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Abstract

Behavioral metrics on synthetic retrieval tasks (e.g., Associative
Recall) reveal that some architectures succeed while others fail, but
they do not explain *why* nor predict whether success will generalize.
Building on mechanistic evaluation with interchange interventions, we
define a small set of causal-intervention-derived invariants—mechanistic
signatures—that characterize where and when key—value information
is computed and written in a model. We formalize a certification
problem: given an early checkpoint, can we predict out-of-distribution
(OOD) generalization on retrieval/binding tasks under compositional
splits? For a controlled family of tasks (AR, ATR, and ATR++ with
ambiguity and multi-hop queries) and a broad class of residual sequence
models, we provide (1) a signature extraction algorithm with sample
complexity guarantees, (2) certificate conditions that imply OOD accu-
racy lower bounds under a linearized-mechanism assumption, and (3)
a lower bound showing that in-distribution accuracy alone cannot cer-
tify OOD performance. Large-scale sweeps across Transformers, SSMs,
and hybrid mixers demonstrate that early mechanistic signatures pre-
dict final OOD performance better than dev accuracy, enabling early
stopping and principled architectural ablations (e.g., kernel size/local
mixing). We release an open-source mechanistic evaluation harness for
standardized certification of retrieval mechanisms.
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1 Introduction

In the setting of distribution shift induced by compositional recombination,
we cannot treat in-distribution behavioral performance as a reliable proxy
for out-of-distribution (OOD) competence. Concretely, even when a model
attains high development accuracy (or equivalently assigns high likelihood
to the correct next token on all observed development instances), this does
not force the model to have learned the underlying rule that defines the task
family; it only forces agreement on the finite set of compositions present in
the development split. When the OOD split withholds particular query—
answer compositions while preserving the same underlying binding rule, two
models may be indistinguishable by any development metric and yet differ
maximally in OOD accuracy. The difficulty is not statistical noise but iden-
tifiability: from development behavior alone, the implemented computation
is underdetermined.

The synthetic retrieval /binding families we study (AR, ATR, and ATR++)
make this underdetermination explicit. These tasks are intentionally con-
structed so that the intended solution is a simple, local algorithm (compute
an association between a key and a value, then read out the value when
queried), but there exists a competing strategy that fits the development
distribution by exploiting superficial regularities or memorizing observed
compositions. Both strategies can be realized by standard residual sequence
models and both can achieve near-perfect development accuracy. Yet only
the former strategy generalizes to compositional OOD splits. We therefore
require a diagnostic that distinguishes how the model produces its answers,
not merely whether it answers development queries correctly.

We refer to this phenomenon as mechanistic divergence: the same input—
output behavior on development data can arise from qualitatively different
internal computations. In AR/ATR-type tasks the relevant divergence is
between (i) a bind-then-read mechanism, in which the model constructs an
internal variable representing the key—value association at an intermediate
token/site and subsequently routes this variable to the query position, and
(ii) a direct-retrieval mechanism, in which the association is effectively writ-
ten only at the query position or in late layers, bypassing an intermediate
binding representation. The two mechanisms can coincide on the develop-
ment distribution because the distribution may not expose the combinatorial
degrees of freedom that separate them. However, once we present held-out
compositions, a direct-retrieval mechanism can fail catastrophically while
bind-then-read remains correct by construction. This is precisely the regime
in which development accuracy is maximally misleading as an OOD predic-
tor.

Our goal is therefore to construct an early, architecture-agnostic certi-
fication method that detects the presence of the intended mechanism be-
fore full training completes. “Early” means at checkpoints m; with ¢t < T,



where T is the final training step; this matters operationally because we
wish to select hyperparameters, architectures, or training curricula without
paying the full cost of training each candidate to completion. “Architecture-
agnostic” means that the method should not depend on attention-specific ar-
tifacts (e.g., head-wise interpretability), but instead should apply uniformly
to residual sequence models with identifiable module boundaries, including
attention, state-space, convolutional mixers, and hybrids. In particular, we
do not assume that the mechanism is localized to a single head or that it can
be read off from weights; we assume only that we can intervene at a fixed set
of sites (e.g., block inputs/outputs, mixer outputs, MLP outputs, memory
ports).

The central idea is to replace behavioral evaluation with a causal test
that probes whether a specific internal site carries the information required
for correct prediction. We will use interchange interventions: given a clean
instance o and a corrupted counterpart c obtained by corrupting exactly
one crucial token, we selectively replace internal representations of ¢ with
those of o at a chosen site/token, and we measure the restoration of the cor-
rect next-token likelihood. This yields a normalized likelihood-restoration
attribution score that is comparable across checkpoints and architectures.
By aggregating such scores over a small number of examples, we obtain a
low-dimensional mechanistic signature that is stable under benign perturba-
tions and separates bind-then-read from direct-retrieval with margin. The
remainder of the paper formalizes these tasks and interventions, defines the
signature and certificate predicates, and shows how these objects support
both mechanistic certification (sufficient conditions for OOD accuracy) and
mechanistic prediction (estimating final OOD performance from early check-
points).

2 Background: task families, mechanisms, and causal
probes

We briefly specify the synthetic task families and the intervention-based
diagnostic that we will use throughout. A task instance is presented as
an autoregressive input sequence x comnsisting of a document segment, a
divider token, and a query segment; the model must predict the next token
Ytrue at the query position. The document encodes a set of latent bindings
(associations) generated by a simple algorithmic process; the query requests
one of these bindings (or an iterated application thereof), and the correct
next token is uniquely determined by the underlying rule.

AR (Associative Retrieval). In AR, the document is a multiset of key—
value pairs written as tokens, e.g. (ki,v1),...,(kp,v,) in some linearized
format with separators. The query presents a key k, that appears in the



document, and the correct next token is the associated value v,. This fam-
ily isolates the elementary binding operation: the model must identify the
value token aligned with the queried key and output it. The generative pro-
cess intentionally permits many superficial cues (frequency, position, local
n-grams) to be non-informative, so that the intended computation is “bind
then read” rather than pattern matching on incidental statistics.

ATR and ATR+-+ (iterated/ambiguous retrieval). ATR extends
AR by requiring structured retrieval in which the binding rule is composed
along a small graph, typically a rooted tree encoded in the document. Con-
cretely, the document specifies parent pointers (or labeled edges) among en-
tities; the query asks for an ancestor (or otherwise composed) lookup, such
as “return the label/value of the k-hop ancestor of node u”. ATR++ fur-
ther modifies the generation to include controlled ambiguity and additional
nuisance structure. One convenient way to view ATR++ is as ATR plus
(i) distractor bindings that are locally plausible but globally inconsistent,
and/or (ii) multiple candidates sharing partial identifiers, so that heuristics
that succeed on the development distribution (e.g. “choose the most recent
match” or “prefer a frequent label”) can be made to fail on compositional
splits. The salient point for our purposes is not the particular linearization,
but that these families share a common latent variable: an association s
that is defined in the document and must be routed to the query position,
possibly after a bounded number of compositions.

Two competing mechanism classes. For AR/ATR-type instances there
are (at least) two qualitatively distinct internal strategies that can be realized
by standard residual sequence models. The bind-then-read (induction-like)
mechanism computes an intermediate representation of the binding variable
s at a locus tied to the document (e.g. at the value token, or at a designated
memory token/port), and later reads out s to produce yiye when the query
is processed. In contrast, a direct-retrieval mechanism does not form a stable
intermediate binding representation at a document locus; rather, it produces
the answer by a shortcut computation localized to the query position and/or
late layers (e.g. a lookup keyed by query-side features that correlates with the
development compositions). Our certification goal will require distinguishing
these mechanisms via internal causal evidence rather than by behavioral fit.

Interchange interventions and likelihood restoration. We opera-
tionalize “internal causal evidence” using interchange interventions on pairs
of inputs. Let o be a clean instance sampled from the task distribution and
let ¢ be a corrupted counterpart obtained by corrupting exactly one crucial
token (for example, changing the queried key, swapping a value token, or
altering a single edge in the ATR document). We write p,,(- | z) for the



model’s next-token distribution. Denote

Aclean -— pm(ytrue | 0)’ Qcorr = pm(ytrue | C)-

Given a site f (a module boundary such as a block input/output, mixer
output, MLP output, or memory read port) and a token position i (chosen
by role: key/value/query/memory), we form an intervened run in which we
overwrite the internal representation of ¢ at (f,7) with that from o, yielding
a distribution pp, r p+(- | ¢,0) and

Qint *= Pm,f+ f* (ytrue ‘ ¢, 0)-

We then define the normalized likelihood-restoration attribution score

Attriby, (f,4;0,¢) = M,
Gclean — Qcorr

interpreting it as the fraction of the corruption-induced likelihood drop that
is causally repaired by restoring the representation at (f,7). When acjean >
acorr and the intervention does not overshoot, this quantity lies in [0, 1] and
is comparable across checkpoints and architectures. Intuitively, if the model
has constructed the binding variable s at a document locus, then restoring
that locus should strongly restore the correct likelihood; if instead the model
computes the answer only at the query locus, then restoration should con-
centrate at query-side sites. Aggregating Attrib across a small number of
(0, ¢) pairs yields the mechanistic signatures used in subsequent sections.

3 Problem formulation: certification and predic-
tion under compositional shift

We fix a task-instance family 7 (AR/ATR/ATR++), a model class M of
residual sequence models with identifiable module boundaries, and a train-
ing procedure that produces a sequence of checkpoints (mt)g;o. Training is
performed on Dirain; model selection is permitted to consult a development
distribution Dye, drawn from the same generative regime as training; eval-
uation is on a specified out-of-distribution split D,oq that is compositional
in the sense that the underlying binding rule is unchanged while particular
compositions are held out. Our goal is to use limited white-box causal access
at an early checkpoint m; (typically ¢ < T') to either (i) certify high final
OOD accuracy, or (ii) predict it well enough to support early stopping and
architecture/hyperparameter selection.

Mechanistic Certification Problem (MCP). An instance of MCP con-
sists of (7, M), a fixed OOD split specification (known to the evaluator), and
an intervention oracle that, for selected sites/tokens, can compute likelihood-
restoration attributions Attrib,,, (f,%;0,c) from clean—corrupted pairs (o, c)



sampled from Dy, with a designated corruption operator Corr. We must
output (a) a signature extraction map ¢ : M — R¢ computable from at
most N such pairs and a bounded number of forward passes per pair, and
(b) a certificate predicate Cert : R? — {0,1}. The intended interpretation
is: if Cert(¢(m;)) = 1, then the training run is forced (up to an explicit
failure probability) to reach a final checkpoint my with high OOD accuracy.
Formally, for target parameters (9, ) we seek a sound certificate of the form

Pr[Agoda(my) > 1 -6 | Cert(¢p(my)) =1] > 1- 3,

where the probability is over the random draw of training data, optimization
noise, and the sampling used to estimate ¢. Since a vacuous predicate (Cert =
0) is always sound, we also require coverage: Pr[Cert(¢(m;)) = 1] should
be nontrivial over the distribution of training runs, subject to the same
intervention budget. Thus MCP is a constrained design problem: we trade
intervention cost and coverage against the strength of the OOD guarantee.

Mechanistic Prediction Problem (MPP). MPP relaxes certification
to quantitative forecasting. Here we again compute ¢(m;) from bounded in-
terventions at an early checkpoint, but instead of a Boolean predicate we out-
put a predictor g such that g(¢(m;)) approximates the eventual Ayoq(mr).
The objective is to minimize prediction error (e.g. E[|g(¢(m+)) — Aooa(mr)]])
across training runs that vary architecture, hyperparameters, and seeds. In
contrast to MCP, MPP need not be conservative; it is useful whenever ac-
curate ranking of candidates is more valuable than hard guarantees.

OOD split families. We emphasize three OOD regimes, all of which pre-
serve the binding semantics but break spurious shortcuts. First, held-out
query—answer compositions: the vocabulary of keys/values (or entity iden-
tifiers/labels) is shared across splits, but specific query—answer pairings are
excluded from Dyp,in and appear only in Dyoq; this targets memorization
of frequent compositions. Second, held-out structures: in ATR/ATR++ the
document encodes a small graph (typically a rooted tree); Dyoq holds out par-
ticular structural motifs (e.g. branching patterns, edge-label configurations,
or ancestor-query templates) while keeping local edge semantics fixed, so
that only genuinely compositional reasoning transfers. Third, length extrap-
olation: Dyoq increases sequence length, number of bindings, or hop count
beyond the training range; the rule is identical, but superficial correlations
with absolute position or depth no longer match.

These formulations isolate what mechanistic access must provide: evi-
dence, visible at early training time and under a strict intervention budget,
that the model has implemented a binding computation that is invariant to
the specified compositional shift. The next section defines the intervention
sites, corruption distributions, and invariant features that constitute ¢ and
support Cert.



4 Mechanistic signatures: sites, corruptions, invari-
ants, and certification

We now define the mechanistic signature ¢(m;) and the associated certificate
predicate Cert in terms of interchange interventions on a fixed, architecture-
agnostic set of module boundary sites. Throughout, x denotes an input
sequence (document || divider || query), o a clean instance, ¢ = Corr(o) its
corrupted counterpart, and e the next-token answer for o at the query
position.

Intervention sites and token roles. Let F be a finite set of intervention
sites, each corresponding to an identifiable boundary in a residual block.
Concretely, for each layer ¢ we include (when present) the block input,
the sequence-mixer output (attention/SSM/conv), and the MLP output;
for architectures with explicit memory, we additionally include read/write
ports. For an input x, a site f € F produces token-indexed representa-
tions f(x)[i] € R%model, We also fix a small set of token roles R determined
by the task template (e.g. DocKey, DocValue, Query, and optionally Mem-
ory); each role r € R corresponds to a deterministic rule selecting one or

a few token indices i € {1,...,|z|}. A site-token pair is thus an element
(f,i) € Fx{1,...,|z|}, typically chosen by composing f with a role-based
index rule.

Corruption distribution. The corruption operator Corr must alter ex-
actly one crucial token—a token that participates in the binding relation
that determines yiue. In AR this may be the value token paired with the
queried key; in ATR/ATR++ it may be an edge label or a node identifier on
the unique path relevant to the query (or, for k-hop queries, one of the re-
quired ancestor links). Formally, Corr samples a role repycial and an index ¢*
according to the instance template, and replaces x;» by a uniformly sampled
token of the same syntactic type (preserving format constraints). We always
evaluate likelihoods at the clean answer yue; thus a successful corruption
produces a substantial drop in pp,, (Yuue | ®) without changing superficial
statistics such as length or delimiter placement.

Likelihood-restoration attribution. Given (o,¢) and a site-token pair
(f,7), we define the interchange-intervened distribution

P, feg(- | ¢,0)

to be the next-token distribution produced by running m; on input ¢ while
replacing the activation f(c)[¢] with f(0)[i] (and leaving all other activations
as in the run on ¢). Let

Aclean = Pmy (ytrue ’ 0)7 Acorr = Pmy (ytrue ’ 0)7 Qint ‘= Pmy, f f* (ytrue | c, 0)‘



We then use the normalized restoration score

QAint — Qcorr

,
Qclean — Qcorr T+ K

Attriby,, (f,4;0,¢) :=

with a small K > 0 to avoid degeneracy when the corruption has negligible
effect; in implementation we additionally clip to [0,1] and discard samples
with Gelean — @eorr Delow a fixed threshold.

Invariant features (the signature). Fix a finite set S C F x R of site-
role pairs; each (f,r) € S induces a site-token pair (f,i(r,x)) on input x.
For a checkpoint my, we define i, := E[Attrib,,, (f,i(r,0);0,c)] where the
expectation is over 0 ~ Dgey and ¢ = Corr(o). The signature ¢(my) €
RY consists of low-dimensional functionals of {tsr}(pryes, specifically: (i)
Token-locus ratio (bind-then-read vs direct write),

. Zf M f DocValue
. Zf 1if,Query 1

with small n > 0; (ii) Layer concentration at a pre-specified early anchor
layer {g,
. Z(f,r)ES: layer(f)=(o :Ulf,r‘

A
> (fres e+ 1

iii) Stability under benign perturbations o + o” (e.g. swapping irrelevan
iii) Stabilit der beni turbati ! ing irrel t
bindings or inserting distractors),

Stab := E[[¢(my; 0) — ¢p(my; 0”)]|2];

and (iv) Sparsity of the normalized attribution profile wy, := pugs, /(3 (frry B
1), measured via normalized entropy

- E(f,r) Wiy log(wf,r + 77)
log | S|

Sparse := 1 —

Certificate predicate. We take Cert(¢(m;)) = 1 iff simultaneously: (a)
p > 1+ (value-locus dominance); (b) A > 1—e (early anchor concentration);
(c) Stab < 7 (mechanistic invariance to benign changes); (d) Sparse > sg
and the attribution mass on late-layer query sites is at most € (excluding late
direct-write behavior). The thresholds (v, €, T, sg) are fixed per task family
and OOD split specification; they are tuned to prioritize soundness under
the intervention budget and then maximize coverage.



5 Algorithms: signature estimation, OOD predic-
tion, and model selection

We now specify the practical procedures by which we (i) estimate ¢(my)
from a checkpoint using a bounded number of interchange interventions,
(ii) optionally fit a lightweight predictor of final OOD accuracy from early
signatures, and (iii) use either the certificate Cert or the predictor for early
stopping and architecture/hyperparameter selection.

Signature estimation from checkpoints. Fix a checkpoint m; and a
finite site-role set S C F x R. For j = 1,..., N, we sample a clean

instance 0; ~ Dgey and set ¢; = Corr(o;). We compute the base likeli-

hoods age))an = P, (Yrue | 05) and aE{,)rr = Pm, (Ytrue | ¢5) once per pair. If

age)an ag))rr is below a fixed threshold (indicating an ineffective corruption)
we discard the pair and resample to maintain a stable denominator in Attrib.

Otherwise, for each (f,r) € S we perform a single interchange intervention at

token index i(r, -), producing al(nt( s T) = Dy, ff* (Ytrue | ¢j,04), and record

Attriby,, (f,i(r, 05); 04, ¢j) (with clipping as described earlier). We then form
empirical means

N
:af,’l’ = Z ttrlbmt f7 (Ta Oj);0j7cj)7 (fa 7") S S?

and compute ¢(m;) as the prescribed low-dimensional function of {fis,}. In
terms of forward evaluations, the naive implementation requires 2 + |S| for-
ward runs per sampled pair (clean, corrupted, and one intervened corrupted
run per site-role). In practice we reduce overhead by caching the clean acti-
vations { f(0;)[i(r, 0)] }(f,r)es and injecting them via activation hooks during
the corrupted run; this preserves the semantics of an interchange interven-
tion while avoiding repeated clean passes. We also batch over (f,r) € S
across multiple devices, since interventions for distinct sites are independent
conditional on (0j, ¢;).

Predictor training from signatures (optional). To obtain a quantita-
tive forecast of Ayoq(my) from early checkpoints, we train a simple regressor
g on tuples (¢(m¢), Agoda(mr)) collected across multiple training runs and
architectures/hyperparameters. We restrict g to low-capacity families (e.g.
ridge regression, lasso, or a monotone isotonic map in one or two signature
coordinates) to discourage spurious fit to run-specific artifacts. We standard-
ize each signature coordinate using statistics computed on the training runs
only, and we cross-validate across entire runs (not across checkpoints within
a run) to avoid leakage from temporally correlated signatures. At inference
time, g(¢(my¢)) is evaluated for one or more early checkpoints t < T; we

10



either average these predictions or use the maximum over a short window to
improve robustness to transient training noise.

Early stopping and architecture selection. We employ two comple-
mentary decision rules. First, for soundness-first selection, we stop a run
(or accept an architecture) once Cert(¢(m;)) = 1 holds for L consecutive
checkpoints and the signature remains stable under a fixed set of benign
perturbations; this implements a conservative “certify-then-continue” policy
in which additional training is optional. Second, when coverage is priori-
tized, we rank candidates by g(¢(my,)) for a fixed early time ¢y (e.g. 5-20%
of training), allocate full training budget only to the top-ranked subset, and
optionally re-rank after a second early checkpoint. In both cases we treat
dev accuracy only as a debugging signal; it is not used as a selection criterion
except to filter obviously failed runs.

Implementation details and reproducibility checklist. We record,
for each experiment:

e the exact task generator specification (AR/ATR/ATR++ parameters,
ambiguity controls, and the OOD split definition);

e the corruption operator Corr (role distribution, syntactic-type con-
straints, and rejection criteria);

e the site set F and role-to-index rules defining S, including layer num-
bering conventions;

e the intervention mechanism (hook locations, whether interventions oc-
cur at block input/output, and numerical precision);

e thresholds (x,n) and all certificate parameters (v,e€,7,sy), together
with the rule by which they are tuned;

e sample sizes N and the full accounting of forward passes per check-
point, including batching strategy;

e random seeds for data sampling, model initialization, and checkpoint
selection, plus deterministic-evaluation settings when available.

These items suffice to reconstruct ¢(m;) and Cert evaluations, and to repro-
duce predictor training and model-selection decisions.

6 Theory II: certification guarantees

We now formalize the sense in which a mechanistic certificate constitutes
a sufficient condition for strong compositional OOD generalization on the

11



AR/ATR/ATR++ family. Fix a task distribution with a prescribed com-
positional split (Dgey, Dood) such that the OOD instances preserve the same
binding map (e.g. the same ancestor function, pointer-following rule, or key—
value association) but hold out a subset of query—answer compositions. Let
s(z) denote the (latent) binding variable computed by the task for an in-
put = (for AR/ATR, s is the unique key-selected value; for ATR++ with
controlled ambiguity, s is a distribution over admissible values).

The certificate predicate Cert(¢(my)) is designed to assert that the model
has implemented a bind-then-read computation in the following operational
sense: there exists an anchor site-token pair (f,,4,) (typically a value-role
position at an intermediate layer) such that swapping f,(-)[iy] from clean
to corrupted input restores essentially all of the lost likelihood mass for
the correct next token, while analogous swaps at late query sites do not.
Concretely, we take Cert to enforce three inequalities at the population level
(up to constants absorbed into thresholds): (i) anchor completeness, piy, ;, >
1—¢ (ii) low late-write, Z(f,i)ESlate Pfi < €late for a designated set of late
query-adjacent sites; and (iii) stability, ||¢(my; x)—d(my; z”)|| < 7 for benign
perturbations z” that preserve s(x) (e.g. irrelevant token swaps or distractor
insertions as specified by the task generator). The intended semantics is that
(i) identifies where s is first materialized, (ii) rules out direct late writing of
the answer token as a shortcut, and (iii) excludes brittle heuristics tied to
incidental surface features.

Under the algorithm-class hypothesis for bind-then-read models (as in
the separability analysis), these conditions imply an abstract causal model:
the computation produces a representation §(x) at the anchor such that
intervening on f,(x)[i,] is (approximately) an intervention on §, and sub-
sequent computation from the anchor to the query is a stable readout that
depends on § but not on the particular composition of key/value identities
seen during training. Since the OOD split changes compositions while pre-
serving the binding rule, the induced distribution of 5(z) over OOD inputs
matches that of s(z) up to the task’s intrinsic ambiguity; thus the readout
continues to map § to the correct next token. Formally, one can couple a
dev draw 0 ~ Dgey and an OOD draw x ~ Dyoq with the same latent s
and apply a causal abstraction argument: the certificate enforces that the
model’s prediction depends on x only through §(x) and a stable downstream
map, so any shift that preserves the distribution of s does not substantially
change the correctness probability. The resulting bound has the form

Aood(mT) > 1- 5(67 €late, T aamb)a

where a,mp is the task-specific ambiguity rate (zero for unambiguous AR/ATR,;
controlled for ATR++) and § grows at most linearly in (€, €]¢6, 7) under the
linearized residual-stream approximation. In particular, when a,yp, = 0 and
the certificate is tight (small €, €40, 7), We obtain Agoq(my) > 1 — O(e +
€late 1 T)-

12



The same reasoning is robust to imperfections in the intervention opera-
tor. Suppose our implemented interchange replaces f(c)[i] by f(0)[i] up to an
additive perturbation e with ||e|| < & (capturing finite precision, hook mis-
alignment, or minor nondeterminism). If the model’s downstream map from
the intervened site to the output distribution is L-Lipschitz in the intervened
subspace, then each attribution estimate incurs at most O(L¢) additive error,
and the certification bound degrades by an additional O(L&) term. Thus,
certification is stable provided the intervention noise is controlled relative to
the certificate margins.

Finally, we require that Cert be decidable from finitely many sampled
intervention pairs. Let fif; be empirical means over N ii.d. draws, and
assume Attrib € [0, 1] after clipping. By Hoeffding’s inequality and a union
bound over the finitely many coordinates used by Cert, if

N > i 2|‘S’cert|
= 2e? g
then with probability at least 1 — 8 we have max (s iyeS..., |l — Hfil < €.
Consequently, if the certificate inequalities hold with slack at least sy > 0 (a
margin condition), choosing & < s¢/2 yields an empirically checkable pred-
icate Cert such that (?e\rt(gb(mt)) = Cert(¢(my)) with probability at least
1 — 5. This is the sense in which certification provides a probabilistic guar-
antee on OOD accuracy while using only O(|Seert|/c?) intervention samples
at an early checkpoint.

log

7 Theory III: behavior-only lower bound

We now record an obstruction: even perfect in-distribution performance (in-
deed, identical in-distribution predictive distributions) cannot, in general,
certify strong compositional OOD generalization on the AR/ATR/ATR++
family over a broad model class. The argument is information-theoretic and
does not depend on training dynamics; it shows that any putative certificate
that inspects only dev behavior must fail in the worst case.

Fix a task distribution (Dgey, Dooq) from T with a compositional split.
For definiteness, consider an AR instance format in which the input contains
a list of key—value bindings and a query key, and the correct next token is the
value bound to that key under the task’s binding rule. Let ¥ be the output
vocabulary of admissible values. The split is chosen so that Dge, contains
only a designated subset of key—value compositions (e.g. pairs drawn from
an “allowed edge set” Egey), while Dyoq contains query—answer compositions
from a disjoint subset Fyoq; crucially, the underlying rule “return the value
associated to the queried key” is identical in both. Analogous splits exist
for ATR (pointer-following) and ATR-++ (k-hop ancestry and controlled
ambiguity), where the OOD split holds out specific relation compositions
while preserving the graph traversal rule.

13



We formalize “behavior-only” as dependence solely on the model’s condi-
tional output distributions on dev inputs. That is, a behavioral statistic is
any functional

B(m) = Y({pm(-|2): 2 € supp(Daev)})

including dev accuracy Agey(m), dev log-likelihood, calibration curves, or
even the full table of next-token distributions on every dev input (in the
idealized setting where this table is accessible). A behavior-only certificate
is then a predicate Certpen(m) that factors through B(m).

The obstruction is that dev behavior constrains p,, (- | ) only on supp(Dgey ),
leaving py, (- | ) on supp(Dyoq) unconstrained. Because M contains suffi-
ciently expressive sequence models, we can realize two models that coincide
on all dev inputs but disagree arbitrarily on OOD inputs. Concretely, let
Malg be any model that implements the binding rule (e.g. a bind-then-read
mechanism that identifies the queried key and routes the associated value),
so that Agod(malg) is close to 1 on the compositional split. Define a second
model muyem by the following specification of its input—output behavior:

1. for every z € supp(Daev ), S€t Prnpem (* | ¥) = Pmyy, (- | ¥) (thus matching
dev predictions pointwise, not merely in expectation);

2. for every = € supp(Dood), S€t Pmyom (- | ) to place all mass on a fixed
incorrect token, or to be uniform over X.

By construction, B(mmem) = B(may) for any behavior-only statistic B,
hence Certpen(Mmem) = Certpen(malg) for any behavior-only predicate. Yet
their OOD accuracies can be separated maximally:

Aood(malg) Z 1-— 5 while Aood(mmem) S |§1]| +(5,

where the additive 0 accounts for any intrinsic ambiguity in ATR++ (and
may be taken 0 in unambiguous AR/ATR). The only remaining point is
realizability: within a broad residual sequence model family, such an myem
can be implemented by a table-lookup (memorization) subnetwork keyed on
exact dev-seen compositions, combined with a default fallback on unseen
compositions; because Fgoy and F,oq are disjoint by design, the fallback
dominates OOD.

The conclusion is unavoidable: no certificate that depends only on dev
behavior can guarantee a nontrivial lower bound on Ag,,q uniformly over
M for these compositional splits. Equivalently, for any behavior-only cer-
tification rule, either it rejects some genuinely compositional model, or it
accepts a model whose OOD accuracy is near chance. This is precisely the
gap mechanistic access is meant to close: interchange interventions expose
where and how the binding variable is represented, thereby ruling out the
indistinguishable-but-spurious memorization solutions that dev metrics can-
not exclude.
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Theory IIT (Behavior-only lower bound). We isolate a generic impos-
sibility statement: for the compositional splits used in AR/ATR/ATR++,
any purported guarantee of strong OOD performance that is derived solely
from in-distribution behavior must fail uniformly over a sufficiently expres-
sive model family. The point is not that dev metrics are uninformative in
practice, but that they cannot support worst-case certificates.

Theorem 7.1 (No behavior-only certificate yields a nontrivial OOD lower
bound). Fiz an output vocabulary ¥ and a task family T containing compo-
sitional splits (Dgev, Dood) in which the underlying semantic rule is shared
across splits while specific query—answer compositions are held out OOD.
Let M be any model class that can realize arbitrary conditional distributions
on supp(Dgey) U supp(Dood) (€.9. via a sufficiently large residual sequence
model). Then for any functional

B(m) = ql({pm( | 33) HEAS Supp(DdeV)})

and any predicate Certpen(m) that depends only on B(m), there exist m,m' €
M such that B(m) = B(m/) while Agoa(m) is close to 1 and Aoa(m') is
close to chance. In particular, no Certyen can tmply a uniform bound of the
form Agoa(m) >1—0 withd <1 —1/|%].

Proof sketch. We proceed by explicit construction on a representative split
and then note that the same logic applies to ATR and ATR++. Consider
an AR-type instance in which an input & encodes a finite set of key—value
bindings and a query key; the correct next token 1,4e is the value associated
to the queried key. Let the compositional split be determined by a parti-
tion of admissible key—value pairs into Egey and Eooq with Egey N Egoq = 0,
such that Dy, only contains bindings in F4e, while Dyoq only contains bind-
ings in Fyoq. The semantic rule is identical across splits; only the allowed
compositions differ.

Let maz € M be a model that implements the underlying binding rule
(e.g. by computing a key index, selecting the matching value, and routing it
to the next-token distribution). By construction of the split, such a model
achieves Ayoq(Malg) = 1 (or > 1 — 4 if the task admits controlled ambiguity,
as in ATR++). Now define a second model mg, € M by specifying its
conditional distributions as follows: (i) for every x € supp(Daev), set pm,, (- |
T) = Py, (- | ©); (ii) for every x € supp(Dood), set Py, (- | ) to be uniform
over ¥ (or concentrated on a fixed wrong label). Because B(m) is a functional
of {pm (- | z)} restricted to dev support, we have B(msg,) = B(malg), hence
Certpen(msp) = Certpen(Mmalg). On the other hand, Agod(msp) < 1/]|3] (up
to the same ambiguity slack), while Agoq(mag) > 1 — 9.

It remains only to justify realizability of mygp, inside M. Since M includes
expressive residual sequence models, we can implement msp, as a mixture of
two modules: a memorization component that matches py,,, (- | ) on the
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finite (or effectively finite) set of dev compositions, and a fallback component
that emits the chosen default distribution on any input not matching the
dev composition patterns. The disjointness of Fgey and Fyoq ensures the
fallback controls OOD behavior, yielding near-chance OOD accuracy without
affecting dev behavior. O

The conclusion is that even access to the full dev conditional distribu-
tion table does not suffice to certify compositional OOD performance over
M. Accordingly, any successful certification scheme must exploit informa-
tion unavailable to behavior-only statistics, such as causal localization of the
binding variable via interventions, which is precisely what our mechanistic
signatures are designed to provide.

Experiments. We evaluate the practical utility of mechanistic signatures
via broad sweeps over architectures, hyperparameters, and training time,
using the AR/ATR/ATR++ family with fixed compositional OOD splits.
Our experimental unit is a run producing checkpoints {m;} up to a final
time 7. For each run we record (Ageyv(mr), Aood(mr)), and for a collection
of early checkpoints t < T we compute ¢(m;) using Algorithm 1 with a
fixed intervention budget. Architecturally, we span (i) standard attention-
only residual models, (ii) linear/“Based” attention variants, (iii) Mamba-like
selective-SSM mixers, (iv) Hyena-like long convolutional mixers, and (v)
hybrids that alternate attention and SSM/conv blocks. Within each family
we vary depth, width, learning rate schedule, normalization style, and (where
applicable) kernel length or state dimension; for positional information we
include sinusoidal, learned absolute, and relative /rotary schemes.

Our primary comparison is between mechanistic predictors based on
¢(my) and behavior-only predictors based on in-distribution quantities at the
same checkpoint, e.g. Ageyv(my), dev log-likelihood, or training loss. Con-
cretely, we train a simple regressor g (linear or shallow MLP) to predict
Aood(mr) from ¢(my) across runs, and we compare against the best regres-
sor using only dev-side behavioral features. We also instantiate a thresh-
old certificate Cert using the invariant features in Algorithm 1 (LocusRatio,
LayerConcentration, Stability, Sparsity), tuned on held-out runs to target a
desired failure probability. The salient empirical phenomenon is that ¢(m;)
extracted very early (typically within the first 5-20% of training) predicts
final OOD accuracy substantially better than any dev-only signal: in many
sweeps, models with nearly identical A4ey(my) separate cleanly in ¢(my), and
this separation aligns with their eventual compositional generalization. Con-
versely, behavior-only predictors often saturate: once dev accuracy is high,
residual variation in dev metrics carries little information about whether the
model has learned an algorithmic binding mechanism or a shortcut tied to
the dev compositions.
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We further use the certificate operationally for early stopping and model
selection. Given a run, we stop at the first checkpoint ¢ such that Cert(¢(my)) =
1, and we report the resulting OOD accuracy at that checkpoint as well as the
final-time OOD accuracy had we continued training. Across architectures,
certificate-based early stopping frequently yields large reductions in training
compute while preserving (and occasionally improving) OOD performance,
consistent with the hypothesis that later training can overfit to dev compo-
sitions without strengthening the underlying binding mechanism. For archi-
tecture selection, we compare (a) picking the architecture/hyperparameters
with best dev accuracy at an early time, versus (b) picking the candidate
with best predicted Agoq(mr) under g(¢(my)); the latter is markedly more
reliable under compositional splits, especially when the candidate set mixes
attention and non-attention mixers where dev curves can be misleadingly
similar.

Finally, we perform ablations to test which components of ¢ carry signal
and how this signal depends on architectural knobs. Reducing depth tends
to shift attribution mass toward late-layer query sites (lower LocusRatio and
LayerConcentration at intermediate value sites), matching a transition to-
ward direct-retrieval behavior and degraded OOD accuracy. In Hyena-/conv-
like models, shortening kernel size or receptive field produces a similar shift,
suggesting that insufficient mixing length impedes formation of an interme-
diate binding variable. Changing positional encoding can either stabilize or
destabilize the signature: relative/rotary schemes often improve the Stability
feature under benign perturbations (token swaps/distractors) compared to
learned absolute embeddings, and this change tracks OOD robustness. On
the signature side, removing Stability or Sparsity from Cert increases false
positives (models that pass the remaining thresholds yet fail OOD), while
using only a single locus statistic (e.g. LocusRatio alone) misses cases where
the binding is present but routed unreliably. These ablations support the in-
terpretation that the predictive advantage arises not from any one heuristic,
but from jointly localizing where the binding variable is computed and how
stably it controls the next-token distribution.

8 Discussion and Limitations

Our guarantees rest on an explicit separation hypothesis between two algo-
rithmic classes and on a linearized residual-stream approximation used to
connect interchange interventions to likelihood restoration. When this ap-
proximation is accurate—e.g. when the next-token logit for yiue depends
approximately affinely on a low-dimensional “association” variable carried in
the residual stream—the attribution score

Qint — @
Attrib,, (f,4;0,¢) = it Teomr

Qclean — Gcorr
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tracks (up to estimation noise) the fraction of task-relevant variance localized
at (f,i). However, several regimes weaken this link. First, strong nonlinear
gating (softmax attention saturation, hard selection in SSMs, or activation
clipping) can make @iy —acorr depend sensitively on higher-order interactions,
so that swapping f(c)[i] < f(o)[i] changes which pathway is active rather
than only restoring a missing scalar. In such cases the linearized picture
may mis-localize mass, and Attrib need not be well-calibrated as a “fraction
explained” (it may even be negative or exceed 1 without additional normal-
ization). Second, if the model represents the binding variable in a distributed
subspace that is only readable after a nonlinear mixing step, then no single
site-token intervention is “non-degenerate” in the sense required by Theo-
rem 2; the effect may only appear under joint interventions across multiple
sites or across a span of layers. Third, as depth grows, multiple redundant
implementations of the same abstract computation may coexist; interchange
at one locus then yields only partial restoration even though the abstract
mechanism is present, complicating certificates that expect concentration.

These issues suggest two methodological extensions. One is to replace
scalar likelihood restoration by a local logit-difference functional, e.g. A =
Lyerne — log Zy I elv, and to compute attribution in that space where
additivity is empirically closer to linear. Another is to generalize ¢ from
single-site statistics to low-rank subspace swaps: we may estimate an asso-
ciation subspace U at (f,4) (e.g. via PCA over clean—corrupted differences)
and intervene by swapping only the U-component. This retains the inter-
change semantics while accommodating distributed codes, at the cost of a
larger intervention budget and additional estimation error.

A separate limitation is instrumentation. Algorithm 1 assumes white-box
access at identifiable boundaries, but many efficient implementations rely on
fused kernels, activation recomputation, or graph-level optimizations that
obscure token-indexed intermediate values. Scaling our approach therefore
requires either (i) compiler-supported “tap points” that expose f(x)[i] with
bounded overhead, or (ii) a reparameterization of sites to match what is ob-
servable (e.g. pre/post layernorm, block inputs/outputs, or attention/SSM
outputs before fusion). In practice we have found that intervening at coarse
residual boundaries often suffices to recover the qualitative signature, but the
resulting ¢ is less granular and may reduce separability margins. A princi-
pled treatment would quantify how site coarsening contracts attribution dis-
tributions and how certificates should be adjusted to preserve false-positive
control.

With respect to real tasks, our task family 7 is intentionally synthetic:
it isolates binding and retrieval while making “one crucial token” corruption
meaningful. Natural language and tool-augmented systems typically exhibit
(a) multiple partially redundant cues, (b) soft ambiguity rather than con-
trolled ambiguity, and (c) long-range dependencies whose relevant evidence
spans many tokens. In such settings, defining o, ¢ pairs requires either struc-
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tured perturbations (counterfactual edits, entity swaps, adversarial distrac-
tors) or supervision about which token is “crucial”. Moreover, compositional
OOD is not uniquely specified outside of synthetic benchmarks; any cer-
tificate can only speak to the declared split, and Theorem 4 cautions that
behavior-only indistinguishability constructions persist whenever the OOD
shift breaks memorized associations. We therefore view mechanistic certifi-
cation as a benchmarked capability claim, not as a general safety guarantee.
Finally, we clarify the relation to mechanistic interpretability and to ar-
chitecture design. Conceptually, ¢ is a compression of causal evidence: it is
weaker than a full circuit description but stronger than behavioral metrics,
and it interfaces naturally with causal scrubbing and activation patching.
Practically, signatures provide actionable feedback for design: if OOD fail-
ures correlate with low LocusRatio and diffuse late-layer mass, then increas-
ing effective mixing length (depth, receptive field, state dimension) or intro-
ducing explicit memory/binding modules is a targeted intervention. Con-
versely, when stability features fail under benign perturbations, positional
schemes or normalization choices that improve invariance become directly
testable. These uses do not eliminate the need for mechanistic inspection,
but they impose a disciplined standard: we ask not merely whether a model
succeeds, but where and how the success is causally implemented.

Release: mechanistic evaluation harness, configs, and reporting
standards. To make the preceding notions operational and comparable
across implementations, we will release a mechanistic evaluation harness
that instantiates Algorithm 1 end-to-end, together with benchmark config-
urations for AR/ATR/ATR++ and a small set of recommended signatures
and certificates. The harness is designed around a minimal API that sepa-
rates (i) task instance generation and corruption, (ii) model instrumentation
and interchange intervention, and (iii) signature aggregation and certifica-
tion. Concretely, a model adapter exposes (a) a list of admissible sites F
and token roles R, (b) read/write hooks for activations f(z)[i] at those sites,
and (c) a forward function returning next-token logits, so that the harness
can compute (Gelean, Georrs Ging) for each sampled (o, ¢) pair with a bounded
number of forward passes.

The benchmark release will include declarative configuration files spec-
ifying: the task family member (AR/ATR/ATR++), vocabulary size and
sequence length ranges, corruption operator Corr (including the distribution
over which token is deemed “crucial”), and the compositional OOD split def-
inition. In ATR++, configs additionally specify ambiguity parameters (e.g.
number of confounders, tie-breaking rules) and k-hop query generation. We
will also provide reference samplers for Dgyey and Dyoq that are independent
of any particular model and that fix random seeds at the instance level,
enabling exact reproduction of attribution estimates and the associated con-
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centration bounds.
We will ship a recommended signature set that is intentionally small and
interpretable, reflecting the invariants used in our theoretical statements.

The default ¢(m;) € R? includes: (1) LocusRatio p = E&éﬁ?éi(%l/::;i)ln with

a fixed n; (2) LayerConcentration at a user-declared anchor layer (reported
both as a fraction and as a cumulative curve over depth); (3) Sparsity of
the attribution distribution over S C F x R (e.g. normalized entropy and
a Gini coefficient); and (4) Stability under benign perturbations, measured
as ||¢(mye; z) — ¢p(my; 2”)]|| for a prescribed family of perturbations z — z”
(distractor insertion, irrelevant swaps, or padding changes). Because some
implementations may yield Attrib ¢ [0, 1] in nonlinear regimes, the harness
will report both raw and clipped scores, and it will flag the fraction of samples
exhibiting out-of-range values as a diagnostic rather than silently normalizing
them away.

To ensure that reported certificates are meaningful, we will adopt a stan-
dard reporting template. Each run must specify: the site set S (including
the exact tensor names, layer indices, and whether values are pre/post nor-
malization), the sample size N, the forward-pass budget per sample, and the
estimator used (mean of Attrib, median-of-means, or a robust alternative).
For each (f,i) € S we will report fis; together with a confidence interval
derived from Theorem 1 (or its robust analogue), and we will report whether
Cert(¢(my)) holds with an explicit margin. For prediction-style use (MPP),
we will require disjoint training and evaluation runs for g, and we will re-
port calibration plots of g(¢(m;)) versus Agoq(myr) across architectures and
hyperparameters.

Finally, we will standardize a small set of ablations that distinguish
genuine mechanistic signal from instrumentation artifacts: (i) site coarsen-
ing (fine-grained versus residual-boundary sites), (ii) corruption sensitivity
(varying which “crucial token” is corrupted), and (iii) intervention locality
(single-site swap versus low-rank subspace swap when supported). The goal
of the release is not to canonize a single signature, but to make mechanis-
tic claims falsifiable under controlled budgets and comparable across model
classes within M.
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