fθ(h

∗),

with the understanding that h∗ is computed (approximately) during the
forward pass.

Desiderata: symmetry, conservation, and well-posedness. We now
state the properties we require of the encoder defined implicitly by Fθ.

(D1) Permutation equivariance and invariance. Since the node identities
are arbitrary labels, the embedding map must be consistent with relabeling.
Formally, for any permutation π of V acting on node-indexed tensors in the
natural way and transporting edges accordingly, the node embedding should
be permutation equivariant:

h∗(π · x, π · a) = π · h∗(x, a).

Graph-level predictions obtained after a readout should be invariant. This
desideratum is satisfied when all computations in Fθ are expressed via neigh-
borhood aggregations and shared parameters, and when the attention nor-
malization is performed per sender using only its outgoing neighborhood.

(D2) Conservation-consistent weights. At every iterate (and hence at
the fixed point), attention weights must define a valid routing distribution
per sender. In particular, the normalization must be outgoing rather than
incoming, and the nonnegativity and unit-sum conditions must hold exactly

10



(up to floating point effects). This is both an inductive bias and a hard
architectural constraint: we do not rely on training to “learn” conservation.

(D3) Convergence and uniqueness on cyclic graphs. Because cycles in-
duce feedback, naive recurrent message passing may admit multiple equilib-
ria or fail to converge. For representation learning this is problematic: the
embedding becomes initialization-dependent, gradients become ill-defined,
and the forward pass may be unstable. We therefore seek explicit conditions
under which the fixed point exists and is unique, and under which simple
solvers converge at a controlled rate. Our goal is to enforce these conditions
through explicit parameter restrictions (e.g. bounds on ∥Wm∥2, temperature
τ , and damping α) so that the encoder is well-posed as a map from data to
embeddings.

(D4) Stability to data perturbations. Graph learning frequently encoun-
ters noisy features, missing edges, and distribution shift. An implicit layer
intended to model equilibria should be stable: small perturbations in (x, a)
should yield proportionally small changes in h∗. This is also a prerequisite
for meaningful generalization guarantees and for numerical robustness of the
solver used to approximate h∗.

Computational viewpoint and approximation accuracy. In practice
we do not compute h∗ exactly, but rather an approximation hT obtained
by an iterative method with a stopping rule. We thus treat the fixed-point
residual

rt := ∥ht+1 − ht∥∞,2

as a proxy for solution quality and terminate once rt ≤ ε for a user-specified
tolerance ε > 0. This leads to a clear separation between (i) the model (the
operator Fθ and its equilibrium) and (ii) the solver (the method used to
approximate the equilibrium). Our subsequent analysis provides conditions
ensuring that solver complexity scales predictably with ε and that the learned
representations are not artifacts of nonconvergence.

Summary. We therefore formulate learning on cyclic flow graphs as the
problem of fitting parameters of a permutation-equivariant, conservative,
and contractively designed flow-attentive operator whose unique fixed point
defines the embedding used for prediction. The next section specifies the
operator in detail, discusses conventions for sources and sinks, and records
implementation choices relevant for training (unrolled iteration versus im-
plicit differentiation).

4 Implicit Flow-Attentive Layer

Local scores and outgoing-normalized flow attention. Fix hidden
states h = (hi)i∈V ∈ Rn×d. For each directed edge (j, i) ∈ E we compute a
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sender-conditioned compatibility score

sij(h) :=
1

τ
eθ
(
hi, hj , aji

)
,

where τ > 0 is a temperature parameter and eθ is a shared scoring function
applied locally to incident data. The flow-attention weights are then defined
by an outgoing softmax over each sender neighborhood:

βij(h) :=
exp

(
sij(h)

)∑
k∈Nout(j)

exp
(
skj(h)

) for (j, i) ∈ E and |Nout(j)| > 0.

We interpret βij(h) as the fraction of a unit of influence routed from j to i
under state h. The restriction to outgoing normalization is structural: com-
petition occurs only among edges leaving the same sender, and conservation
at the sender holds identically whenever |Nout(j)| > 0. If |Nout(j)| = 0, node
j simply emits no messages (equivalently, the attention array has no entries
indexed by j).

State-dependent message aggregation and update map. Given β(h),
we form incoming aggregated messages at each receiver node i by

mi(h) :=
∑

j∈Nin(i)

βij(h)Wmhj ,

and define the undamped update map Φθ : Rn×d → Rn×d coordinatewise as

Φθ(h)i := σ
(
Wxxi +mi(h) + b

)
.

We emphasize that the attention dependence on h couples all messages leav-
ing a fixed sender j through the shared normalization constant

Zj(h) :=
∑

k∈Nout(j)

exp
(
skj(h)

)
,

so that changing any receiver-side state hk with k ∈ Nout(j) perturbs all
weights {βij(h) : i ∈ Nout(j)} simultaneously. This local coupling is the
mechanism by which routing decisions adapt to the current equilibrium state
while remaining conservative.

Damping and the implicit equilibrium operator. On cyclic graphs,
direct iteration of Φθ may fail to converge, so we introduce a damped operator

Fθ(h) := (1− α)h+ αΦθ(h), α ∈ (0, 1].

Our embedding is defined implicitly as a fixed point h∗ satisfying h∗ =
Fθ(h

∗). In subsequent sections we will choose explicit restrictions (on ∥Wm∥2,
on the temperature τ , and on α) ensuring that Fθ is contractive under ∥·∥∞,2,
which yields existence and uniqueness of h∗ and linear convergence of Picard
iteration.
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Sources, sinks, and optional injection terms. Many flow datasets
specify marked source/sink sets (S, T ). We incorporate such information
without breaking permutation equivariance by allowing an additional ex-
ogenous injection term that depends only on local markings and features.
Concretely, we permit

Φθ(h)i := σ
(
Wxxi +mi(h) + b+ ιi

)
,

where ιi = ιθ(xi,1i∈S ,1i∈T ) ∈ Rd is any bounded, shared parametrization
(e.g. a learned embedding for membership in S or T added to the pre-
activation). This captures steady supply/demand effects while preserving
locality. When one wishes to model sinks as absorbing states, a purely
graph-level convention is also available: for j ∈ T we may remove outgo-
ing edges (so Nout(j) = ∅), or insert a self-loop (j, j) so that Nout(j) ̸= ∅
and βjj(h) = 1 becomes feasible. Both conventions preserve the outgoing
normalization definition and keep the encoder permutation equivariant.

A complementary mechanism is to impose soft boundary conditions by
nodewise damping. Let αi ∈ (0, 1] be a per-node step size determined from
markings (e.g. αi = αsrc on S, αi = αint otherwise). Then we may update

Fθ(h)i = (1− αi)hi + αiΦθ(h)i,

which allows sources/sinks to adapt faster or slower than interior nodes while
remaining within the same fixed-point framework. The contraction analysis
extends to this case by replacing α with maxi αi in the worst case.

Numerical solver: Picard iteration and stopping. To approximate
h∗ we use Picard iteration,

ht+1 = Fθ(h
t), t = 0, 1, 2, . . . ,

initialized for example by h0 = 0 or by a feature projection h0i = σ(W0xi).
We monitor the fixed-point residual

rt := ∥ht+1 − ht∥∞,2 = max
i∈V
∥ht+1

i − hti∥2,

and terminate once rt ≤ ε for a prescribed tolerance ε > 0, or after a
maximum number of iterations T . When Fθ is a contraction, rt is a reliable
proxy for the distance to the fixed point, and its decay is controlled by the
contraction factor; the iteration complexity to achieve ε-accuracy will be
stated after we develop explicit Lipschitz bounds.

Implementation remarks: sparse computation and stable normal-
ization. Each iteration requires computing scores on edges, normalizing
per sender, aggregating incoming messages, and applying the nodewise up-
date. In sparse adjacency-list access models this is naturally implemented
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by iterating over edges to compute sij and by accumulating senderwise log-
normalizers Zj . For numerical stability, we compute the softmax with the
standard max-shift per sender:

βij(h) =
exp(sij(h)− cj)∑

k∈Nout(j)
exp(skj(h)− cj)

, cj := max
k∈Nout(j)

skj(h),

which preserves conservation exactly up to floating-point rounding. Memory
may be reduced by streaming βij : one may recompute weights during aggre-
gation rather than storing all per-edge values, at the cost of an additional
pass over outgoing edges.

Training: unrolled differentiation versus implicit differentiation.
There are two standard approaches for gradients through the equilibrium
computation. In unrolled training we fix an iteration budget T (or an adap-
tive stopping rule) and backpropagate through the computation graph of hT .
This is simple and uses only automatic differentiation, but its memory scales
with T unless checkpointing or recomputation is used.

In implicit differentiation we treat h∗ as the solution to h = Fθ(h) and
differentiate the fixed-point relation. Writing the training loss as L(h∗), one
obtains a linear system for the adjoint variable v of the form(

I − JF (h∗)⊤
)
v = ∇hL(h∗),

where JF (h∗) is the Jacobian of Fθ at the fixed point. One then computes
parameter gradients via Jacobian–vector products without storing the entire
forward trajectory. When Fθ is contractive, I−JF (h∗) is well-conditioned in
the sense relevant to iterative solvers, and v may be computed by fixed-point
iteration or Krylov methods using only products of JF (h∗)⊤ with vectors.
This training mode aligns with our goal of well-posedness: the same struc-
tural restrictions that guarantee convergence also yield stable differentiation
through the equilibrium.

The next section provides the required Lipschitz bounds and explicit
contraction conditions under ∥ · ∥∞,2, thereby justifying both the forward
solver and the implicit gradient computation on cyclic directed graphs.

5 Convergence Theory: explicit Lipschitz bounds
and linear rates

Block norm and degree parameters. We work throughout with the
block maximum norm

∥h∥∞,2 := max
i∈V
∥hi∥2,

14



and we write ∆in,max := maxi∈V |Nin(i)| in addition to ∆max = maxj∈V |Nout(j)|.
In bounded-degree regimes one often has ∆in,max ≲ ∆max; when this holds
we may absorb ∆in,max into the same constant C(∆max). We also set

Bσ := sup
z∈Rd

∥σ(z)∥2 <∞,

which is finite since σ is bounded (e.g. for coordinatewise tanh, Bσ ≤
√
d).

A senderwise softmax Lipschitz bound. Fix a sender j with |Nout(j)| >
0 and consider the vector of scores s·j ∈ R|Nout(j)| defined by [s·j ]i = sij for
i ∈ Nout(j). Let sm denote the softmax map, so that β·j = sm(s·j). The
Jacobian of sm at a probability vector p is J(p) = diag(p)−pp⊤, and a direct
column-sum bound yields

∥J(p)∥∞→1 = max
ℓ

∑
k

|J(p)kℓ| = max
ℓ

2pℓ(1− pℓ) ≤
1

2
.

Consequently, for any two score vectors u, v of the same dimension,

∥sm(u)− sm(v)∥1 ≤
1

2
∥u− v∥∞, ∥sm(u)− sm(v)∥∞ ≤ 1

2
∥u− v∥∞.

(1)
Since our scores are scaled by 1/τ , the effective sensitivity with respect to
the unscaled logits is proportional to 1/τ .

Score sensitivity under ∥·∥∞,2. By the Le-Lipschitz property of eθ in its
hidden-state arguments, for any two hidden-state arrays h, h̃ and any edge
(j, i) ∈ E we have

|sij(h)−sij(h̃)| =
1

τ

∣∣eθ(hi, hj , aji)−eθ(h̃i, h̃j , aji)∣∣ ≤ Le
τ

(
∥hi−h̃i∥2+∥hj−h̃j∥2

)
.

Taking the maximum over all i, j shows

max
(j,i)∈E

|sij(h)− sij(h̃)| ≤
2Le
τ
∥h− h̃∥∞,2. (2)

Attention perturbations. Combining (1) and (2), we obtain for each
sender j with |Nout(j)| > 0,∑
i∈Nout(j)

|βij(h)−βij(h̃)| = ∥β·j(h)−β·j(h̃)∥1 ≤
1

2
∥s·j(h)−s·j(h̃)∥∞ ≤ Le

τ
∥h−h̃∥∞,2.

(3)
This estimate makes the role of the temperature explicit: increasing τ uni-
formly reduces the state-dependence of routing.
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Lipschitz bound for message aggregation. For each receiver i we con-
sider

mi(h) =
∑

j∈Nin(i)

βij(h)Wmhj .

We add and subtract βij(h)Wmh̃j to obtain

mi(h)−mi(h̃) =
∑

j∈Nin(i)

βij(h)Wm(hj− h̃j)+
∑

j∈Nin(i)

(βij(h)−βij(h̃))Wmh̃j .

Using ∥Wmv∥2 ≤ ∥Wm∥2∥v∥2, βij(h) ≤ 1, and ∥h̃j∥2 ≤ Bσ whenever h̃ lies
in the range of Φθ, we bound

∥mi(h)−mi(h̃)∥2 ≤ ∥Wm∥2
∑

j∈Nin(i)

∥hj−h̃j∥2 + ∥Wm∥2Bσ
∑

j∈Nin(i)

|βij(h)−βij(h̃)|.

The first sum contributes at most ∥Wm∥2∆in,max∥h− h̃∥∞,2. For the second
sum we use the elementary inequality |βij(h)− βij(h̃)| ≤ ∥β·j(h)− β·j(h̃)∥1
and then (3), obtaining∑
j∈Nin(i)

|βij(h)− βij(h̃)| ≤
∑

j∈Nin(i)

Le
τ
∥h− h̃∥∞,2 ≤ ∆in,max

Le
τ
∥h− h̃∥∞,2.

Hence, if ∥Wm∥2 ≤ κm,

∥m(h)−m(h̃)∥∞,2 ≤ κm∆in,max

(
1 +

BσLe
τ

)
∥h− h̃∥∞,2. (4)

In bounded-degree settings we may summarize the dependence by writing
∆in,max ≤ C(∆max) with C(∆max) = O(∆max).

Lipschitz constant for Φθ and a contraction condition for Fθ. Since
σ is 1-Lipschitz and h 7→Wxx+ b is constant in h, (4) implies

∥Φθ(h)− Φθ(h̃)∥∞,2 ≤ LΦ ∥h− h̃∥∞,2, LΦ := κm∆in,max

(
1 +

BσLe
τ

)
.

(5)
For the damped map Fθ(h) = (1− α)h+ αΦθ(h) we then have

∥Fθ(h)− Fθ(h̃)∥∞,2 ≤
(
(1− α) + αLΦ

)
∥h− h̃∥∞,2.

Thus a sufficient explicit contraction condition is

q := (1− α) + αLΦ < 1, (6)

which holds in particular whenever LΦ < 1 (and hence under appropriate
restrictions on κm, τ−1, and the relevant degree bound).

16



Linear convergence and iteration complexity. Assuming (6), Ba-
nach’s fixed-point theorem implies that Fθ admits a unique fixed point h∗

and that the Picard iterates satisfy the linear rate

∥ht − h∗∥∞,2 ≤ q t ∥h0 − h∗∥∞,2, t ≥ 0.

Equivalently, to achieve ∥hT − h∗∥∞,2 ≤ ε it suffices that

T ≥ log(ε−1) + log ∥h0 − h∗∥∞,2

log(q−1)
.

Moreover, the fixed-point residual rt = ∥ht+1 − ht∥∞,2 controls the error a
posteriori: since h∗ = Fθ(h

∗) and Fθ is q-contractive,

∥ht − h∗∥∞,2 ≤
∞∑
ℓ=t

∥hℓ+1 − hℓ∥∞,2 ≤
∞∑
ℓ=t

qℓ−t rt =
1

1− q
rt.

This justifies stopping rules based on rt ≤ ε(1 − q), and it makes explicit
the tradeoff between expressivity and solvability: stronger attention sensitiv-
ity (large Le/τ), stronger mixing (κm), or larger degree bounds inflate LΦ,
thereby degrading q and increasing the number of iterations required for a
prescribed tolerance.

6 Stability Theory: perturbation bounds and ro-
bustness certificates

A general perturbation bound for contractive implicit layers. Through-
out this section we assume that both the nominal operator F and a perturbed
operator F̃ are contractions on (Rn×d, ∥ · ∥∞,2) with a common contraction
factor at most q < 1. Let h∗ and h̃∗ denote their respective fixed points.
The key estimate is the standard contraction perturbation lemma:

∥h∗ − h̃∗∥∞,2 ≤
1

1− q
sup
h
∥F (h)− F̃ (h)∥∞,2. (7)

Indeed, using h∗ = F (h∗) and h̃∗ = F̃ (h̃∗), we write

∥h∗−h̃∗∥∞,2 = ∥F (h∗)−F̃ (h̃∗)∥∞,2 ≤ ∥F (h∗)−F (h̃∗)∥∞,2+∥F (h̃∗)−F̃ (h̃∗)∥∞,2,

and we bound ∥F (h∗) − F (h̃∗)∥∞,2 ≤ q∥h∗ − h̃∗∥∞,2 by contractivity and
∥F (h̃∗)− F̃ (h̃∗)∥∞,2 ≤ suph ∥F (h)− F̃ (h)∥∞,2. Rearranging yields (7). The
salient feature is the amplification factor (1− q)−1: as q ↑ 1 the fixed point
becomes increasingly sensitive to any modeling or numerical perturbation.
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Feature perturbations: explicit dependence on (∆x,∆a). We now
specialize (7) to perturbations of node and edge features, keeping the graph
topology fixed. Write Φ = Φθ,x,a for the undamped map and F = (1 −
α)I + αΦ. Let (x̃, ã) be perturbed features and define Φ̃ = Φθ,x̃,ã, F̃ =
(1 − α)I + αΦ̃ with the same (θ, α, τ). Assume additionally that the score
function is Lipschitz in edge features,∣∣eθ(hi, hj , aji)− eθ(hi, hj , ãji)∣∣ ≤ La ∥aji − ãji∥2,

uniformly over (hi, hj), and set ∥Wx∥2 ≤ κx.
For any fixed h, the pre-activation difference at node i is

ui(h)− ũi(h) =Wx(xi − x̃i) +
∑

j∈Nin(i)

(
βij(h; a)− βij(h; ã)

)
Wmhj ,

where we emphasize the dependence of β on edge features through the logits.
Using the 1-Lipschitz property of σ and ∥Wmhj∥2 ≤ ∥Wm∥2∥hj∥2, we obtain

∥Φ(h)−Φ̃(h)∥∞,2 ≤ κx ∥x−x̃∥∞,2+κm ∥h∥∞,2·max
i

∑
j∈Nin(i)

|βij(h; a)−βij(h; ã)|.

(8)
To bound the attention perturbation term, we again use senderwise softmax
stability: for each sender j,

∥β·j(h; a)− β·j(h; ã)∥1 ≤
1

2
∥s·j(h; a)− s·j(h; ã)∥∞ ≤ La

2τ
∥a− ã∥∞,2,

where the last step follows because the logits differ only through a and are
scaled by 1/τ . Therefore, for each receiver i,∑
j∈Nin(i)

|βij(h; a)−βij(h; ã)| ≤
∑

j∈Nin(i)

∥β·j(h; a)−β·j(h; ã)∥1 ≤ ∆in,max
La
2τ
∥a−ã∥∞,2.

If, in addition, h lies on the forward trajectory of the bounded map Φ (hence
∥h∥∞,2 ≤ Bσ), then (8) gives the uniform operator perturbation bound

sup
h
∥Φ(h)− Φ̃(h)∥∞,2 ≤ κx ∥∆x∥∞,2 + κmBσ∆in,max

La
2τ
∥∆a∥∞,2,

and thus, since F − F̃ = α(Φ− Φ̃),

∥h∗ − h̃∗∥∞,2 ≤
α

1− q

(
κx ∥∆x∥∞,2 + κmBσ∆in,max

La
2τ
∥∆a∥∞,2

)
. (9)

This provides a direct robustness guarantee: larger temperature τ damps
the impact of edge-feature perturbations on routing and, hence, on the fixed
point.
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Sensitivity to graph rewiring and sparsified routing. We next treat
perturbations that change the effective routing, as occurs under graph rewiring,
edge deletions, or approximations such as neighborhood sampling. Rather
than coupling two different adjacency patterns directly, we express the per-
turbation at the level of the senderwise routing kernel. Let β(h) be the
nominal outgoing-normalized weights and let β̃(h) be any approximate ker-
nel satisfying, for all senders j,

δj := sup
h
∥β·j(h)− β̃·j(h)∥1 < ∞, δmax := max

j
δj . (10)

Define Φ̃ by replacing β with β̃ in the message term, keeping (x, a, θ) fixed.
Then, for any bounded h with ∥h∥∞,2 ≤ Bσ,

∥Φ(h)−Φ̃(h)∥∞,2 ≤ max
i

∑
j∈Nin(i)

|βij(h)−β̃ij(h)|·∥Wmhj∥2 ≤ κmBσ∆in,max δmax,

and consequently

∥h∗ − h̃∗∥∞,2 ≤
α

1− q
κmBσ∆in,max δmax. (11)

The bound (11) is particularly convenient because δmax can be estimated
for a variety of approximation schemes (e.g. truncating softmax support,
quantizing scores, or approximate normalization).

A common special case is edge deletion followed by renormalization. Fix
a sender j and let Rj ⊆ Nout(j) be the removed outgoing edges, and let β̃·j be
the renormalized restriction of β·j toNout(j)\Rj . Writing ρj :=

∑
i∈Rj

βij(h)

for the removed mass (which may depend on h), a direct computation yields

∥β·j(h)− β̃·j(h)∥1 = 2ρj ,

and hence δmax ≤ 2 supj,h ρj . Thus deletions are harmless precisely when
they remove only negligible attention mass; in particular, smoother atten-
tion (larger τ) tends to spread mass and makes ρj small for moderate-sized
removals.

Interpretation as a robustness certificate. Taken together, (9) and
(11) certify that the implicit embedding map (x, a, β) 7→ h∗ is Lipschitz on
any parameter regime where q < 1. In applications, we may report the
quantity (1 − q)−1 as a condition number for the layer: it converts any
bound on operator mismatch (from feature noise, approximate routing, or
numerical error) into a bound on the change in the fixed point. Moreover,
when the fixed point is computed approximately by Picard iteration, the
residual-based a posteriori estimate

∥ht − h∗∥∞,2 ≤
1

1− q
∥ht+1 − ht∥∞,2

provides a complementary certificate of solve accuracy that is directly com-
putable at inference time.
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Limitations and transition to lower bounds. All bounds above use
contractivity twice: first to ensure uniqueness of h∗ and second to control
perturbation amplification by (1 − q)−1. In the absence of such structure,
even deciding whether a stable fixed point exists (let alone bounding its de-
pendence on data or graph edits) becomes qualitatively more difficult; in the
next section we formalize this limitation via PPAD-hardness for general con-
tinuous graph-defined maps and discuss why some restriction—contraction
or a comparable monotone-operator hypothesis—is necessary for provable
guarantees.

7 Lower bounds and necessity of structural restric-
tions

The stability estimates of §6 rely on contractivity in an essential way: unique-
ness of the embedding is guaranteed only because F is a contraction, and the
perturbation amplification factor (1− q)−1 is finite only because q < 1. We
now justify that some restriction of this type is not merely convenient but
is, in a precise complexity-theoretic sense, necessary if one seeks worst-case
polynomial-time guarantees for fixed-point computation and robustness.

PPAD-hardness in the absence of contractivity. Consider a general
continuous operator F : H → H on a compact convex set H ⊂ Rn×d. By
Brouwer’s theorem, F has at least one fixed point, but there is no generic
polynomial-time algorithm that, given a description of F , computes (or even
approximates to inverse-polynomial accuracy) a fixed point in the worst case.
The canonical formalization is the complexity class PPAD, which captures
total search problems guaranteed to have solutions by parity arguments; the
problem of finding an ε-approximate Brouwer fixed point is PPAD-complete.

In our setting, if we drop the norm/temperature/damping restrictions
that enforce αLΦ < 1 and allow the local components (in particular the
scoring map eθ and any auxiliary MLPs used to compute logits or mes-
sages) to be unrestricted continuous parameterizations, then the induced
graph-defined operator Fθ can emulate an arbitrary Brouwer function on an
appropriate domain. Concretely, fix a dimension D and a continuous map
f : [0, 1]D → [0, 1]D given, say, by an arithmetic circuit. We may encode an
input point z ∈ [0, 1]D into a subset of node states (or into the full state vec-
tor via a fixed linear embedding) and design a bounded-degree directed graph
whose nodes represent circuit gates. Using sufficiently expressive local com-
putations at each node, we can implement the circuit evaluation z 7→ f(z)
by a single global application of a message passing operator; that is, we can
arrange that, on a designated readout subvector π(h) ∈ RD,

π
(
Fθ(h)

)
≈ f

(
π(h)

)
, π(h) ∈ [0, 1]D,
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while the remaining coordinates serve only to shuttle intermediate values
across the circuit graph. (A bounded activation such as tanh is compatible
with this emulation by rescaling and shifting signals to remain within a
compact interval, and the attention mechanism can be used either as a fixed
routing kernel or as a state-dependent switch so long as we do not constrain
its Lipschitz constant.) Any fixed point h = Fθ(h) then induces a fixed point
z = π(h) ≈ f(z), and conversely any fixed point of f can be lifted to one of
Fθ by extending with consistent intermediate gate values. Since approximate
fixed-point computation for f is PPAD-hard, so is approximate fixed-point
computation for the induced Fθ in this unrestricted regime.

This hardness has two immediate implications. First, absent contrac-
tion (or a comparable structure), we cannot expect a worst-case conver-
gence guarantee for Picard iteration: for general continuous F the iteration
ht+1 = F (ht) may fail to converge, may converge to different fixed points
depending on initialization, or may exhibit periodic or chaotic behavior. Sec-
ond, even replacing Picard by more sophisticated black-box methods does
not circumvent the obstacle: PPAD-hardness rules out a generic polynomial-
time algorithm under standard complexity assumptions.

Why contraction (or monotone structure) is the right kind of re-
striction. The preceding reduction does not use any pathology beyond
continuity and boundedness; thus, to obtain provable guarantees, we must
restrict the operator class. Contractivity is a particularly clean restriction
because it yields three properties simultaneously: (i) existence and unique-
ness of h∗; (ii) an explicit algorithm (Picard iteration) with linear conver-
gence rate; and (iii) perturbation stability with an explicit condition number
(1 − q)−1. Other restrictions can also suffice, but they must exclude the
general Brouwer setting in a comparable way. A common alternative is
monotone operator theory: if the fixed point can be recast as a root of a
strongly monotone and Lipschitz map (or the solution of a strongly con-
vex variational inequality), then projected gradient or extragradient meth-
ods admit polynomial-time rates. However, such monotonicity typically re-
quires architectural constraints that are at least as stringent as the spectral-
norm/temperature/damping controls used to enforce contraction, and in
practice are less directly compatible with expressive attention mechanisms.
Thus, from the standpoint of both analysis and implementability, contraction
is a natural minimal hypothesis.

From a design perspective, the role of τ and ∥Wm∥2 is now conceptually
clear. Without a lower bound on τ (preventing arbitrarily sharp softmax)
and an upper bound on ∥Wm∥2 (preventing arbitrarily strong amplification
through messages), the Lipschitz constant LΦ can become arbitrarily large;
consequently, no choice of α can ensure αLΦ < 1 uniformly over parame-
ters, and the model class again contains hard instances. The contractive
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regime is therefore not merely a technical convenience: it is the regime in
which fixed-point computation and robustness analysis become algorithmi-
cally well-posed.

A minimal per-iteration lower bound: one must inspect all edges.
Even within the contractive regime, there are information-theoretic limits
on the cost of applying F in sparse adjacency access models. We record a
simple indistinguishability argument showing that any algorithm that claims
to compute the exact update h 7→ Φθ(h) (or the exact attention weights β(h))
must, in the worst case, inspect every edge at least once per iteration.

Formally, consider an oracle model in which an algorithm queries adja-
cency lists and edge features to produce Φθ(h). Suppose the algorithm does
not inspect an edge (j, i) ∈ E. We can construct two instances that are
identical on all inspected edges and nodes but differ on the uninspected edge
feature aji in such a way that the logit eθ(hi, hj , aji) changes by a nonzero
amount while leaving all other logits unchanged. Because the outgoing nor-
malization couples all outgoing edges of j through the denominator, this
modification changes the entire sender distribution β·j(h) and hence modifies
the message received by at least one neighbor of j. Therefore Φθ(h) differs
between the two instances, yet the algorithm would output the same value
on both, contradicting correctness. In particular, under standard sparse ac-
cess (adjacency lists) the per-iteration time is bounded below by Ω(m) edge
inspections, matching the upper bounds in §6 up to multiplicative factors
from the score computation and the hidden dimension.

This lower bound does not preclude approximation schemes (sampling,
truncation, quantization), but it clarifies what must be paid for: any reduc-
tion in edge work necessarily introduces an operator mismatch F̃ ̸= F , and
the stability bounds of §6 quantify precisely how such mismatch propagates
to the embedding via the factor (1− q)−1.

Summary and transition. We have thus isolated two complementary
necessities. On the algorithmic side, without contractivity (or an alterna-
tive structure excluding Brouwer-hard instances) fixed-point computation is
PPAD-hard in the worst case. On the computational side, even when con-
traction holds, exact evaluation of a flow-attentive layer is inherently Ω(m)
per iteration in sparse models. The next section discusses extensions that
preserve the favorable contractive/stable regime while increasing modeling
capacity, including capacity-aware normalizations, block-implicit updates,
and hybrid global–local designs.
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8 Extensions

We record several extensions that preserve the defining structural features
of the flow-attentive layer—locality, outgoing-normalized routing, and the
possibility of enforcing contractivity by explicit parameter controls—while
increasing modeling capacity. In each case, the guiding requirement is that
the induced operator on hidden states remains a well-posed fixed-point map
on (Rn×d, ∥ · ∥∞,2), so that the guarantees of §§6–7 continue to apply after
suitable modifications of the Lipschitz constants.

(i) Capacity-aware normalizations. Outgoing normalization
∑

i∈Nout(j)
βij =

1 encodes conservation at the sender, but in many flow-like domains (traffic,
power, packet routing) one also wishes to represent receiver-side capacity
constraints. A simple modification is to introduce node capacities ci > 0
and replace the raw incoming aggregation by a saturating map that limits
the effective inflow. For instance, letting

m̄i(h) :=
∑

j∈Nin(i)

βij(h)Wmhj , mi(h) := ci · tanh
(m̄i(h)

ci

)
,

we update hi ← σ(Wxxi+mi(h)+b). Since coordinatewise tanh is 1-Lipschitz
and bounded, this introduces an additional nonexpansive component and
hence does not worsen the Lipschitz constant of Φθ beyond the factor al-
ready induced by Wm and the attention map; indeed ∥m(h) −m(h̃)∥∞,2 ≤
∥m̄(h) − m̄(h̃)∥∞,2. One may similarly incorporate edge capacities uji > 0
by tempering logits with a bounded additive bias log uji, i.e.

βij(h) :=
exp

(
(eθ(hi, hj , aji) + log uji)/τ

)∑
k∈Nout(j)

exp
(
(eθ(hk, hj , ajk) + log ujk)/τ

) ,
which preserves exact outgoing conservation (Proposition 4) while steering
probability mass toward higher-capacity edges. When one requires approx-
imate receiver-side conservation (e.g.

∑
j∈Nin(i)

βij ≤ 1), one can apply a
second normalization or projection on the incoming weights. The mathe-
matically clean option is a smooth projection onto a capped simplex at each
receiver (implemented, for example, by an entropic regularized projection),
which is Lipschitz with an explicit modulus depending on the regularization
strength. The resulting operator remains amenable to the same contraction
analysis, at the cost of enlarging LΦ by the projection’s Lipschitz constant.

(ii) Multiple sweeps and block-implicit variants. The Jacobi-style
Picard iteration in Algorithm 1 updates all nodes simultaneously. In sparse
directed graphs with strong local feedback (small directed cycles), Gauss–
Seidel-type sweeps can be empirically more efficient: we update nodes in a
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chosen order and immediately reuse the latest values in subsequent message
computations. Formally, we partition V into blocks V = V1 ∪ · · · ∪ VB and
define a block operator Φ(b)

θ that updates only coordinates in Vb while holding
others fixed. A full sweep is the composition

Sθ := Φ
(B)
θ ◦ · · · ◦ Φ(1)

θ , ht+1 = (1− α)ht + αSθ(ht).

If the original Φθ is LΦ-Lipschitz under ∥ · ∥∞,2, then each block map is also
LΦ-Lipschitz (as a restriction of coordinates), and hence Sθ is LBΦ -Lipschitz
in the worst case by composition. This bound is pessimistic; in practice,
if blocks are chosen to reduce inter-block coupling (e.g. via a topological
order on a condensation DAG, or via strongly connected components), one
can obtain a much smaller effective constant. Independently of ordering, if
we damp the sweep by α and enforce αLip(Sθ) < 1, then Banach’s the-
orem again yields a unique fixed point, and asynchronous iteration theory
implies convergence even when blocks are updated with delays, provided the
underlying map is a contraction. These block updates also admit partial
implicitness: one may solve the fixed point restricted to a small subgraph (a
“patch”) to higher accuracy while treating the complement as fixed boundary
data, thereby allocating compute adaptively without leaving the contractive
regime.

(iii) Hybrid global–local architectures. Local message passing can be
augmented with a global latent state g ∈ Rdg (or a small set of global tokens)
to represent long-range context. We consider an augmented state h̄ = (h, g)
and define

Φhyb
θ (h, g) :=

(
Φloc
θ (h, g), Φglob

θ (h, g)
)
, F hyb

θ (h̄) = (1−α)h̄+αΦhyb
θ (h̄).

Here Φloc
θ may include an additional term Ug in the node pre-activation,

while Φglob
θ aggregates node information, e.g. via a permutation-invariant

readout r(h) =
∑

i ρ(hi) followed by a bounded nonlinearity. If ρ is 1-
Lipschitz and ∥U∥2 is bounded, then Φhyb

θ is Lipschitz with an explicit con-
stant controlled by (LΦ, ∥U∥2) and the Lipschitz modulus of Φglob

θ . Conse-
quently, by choosing α and norm bounds to ensure αLip(Φhyb

θ ) < 1, we re-
tain a unique fixed point on the augmented space. This provides a principled
route to “transformer-hybrid” behavior while maintaining the well-posedness
of the implicit layer: global attention modules are admissible insofar as their
operator norm is controlled, and their softmax temperature is bounded away
from zero analogously to the local case.

(iv) Node- and edge-level tasks; source–sink structure. Once a fixed
point h∗ is defined, task-specific heads may be attached without affecting the
fixed-point existence/uniqueness, since prediction occurs after convergence.
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For node classification or regression we apply a pointwise map ŷi = ψ(h∗i ).
For edge-level tasks (link prediction, edge labels) we form edge representa-
tions from endpoint states and edge features, e.g. ŷij = ψedge([h

∗
i , h

∗
j , aij ]),

optionally including the equilibrium routing weight βij(h∗) as an additional
feature when the task is inherently flow-like. Graph-level tasks use a read-
out ŷ = ψgraph(

∑
i ρ(h

∗
i )). In domains with distinguished sources and sinks

(S, T ), we can incorporate this structure into the state update by adding
fixed boundary injections, e.g. an additional input term pi with pi > 0 for
i ∈ S and pi < 0 for i ∈ T , or by clamping certain coordinates of hi to pre-
scribed values and iterating only over the free coordinates; contractivity on
the free subspace suffices for uniqueness of the unconstrained variables. Dur-
ing training, one may either unroll a finite number of iterations or use implicit
differentiation at the fixed point; the preceding extensions remain compat-
ible with either choice provided the same contractive bounds are enforced
so that the linear system underlying implicit gradients is well-conditioned
(with condition number controlled by (1− αLΦ)

−1).
Taken together, these extensions delineate a family of expressive yet an-

alyzable implicit GNN layers: we may enrich the routing kernel to respect
capacities, allocate computation via block solves and sweeps, incorporate
controlled global context, and support standard node/edge/graph supervi-
sion, all while maintaining the fixed-point guarantees by explicit control of
the relevant Lipschitz constants and damping.

9 Experimental Plan

We evaluate the proposed flow-attentive implicit layer along four axes: (a)
predictive utility on cyclic flow domains, (b) controlled tests isolating di-
rected feedback and sharp routing, (c) compute–accuracy tradeoffs intrinsic
to fixed-point computation, and (d) ablations and architectural comparisons
clarifying when implicit contractive design is advantageous relative to un-
rolled recurrent GNNs and global-attention hybrids.

Benchmarks with intrinsic directed cycles. We focus on domains
where directed cycles are structural rather than incidental. (Power) We
consider standard transmission-network benchmarks with meshed (cyclic)
topology, using public IEEE-style test cases with bus/branch features. Typ-
ical tasks include (i) node-level regression of voltage magnitude/angle surro-
gates and (ii) edge-level regression/classification of line loading or constraint
violations under varying injections. We treat buses as nodes with exoge-
nous features (loads, generations, limits) and lines as directed edges with
attributes (impedance surrogates, thermal limits, direction-dependent sta-
tus), and we optionally include marked source/sink sets derived from net
injection sign. (Traffic) We consider directed road networks with recurrent
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loops (ring roads, grid-like downtown cores). Tasks include predicting edge-
level congestion indicators (speed, density, or travel time) and node-level
accumulation proxies (intersection delay), given static attributes and (when
available) aggregated OD or sensor-derived features. In both domains we re-
port standard predictive metrics (MSE/MAE for regression; AUROC/F1 for
classification) and additionally record the equilibrium residual and iteration
count required to reach a prescribed tolerance.

Synthetic controlled-cycle suites. To isolate the interaction between
directed feedback and attention sharpness, we generate synthetic directed
graphs with planted cyclic structure. Concretely, for chosen parameters
(n,∆max, L) we (i) create a base directed Erdős–Rényi graph with bounded
out-degree ∆max, (ii) plant disjoint directed cycles of length L (including
short cycles L ∈ {2, 3, 4}), and (iii) assign node/edge features so that the tar-
get depends on multi-hop circulation along the planted cycles (e.g. a parity-
like signal or a diffusion-with-reinjection surrogate). We vary (a) the fraction
of nodes participating in cycles, (b) the strength of cycle-dependent signal
relative to noise, and (c) the degree of “bottleneck” edges whose attention
logits are systematically higher. This suite permits stress-testing regimes in
which small τ induces near-deterministic routing and hence potentially large
effective Lipschitz constants through the softmax sensitivity.

Compute–accuracy tradeoffs for equilibrium computation. Because
the forward pass solves (approximately) a fixed point, we quantify the re-
lation between solve accuracy and downstream performance. We adopt the
fixed-point residual

rt := ∥ht+1 − ht∥∞,2,

and we study performance as a function of (i) a fixed iteration budget T
and (ii) an adaptive stopping rule rt ≤ ε. For each dataset we produce
curves of validation error versus (wall-clock) time, and error versus achieved
residual. We report the empirical linear rate by regressing log rt on t in the
convergent regime, and we compare it to the predicted dependence on α and
τ (holding parameter norm bounds fixed). When implicit differentiation is
used, we likewise report the number of iterations required by the backward
linear solve (e.g. a Neumann-series truncation or Krylov method) to reach
a relative tolerance, thereby exposing the conditioning effect governed by
(1− αLΦ)

−1.

Ablations on temperature, damping, and norm control. We ablate
the parameters directly implicated by the contraction analysis. (Tempera-
ture) We sweep τ on a log grid from a sharp regime to a smooth regime,
recording (a) accuracy, (b) convergence failures or slowdowns (as measured
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by residual decay), and (c) statistics of the equilibrium routing kernel (en-
tropy of βij(h∗) per sender and concentration on maximum-probability edges).
(Damping) We sweep α ∈ (0, 1] and evaluate the predicted speed–stability
tradeoff: larger α reduces averaging but can violate αLΦ < 1; smaller α slows
convergence but may enlarge the basin of stable behavior. (Iteration budget)
For unrolled training we compare fixed T to adaptive ε-stopping; we record
generalization versus T to identify whether improvements stem from better
equilibrium approximation or from effectively deeper computation. (Spectral
norm bounds) We compare explicit control of ∥Wm∥2 (via spectral normal-
ization or reparameterization) to unconstrained training, and we measure
the resulting empirical Lipschitz proxy (e.g. Jacobian-vector product norms
estimated at equilibrium) as well as the frequency of divergence in Picard
iteration.

Comparisons to unrolled recurrent GNNs. We compare against (i)
standard message passing with attention but without outgoing-normalization,
(ii) recurrent GNNs that apply the same local update for a fixed number of
steps (with and without residual connections), and (iii) equilibrium-style
models without conservation constraints. To make comparisons meaning-
ful, we match parameter counts and per-iteration edge operation costs. We
additionally compare training regimes: unrolled backpropagation through
T steps versus implicit differentiation at the equilibrium. Beyond predic-
tive accuracy, we report stability under feature perturbations: given per-
turbed inputs (x + ∆x, a + ∆a) with controlled magnitudes, we measure
∥h∗(x, a) − h∗(x + ∆x, a + ∆a)∥∞,2 and compare to analogous differences
in the unrolled models at their final iterate, thereby empirically probing the
contraction-based stability claim.

Comparisons to transformer-hybrid architectures. We implement
controlled global–local baselines by augmenting local message passing with
either (i) a global token updated by attention to nodes or (ii) a graph-level
readout fed back to nodes. We consider two variants: a fully unrolled hybrid
with T rounds, and an implicit hybrid constrained by operator-norm control
on the global-to-local map. We then test whether the implicit, contractive
hybrid achieves similar benefits of global context at lower iteration counts
or with improved robustness in cyclic graphs. As an additional diagnostic
we examine the sensitivity of performance to long-range dependencies by
artificially increasing graph diameter while preserving local cycle statistics.

Evaluation protocol and reporting. For each task we perform multiple
random seeds, report mean and standard deviation, and provide convergence
statistics (fraction of runs reaching ε within budget, median iterations, and
residual trajectories). We separate optimization instability (training diver-
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gence) from fixed-point instability (failure of Picard iteration at inference)
and report both. Finally, we include a small-scale stress test in which we in-
tentionally violate contraction controls (e.g. decreasing τ and removing norm
bounds) to document qualitative failure modes and to substantiate the ne-
cessity of explicit restrictions for reliable equilibrium computation in cyclic
settings.

10 Discussion and Limitations

Our design imposes explicit contractivity controls (via damping, tempera-
ture, and operator-norm bounds) in order to obtain a unique equilibrium
and a predictable iterative solve. This raises an immediate tension between
expressivity and guaranteed convergence. On the one hand, allowing un-
constrained message amplification, sharp routing (small τ), or highly state-
sensitive attention scores can represent rich, potentially multi-stable dynam-
ics on cyclic directed graphs. On the other hand, such regimes can destroy
contraction and thereby forfeit both uniqueness of the equilibrium and al-
gorithmic reliability of Picard iteration (and, in the worst case, tractability
of fixed-point computation). We view the contractive formulation not as a
claim that all useful cyclic reasoning must be contractive, but rather as a
disciplined subset in which equilibrium computation can be made routine,
monitored, and robust.

Expressivity under contraction. A standard concern is that contrac-
tion precludes modeling sharp, long-range, or resonant interactions in graphs
with feedback. We emphasize two counterpoints. First, contraction bounds
are typically enforced on a single layer operator in a specific norm, and
can be relaxed at the architecture level via composition: stacking multi-
ple contractive implicit layers, interleaving with feed-forward (non-implicit)
transformations, or using multi-head message components can increase repre-
sentational capacity while keeping each equilibrium computation well-posed.
Second, the relevant question is not whether the map is contractive for all
inputs and parameters, but whether training discovers parameters that yield
stable equilibria on the data distribution. In practice, the admissible set
determined by α, τ , and ∥Wm∥2 may still contain models that route infor-
mation directionally through β(h∗) in a data-dependent way; contraction
limits sensitivity, but does not force trivial uniform attention.

Sufficient versus necessary conditions. The explicit constants appear-
ing in our contraction analysis are sufficient and generally conservative. They
are derived from worst-case Lipschitz bounds for the softmax normalization
over Nout(j), the Lipschitzness of eθ, and degree-dependent aggregation fac-
tors under ∥ · ∥∞,2. None of these steps is tight in general. For example, (i)
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attention logits may occupy a regime where the softmax Jacobian is much
smaller than its worst-case upper bound; (ii) the effective out-degree may
be substantially below ∆max once routing concentrates; and (iii) the com-
position of maps may exhibit cancellation not captured by submultiplicative
norm bounds. Consequently, models may converge reliably even when the
stated inequality αLΦ < 1 is violated by the bound, and conversely may
exhibit slow convergence in regimes that formally satisfy a loose bound with
q = αLΦ close to 1. We therefore interpret the theory as providing design
guidance and certificates of stability rather than an exact characterization of
all stable parameterizations.

Failure modes beyond the theory. Even when the map is contractive
in principle, several practical failure modes remain.

(i) Near-critical slowing. If q = αLΦ is close to 1, convergence is lin-
ear but slow, and iteration counts needed to reach a given ε can be large.
This affects both inference latency and the conditioning of backward implicit
solves, which scale with (1− q)−1. In such regimes, it may be preferable to
increase τ (smoother routing), reduce ∥Wm∥2, or choose smaller effective hid-
den dimension d for the implicit block while shifting expressivity to explicit
feed-forward components.

(ii) Sharp-routing instability. Small τ induces high sensitivity of βij(h)
to changes in the scores. If the scoring network is not controlled (e.g. an
MLP with large Lipschitz constant), the induced operator may behave like
a switching system, leading to oscillatory Picard trajectories or apparent
convergence to different equilibria under small perturbations. While damp-
ing can mitigate such effects, it may simultaneously erase the benefits of
sharp routing by effectively averaging across iterations. Monitoring residual
trajectories and attention entropies provides a basic diagnostic.

(iii) Numerical and implementation issues. Outgoing-normalized soft-
max can overflow for large logits; stable implementations require the stan-
dard log-sum-exp trick per sender j. Further, graphs with |Nout(j)| = 0 re-
quire a convention (e.g. no outgoing mass and hence no contribution to any
receiver) that should be consistent across iterations. Finally, stopping rules
based on rt = ∥ht+1 − ht∥∞,2 can be deceived by finite-precision plateaus;
one may supplement with a maximum iteration budget and, when needed,
check ∥Fθ(ht)− ht∥∞,2 directly.

Limitations of conservation constraints. Outgoing normalization yields
an exact conservation law per sender and endows β(h) with a row-stochastic
interpretation. This is appropriate when attention is intended to model rout-
ing of a conserved quantity or flow-like influence. However, some domains
require amplification or attenuation at nodes, or require multiple simultane-
ously conserved commodities. While amplification can be represented in part
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by Wm and by additive exogenous terms Wxxi + b, the strict row-stochastic
structure may be restrictive when the true mechanism is not approximately
conservative. Extensions include adding learnable per-sender gates (with
explicit bounds to preserve contractivity), or representing multiple channels
with separate conservation constraints.

Deployment considerations for real-time infrastructure. For power
and traffic applications, the principal operational constraint is predictable
latency under distribution shift. Implicit equilibrium computation is attrac-
tive insofar as it admits a monitored, anytime solve: we can stop when rt ≤ ε
or fall back to a fixed iteration budget T with a known bound on approxi-
mation error when the contraction factor is certified. Nevertheless, several
deployment-specific issues remain.

(i) Real-time budgets and worst-case graphs. The per-iteration cost scales
with m, and the required number of iterations depends on q and the desired
ε. In systems with strict deadlines, one must choose (α, τ, κm) to keep q
comfortably below 1 under expected operating conditions, or else accept a
coarser ε with a quantified error–latency tradeoff.

(ii) Nonstationarity and topology changes. Infrastructure graphs change
(line outages, road closures). Stability bounds suggest that small pertur-
bations in features yield controlled perturbations in h∗ when q < 1, but
they do not address abrupt topology edits that change ∆max or invalidate
calibrated norm/temperature choices. Practical systems should include au-
tomated checks for degree changes and revalidation of convergence behavior.

(iii) Safety and interpretability. Although the routing kernel β(h∗) is a
well-defined distribution, its semantics depend on the learned scoring func-
tion. For safety-critical contexts, it is not sufficient that the model con-
verges; one must additionally ensure that learned routing respects domain
constraints (e.g. forbidding attention along de-energized lines). Such con-
straints can be enforced by masking edges prior to normalization; the theory
remains applicable provided masking is treated as a fixed graph restriction
during the solve.

In summary, contraction is a deliberate restriction that yields clear con-
vergence and stability guarantees, but it does not eliminate the need for em-
pirical monitoring, careful numerical implementation, and domain-specific
constraint handling, particularly in real-time cyclic infrastructure settings.
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