ATR*": Ambiguous Multi-hop Binding as
Pointer-Chasing, with Mechanistic Certificates

Liz Lemma Future Detective

January 18, 2026

Abstract

State space models and other subquadratic mixers can match Trans-
formers on perplexity yet often fail at robust retrieval. Recent work
showed that on Associative Recall (AR) and a hierarchical variant As-
sociative Treecall (ATR), different architectures reach similar accura-
cies while implementing fundamentally different mechanisms (induction/bind-
then-read vs direct retrieval at the last state), revealed by causal inter-
change interventions. We push this program into the 2026 setting by
introducing ATR**: a controlled synthetic benchmark for ambiguous
and multi-hop binding. ATR** extends ATR with (i) explicit men-
tion disambiguation (coreference-like ambiguity), (ii) recursion (un-
bounded structure under truncation), and (iii) k-hop ancestor queries
(compositional retrieval). We give a formal reduction from ATR** to
pointer-chasing, proving an expressivity upper bound for k-layer Trans-
formers and a lower bound for a large class of linear-time streaming
models without sufficient state capacity. Finally, we define a mecha-
nistic leaderboard that requires not only accuracy but also causal sig-
natures measured by interchange interventions, enabling architecture
comparisons that are explanatory and predictive of generalization.

Table of Contents

1. 1. Introduction: retrieval vs binding, why AR/ATR are insufficient
for 2026; summary of ATR™T, mechanistic evaluation goal, and main
upper /lower bounds.

2. 2. Related Work: AR/induction heads; ATR; binding/entity track-
ing; SSM retrieval limits; causal interventions and causal abstraction;
pointer-chasing /streaming lower bounds.

3. 3. ATR™ Task Family: formal PCFG setup with recursion, ambiguity
model, query types (k-hop ancestors), anti-shortcut constraints, and
evaluation splits (held-out bindings/structures/lengths).

. 4. Mechanistic Evaluation Protocol: interchange interventions; defi-
nition of causal-signature vector Sig(M); what constitutes bind-then-
read vs direct-retrieval signatures; leaderboard rules.

. 5. Upper Bound Constructions: explicit Transformer circuit for k-hop
ancestor retrieval under ambiguity; depth dependence ©(k); discussion
of dimension and positional encoding requirements.

. 6. Lower Bounds for Direct-Retrieval Streaming Models: reduction to
pointer-chasing; memory /state dimension lower bounds; implications
for SSM-like models without adequate local mixing / scratch space.

. 7. Experimental Design (Optional but Strengthening): architecture
suite (attention, Based-like, Mamba-like, hybrids, memory tokens), ab-
lations (kernel size, depth, PE schemes), and mechanistic-vs-behavioral
analyses.

. 8. Discussion: what the bounds imply about architectural primitives;
when local mixing helps; how ATR*™ can be extended (multi-query,
tool-call analogs); limitations.

. 9. Conclusion: ATR'T as a mechanistic benchmark with theory-
backed separations; invitation to mechanistic leaderboard participa-
tion.

1 Introduction

We study a distinction that has become operationally important for eval-
uating sequence models: retrieval versus binding. By retrieval we mean
selecting and reproducing a previously observed token type (or a function
thereof) from an input sequence. By binding we mean constructing and later
using a relation between two occurrences—e.g. that a marked occurrence v
stands in a parent relation to some other occurrence in an implicit tree—so
that a subsequent query can request information about a bound partner. In
practice, high accuracy on retrieval-heavy benchmarks need not imply that
a model forms stable bindings that compose under ambiguity and recursion;
conversely, a model that forms bindings may fail if evaluation confounds
binding with incidental positional or lexical cues.

A substantial body of recent evaluation has used next-token prediction
tasks designed to elicit in-context retrieval behavior (e.g. copying, associa-
tive recall, and simple key—value patterns). These tasks are valuable because
they yield clean, analyzable circuits in attention-based models and because
they can be scaled synthetically. However, by 2026 the empirical landscape
has changed: models trained at scale often solve classical retrieval tasks via
multiple qualitatively different strategies, including heuristics that are not
robust to distributional shift. Two limitations recur. First, many retrieval
datasets admit shortcuts in which relative position features (distance to the
query, recency, or fixed formatting) carry nontrivial mutual information with
the answer; a model can then succeed without representing the intended re-
lation. Second, standard associative recall and its descendants tend to be
unambiguous: the key identifying the answer is unique in the context, so
the task does not force an explicit choice among repeated terminal types or
multiple candidate referents. In such regimes, it is difficult to separate mech-
anisms that genuinely bind entities from mechanisms that merely retrieve a
nearby span.

The ATR family of tasks was an important step toward binding eval-
uation by introducing tree-structured dependencies and ancestor queries.
Nevertheless, in the form most commonly studied, ATR retains a rightmost-
mention bias: when terminal types do not repeat and the query refers to a
unique surface form, a heuristic that selects the most recent matching token
can approximate the intended retrieval. Moreover, if the data distribution
ties the location of the referent v or its ancestor ancg(v) to predictable offsets,
then one can solve many instances with an effectively local read. Our goal is
to define a task family that (i) compels nontrivial binding under ambiguity,
(ii) supports clean algorithmic upper bounds for models known to imple-
ment explicit pointer-jumping, (iii) admits matching lower bounds for broad
classes of linear-time direct-retrieval architectures, and (iv) enables mech-
anistic evaluation that distinguishes these solution classes causally rather
than descriptively.

We therefore define ATR™*(II), a synthetic binding-and-retrieval task
parameterized by a recursive PCFG G, an ambiguity model A, and a hop
count k. A sampled instance consists of a document d (a yield of G aug-
mented by A), a divider EOS, and a query that names a particular terminal
occurrence v via explicit referent markers and requests the terminal type
of ancg(v) in the latent tree T' induced by the derivation. The ambiguity
model A forces repeated terminal types and ensures that referent identifi-
cation cannot be reduced to matching a unique token type; the grammar
recursion produces variable-depth, variable-length instances. Crucially, we
impose an anti-shortcut design constraint: under the data distribution, su-
perficial positional statistics of v and ancy(v) are constructed (and then
empirically checked) to have negligible mutual information with the answer
y. As a result, high accuracy requires learning a procedure that follows
bindings rather than exploiting stable offsets.

The task family is designed to support two complementary forms of anal-
ysis. The first is algorithmic: we exhibit an explicit Transformer construction
that solves ATR™™ exactly by implementing pointer-jumping. Informally,
the query representation selects the marked occurrence v; then each subse-
quent layer performs one hop by attending from the current node representa-
tion to a parent “anchor” position determined by the head-terminal property
of the grammar. After k layers the residual stream encodes ancg(v), and
the output head reads out its terminal type. Formally, for M = |X| we con-
struct a depth L = ©(k) one-head Transformer with embedding dimension
d = O(M) that achieves zero error on all well-formed instances. This con-
struction is not merely existential; it provides a reference mechanism against
which trained models can be compared.

The second form of analysis is lower-bounding and separation: we iden-
tify a broad class of “direct-retrieval” streaming models that process the
document left-to-right with a bounded-dimensional state s, € R? and must
answer after reading the query. Such models include many RNN/SSM-like
architectures and also hybrids that add bounded-radius local mixing but do
not store token-indexed external memory. We show that, on a distribution
over ATR™™ instances that encodes pointer-chasing, any one-pass streaming
algorithm with memory m = o(M) incurs constant error for fixed hop count
k. Under standard simulation assumptions (bounded precision and Lips-
chitz updates), this yields a dimension lower bound d = Q(M) for streaming
direct-retrieval models to achieve small error. This separation formalizes an
empirical observation: linear-time architectures often excel at recency-based
retrieval yet struggle on compositional binding problems where the relevant
dependency may be far from the query and may require multiple nonlocal
hops.

Beyond behavioral accuracy, we require a mechanistic criterion. A model
might match the Transformer upper bound behaviorally while realizing a dif-
ferent internal computation; conversely, it might partially solve the task via

a brittle heuristic. We therefore introduce a mechanistic evaluation protocol
based on interchange interventions. Given a clean example o and a corrupted
counterpart ¢ (created by altering a binding-relevant marker or head token),
we swap internal activations at designated sites f from the clean run into
the corrupted run, yielding M7/ 7" (c,0). We score each site by likelihood
restoration Attrib(f), and we aggregate these scores into a mechanistic sig-
nature vector Sig(M). The key property is that the explicit bind-then-read
Transformer circuit concentrates causal dependence at hop-specific anchors,
whereas direct-retrieval streaming solutions (when they exist on easier dis-
tributions) concentrate dependence near the query and late tokens. Thus
Sig(M) is intended to be predictive of length extrapolation and composi-
tional generalization, not merely a post hoc interpretability artifact.

In summary, our contributions are threefold: (i) a task family ATR™* (IT)
that enforces ambiguity, recursion, and anti-shortcut constraints while re-
maining synthetically controllable; (ii) matching-style upper and lower bounds
separating global-attention pointer-jumping from broad classes of linear-
time direct-retrieval models as a function of depth and memory; and (iii)
a causal, intervention-based signature that operationalizes the distinction
between binding mechanisms and retrieval heuristics. The remainder of the
paper situates these results relative to prior work, details the constructions
and reductions, and validates that the mechanistic signatures align with gen-
eralization outcomes across in-distribution and out-of-distribution splits.

2 Related Work

Associative recall, in-context retrieval, and induction heads. A
large fraction of mechanistic work on sequence models has focused on syn-
thetic tasks in which the correct output is a function of a small number
of retrieval operations: copying a token, selecting a value given a key, or
composing a short chain of such selections. In these settings one can often
isolate relatively simple attention-based circuits (notably so-called induction
heads) that implement a form of pattern completion by attending from the
query to a previous occurrence of a matching prefix and then shifting at-
tention forward to retrieve the subsequent token 77. These analyses clarify
how global attention can realize algorithmic behavior at test time, and they
provide a vocabulary for causal testing via activation patching. At the same
time, the canonical associative-recall distributions are typically unambiguous
(keys appear once) and frequently admit recency or positional heuristics;
consequently, high behavioral accuracy does not by itself certify that the
model has learned a stable binding relation that composes under ambigu-
ity and recursion. Our task family is designed to preserve the analyzability
of synthetic retrieval benchmarks while explicitly removing several common
shortcut channels.

Tree-structured retrieval and the ATR lineage. The ATR family in-
troduced a qualitatively richer setting by placing the relevant dependency
in a latent tree and querying ancestors, thereby forcing a multi-step com-
putation that is naturally expressed as pointer-following ?. This shift is
important: the intended solution is no longer ‘retrieve the value paired with
the key,” but “identify a node and follow a structural relation k times.” Such
tasks connect directly to algorithmic primitives (pointer-jumping) for which
Transformers have clean constructions. However, in the most widely used
formulations, the surface form of a referent can be unique or nearly unique,
and terminal types need not repeat, which reintroduces a rightmost-mention
or nearest-match heuristic. Moreover, unless care is taken in data generation,
the yield positions of v and ancg(v) can correlate with the answer in ways
that a local model can exploit. We view ATR™™ as an attempt to retain the
essential tree-structured query semantics while strengthening the distribu-
tional conditions so that the binding relation, rather than a positional proxy,
carries the information needed to answer.

Binding, entity tracking, and memory in language models. The
binding problem we isolate is closely related to entity tracking and corefer-
ence in natural language: a model must maintain an association between a
marker (a mention, a name, an index) and an underlying referent, and later
answer a query that depends on that association. Empirically, attention-
based models can represent some entity-state information in the residual
stream and can route it through attention in ways that resemble explicit
memory access ?7. There is also a long line of work on augmenting sequence
models with external memories or neural caches to improve retrieval and
factual consistency 7?7. Our setting is deliberately more austere: we do not
provide an explicit key—value store or supervision of intermediate states, and
we require correctness under repeated terminal types and explicit referent
markers. This places the focus on whether the model constructs a com-
posable internal representation of bindings rather than on whether it can
opportunistically retrieve a nearby span.

State-space and recurrent models: empirical strengths and re-
trieval limits. Linear-time architectures—RNN variants, convolutional mod-
els, and more recent state-space models (SSMs)—are often competitive on
long sequences precisely because they avoid the quadratic cost of global at-
tention. Many such models exhibit strong performance on local pattern
matching, recency-weighted retrieval, and tasks where the answer depends on
a small window of recent tokens. Yet a recurrent update s; = F'(s;—1,e(xt))
with s; € R? is, from an algorithmic standpoint, a streaming algorithm
with bounded memory. This viewpoint motivates formal limitations: when
the answer depends on selecting one item among M possibilities with ad-

versarially arranged dependencies, a state of dimension d < M cannot, in
general, retain sufficient information. Prior empirical studies have reported
degradation of SSM/RNN-like models on long-range copying and multi-step
retrieval under distribution shift 7?. Our contribution is to tie these observa-
tions to a concrete pointer-chasing reduction embedded in ATR™ ™, yielding
a dimension lower bound under standard bounded-precision assumptions.

Causal interventions, activation patching, and causal abstraction.
Mechanistic interpretability has increasingly emphasized causal rather than
merely correlational analyses. Techniques such as causal tracing, activa-
tion patching, and path patching intervene on internal activations to test
whether particular components mediate a model’s behavior on a specific
input ??. The interchange-intervention formalism (swapping activations be-
tween a clean and a corrupted run) is especially well suited to synthetic
tasks because it yields controlled counterfactuals with known ground-truth
structure ??. In parallel, the causal abstraction literature asks when a high-
level algorithm (e.g. pointer-jumping on a latent tree) can be mapped onto
a low-level neural computation via an abstraction map that preserves coun-
terfactual behavior ?. We adopt this perspective in defining Sig(M): rather
than claiming that a trained model “uses binding” because a head attends
to a certain position, we require that appropriate site-level swaps restore
the correct answer under a targeted corruption. This allows us to separate
mechanisms that merely correlate with the answer from mechanisms that
are causally responsible for it.

Pointer-chasing and streaming lower bounds from communication
complexity. The hardness backbone of our lower bound is classical. Pointer-
chasing (iterating a function f for k steps) and indexing are canonical prob-
lems exhibiting separations between models with random access and one-pass
streaming algorithms with limited memory. Communication complexity pro-
vides sharp tools: a single-pass streaming algorithm with memory m induces
a one-way (or two-party) protocol with communication m, and known lower
bounds then imply that m must scale with the domain size M to achieve
small error ??7. Similar arguments appear in analyses of online computa-
tion and in lower bounds for bounded-width branching programs. Our use
of these results is conceptually straightforward but technically useful: by
embedding a random instance of pointer-chasing into the latent bindings of
ATR'™, we obtain a distribution on which any direct-retrieval streaming
model with d = o(M) fails with constant probability. This establishes a
principled barrier for linear-time architectures without token-indexed mem-
ory and motivates the mechanistic comparison to explicit pointer-jumping
circuits in Transformers.

3 ATR'' Task Family

We define a family of synthetic binding-and-retrieval tasks, denoted ATR ™ (II),
where an instance consists of a document generated by a recursive proba-
bilistic context-free grammar (PCFG) together with an explicit query asking
for a k-hop ancestor in a latent tree. The parameter tuple is

I = (G, A, k, nmax, split spec),

where G is a PCFG over nonterminals N and terminals ¥ with locally nor-
malized rule probabilities p(- | A) for each A € N; A is an ambiguity model
controlling repetition of terminal types and insertion of referent markers;
k € N is the hop count; ny.x is a length cap; and split spec describes out-
of-distribution (OOD) evaluation conditions.

PCFG generation and the head-terminal induced tree. We sample
a derivation from G starting at a start symbol S, recursively expanding
nonterminals until all leaves are terminals or a truncation criterion triggers,
and we read off the yield as a terminal sequence of length n < np.x. For
mechanistic analyses we require that G satisfy a head-terminal property:
each production A — « designates a unique head terminal occurrence in
the yield of a (e.g. via an annotated head child and a head terminal within
that child). This induces a rooted ordered tree T' over terminal occurrences
{v1,...,vn}, where each v; is a node and the parent pointer is defined by head
propagation through the parse. We write ancy(v) for the k-hop ancestor of a
node v, obtained by applying the parent pointer k times; if the ancestor does
not exist, we map to a designated null terminal NULL € ¥ (this convention
can be toggled, but we fix it for concreteness).

Ambiguity model and referent markers. A central requirement of
ATR™™ is that surface tokens do not uniquely identify nodes. We therefore
introduce an ambiguity model A that operates on the generated yield and
produces an augmented document over Y U markers. Concretely, A enforces
two properties.

¢ Repeated terminal types. Terminal types repeat frequently: we
either sample terminals from a small active subset of ¥ (so collisions
are common) or apply controlled relabeling to ensure that multiple
distinct occurrences share the same terminal type. This removes any
heuristic that relies on terminal identity being a proxy for node identity.

e Unique referent identification. We insert explicit markers that
uniquely name a particular occurrence v among all occurrences of the
same type. For example, we may attach an occurrence identifier id(v) €
{1,...,n} as a pair of bracket tokens around the terminal at v, or emit

a separate marker token in a nearby position whose semantics is “this
marker refers to occurrence v.” The specific marker vocabulary is fixed
across the dataset and is treated as part of the input alphabet but not
part of ¥ (the answer vocabulary).

The crucial point is that the query can refer to v only through these markers,
while the answer depends on the latent binding structure in 7. By construc-
tion, simple strategies such as selecting the rightmost mention of a terminal
type, or selecting a nearest matching token in the yield, are information-
theoretically insufficient when 4 produces multiple confusable mentions with
distinct markers.

Instance format and k-hop ancestor queries. An instance is formed
by concatenating the augmented document, a divider EQS, and a query
sequence. The query encodes (i) the referent marker naming a node v, and
(ii) the hop count k. We denote the full input by

v = || EOS || g(v, k),
and the target label is
y = type(anc(v)) € X,

where type(u) returns the terminal type at occurrence v and returns NULL if u
is undefined. The model is evaluated only on the final next-token prediction
at the end of the query. We emphasize that the query is mot a natural-
language question; it is a compact, machine-readable encoding that isolates
the binding computation.

Anti-shortcut constraints. The distribution is designed so that posi-
tional and recency cues do not carry reliable information about y. In par-
ticular, we enforce an anti-shortcut invariant: features such as the absolute
position of v, the absolute position of ancg(v), or their relative displacement
in the yield have high variance and (approximately) zero mutual information
with the answer under the data distribution. Practically, we achieve this by
(a) allowing recursion and variable arity so that the same structural relation
can occur at many yield distances, (b) randomizing local expansion choices in
G so that yield positions are not rigidly tied to tree depth, and (c) sampling
query nodes across the document rather than concentrating them near the
end. We treat this constraint as a data-generation specification and validate
it empirically by measuring correlations and mutual-information estimates
on large samples; failures trigger adjustments to G and A (e.g. increasing
repetition, widening depth variability, or changing marker placement).

Evaluation splits and OOD generalization. We evaluate models both
in-distribution and under principled distribution shifts that target the in-
tended algorithmic content.

e Held-out bindings. We partition a subset of parent—child terminal-
type pairs (or more generally, head-terminal bindings) and ensure that
some bindings are absent from training but present at test time. This
tests whether a model has learned a compositional procedure for fol-
lowing pointers, rather than memorizing frequent type transitions.

e Held-out structures. We hold out particular production-rule pat-
terns or subtrees (e.g. specific expansions of a nonterminal, or partic-
ular depth-2 templates) while keeping the terminal vocabulary fixed.
This targets generalization across latent tree shapes and discourages
reliance on superficial regularities of the training grammar.

e Length extrapolation. We train on documents with n < Nyrain
and test on n € (ntrain,nmax], preserving the same generation pro-
cess. Since dist(v,ancg(v)) in the yield can grow with n, this split
probes whether the mechanism scales with sequence length.

For each split, we keep the query semantics fixed (always k-hop ancestor re-
trieval) so that success requires invariance of the learned computation rather
than adaptation to a new task.

Remarks on scope. We stress that ATR™™ is intended to be mechanis-
tically discriminative: the same behavioral objective admits qualitatively
different internal solutions (explicit pointer-jumping versus compressed di-
rect retrieval), and our generation constraints aim to eliminate degenerate
heuristics that would otherwise blur this distinction. In the next section we
specify an intervention-based protocol that operationalizes this goal by mea-
suring where, in a model’s computation, the binding information is written
and later read.

4 Mechanistic Evaluation Protocol

Our behavioral objective fixes what must be computed, but not how it is
computed internally. We therefore accompany accuracy with a mechanis-
tic evaluation that is tailored to ATRT(II): we (i) construct counterfac-
tual corruptions that selectively break the binding computation while leav-
ing most of the document unchanged, (ii) perform interchange interventions
that swap internal activations between clean and corrupted runs, and (iii)
summarize the resulting causal attributions into a compact signature vec-
tor Sig(Mpy). The protocol is designed so that the explicit pointer-jumping
Transformer construction in Section [5] yields a distinctive “bind-then-read”

10

signature, whereas one-pass “direct-retrieval” mechanisms concentrate causal
influence near the end of the sequence.

Clean instances and structured corruptions. Let (z,y,T,v) be an in-
stance sampled as in Section |3, with = = d||[EOS||q(v, k). We define two
corruption operators that are binding-relevant by construction. First, a
referent-marker corruption changes the marker that identifies v in either
the document or the query (depending on the marker scheme), producing a
corrupted input ¢yer(x) that now refers to a different occurrence v’ # v while
keeping all terminal types in 3 unchanged. Second, a head-anchor corrup-
tion changes a single binding-critical token that participates in the induced
parent-pointer encoding (e.g. a head-terminal anchor whose type is later read
out), producing chead () that preserves the referent marker but perturbs the
latent pointer-chase outcome. In both cases we choose the corruption posi-
tion uniformly from a pre-specified set of eligible markers/anchors so that
surface cues (position, recency) are not predictive of which corruption was
applied. We denote a generic corruption by c(x) and the clean input by
0=um.

Interchange interventions and likelihood restoration. Fix a model
My and a set of intervention sites SITES, where each site f identifies a
particular internal activation tensor at a particular layer and token position
(e.g. residual-stream vector at layer ¢ and position t; or a designated sub-
activation such as a mixer output, when exposed by the implementation).
For each example we run the model on the clean input o and the corrupted
input ¢, recording the activation at site f on both runs, denoted f(o) and
f(c). We then define the interchange-intervened run M9f<_f(o)(c) to be the
model executed on ¢ with the activation at f replaced by the clean activation
f(0), leaving all other activations as in the corrupted computation. This pro-
duces a next-token distribution at the end of the query, hence a probability
assigned to the correct label y.

We quantify the causal contribution of site f to solving the corrupted
instance via a normalized likelihood-restoration score,

log pa(y | M7V () —log paly | Mo(c))
log pa(y | My(0)) — logpe(y | Mo(c))

Attrib(f) = E

where the expectation is over instances and over the corruption choice (and
we discard degenerate cases where the denominator is numerically close to
0). Intuitively, Attrib(f) ~ 1 means that swapping only site f from clean
to corrupted nearly restores the clean likelihood of the correct answer, while
Attrib(f) ~ 0 indicates that the site is not on the causal path by which the
corruption harms performance. We emphasize that this is a causal diagnostic

11

under the intervention semantics: it distinguishes correlation from necessity
in the model’s computation on these counterfactuals.

Choice of sites. The set SITES must be rich enough to cover both hy-
pothesized mechanism classes while remaining model-agnostic. Concretely,
we include (i) all token positions in the query (including the hop-count encod-
ing), (ii) all positions containing referent markers in the document, and (iii)
a grammar-dependent but data-computable set of candidate “anchor” posi-
tions in the document (e.g. terminals or marker-adjacent terminals), which
are the only plausible locations where a bind-then-read mechanism could
store intermediate bindings. We additionally stratify by layer, so each (,t)
pair is a distinct site. The protocol never uses the latent tree T to select
sites at evaluation time; site selection depends only on the observable tok-
enization and marker scheme. This restriction prevents trivially “probing”
the answer by direct access to T', and ensures that high attribution at a site
must arise from the model’s own internal organization of computation.

Causal-signature vector. A single scalar Attrib(f) is informative only
relative to other sites and other examples. We therefore aggregate into a
fixed-dimensional summary statistic

Sig(M,) € RP,

computed by pooling Attrib(f) across (layer, position, site-type) groups. A
minimal instantiation that suffices for our separations includes: (1) anchor
concentration: the maximum and mass of Attrib over document-anchor sites
versus query sites; (2) layer-of-write: the distribution of the argmax layer
among high-attribution anchor sites; (3) hop sensitivity: how the attribu-
tion pattern shifts as k varies; and (4) stability under OOD: the same pooled
statistics computed separately on held-out bindings, held-out structures, and
length-extrapolation splits, reported as divergences from in-distribution val-
ues. In practice we treat Sig(Mpy) as a vector of these pooled quantities
(means, maxima, and quantiles), enabling simple downstream classification
of mechanism class.

Bind-then-read versus direct-retrieval signatures. We operational-
ize two mechanism classes by where causal influence localizes. A bind-then-
read mechanism is one in which the model writes a representation of the
relevant binding (or intermediate pointer) into the residual stream at specific
document positions, and later reads it at the query. Under this mechanism,
corrupting the referent marker or a head anchor disrupts a specific write
location; swapping the activation at that document anchor from the clean
run should restore the answer, yielding a signature with (i) large Attrib
at a small set of document-anchor sites, often at layers aligned with hop

12

count, and (ii) comparatively small Attrib at query-only sites. Conversely, a
direct-retrieval mechanism compresses document information into a running
state such that the decisive information is only accessible near the end (or in
query-adjacent positions) rather than stored at token-indexed anchors. This
predicts (i) negligible attribution at document-anchor sites and (ii) attribu-
tion concentrated at late layers and query positions (or, in streaming models,
at the final state-update sites). The point of ATR™™ is that both strate-
gies are behaviorally plausible in principle, yet they entail sharply different
interchange-intervention profiles.

Leaderboard and reporting rules. To make results comparable, we fix
(a) the dataset generator II including marker scheme, corruption distribu-
tions, and OOD splits; (b) a reference SITES specification expressed in terms
of layers and observable token types; and (c) evaluation metrics. Submissions
report (i) accuracy and calibrated log-loss on each split, (ii) the full Sig(Mp)
with confidence intervals over random seeds, and (iii) the per-site Attrib(f)
heatmaps for reproducibility. Models may not use privileged access to T
or derivation traces at training or test time, and may not introduce aux-
iliary supervision that explicitly encodes parent pointers; all supervision is
via next-token prediction of y. For mechanistic claims, the intervention code
must execute the stated activation swaps (rather than approximations via
gradient-based proxies), and must evaluate on the fixed corruption operators
above.

With this protocol in place, we can state and verify a sharp mecha-
nistic prediction: the explicit Transformer construction that exactly solves
ATR' implements pointer-jumping by writing hop-wise bindings to desig-
nated anchors, and therefore yields a bind-then-read Sig. We now give the
construction and analyze its depth and dimension requirements.

5 Upper-Bound Constructions: Pointer-Jumping with
a 1-Head Transformer

We fix a hop count k£ and exhibit an explicit decoder-only Transformer of
depth L = (k) and embedding dimension d = O(M) that solves ATR™(II)
exactly (in the sense of correct argmax prediction) on all well-formed in-
stances generated under II. The construction implements the intended la-
tent computation—~k successive parent-pointer applications in the induced
terminal-occurrence tree T—by a layerwise pointer-jumping circuit.

Observable encoding of bindings. We assume (as permitted by IT) that
the ambiguity model A inserts constant-vocabulary markers that make two
pieces of information observable in the token stream: (i) a unique occurrence
key for each terminal occurrence v;, and (ii) a parent key specifying the key

13

of its parent par(v;) in TE| Separately, A designates the referent occurrence
v by a distinguished marker (or an occurrence key repeated in the query) so
that the query uniquely identifies v despite repeated terminal types.

Let the key space have size B. We choose II so that B > n,.x and hence
the keys used within a document are collision-free. When B = O(M) (e.g. by
setting Nmax < O(M)), our final dimension bound is d = O(M); otherwise
the same construction yields d = O(M + B).

Embedding layout. We decompose the residual space as a direct sum

Rd = decy @Rdmr @Rdtype @Rdcma dkey = dpar = Ba dtype = Ma dctrl =

For each occurrence key b € [B] we fix a basis vector x(b) € R%ey and
similarly for parent keys in R%a. For each terminal type a € ¥ we fix a
basis vector 7(a) € R%vre, At the token position corresponding to occurrence
v; with terminal type a;, occurrence key b;, and parent key p; = byar (i), we
set the (pre-activation) residual input to contain

nO = (5(b), k(pi), 7(as), 0).

At the query position tqy, we embed the referent key b, in the R%ey subspace
and set a control bit in R%t1 indicating that this position is the unique
workspace token whose state will be updated across layers:
0
h = (k(by), 0,0, 1).
We include standard positional encodings if desired, but choose all projection

matrices below to ignore the positional subspace, so positional information
is not used for correctness.

One hop per layer via attention. We work with a simplified pre-norm
decoder block containing a single attention head and an MLP sublayer which
we set to 0 (the identity map), since the computation is purely associative.
In layer ¢ € {1,...,k} we implement the update

(€-1) — parent key b(e) = bpar(')'

current key b
Let Qg, Ky, Vy be the query /key/value projections and Oy the output projec-
tion. We choose @y to extract the key-subspace component at the workspace
token, and we choose K, to extract the occurrence-key component at all
document tokens. We choose V; to extract the parent-key component at all

!Concretely, one may realize this with paired markers adjacent to each terminal oc-
currence, e.g. [ID=b;] [PAR=b,,.(;)] a for terminal type a. The lower bounds in Section@
use the same observable encoding to embed pointer-chasing instances; our upper bound
simply shows that global attention can exploit it with depth (k).

14

document tokens, and Oy to write the attended parent key back into the
key subspace of the workspace token. On non-workspace tokens we enforce
Q@hgz_l) = 0 (e.g. by using the control bit), so only the workspace position
produces a nontrivial query.

Because keys within a document are unique, the dot product <th££71), K gh£e71)>
. ary

is maximized at the unique position ¢ whose occurrence key equals the cur-

rent key (=1, By scaling the projections by a factor a = O(log nmax),

we ensure that the softmax weight on this matching position is 1 — 7 with

n < n;S. for any fixed constant ¢ > 0. Thus the residual update at the

max
workspace token satisfies

rY = B (k(0®), 0, 0, 0)

tqry tqu

up to leakage 1 into other basis directions; we will maintain a large margin
so that leakage cannot flip the final argmax.

Reading out the ancestor type. After k hop layers, the workspace to-
ken contains (approximately) the key of ancg(v). We add a final readout
layer £ = k + 1 whose attention again matches the workspace key against
document occurrence keys, but whose values extract the terminal-type ba-
sis 7(a;) rather than the parent key. That is, Vi, projects onto Rtee,
while Qgy1, Ki11 are as before. The resulting workspace activation contains
T(@ancy (v)) With arbitrarily small contamination. The unembedding matrix
Wout is chosen to map 7(a) to a logit vector with a fixed margin v > 0
between the correct label a and all others; choosing « large enough relative
to v makes the correct label the unique argmax for all instances.

Correctness by induction and depth dependence. Let b = b, and
b denote the workspace key after ¢ hop layers. By construction of V;, the
unique matching document position for key b¢~1) contributes parent key
b = bpar(anc,_; (v))> hence b equals the key of ancy(v). An induction on ¢
yields that after & hop layers the workspace key identifies ancg(v), and the
final readout layer returns its terminal type, which is exactly the label y.
The circuit uses one layer per pointer application and hence requires L =
k41 = ©(k) depth; this linear dependence is the natural cost of composing
k successor (parent) operations in the absence of an explicit iterative loop.

Dimension and positional requirements. The dimension requirement
is transparent in this explicit encoding: we need M directions to represent
terminal types in ¥ and B directions to represent collision-free binding keys
and parent keys. Under the parameter regime B = O(M) (equivalently
Nmax < O(M) under our chosen keyspace), we obtain d = O(M) as claimed.
No special positional encoding is required for correctness beyond the causal
constraint that the query token appears after the document; indeed, our

15

projections may be chosen to be invariant to position, so that the model
relies only on marker-defined identity and the encoded parent pointers rather
than any recency heuristic.

6 Lower Bounds for Direct-Retrieval Streaming Mod-
els

We now formalize a class of “direct-retrieval” mechanisms and show that, on
an appropriate distribution over ATR™ " (I) instances, any such mechanism
implemented in a single left-to-right pass requires state dimension Q(M) to
achieve vanishing error. The proof proceeds by an explicit reduction from
pointer chasing (equivalently, iterated indexing) and is therefore insensitive
to training data size: the obstacle is representational rather than statistical.

Streaming direct-retrieval model class. Fix an input x = (z1,...,27)
consisting of the document tokens, the divider EQS, and the query tokens.
A streaming model maintains a state s; € R? and updates it causally as

st = F(si—1,e(xy)), t=1,...,T,

for some embedding map e : ¥ U markers — R? and update F (possibly
depending on a fixed set of parameters and the layer index in a depth-L
stack). The prediction is obtained from sp and the query encoding, e.g.
via a readout § = arg maxgex(wq, s7). This abstraction covers RNNs and
many SSM-like architectures at inference time, including cases in which the
per-token computation is linear time and does not preserve a token-indexed
key—value cache. The salient limitation is that the model does not retain
a separate addressable memory per token; all information about the prefix
must be compressed into s;.

To state a lower bound that is robust to real-valued computation, we
impose a standard bounded-precision (or, equivalently, finite-information)
assumption: the effective memory capacity of the state is m = O(d) words
over an alphabet of size poly(M), or O(dlog M) bits. This is satisfied by
typical implementations with fixed-precision parameters and activations, and
is the regime in which communication-complexity reductions apply.

Hard distribution via pointer chasing. We instantiate II so that the
observable markers (inserted by A) expose, for each terminal occurrence v;,
a collision-free occurrence key b; € [B] and its parent key p; = bp,p(;y- The
query specifies a referent key b, and hop count k, and the label is the terminal
type of ancg(v). We consider a distribution over documents in which the
induced parent-pointer structure encodes a random function f : [B] — [B]
by setting p; = f(b;) for a selected subset of occurrences, and by arranging

16

the document so that all pairs (b, f(b)) are present exactly once as marker
pairs. The query then asks for f()(b,) (followed by a final lookup to map
a key to a terminal type). The anti-shortcut constraints in II are enforced
by randomizing yield positions and by repeating terminal types; thus, any
method that relies on recency, absolute position, or unambiguous surface
forms fails on average, and the only reliable signal is the marker-defined
pointer structure.

In this construction, solving ATR'™ on the hard distribution requires
computing an iterated function value f*)(z) for a uniformly random z € [B].
This is precisely the pointer-chasing problem, known to have linear memory
(or communication) requirements when & > 2 and the function is random.

Reduction to a two-party protocol. We reduce a hypothetical accurate
streaming solver to a low-communication protocol, contradicting standard
lower bounds. Partition the stream into two contiguous segments: a prefix
that contains the encoding of the function f (i.e. all the [ID = b][PAR = f(b)]
pairs), and a suffix that contains EOS and the query (the referent key x and
hop count k). In the corresponding two-party setting, Alice receives the
prefix and Bob receives the suffix. Alice simulates the streaming model up
to the boundary and sends Bob the memory contents needed to continue the
simulation; under our bounded-precision assumption, this message has size
O(m). Bob resumes the simulation on his suffix and outputs g.

If the streaming model achieves error € on the hard distribution, then this
protocol computes pointer chasing with the same error using communication
O(m). By known randomized communication lower bounds for pointer chas-
ing / iterated indexing, any such protocol with error bounded away from
1/2 requires Q(B) communication for constant k. Therefore m = Q(B),
and since m = O(d) up to logarithmic factors, we obtain d = Q(B). Under
the parameter regime in which B = ©(M) (or more generally B = ©(M)),
this yields d = (M), matching the qualitative separation suggested by the
upper bound in Section

Implications for SSM-like architectures. The conclusion is not that
streaming models are universally incapable of binding retrieval, but that any
one-pass solution without an addressable memory must allocate Q (M) state
dimension to store enough information about the random pointer structure.
In particular, increasing depth L at fixed d = o(M) does not help on this
distribution: although additional layers can implement more complex per-
token updates, they do not change the fact that the entire document must
be compressed into st before the query is read, whereas the query may
require retrieving one of B mutually-incoherent pieces of information (the
next pointer out of the current key) repeatedly for k steps.

This lower bound also clarifies the role of “local mixing” hybrids. Suppose

17

the model maintains a state s; but also allows a bounded-radius operator of
window size r (e.g. a convolution) that mixes only nearby tokens before up-
dating s;. Such mixing can improve constant factors and ease optimization,
but it does not create a token-indexed scratch space: the memory passed for-
ward remains O(d). Consequently the Q(M) memory requirement persists
for distributions that encode random pointers over [B]. Separately, if one
considers purely local architectures that do not even maintain a global state
but instead propagate information through depth (e.g. bounded-window at-
tention or convolutions without external memory), then worst-case instances
in which dist(v,ancg(v)) = Q(n) force depth L = Q(n/r) by a cone-of-
influence argument, formalizing a different obstruction.

Summary. On the hard ATR™ distribution, the task reduces to comput-
ing f) () for a random f. Any architecture whose inference can be simu-
lated by a single-pass streaming algorithm with m = O(d) effective memory
must satisfy d = Q(M) to achieve small error. This furnishes a principled
barrier for direct-retrieval mechanisms and motivates the mechanistic dis-
tinction tested by our intervention-based signature: a model that succeeds
at small d must, in effect, materialize bindings at identifiable sites (as in the
bind-then-read circuit), rather than compressing the entire document into a
fixed-size state and attempting to retrieve on demand at the query.

7 Experimental Design (Optional but Strengthen-
ing)

We now specify an experimental suite whose purpose is twofold: (i) to test
behavioral generalization on ATR™(II) across the in-distribution and the
prescribed OOD splits, and (ii) to adjudicate mechanism class (bind-then-
read versus direct retrieval) via interchange interventions and the resulting
causal signature Sig(Mp). The design emphasizes architectural comparability
and explicit ablations that isolate the primitives implicated by the upper and
lower bounds.

Architecture suite. We consider four families of models, all trained au-
toregressively on the same next-token objective with the answer token as the
supervised target.

(A) Global-attention Transformers. We train standard decoder-only Trans-
formers with L € {2,4,8,16}, hidden size d, and either one attention head
(to match the clean theoretical construction) or a small number of heads
to test robustness. We include variants with full attention and with re-
stricted attention windows, the latter serving as a controlled interpolation
toward local-only computation. For each model we record attention maps

18

on the query tokens and on designated marker tokens to facilitate qualita-
tive checks, but our primary mechanistic evidence will be intervention-based
rather than attention-based.

(B) Streaming “SSM-like” models. We instantiate one-pass state models
in the style of modern SSMs, including Mamba-like selective scan blocks
and Based-like linear-time mixers. Concretely, each block updates a state
s; € R? with a causal recurrence; we ensure inference is linear time and that
no token-indexed cache is preserved. To prevent conflating recurrence with
explicit attention, we disallow cross-token dot-product attention except in
explicitly defined hybrid variants below.

(C) Hybrid local-mizing + state models. To test whether bounded-radius
mixing can close the gap without global read mechanisms, we include hybrids
that apply a radius-r operator (e.g. depthwise convolution or limited-window
attention) prior to the recurrent update. We sweep r € {0,4,16,64} (with
r = 0 reducing to the pure streaming class). Where appropriate, we also
vary whether mixing is applied to embeddings only, within each block, or
both.

(D) Memory-augmented controls. Since our bounds separate ‘no ad-
dressable memory” from mechanisms that effectively materialize bindings,
we include controlled augmentations: (i) a small number mpyen of learned
“memory tokens” prepended to the document in a Transformer, (ii) a recur-
rent model equipped with an explicit key—value table of size O(Mmem) With
learned addressing, and (iii) a hybrid that permits a tiny global-attention
read only on the query suffix. These controls clarify whether performance
changes are attributable to representational capacity per se or specifically to
an addressable storage primitive.

Matching compute and capacity. To make architectural comparisons
meaningful, we report results under two matching schemes: (i) matched
parameter count (within £5%), and (ii) matched training compute (total
floating-point operations to reach a fixed token budget). For streaming mod-
els, we account for per-token costs of mixers and gates; for Transformers, we
distinguish full attention from windowed attention so that n? versus n scal-
ing is explicit. We also include a small “overprovisioned” regime (larger d)
to verify that any observed failures are not merely underparameterization
artifacts.

Data regimes and OOD splits. We generate datasets by sampling ATR ™ (IT)
with fixed |X| = M and varying (k, nmax). We train on a base distribution
with n < ngrain and evaluate on: (i) held-out bindings (disjoint subsets of
marker keys and/or head-terminal pairings), (ii) held-out structures (pro-
duction rules or subtrees excluded from training), and (iii) length extrapo-
lation (documents with n € (Ntrain, Ntest]). We additionally vary ambiguity

19

strength in A (degree of terminal-type repetition and density of referent
markers) to ensure that success cannot be attributed to accidental unam-
biguity. In all cases we verify the anti-shortcut constraints empirically by
measuring that simple baselines using relative/absolute positions, recency,
or unigram heuristics achieve chance-level performance.

Ablations. We perform targeted ablations that correspond to the hypoth-
esized computational bottlenecks.

Depth versus hop count. For each architecture we sweep L at fixed k and
sweep k at fixed L. For Transformers we expect a sharp transition around
L = k in the clean setting (modulo constant overhead for parsing the query);
for streaming models we expect that increasing L at fixed d yields limited
benefit once the state bottleneck dominates.

Local mixing radius. For hybrid models we sweep r and record both
in-distribution accuracy and extrapolation accuracy. This ablation tests
whether improvements, when they occur, track the receptive-field growth
predicted by cone-of-influence considerations, and whether any gains persist
when dist(v, ancg(v)) is deliberately made large by construction.

Positional encoding schemes. Because the task is defined to suppress
positional shortcuts, we treat positional encoding (PE) as a potential con-
founder for both optimization and mechanism. We compare learned absolute
PE, sinusoidal PE, RoPE, ALiBi, and a no-PE control (where permitted by
the model). We report not only accuracy but also mechanistic signatures: a
model that solves the task by a binding circuit should exhibit stable Sig(-)
across PE choices, whereas a spurious position-dependent strategy (when it
exists) should collapse under PE perturbations or OOD splits.

Marker dependence. We vary the marker vocabulary size B and the
explicitness of the referent encoding in the query (e.g. single key token
versus a structured tuple). We also introduce controlled corruptions that
change only a marker token while preserving all terminal types, and con-
versely corruptions that change a head-terminal type while keeping markers
fixed. These ablations isolate whether models truly track the marker-defined
binding graph.

Mechanistic versus behavioral evaluation. Behavioral accuracy alone
is insufficient to distinguish bind-then-read from direct retrieval when both
succeed in-distribution. We therefore compute Sig(Mp) using interchange
interventions as follows. For each example we construct a clean run o and
a corruption ¢ that perturbs exactly one binding-relevant token (marker or
head anchor) so that the correct answer changes. We cache internal acti-
vations at a predefined set of sites SITES (layers x positions, and when
available, sub-ports such as mixer outputs). For each site f € SITES we
form M/</"(c,0) and compute likelihood restoration and the correspond-

20

ing Attrib(f). Aggregating across examples yields (i) a layer-of-write profile
(where restoration concentrates), (i) an anchor-versus-query attribution ra-
tio, and (iii) a hop-alignment score measuring whether the most restorative
sites correspond to the predicted hop anchors.

We then compare Sig(Mpy) to two reference signatures: the explicit upper-
bound circuit (bind-then-read) and a streaming baseline trained to best effort
(direct retrieval). Operationally, we cluster models by Sig(-) (e.g. via cosine
similarity) and test whether clusters predict OOD generalization, especially
length extrapolation. This addresses a concrete empirical question suggested
by the theory: does mechanistic class, as measured by causal attribution
patterns, forecast robustness better than in-distribution accuracy?

Reporting and robustness. We report mean and standard error over
multiple random seeds (data generation and initialization). For mechanistic
quantities we also report concentration (e.g. top-p mass of Attrib over sites)
and stability across splits. Finally, we include negative controls: interven-
tions at irrelevant positions (random tokens, non-binding markers) should
yield Attrib & 0, and intervention effects should localize to the specific cor-
rupted binding component. These controls ensure that Sig(-) is not an ar-
tifact of global sensitivity but reflects structured causal dependence aligned
with the binding computation.

8 Discussion

Our upper and lower bounds isolate a small set of architectural primitives
that suffice (and, in certain regimes, are necessary) for reliable binding-based
retrieval. Theorem 1 shows that global attention can implement a literal
pointer-jumping algorithm: at the query, we identify the referred occurrence
v via markers, and then each subsequent layer performs one hop along the
parent pointer in the latent tree T until we reach ancy(v). Mechanistically,
the key property is not “attention” per se, but the availability of an address-
able, token-indezred store whose contents can be accessed by content-based
addressing with O(1) depth overhead per hop. In contrast, Theorem 2 for-
malizes a barrier for one-pass state updates s; = F'(s;—1,e(x;)) that do not
maintain such an addressable store: when the instance distribution encodes
essentially random pointer structure over M = |X| types, any streaming
direct-retrieval approach with m = O(d) = o(M) memory must incur con-
stant error on k-hop queries. In this sense, ATR™™ separates “remember the
whole document in a compressed state” from “materialize bindings so that
they can be chased.”

We view this separation as conceptually analogous to the difference be-
tween (i) computing a function of the entire prefix and (ii) supporting random
access into a set of intermediate facts indexed by markers. The upper-bound

21

circuit does not require that the model store the document verbatim; rather,
it must store enough local information at many token positions so that later
queries can locate the correct predecessor. This is precisely what the anchor-
centric causal signature in Proposition 4 detects: if bindings are materialized
at anchors, interchange interventions at the anchors restore the answer; if
bindings are “compressed away” into a final state, restoration concentrates
near the query. We emphasize that this mechanistic distinction can matter
even when both model classes achieve high in-distribution accuracy. In par-
ticular, a model that succeeds via a bind-then-read computation should, by
construction, degrade primarily when depth is insufficient for the hop count
k (or when marker parsing fails), whereas a direct-retrieval solver is expected
to degrade when the effective memory load increases (e.g. larger M, stronger
ambiguity A, or more adversarial pointer structure), even at fixed k.

Theorem 3 clarifies when local mizing can and cannot compensate for
the lack of global read. If the only cross-token interaction per layer has
radius 7, then information can propagate at speed O(r) tokens per layer;
hence exact retrieval in worst-case instances requires L = Q(n/r) whenever
dist(v, ancg(v)) = Q(n). This does not imply that local mixing is useless;
rather, it predicts a sharp dependence on the instance geometry. When the
grammar G and ambiguity model A concentrate probability mass on trees
whose relevant ancestors are typically nearby in yield order, or when we
truncate recursion so that typical documents have small effective diameter,
modest r may suffice empirically. Conversely, when we deliberately enforce
large yield distance between bound occurrences and their ancestors (while
preserving the anti-shortcut constraint), local mixing should fail unless depth
grows with n. Thus, local mixing helps precisely when it expands the recep-
tive field enough to cover the typical distances induced by G, not because it
changes the underlying need for addressable retrieval.

The formulation of ATR™™ is intentionally modular, and several exten-
sions appear immediate while preserving the core theoretical phenomenon
(pointer chasing under ambiguity). First, we can move from a single query
to a multi-query regime: append a sequence of queries after EOS, each ref-
erencing a possibly distinct v and hop count k, and supervise the model on
the corresponding sequence of answers. This stresses whether a model can
reuse stored bindings repeatedly, as opposed to amortizing a single retrieval
into a special-purpose state. Second, we can introduce compositional queries
that request multiple ancestors (e.g. ancy, (v) and ancg, (v)) or that request
a relation between them (e.g. equality of terminal types). These variants
remain reducible to repeated pointer jumps plus a small comparison circuit,
and hence preserve the qualitative distinction between addressable binding
and direct retrieval. Third, we can enrich the latent structure from a tree to
a bounded-outdegree directed acyclic graph by allowing certain nonterminals
to re-use previously introduced referents (a limited “reentrancy” operation).
This would align the task more closely with program-like reference patterns

22

while still permitting controlled anti-shortcut constructions.

A further extension, motivated by contemporary tool-use pipelines, is to
interpret markers as call identifiers and terminal anchors as return values.
The query then resembles a tool-call resolution step: “given call-id v, retrieve
the value produced by its k-th enclosing context.” Under this interpretation,
bind-then-read corresponds to building a table of call frames (addressable
by identifiers) and performing scoped lookup, whereas direct retrieval corre-
sponds to attempting to summarize all pending frames into a bounded state.
While the analogy is stylized, it suggests that ATR™"
trolled proxy for testing whether an architecture supports stable, indexable
intermediate representations across long contexts and nested scopes.

We also note limitations. Our lower bound (Theorem 2) relies on an
adversarially hard distribution (random pointer structure) and on standard
bounded-precision /streaming-simulation assumptions. It therefore does not
preclude that particular structured instances admit compact streaming solu-
tions, nor does it rule out architectures that implement an external memory
with learned addressing (which we explicitly treat as a separate mechanism
class). Similarly, our upper bound (Theorem 1) assumes a head-terminal
property and explicit markers that uniquely identify an occurrence; these
are design choices that make the binding graph legible and the mechanistic
analysis crisp. In naturalistic text, referents are rarely tagged unambigu-
ously, and successful systems must jointly infer referents and retrieve bind-
ings. We regard ATR™™ not as a full model of natural language reference,
but as a mechanistic benchmark in which we can (i) enforce anti-shortcut
constraints, (ii) generate ground-truth latent bindings, and (iii) make precise
causal claims about internal computation via interventions. Finally, inter-
change interventions scale with the number of sites and thus are expensive
at large L and n; developing cheaper yet faithful approximations to Sig(M)
remains an important practical problem if one wishes to turn mechanistic
evaluation into a routine diagnostic.

can serve as a con-

9 Conclusion

We have introduced ATR ™ (II) as a controlled family of binding-and-retrieval
problems in which the latent structure is explicit (a tree T" induced by a re-
cursive PCFG @), the referent in the query is unambiguous (via markers
inserted by A), and yet superficial shortcuts are suppressed by construction
(anti-shortcut constraints on positional features and on repeated terminal
types). The point of this design is not to mimic natural text, but to isolate
a mechanistic requirement—indexable access to intermediate bindings—that
is easy to state, easy to generate at scale, and difficult to satisfy for a broad
class of linear-time models without an explicit addressable store.

The theoretical picture is correspondingly sharp. On the positive side,

23

Theorem 1 gives an explicit upper bound: a depth-O(k), 1-head Trans-
former with d = O(|X]) can solve the task exactly by a literal pointer-
jumping computation, where each layer performs a single hop from the cur-
rent node representation to its parent anchor and the query merely initiates
the chain by selecting the referred occurrence v. On the negative side, The-
orem 2 isolates a principled obstruction for one-pass direct-retrieval schemes
st = F(s¢—1,e(x)) without an addressable token-indexed memory: under
a natural hard distribution (pointer chasing with random parent structure
over M = |X]|), any such streaming algorithm with m = o(M) memory suf-
fers constant error. Theorem 3 complements this by clarifying that “local
mixing” does not by itself remove the need for global access; it only shifts
the regime of success as a function of the induced yield distances and the
receptive field growth O(rL).

The mechanistic component of the benchmark is not an afterthought. We
have defined an intervention-based diagnostic, Sig(M), built from likelihood-
restoration attributions Attrib(f) computed via interchange interventions
between clean and corrupted runs. Proposition 4 shows that, for the ex-
plicit upper-bound circuit, causal responsibility concentrates at hop-specific
anchor sites, yielding a characteristic bind-then-read signature that is stable
across the usual distribution shifts (held-out structures, held-out bindings,
and length extrapolation). Conversely, for models that succeed by compress-
ing the document into a final state, restoration concentrates near the end of
the sequence and near query-adjacent sites. Thus ATR™™ offers a setting
in which behavioral success and mechanistic success can be separated: two
models can achieve similar in-distribution error while implementing compu-
tations with different causal footprints and different extrapolation profiles.

We therefore propose ATR' as a mechanistic benchmark in the strongest
sense: (i) instances are generated from a transparent latent program (a
derivation in G plus a marker process A); (ii) the task admits a clean algo-
rithmic solution whose internal steps can be localized to identifiable token
positions; (iii) the benchmark comes with theory-backed separations that
predict when certain architectural classes should fail; and (iv) we can test,
via interventions, whether a trained model implements the intended algo-
rithmic mechanism or a qualitatively different one. In particular, reporting
only error rates obscures the central question: whether a model has learned
to materialize and later reuse bindings, or whether it has learned to “guess”
answers from a compressed summary that happens to work on the training
regime.

To make this useful as a community diagnostic, we invite participation in
a mechanistic leaderboard organized around two axes. The first axis is stan-
dard generalization: accuracy on in-distribution data and on explicit OOD
splits (held-out bindings, held-out grammar structures, and length extrapo-
lation beyond the training n,,x). The second axis is mechanism: submitters
report Sig(M) computed on a fixed suite of corruption/intervention tem-

24

plates, together with a minimal description of the intervention sites used
(layers, token positions, and any designated “anchor” ports). We emphasize
that Sig(M) is not intended to be a single scalar; the most informative sub-
missions will include layer-wise concentration measures (where restoration
is written), position-wise localization measures (whether restoration occurs
at anchors or at query-adjacent sites), and stability statistics across splits.
In this format, the leaderboard becomes not merely a ranking of architec-
tures by accuracy, but a catalog of which architectural features induce which
mechanism class on a task with a known algorithmic solution.

We expect several concrete outcomes from such a benchmark. First, it
should expose when linear-time sequence models achieve high in-distribution
accuracy by exploiting regularities of a particular generator rather than by
implementing indexable binding retrieval; the anti-shortcut constraints re-
duce trivial heuristics, but they do not remove the need for mechanistic
auditing. Second, it should permit controlled ablations: by varying M, k,
ambiguity strength in A, recursion depth in G, and the split specification,
one can probe the predicted tradeoffs between memory, depth, and address-
ability. Third, it provides a setting in which new architectural proposals—
external memory, learned indexing, hybrid global-local mixers, or alternative
attention sparsity patterns—can be evaluated not only by whether they solve
the task, but by whether they solve it in a way that is causally legible and
robust.

Several technical directions remain. On the theory side, it is natural to
formalize intermediate mechanism classes (e.g. bounded associative memo-
ries or learned key-value stores) and to characterize their sample and compute
requirements as functions of M and k. On the methods side, interchange
interventions are expensive; approximations to Sig(M) that preserve fidelity
while reducing the number of forward passes would make mechanistic eval-
uation routine. On the benchmark side, extending ATR*™ to multi-query
documents, limited reentrancy, or compositional queries should preserve the
core pointer-chasing structure while stressing reuse and interaction between
retrieved facts.

Our intended use of ATR™™ is thus straightforward: we treat it as a
minimal testbed in which architectural claims about retrieval, memory, and
binding can be made precise, falsified behaviorally, and corroborated mecha-
nistically. We invite the community to use the generator II, the OOD splits,
and the Sig(M) protocol to build a shared empirical record of which mech-
anisms emerge in which models, and under which training regimes those
mechanisms remain stable under distribution shift.

25

	Introduction
	Related Work
	ATR++ Task Family
	Mechanistic Evaluation Protocol
	Upper-Bound Constructions: Pointer-Jumping with a 1-Head Transformer
	Lower Bounds for Direct-Retrieval Streaming Models
	Experimental Design (Optional but Strengthening)
	Discussion
	Conclusion

