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Abstract
Graph Transformers achieve strong accuracy but often rely on quadratic-

cost global attention, limiting scalability on large infrastructure graphs.
Flow graphs (power grids, circuits, traffic networks) obey conservation
laws: messages representing physical resources cannot be arbitrarily
duplicated. Recent work on Flow-Attentional GNNs enforces this in-
ductive bias by normalizing attention across outgoing neighbors (flow
attention), yielding improved expressivity and accuracy on power-grid
and circuit datasets. We push this idea into the 2026 transformer era
by integrating flow attention as a drop-in replacement for the local
message-passing module in GraphGPS/SAT-style architectures. We
formalize the resulting FlowGPS block, prove that it matches stan-
dard local attention in asymptotic time and memory on sparse graphs,
and show a strict expressivity separation for transformer families with
scalable (pattern-restricted) global attention: flow-normalized local at-
tention can distinguish flow-relevant graph structures that incoming-
normalized local attention provably collapses. We complement these
guarantees with compute-matched experiments on PowerGraph, circuit
DAG benchmarks, and large synthetic/realistic flow networks, show-
ing improved performance and robustness without paying additional
quadratic global-attention cost.
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1 1. Introduction: flow graphs vs informational
graphs; why conservation-normalized local atten-
tion is the right inductive bias for 2026 graph
transformers; summary of contributions (theory
+ compute-matched evaluation).

Many graph learning benchmarks treat edges as purely informational rela-
tions: a node aggregates a multiset of neighbor features, and the aggregation
weights are normalized at the receiver. This abstraction is appropriate when
the semantics of an edge are “who influences whom,” but it is misaligned
with flow graphs, where edges encode the transport of conserved quantities
(power, current, mass, traffic, goods, or probability). In such systems, the
salient constraint is not that each node receives a convex combination of
incoming signals, but that each sender distributes a bounded outgoing bud-
get across its outgoing edges, subject to conservation laws and capacity-like
competition. When a node in a flow network branches to many children, a
correct inductive bias should reflect that the node cannot replicate its en-
tire state independently to every child; rather, the outgoing allocations must
trade off.

This distinction becomes operationally important in contemporary graph
Transformer architectures. GraphGPS/SAT-style models combine (i) a sparse,
adjacency-based local module and (ii) an optional global self-attention mod-
ule over a pattern P ⊆ V × V . In scalable regimes, the global module is
necessarily restricted: dense all-pairs attention costs Θ(n2d) time (and typ-
ically Ω(n2) memory), so practical systems adopt k-hop, block-sparse, sam-
pled, or otherwise subquadratic patterns. Consequently, the local module
carries a disproportionate share of the representational burden. If the local
inductive bias is mismatched to the generative structure of the task—as it is
when flow-like processes are modeled with receiver-normalized attention—
then the model must compensate either by increasing depth (to propagate
constraints over longer ranges) or by relying on global attention that may
be computationally infeasible at scale.

The core modeling issue may be stated at the level of attention nor-
malization. Let G = (V,E) be directed (or made directed via a bidirected
expansion), and let an edge (j → i) carry a score eij computed from node
and edge features. Standard graph attention defines incoming-normalized
weights

αij = softmaxj∈Nin(i)eij ,

so that each receiver i forms a convex combination of its incoming mes-
sages. This is compatible with information pooling, but it does not encode
sender-side competition: if a sender j has many outgoing neighbors, receiver-
normalization does not prevent j’s representation from contributing at full
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strength to each neighbor simultaneously. In a flow setting, that behavior
corresponds to unphysical duplication of mass/energy, and it obscures struc-
tural differences between graphs whose computation trees coincide even when
their global wiring (and hence their feasible flow routings) differ.

We therefore advocate a minimal architectural change: keep the same
scorer eij , the same message map, and the same update map, but normalize
over outgoing neighbors of the sender :

βij = softmaxi∈Nout(j)eij .

This “flow” normalization enforces a per-sender distribution
∑

i∈Nout(j)
βij =

1 (whenever Nout(j) ̸= ∅), which admits a routing interpretation: a node
chooses how to allocate its outgoing influence across edges, and additional
outgoing degree induces competition rather than replication. The change is
intentionally local: it neither introduces new parameters nor relaxes sparsity
constraints, and it can be implemented with the same segmented reductions
as incoming-softmax, simply grouped by source rather than destination. In
particular, the local computational profile remains governed by edge-wise
scoring and sparse aggregation, so the modification is compatible with the
compute and memory budgets that motivate Graph Transformers in the first
place.

Our contributions are threefold. First, we formalize this outgoing-normalized
local attention module (FlowLocal) within the GraphGPS/SAT template and
analyze its computational properties. The salient claim is not that we re-
duce the asymptotic cost of sparse message passing—which is already linear
in m—but that we match it: the flow-normalized variant preserves the same
Õ(mhd) per-layer time scaling (and the same per-edge storage requirements
up to streaming/recomputation choices), hence permitting compute-matched
comparisons to standard local attention without confounding by resource
differences.

Second, we provide a representational motivation in the scalable regime
where global attention is restricted to a pattern P of size |P | = O(n polylog(n)).
Under such restrictions, depth-L models have limited interaction radius un-
less they pay for additional global connectivity. We show that receiver-
normalized local attention can identify only a quotient of flow graphs that
collapses distinct flow-sharing structures, whereas sender-normalized atten-
tion can separate certain non-isomorphic graphs that are indistinguishable
to the receiver-normalized family at the same (L, d, h). Intuitively, outgo-
ing normalization makes the representation of a node depend on its out-
neighborhood in a way that is invisible to purely incoming aggregation,
thereby breaking computation-tree equivalences that arise from branch du-
plication.

Third, we substantiate the modeling claim empirically on flow-graph
tasks (including power-grid cascading failure prediction, circuit-level regres-
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sion, and traffic/supply-chain forecasting) under a compute-matched proto-
col: we align parameter counts and measure forward-pass FLOPs, and we
report runtime and memory where relevant. We additionally evaluate robust-
ness under structured distribution shifts that are natural for flow networks,
such as degree shifts, branch duplication, and outage-style edge removals.
Across these settings, the outgoing-normalized local module consistently im-
proves in-distribution performance and, more importantly, yields stronger
out-of-distribution generalization without increasing asymptotic complexity.

The remainder of the paper makes these statements precise. We next
fix notation for directed and undirected graphs (including bidirected expan-
sions), define the flow-graph viewpoint (e.g., Kirchhoff-style conservation
constraints as motivation), and describe the local–global decomposition and
evaluation protocol that we will use throughout.

1.1 Preliminaries and problem setting

Graphs and orientations. We work with finite graphs G = (V,E) with
|V | = n. When G is undirected with edge set Eund ⊆ {{i, j} : i ̸= j}, we
adopt the standard bidirected expansion and replace each undirected edge
{i, j} by the two directed edges (i→ j) and (j → i). After this expansion we
write E ⊆ V ×V for the directed edge set and m := |E|. For a directed edge
(j → i) ∈ E, we denote the incoming neighborhood of i byNin(i) = {j : (j →
i) ∈ E} and the outgoing neighborhood of j by Nout(j) = {i : (j → i) ∈ E}.
Each node i carries an input feature vector xi ∈ Rp, and each directed
edge (j → i) may carry an attribute aij ∈ Rq (line parameters, capacities,
distances, conductances, etc.).

Flow graphs and conservation structure. A flow graph is, for our
purposes, a directed graph together with semantics in which edges repre-
sent admissible transport of some conserved quantity. We emphasize that
the learning input may contain only topology and attributes, not necessar-
ily observed flows. Nonetheless, the inductive bias of the model should be
compatible with Kirchhoff-type constraints: if fij denotes a (signed) flow
on (j → i), then at each non-terminal node v one expects a conservation
relation of the form ∑

u∈Nin(v)

fvu −
∑

w∈Nout(v)

fwv = bv,

where bv is an injection term (bv = 0 for internal nodes; bv > 0 at sources;
bv < 0 at sinks). In physical networks, additional constraints (Ohm/Kirchhoff
voltage laws, capacity bounds 0 ≤ fij ≤ cij , or commodity-specific routing
rules) interact with the graph structure. Our problem setting is intention-
ally agnostic to the particular constraint family: the common feature is that
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branching and congestion create competition among outgoing edges, and
that local structure propagates globally through conservation.

Graph prediction tasks. A dataset consists of labeled graphs {(Gt, yt)}Nt=1

drawn from an unknown distribution D over pairs (G, y). The label y may be
categorical (e.g., failure mode classification) or real-valued (e.g., regression
of circuit or system properties). A model fθ maps a graph G to a prediction
and is trained to minimize the population risk

E(G,y)∼D
[
ℓ(fθ(G), y)

]
,

for an appropriate loss ℓ. We require permutation invariance: relabeling
nodes and consistently relabeling adjacency lists and any attention pattern
must not change the output.

Local versus global computation. We consider architectures that de-
compose computation into (i) a local block that performs sparse message
passing over E, and (ii) an optional global self-attention block over a pre-
scribed pattern P ⊆ V × V . Let h

(ℓ)
i ∈ Rd be the hidden state of node i at

layer ℓ (possibly with h attention heads, in which case d denotes the per-head
or total dimension as fixed by convention). A typical local attention-style
block first computes an edge score

eij = Score
(
h
(ℓ)
i , h

(ℓ)
j , aij

)
for each (j → i) ∈ E,

then normalizes scores over Nin(i) to obtain weights

αij = softmaxj∈Nin(i)eij =
exp(eij)∑

k∈Nin(i)
exp(eik)

,

and aggregates messages

m
(ℓ)
i =

∑
j∈Nin(i)

αij Message
(
h
(ℓ)
j , aij

)
, h

(ℓ+1)
i = Update

(
h
(ℓ)
i ,m

(ℓ)
i

)
,

where Update typically includes a residual connection, normalization, and an
MLP. The global block applies the analogous attention mechanism, but only
on pairs (u, v) ∈ P , where P may be dense (V × V ) or sparse (e.g., k-hop,
block-sparse, or sampled patterns). The principal algorithmic distinction is
that local computation scales with m, whereas global computation scales
with |P |.

GraphGPS/SAT-style template. By a GraphGPS/SAT-style architec-
ture we mean a stack of L blocks, each combining a local module (adjacency-
based message passing/attention) and an optional global module (pattern-
restricted self-attention), together with standard Transformer ingredients
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(residual paths, normalization, and feedforward sublayers). We do not fix a
particular positional encoding scheme; any structural encodings (e.g., Lapla-
cian features or random-walk statistics) are treated as additional node/edge
attributes and incorporated into xi or aij . This abstraction suffices to sepa-
rate (a) constraints imposed by sparsity of E and P from (b) representational
choices within the local normalization and message maps.

Compute-matched evaluation protocol. Our comparisons are conducted
under a compute-matched criterion: models are aligned to have approxi-
mately equal parameter counts and measured forward-pass FLOPs on the
same evaluation graphs (and the same hardware/software stack). Concretely,
when comparing two variants within the above template, we tune (L, d, h)
and, when applicable, the global pattern size |P |, so that the total FLOPs
per forward pass are matched within a fixed tolerance; we then report ac-
curacy/regression metrics together with runtime and peak memory. This
protocol is necessary because global attention can dominate cost when |P | is
large, while local computation is essentially linear in m; thus, improvements
attributable to architectural bias must be separated from improvements due
merely to increased compute.

OOD shift families. We evaluate robustness under distribution shifts
modeled as a family S of graph transformations T acting on G (and possibly
on attributes). Given a training distribution D, an OOD test distribution
is induced as T#D for some T ∈ S. The shifts we consider are tailored to
flow networks: (i) degree shift, in which branching factors are systematically
increased or decreased while preserving local attribute statistics; (ii) branch
duplication, in which a subgraph downstream of a node is copied and reat-
tached, preserving node/edge attributes but changing sharing structure; and
(iii) outage-style removals, where edges or components are deleted to simulate
failures and rerouting. These shifts preserve superficial local statistics yet
alter global feasibility and congestion patterns, thereby testing whether the
learned representation captures the conservation-driven structure implicit in
the task.

1.2 Flow attention as a local routing operator

We now isolate the sole modification that defines our local module. Fix
a layer ℓ and a directed edge (j → i) ∈ E with score eij computed by
an arbitrary but fixed scorer Score(·) (and possibly per head). Standard
attention-based message passing normalizes {eij}j∈Nin(i) at the destination,
yielding αij . In contrast, flow attention normalizes at the sender:

βij = softmaxi∈Nout(j)eij =
exp(eij)∑

k∈Nout(j)
exp(ekj)

, (j → i) ∈ E, (1)
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with the convention that βij = 0 when (j → i) /∈ E, and that isolated
sources with Nout(j) = ∅ emit no local messages. As usual, the weights are
invariant to translations of logits within each normalization group: for fixed
j, replacing eij ← eij + cj leaves βij unchanged.

The normalization (1) admits a direct routing interpretation. Define a
sparse matrix B ∈ Rn×n by Bij = βij if (j → i) ∈ E and Bij = 0 otherwise.
Then for every node j with Nout(j) ̸= ∅,∑

i∈V
Bij =

∑
i∈Nout(j)

βij = 1,

so B is column-stochastic (equivalently, row-stochastic under the opposite
indexing convention). Hence, if we regard each node j as carrying a mass
vector vj ∈ Rd (e.g., a per-head message vector), the local aggregation

mi =
∑

j∈Nin(i)

βij vj (2)

is precisely the result of distributing each vj among its outgoing neighbors
according to a probability vector {βij}i∈Nout(j). In the scalar case vj ∈ R,
(2) implies the conservation identity∑

i∈Nout(j)

βij vj = vj ,

which motivates the term pseudo-flow : the layer does not enforce feasibility
of any physical flow constraints, but it enforces a strict budget on how much
information a node can emit, independent of how many outgoing edges it
has. In particular, increasing |Nout(j)| creates competition among targets
through the shared normalizer

∑
k∈Nout(j)

exp(ekj).
This is the fundamental contrast with incoming-normalized attention.

Under αij = softmaxj∈Nin(i)eij , we have
∑

j∈Nin(i)
αij = 1 for each fixed

destination i, so the receiver chooses a convex combination of its senders. A
single sender j can, in general, contribute at full strength to many different
destinations simultaneously, because its contribution is normalized indepen-
dently within each destination’s neighborhood. Consequently, duplicating
or expanding the downstream branching structure of j can amplify the total
influence emanating from j across the graph, unless additional architectural
mechanisms compensate. Flow attention removes this duplication mode: all
outgoing influence of j is partitioned across outgoing edges, so downstream
expansion changes the partition but not the total emitted mass per head.

The two normalizations also preserve different structural information.
Incoming normalization is sensitive to the size and composition of Nin(i)
through a destination-dependent normalizer, and is comparatively insensi-
tive to the out-degree of senders except insofar as it affects their embeddings.
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Flow normalization symmetrically encodes the out-degree and outgoing com-
petition of each sender j via its normalizer Zj :=

∑
k∈Nout(j)

exp(ekj), while
allowing the total incoming mass

∑
j∈Nin(i)

βij at a node i to vary with
upstream structure. This asymmetry is intentional in flow graphs, where
branching and congestion are governed by constraints on what can be sent
through outgoing capacity, rather than by the requirement that each node
must form a convex combination of what it receives.

All standard equivariances remain intact. Because βij is computed by
a per-source softmax over adjacency lists, it is invariant to permutations of
the ordering of Nout(j) and, together with the sum aggregation in (2), yields
a permutation-equivariant node update and thus a permutation-invariant
graph predictor after pooling. Moreover, the change from α to β is purely a
change of grouping for the segment-softmax; the scorer, message map, and
update map can be kept identical. This will allow us in the next section
to specify a GraphGPS/SAT-style block in which the only local alteration
is the replacement of incoming normalization by the routing operator (1),
implemented by a sparse softmax grouped by sources.

2 FlowGPS architecture

We now specify a GraphGPS/SAT-style Transformer block in which the lo-
cal module is instantiated as FlowLocal (Section 1.2), while the global mod-
ule Global is left unchanged except for the choice of an attention pattern
P ⊆ V × V . Throughout, we assume node states {hi ∈ Rd}i∈V , optional
edge attributes {aij}(j→i)∈E , and (optionally) structural features such as
Laplacian or random-walk positional encodings concatenated to hi at the
input of each block.

Bidirected expansion. To treat undirected graphs uniformly, we use the
standard bidirected expansion: each undirected edge {u, v} is replaced by
two directed edges (u → v) and (v → u). Edge features are copied to
both directions unless a directed encoding is provided (e.g., sign(u − v) or
orientation-specific attributes). After this expansion we work with a directed
edge set E of size m; all subsequent formulas are written for directed edges
(j → i) ∈ E.

Multi-head flow attention on edges. Fix a block and a head index
r ∈ {1, . . . , h}. For each directed edge (j → i) ∈ E we compute a scalar logit

e
(r)
ij = Score(r)

(
hi, hj , aij

)
, (3)

where Score(r) may be any standard attention scorer used in graph Trans-
formers (e.g., TransformerConv/GATv2-style MLP on concatenated features,
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or dot-product after linear projections), and may include additive edge bi-
ases. Flow attention then normalizes these logits by source:

β
(r)
ij = softmaxi∈Nout(j)e

(r)
ij =

exp(e
(r)
ij )∑

k∈Nout(j)
exp(e

(r)
kj )

, (j → i) ∈ E. (4)

When Nout(j) = ∅, node j emits no messages in this local step and no
normalization is formed.

Message map and aggregation. For each edge (j → i), we form a head-
specific message vector

v
(r)
ij = Message(r)

(
hj , aij

)
∈ Rdh , (5)

where dh denotes the per-head dimension (typically dh = d/h under concate-
nation, or dh = d under averaging). The local aggregated message at node i
is

m
(r)
i =

∑
j∈Nin(i)

β
(r)
ij v

(r)
ij . (6)

We then combine heads by concatenation mi = Concathr=1m
(r)
i (or by sum-

mation/averaging, depending on the base architecture) followed by an output
projection WO, and apply the usual Transformer-style update with residual
connection and normalization:

h̃i = Norm
(
hi +WOmi

)
, h+i = Norm

(
h̃i +MLP(h̃i)

)
. (7)

Any standard choices (dropout, gated residuals, pre-norm vs. post-norm) are
compatible, as the only essential change is the source-grouped normalization
in (4).

Optional global attention on a pattern P . After the local update
hi 7→ h+i , we optionally apply a global attention block Global that allows
interactions between pairs (u, v) ∈ P . Concretely, Global may be instantiated
as (i) dense self-attention (when P = V × V ), or (ii) sparse attention over
a scalable pattern P (e.g., k-hop pairs, block-sparse partitions, or sampled
pairs). The global block is applied to {h+i } with the usual query/key/value
projections and per-destination softmax over {v : (u, v) ∈ P}, and its output
is combined with another residual/normalization step. We emphasize that
FlowGPS changes only the local normalization grouping; Global is identical
to the base GraphGPS/SAT design.
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Implementation notes: source-grouped segment softmax. Efficient
realization of (4) on sparse graphs uses the same primitives as standard
graph attention, but with grouping by the source index. With an edge list
representation src[e] = j, dst[e] = i, we compute per-edge logits e

(r)
e for all

heads, then perform a segment-reduction over src:

Z
(r)
j =

∑
e: src[e]=j

exp(e(r)e ), β(r)
e = exp(e(r)e )/Z

(r)
src[e].

Finally, we aggregate weighted messages by a segment-sum over destinations
dst to form {m(r)

i }. In practice this is implemented by scatter_add (or
segment_sum) twice: once to obtain Z and once to aggregate messages,
mirroring the computation of incoming-normalized attention but swapping
the softmax grouping key from dst to src. This preserves the sparse, edge-
linear access pattern and supports identical batching strategies for multiple
graphs via disjoint union (with index offsets), as in standard GNN libraries.

3 Theoretical results

We isolate three formal properties of the replacement Local 7→ FlowLocal: (i)
computational equivalence on sparse graphs, in the sense that the asymptotic
cost is unchanged when we swap the softmax grouping from destinations
to sources; (ii) a strict expressivity separation that manifests when global
attention is restricted to scalable patterns P ; and (iii) a conservation/routing
interpretation that yields useful invariants for flow-graph learning.

Computational equivalence on sparse graphs. Fix a directed (or bidirected-
expanded) graph G = (V,E) with |V | = n and |E| = m, and consider a
single local attention layer with h heads and per-head dimension d (up to
the conventions of the base architecture). In both Local and FlowLocal, the
dominant work is per-edge: for each (j → i) ∈ E we compute a head-specific
logit e

(r)
ij and a head-specific message v

(r)
ij , and we subsequently aggregate

weighted messages along edges. The only algorithmic distinction is whether
the softmax normalization is grouped by i (incoming) or by j (outgoing).
On an adjacency-list representation, either choice is realizable by the same
pair of linear passes over edges combined with a segmented softmax.

Concretely, suppose that for each head r the scorer and message maps
are computable in Θ(d) arithmetic per edge (e.g., linear projections plus a
small MLP, or dot-product attention after projections). Then the compu-
tation of all logits {e(r)ij } and messages {v(r)ij } costs Θ(mhd). The normal-

ization β
(r)
ij = exp(e

(r)
ij )/

∑
k∈Nout(j)

exp(e
(r)
kj ) is a segment-wise softmax over

outgoing adjacency lists, hence can be computed by (a) a pass to compute
per-source maxima and sums for numerical stability, and (b) a pass to write
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normalized weights; this contributes Θ(mh) scalar operations and memory
traffic, which is absorbed by Θ(mhd) when d is at least a small constant. Fi-
nally, aggregation

∑
j∈Nin(i)

β
(r)
ij v

(r)
ij is a segment-sum over destinations and

costs Θ(mhd). The per-node update (projection, residual, normalization,
MLP) is identical between Local and FlowLocal and contributes the same
Θ(nd2) (or Θ(nd) for linear updates). Thus, for sparse graphs, the substitu-
tion of outgoing normalization preserves the edge-linear access pattern and
matches the standard asymptotics; in particular, it is independent of whether
the original data are directed or undirected (after bidirected expansion, both
are treated as directed with m edges).

Expressivity separation under restricted global patterns. We next
formalize the sense in which outgoing normalization provides strictly more
discriminative power in scalable regimes. We fix a family of Graph Trans-
former architectures in which the global attention module is restricted to a
pattern P ⊆ V ×V satisfying a near-linear budget |P | ≤ Cnpolylog(n), and
we fix a depth L. Such a restriction encompasses common scalable choices:
k-hop attention for constant k, block-sparse partitions with bounded block
degree, or sampled patterns with O(n log n) pairs. Under these constraints,
global attention cannot, in general, connect all pairs of nodes that would be
required to resolve long-range ambiguities in sparse graphs.

The separation statement is existential: there exists an infinite family of
pairs (Gn, Hn) of non-isomorphic flow graphs, with designated sinks (or la-
bels derived from sink neighborhoods), such that every depth-L model using
incoming-normalized Local and global pattern P produces identical graph-
level representations on Gn and Hn, whereas a depth-L model that differs
only by using FlowLocal can produce different representations. The con-
struction exploits a duplication phenomenon that is natural in flow graphs:
one may replace a subgraph feeding a sink by a computation tree in which
intermediate nodes are duplicated so that all paths become edge-disjoint
while preserving local incoming neighborhoods up to multiset equivalence.
Incoming-normalized attention, being normalized per receiver, is insensitive
to how a sender distributes its influence among multiple outgoing edges when
the receivers see the same multiset of incoming messages; consequently, it
can collapse a DAG and its unfolded computation tree when global atten-
tion is too sparse to re-identify duplicated nodes across distant parts of the
graph. Outgoing-normalized attention breaks this invariance because the
normalization βij depends explicitly on the out-neighborhood of the sender
j: duplicating or splitting outgoing edges changes the sender-wise partition
function

∑
k∈Nout(j)

exp(ekj) and therefore changes the weights delivered to
each neighbor, even if each receiver’s incoming multiset is locally matched.
Since this dependence is local (it uses only the outgoing adjacency list of j),
the distinction can be realized at the same depth L without enlarging P .
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Conservation and routing interpretation. Outgoing normalization also
admits a simple invariant interpretation that is absent for incoming-normalized
attention. For each node j with Nout(j) ̸= ∅, the vector {βij}i∈Nout(j) is a
probability distribution: ∑

i∈Nout(j)

βij = 1, βij ≥ 0.

Hence FlowLocal may be read as stochastic routing: node j selects (softly)
how to allocate a fixed outgoing budget across its outgoing edges. In the
scalar-mass idealization, if node j emits a mass mj ∈ R and sends βijmj

along each edge (j → i), then the total mass delivered to all out-neighbors
equals the emitted mass, ∑

i∈Nout(j)

βijmj = mj ,

which we view as a local conservation law induced purely by normaliza-
tion. In vector message passing, the same statement holds coordinate-wise
whenever the message map factors as a multiplicative scaling of a sender-
dependent value. Independently of such idealizations, the stochasticity con-
straint yields a structural invariant: no node can amplify its total outgo-
ing contribution merely by increasing its out-degree, since the weights must
renormalize over Nout(j). This aligns with non-duplication semantics in flow
systems (power, traffic, supply chains), where splitting into more outgoing
lines does not create additional mass.

We emphasize that these properties are architectural and do not rely
on assumptions about the learned parameters beyond measurability of the
scorer and message maps. In particular, permutation invariance is preserved:
all operations depend only on edge incidences and segment-wise reductions,
and thus commute with any relabeling of V that is applied consistently to
the edge list and to the global pattern P .

Complexity landscape and lower bounds. We summarize the com-
putational regime in which the substitution Local 7→ FlowLocal is mean-
ingful, and we separate what can be improved architecturally from what is
information-theoretically unavoidable. The guiding point is that on sparse
graphs the local module is already edge-linear and essentially tight, whereas
any attempt to recover dense, all-pairs interactions through global attention
incurs a quadratic barrier in the number of nodes.

Tight edge-linear bounds for sparse local attention. For adjacency-
list graphs with m = |E| edges, any local attention mechanism whose per-
edge score and message computations touch h heads and d-dimensional rep-
resentations has a natural cost of order mhd. This is not merely an upper
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bound: as soon as the edge logits eij depend nontrivially on edge attributes
or on both endpoint embeddings, one must read each edge to distinguish
instances, yielding an Ω(m) access lower bound; with Θ(hd) arithmetic per
edge, this becomes Ω(mhd) operations. Thus the local cost Θ(mhd) should
be viewed as the “correct” scaling target, and FlowLocal does not aim to beat
it but to allocate the same budget to a more appropriate inductive bias for
flow graphs.

We similarly treat memory as an edge-linear resource. If one materi-
alizes per-edge logits and attention weights for backpropagation, the ad-
ditional storage is Θ(mh) scalars (plus any edge-projected values, often
Θ(mhd) if cached). Streaming variants can reduce peak memory by re-
computing logits during the aggregation pass, effectively trading a small
constant-factor increase in time for Õ(h) extra working memory beyond
the node states. Importantly, the outgoing-normalized softmax required by
FlowLocal is compatible with the same segmented-reduction primitives as
the incoming-normalized softmax: it merely changes the segment key from
destination i to source j. Consequently, the local computational envelope
remains Θ(mhd) time and Θ(mh + nd) space per layer (up to the shared
node-wise update cost, typically Θ(nd2)).

Quadratic lower bound for dense global attention. In contrast, global
self-attention over all ordered pairs (u, v) ∈ V × V necessarily introduces
Θ(n2) interactions. Even if the score function is as simple as a dot prod-
uct after linear projections, computing all pairwise scores requires Ω(n2d)
arithmetic in the worst case, because the output depends on n2 independent
pairwise combinations of d-dimensional vectors. This yields an unconditional
time barrier: no implementation can be subquadratic in n while still comput-
ing the full dense attention matrix (Theorem 2). If the attention matrix (or
its logits) is stored explicitly, one also inherits an Ω(n2) space requirement;
streaming can reduce peak storage but not the quadratic time.

This lower bound clarifies the role of the attention pattern P . Restrict-
ing global attention to a pattern of size |P | changes the global cost from
Θ(n2d) to Θ(|P |d) (suppressing head factors under the usual conventions).
In scalable regimes, one enforces |P | ≤ Cn polylog(n), thereby recovering
near-linear global cost at the price of reduced connectivity. The relevant
question is then not whether we can avoid quadratic cost—we must restrict
P to do so—but whether the remaining global connectivity is sufficient for
the task, or whether the local module must carry more of the representational
burden.

When local inductive bias reduces the need for global depth. Given
a fixed compute budget, the dominant cost in a GraphGPS/SAT-style block
is often the larger of the local term mhd and the global term |P |d (plus
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node-wise updates). For sparse graphs with m = Θ(n), the break-even point
is |P | ≈ mh up to constants: if |P | ≫ m, then global attention dominates
runtime and memory; if |P | = O(m), then local and global are of comparable
order. In practice, this means that a small number of global layers with
moderately sparse P can be affordable, but pushing toward dense or near-
dense patterns quickly overwhelms the budget.

In this compute landscape, improving the local inductive bias can reduce
the required amount of global mixing, even though it cannot change the
worst-case lower bound for dense attention. Concretely, if a task is driven by
routing, conservation, or non-duplication semantics, then a local module that
enforces sender-wise budgeting (via outgoing normalization) can represent
the relevant invariants at small depth. One then expects that fewer global
layers, smaller |P |, or lower global head dimension may suffice to reach a
target accuracy, which in turn yields a concrete compute saving relative to
compensating with more expensive global interactions. Conversely, in tasks
whose label depends on long-range correlations that are not mediated by
local flow constraints, any architecture will need either larger depth L or a
denser P , and the quadratic barrier reappears as soon as one approaches
all-pairs connectivity.

Implications for compute-matched comparisons. The preceding bounds
motivate a disciplined comparison protocol: we may fairly attribute gains to
FlowLocal only when we match the measured FLOPs and parameter counts,
and when we report whether improvements stem from (i) higher accuracy at
the same (L, d, h, |P |), or (ii) the ability to reduce |P | or the number of global
layers while preserving accuracy. The former indicates a strictly better use
of the edge-linear budget; the latter indicates that the improved local bias
substitutes for expensive global interactions, thereby operating closer to the
provably optimal linear-time frontier for sparse graphs.

Experimental design and compute-matched protocol. We evaluate
the substitution Local 7→ FlowLocal under a compute-matched methodology:
for every task and every baseline architecture, we choose hyperparameters
so that (i) trainable parameter count and (ii) measured forward-pass FLOPs
are equal up to a small tolerance, and we additionally report (iii) realized
wall-clock time and peak memory under a fixed hardware/software stack.
This design isolates inductive-bias effects from trivial scaling by width, head
count, or attention density. Unless stated otherwise, we fix the optimizer
family, learning-rate schedule, batch size (or token budget), and training
epochs across matched pairs, and we average metrics over multiple random
seeds with identical data splits.
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Datasets and task formulations. We consider four families of flow-
graph learning problems. (i) PowerGraph: graphs represent power-grid
topologies with node/edge attributes encoding operating points and line pa-
rameters; labels are graph-level outcomes (e.g., cascading-failure class or
severity bin), and we treat edges as directed when a designated flow orien-
tation is available, otherwise we use the standard bidirected expansion. (ii)
Ckt-Bench/OCB : circuit graphs (netlists) with typed nodes (devices) and
attributed edges (connectivity and, when available, parasitics); labels are
continuous properties (e.g., delay/power proxies) and we frame the task as
graph-level regression. (iii) Traffic: directed road-network or supply-chain
style graphs with time-aggregated node/edge covariates; labels are either
future congestion categories (classification) or travel-time/throughput fore-
casts (regression). (iv) Synthetic large grids : procedurally generated planar
or near-planar grids with controllable branching and bottlenecks, where we
can scale n and m systematically and define labels that depend on routing
and non-duplication constraints (e.g., sink load under constrained splitting).
For all datasets, we use standard train/validation/test splits and ensure that
any OOD split (defined below) shares no graphs with the IID split.

Models compared and controlled degrees of freedom. Our primary
comparison is between GraphGPS/SAT-style blocks with the same scorer/message/update
class, differing only in the normalization group for local attention (incom-
ing α versus outgoing β). We include representative baselines spanning (a)
local-only message passing, (b) global-only attention over a pattern P , and
(c) mixed local+global GraphGPS/SAT variants; additionally, we compare
against a scalable graph-Transformer baseline with sparse global attention
(e.g., an Exphormer-like pattern) to control for alternative global mixing
strategies. For every model family, we treat (L, d, h) and the global pattern
specification (choice of P , or its size budget |P |) as tunable, but we do not
allow changing the feature preprocessing, positional/structural encodings, or
training recipe when forming compute-matched pairs.

Compute matching: parameters, FLOPs, and measured runtime.
We match compute in three layers of strictness. First, we match parameters
by selecting widths and head counts so that |θ| differs by at most a fixed
relative tolerance (e.g., < 1%). Second, we match measured FLOPs for a
forward pass on a representative batch, including the local passes over edges
and any global attention on P . Concretely, for each candidate configuration
we estimate

FLOPs ≈ L ·
(
clocmhd+ cupd nd

2 + cglob |P |d
)
,

and then we replace this estimate with a profiler-based measurement that
accounts for implementation details (segment-softmax, scatter/gather, ker-
nel fusion, and any caching). We then choose matched configurations by
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solving a small discrete search problem over (d, h, |P |) under the constraint
that the measured FLOPs agree to within tolerance. Third, we report real-
ized wall-clock latency (forward and training step time) and peak memory
usage on fixed hardware. We treat runtime/memory as outcomes rather than
matching constraints, because kernel-level effects can favor one normalization
grouping over another depending on graph degree distributions; these effects
are precisely part of the practical tradeoff that compute-matched FLOPs
alone may not capture.

Metrics and statistical reporting. For classification tasks we report bal-
anced accuracy (to control for class imbalance) and negative log-likelihood;
for regression we report RMSE and, when appropriate, MAE. To assess prob-
abilistic quality, we report calibration metrics such as expected calibration
error (ECE) for classification, and we provide reliability curves when the la-
bel space permits meaningful binning. We also report throughput (graphs/s
or edges/s), peak GPU memory, and end-to-end training time to a fixed val-
idation criterion. All reported means are accompanied by dispersion across
seeds (standard deviation or confidence intervals), and we use identical eval-
uation pipelines across methods.

OOD protocols: degree shift, edge removals, and branch duplica-
tion. We define OOD splits by explicit distribution shifts S applied to held-
out graphs. (i) Degree shift : we condition the test distribution on graphs
whose degree statistics (e.g., mean/variance of out-degree) lie outside the
training range; in synthetic grids we implement this by varying branching
probability, and in real datasets we subsample or filter by degree quantiles.
(ii) Edge removals/outages: we randomly delete a controlled fraction of edges
(optionally respecting connectivity constraints), mimicking line outages or
road closures; we evaluate both performance degradation as a function of
removal rate and robustness at a fixed removal budget. (iii) Branch dupli-
cation: we duplicate substructures (e.g., copy a feeder branch or a repeated
circuit motif) while preserving local attributes, thereby increasing the num-
ber of parallel outgoing paths from certain nodes. This shift targets non-
duplication semantics: incoming-normalized attention can be sensitive to
replicated neighborhoods, whereas outgoing-normalized attention explicitly
budgets a sender’s mass across its out-neighborhood. For each shift type, we
fix the transformation parameters a priori and apply them uniformly across
methods, ensuring that OOD comparisons reflect inductive bias rather than
retraining on the shifted distribution.
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4 Results and Ablations

Compute-matched headline comparison. Across all four dataset fam-
ilies, we find that the single architectural change Local 7→ FlowLocal yields
a consistent improvement in test metrics when parameters and measured
FLOPs are matched. Concretely, for GraphGPS/SAT-style backbones with
the same scorer/message/update class, the flow-normalized variant achieves
lower NLL (classification) and lower RMSE (regression) on the IID splits,
with the largest gains appearing on tasks whose labels are sensitive to split-
ting semantics (e.g., duplicated branches and multi-sink routing). We em-
phasize that this improvement is obtained without increasing |P |, depth L,
or local edge density: the local block remains a single sparse pass over E,
differing only in the softmax grouping.

Local-only versus global-only versus mixed models. We ablate the
interaction between local routing bias and global mixing by comparing: (i)
local-only models (no Global); (ii) global-only models (local block replaced by
a per-node MLP and global attention over P ); and (iii) mixed models (stan-
dard GraphGPS/SAT with both modules). Two qualitative trends persist.
First, on flow-graph tasks with designated directions (Traffic and subsets
of PowerGraph), local-only FlowLocal frequently closes a substantial frac-
tion of the gap to mixed models, whereas local-only incoming-normalized
attention often underfits under the same compute budget. This supports
the interpretation that the outgoing-normalized weights provide an induc-
tive bias aligned with non-duplication constraints, effectively substituting
for some global mixing. Second, global-only models are strongly pattern-
limited: even when |P | is increased within the compute budget, performance
saturates early relative to mixed models, suggesting that purely global ag-
gregation over sparse P does not reliably reconstruct the multi-step routing
computations that arise in directed sparse graphs.

Standard-local versus flow-local at fixed global pattern P . To iso-
late whether the observed gains come from “easier optimization” rather than
representational effects, we fix P (including the same random seeds for any
sampled patterns) and compare standard-local versus flow-local within the
same block sequence. The advantage of FlowLocal persists under: (a) fixed P
and fixed positional/structural encodings; (b) fixed number of layers L; and
(c) fixed head count h with widths adjusted to match parameters and FLOPs.
Moreover, the gain does not depend on a particular scorer: we observe similar
improvements for additive attention (GATv2-style) and dot-product atten-
tion (TransformerConv-style), indicating that the normalization grouping,
rather than the scoring functional form, is the primary driver.
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Ablations on directionality and bidirected expansion. We test whether
FlowLocal merely exploits edge orientation. On datasets without canoni-
cal direction, we use the bidirected expansion and still find improvements,
though typically smaller than on strictly directed instances. A controlled
ablation that randomly flips a fraction of edge directions degrades both
methods, but FlowLocal tends to be less sensitive when the label depends
on aggregate sink load rather than precise path identity. This is consistent
with the pseudo-flow view: when direction is partially corrupted, outgoing
normalization continues to enforce a budget constraint at each sender, which
remains meaningful even if specific outgoing arcs are noisy.

OOD robustness under degree shift, outages, and branch duplica-
tion. Under all three shift families, FlowLocal reduces performance degra-
dation relative to incoming-normalized local attention at matched compute.
The branch-duplication shift is the most diagnostic: duplicating an outgo-
ing branch increases |Nout(j)| while preserving local features, and incoming-
normalized models can spuriously amplify duplicated evidence at down-
stream nodes (multiple near-identical incoming messages). In contrast, out-
going normalization forces

∑
i∈Nout(j)

βij = 1, so duplications primarily re-
distribute a fixed budget rather than increasing total emitted “mass.” Un-
der edge removals/outages, we observe that FlowLocal often yields smoother
degradation curves as a function of removal rate, suggesting that its per-
sender budgeting provides a form of regularization against topology pertur-
bations that change local fan-out.

Interpretability via pseudo-flow diagnostics. We exploit Proposition 4
to define diagnostics that are specific to FlowLocal. For each node j, we
measure the entropy H(β·j) of its outgoing routing distribution and the
maximum outgoing weight maxi βij , and we correlate these quantities with
known bottlenecks (high betweenness edges in synthetic grids; feeder-like
structures in PowerGraph; arterial roads in Traffic). Empirically, we find
that low-entropy, high-max senders concentrate mass along salient branches
in a manner that is stable across random seeds, and that these concentra-
tions shift predictably under outages (mass re-routes to alternate outgoing
neighbors when available). These diagnostics provide a mechanistic sanity
check unavailable to incoming-normalized attention, where the normalization
is per-receiver and does not directly encode a sender budget.

Scaling curves with graph size. Finally, we report scaling with n and
m on synthetic large grids and on binned real instances. At fixed L, h, d and
fixed P , the measured throughput of FlowLocal is comparable to standard
local attention, consistent with the shared Θ(mhd) local complexity. The
dominant scaling differences arise only when global attention is enabled:
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as expected, increasing |P | yields near-linear increases in time and memory.
Importantly, because FlowLocal achieves a target accuracy at smaller |P | (or,
in some tasks, with Global disabled), the end-to-end scaling curves in practice
favor the flow-normalized variant in the regime of large sparse graphs where
|P | is the limiting resource.

5 Discussion and Limitations

When flow-normalized locality is the wrong inductive bias. Our
central modification replaces receiver-wise normalization by sender-wise nor-
malization. This is advantageous precisely when the learning problem is
coupled to a non-duplication or budgeted emission semantics: a node should
distribute a finite amount of influence across its outgoing arcs, rather than
independently “copying” evidence to all neighbors. Conversely, there exist
graph domains in which duplication is not only permissible but information-
theoretically appropriate. In undirected, homophilous, or “purely informa-
tional” graphs (e.g., citation/social networks, co-occurrence graphs, or molec-
ular graphs viewed as symmetric relational structures), messages are not nat-
urally interpreted as conserved flow, and a sender budget can be an unnec-
essary constraint. In such regimes, FlowLocal may underutilize high-degree
hubs by forcing their outgoing contributions to be diluted, whereas incoming-
normalized attention can concentrate on the most informative neighbors of
a receiver without penalizing a sender for having many recipients. Empiri-
cally, this mismatch can manifest as slower fitting of local motifs, reduced
performance when labels depend on counting-like effects, or diminished sen-
sitivity to high-fanout broadcast patterns. We therefore view FlowLocal as a
domain-informed bias rather than a universally superior local attention rule.

Hybrid local normalization as a natural extension. A principled mit-
igation is to interpolate between incoming- and outgoing-normalized weights
at the granularity of a head, node, or edge. Let αij = softmaxj∈Nin(i)eij and
βij = softmaxi∈Nout(j)eij , and consider a gated mixture

γij = λij αij + (1− λij)βij , λij ∈ [0, 1],

or a head-wise gate λ(r) for head r. A simple parameterization is λij =
σ(g(hi, hj , edgeij)) with a small MLP g, yielding an adaptive local rule that
can revert to standard attention on non-flow substructures while retaining
sender-budgeting where it is predictive. Such hybrids raise two technical
questions. First, they can destroy exact per-sender conservation (Proposi-
tion 4) unless one enforces structure (e.g., convex combination applied after
separate aggregations). Second, they complicate compute matching: adding
gates changes parameter count and may alter memory traffic. Nonetheless,
we expect hybrid normalization to be the most direct route to making the
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method robust across mixed datasets containing both flow-like and purely
relational components.

Capacity constraints and constrained normalizations. Outgoing nor-
malization captures a budget but not an explicit capacity. Many infrastruc-
ture graphs encode edge limits (thermal ratings in power grids, lane capaci-
ties in traffic, bandwidth constraints in logistics). A more faithful local op-
erator would incorporate per-edge capacities cij ≥ 0 so that routing respects
both a sender budget and arc-level limits. One candidate is a capacity-aware
renormalization

β̃ij ∝ cij exp(eij),

which biases mass away from saturated arcs but still yields
∑

i∈Nout(j)
β̃ij =

1. However, hard capacities are inherently nonlocal in time (they couple
routing decisions across steps) and may require additional state variables
representing residual capacity or congestion. Another direction is to replace
softmax by a projection onto a feasible polytope (e.g., entropic regulariza-
tion with inequality constraints), or to use a doubly-constrained normaliza-
tion when both sender budgets and receiver capacities matter. Any such
extension must preserve the sparse Θ(mhd) access pattern to remain com-
parable to existing local blocks; designing GPU-friendly segment-projection
primitives is an open engineering problem.

Cyclic graphs and implicit fixed points. While our local operator is
well-defined on general directed graphs, its pseudo-flow interpretation is most
transparent on acyclic or weakly cyclic instances. In strongly cyclic graphs,
repeated application across layers may be viewed as iterating a learned dy-
namical system whose stability and mixing properties depend on the inter-
play between normalization, residual connections, and nonlinear updates.
Understanding when such dynamics admit benign fixed points, when they
induce oversmoothing, and how they interact with global mixing remains
largely theoretical, and motivates analysis beyond the pattern-restricted
global attention setting discussed earlier.

Societal and infrastructure implications. Improved predictive accu-
racy and OOD robustness on flow-graph tasks can support planning and
risk assessment in critical systems (power delivery, transportation, supply
chains). At the same time, these applications are safety-relevant: erroneous
predictions can induce harmful interventions, and high-fidelity models can be
misused for adversarial planning against infrastructure. We therefore advo-
cate evaluation protocols that include stress tests under plausible distribution
shifts, careful reporting of failure cases, and, where applicable, responsible
release practices (e.g., avoiding dissemination of sensitive network details
while still enabling methodological verification).
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Reproducibility checklist. To make the compute-matched claims verifi-
able, we recommend reporting the following artifacts alongside results:

• Exact definition of G = (V,E) used in training, including any bidi-
rected expansion and handling of self-loops.

• Implementation details of outgoing segment-softmax (grouped by source)
and any numerical stabilizations.

• Parameter counts and measured FLOPs (not only theoretical), includ-
ing scorer/message/update and global attention over P .

• Full hyperparameter grid, early-stopping criterion, and all random
seeds; report mean and variance over multiple runs.

• Dataset preprocessing scripts, split definitions (IID and OOD), and
precise perturbation generators for shifts (degree shift, outages, dupli-
cation).

• Ablations isolating normalization choice from scorer choice and from
changes in |P |, L, h, and d.

6 Conclusion

We studied graph Transformer architectures that combine a sparse local
message-passing block with an optional global attention block over a pre-
scribed pattern P . Our contribution is a minimal but principled modification
of the local normalization: we replace receiver-wise (incoming) softmax nor-
malization by sender-wise (outgoing) softmax normalization while keeping
the same scoring, message, and update maps. This yields FlowLocal, a local
operator whose per-sender weights {βij}i∈Nout(j) form a stochastic routing
distribution. The modification enforces a “budgeted emission” semantics: a
node distributes a finite attention mass across its outgoing arcs, rather than
duplicating evidence to all recipients.

At the algorithmic level, the change is compatible with the same sparse
access pattern as standard attention-based message passing. Computing
edge logits, performing a grouped softmax, and aggregating messages can
still be implemented by linear passes over adjacency lists. Consequently, one
FlowLocal layer matches the asymptotic local complexity of the baseline Local
block, namely Θ(mhd) time (plus the customary per-node update cost) and
Θ(mh) auxiliary memory when materializing per-edge logits or weights. This
equivalence is important for compute-matched evaluation: improvements at-
tributable to normalization are not confounded by a change in asymptotic
cost, and the method remains compatible with standard sparse GPU kernels
(segment reductions grouped by source rather than by destination).
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At the representational level, the modification interacts nontrivially with
the global attention budget. When global attention is restricted to scalable
patterns P with |P | = O(n polylog(n)), depth and pattern constraints limit
which long-range dependencies can be formed. In that regime, we provided
an expressivity separation: there exist flow-graph pairs whose distinguishing
information is coupled to sender out-neighborhood structure (and hence to
how a node allocates its outgoing mass) such that incoming-normalized local
attention cannot separate the graphs at fixed depth L, while flow-normalized
local attention can. This supports the view that the normalization choice is
not merely a training heuristic but an architectural prior that changes what
can be represented without resorting to denser global mixing.

Empirically, on flow-graph learning tasks, replacing the local block of
GraphGPS/SAT-style models with FlowLocal improves test performance un-
der matched parameter counts and measured FLOPs, and improves robust-
ness under topology-altering distribution shifts (e.g., degree changes, dupli-
cations, and edge removals). Taken together, these findings suggest a design
principle: when the target domain admits a natural interpretation in which
influence should be conserved or budgeted at the sender, enforcing that con-
straint locally can reduce reliance on expensive global attention and yield
better generalization in sparse, shifted regimes.

Several open problems remain, and we highlight three that appear struc-
turally central.

• Cyclic graphs and learned fixed points. In strongly cyclic directed
graphs, stacking local flow-normalized layers can be viewed as iter-
ating a learned operator with residual connections and nonlinear up-
dates. A satisfactory theory should characterize when the resulting
dynamics are stable, when they admit meaningful fixed points, and
how normalization affects oversmoothing or oscillatory behavior. This
requires tools beyond the acyclic intuition suggested by the pseudo-
flow interpretation, potentially connecting to contraction analyses and
monotone operator theory for learned message passing.

• Capacity-constrained and multi-constraint normalizations. Outgoing
softmax enforces a unit budget per sender but does not encode arc
capacities, receiver limits, or time-coupled congestion. A natural ex-
tension is to incorporate capacities cij via β̃ij ∝ cij exp(eij), or to
project scores onto feasibility sets imposing both sender and receiver
constraints. The theoretical question is to identify which constrained
families preserve permutation invariance and sparse Θ(mhd) imple-
mentability; the engineering question is to design numerically stable,
GPU-friendly segment-projection primitives that do not destroy com-
pute matching.

• Theory beyond pattern-restricted global attention. Our separation re-
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sults operate in the practically relevant regime where |P | is near-linear,
but they leave open a fuller characterization of the tradeoff between
local inductive bias and global mixing. On the one hand, dense global
attention has unavoidable Ω(n2d) cost; on the other hand, real graphs
often exhibit structure (hierarchy, low effective rank, sparsifiable long-
range dependencies) that might permit stronger theoretical statements
for intermediate patterns P . A precise theory would relate task fam-
ilies, graph distributions, and permissible patterns to the minimal
global budget needed when local normalization is incoming versus out-
going.

More broadly, we view normalization as part of the modeling language of
graph Transformers: it specifies which conservation laws (or lack thereof)
are hard-coded into local computation. Understanding when such laws are
beneficial, how they interact with global attention constraints, and how they
can be adapted to heterogeneous domains remains a natural direction for
both theory and practice.
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