
No-Sampling Predictors for Diffusion Quality via
Spectral Kernels and Training-Time Residuals

Liz Lemma Future Detective

January 19, 2026

Abstract

Sampling error in score-based generative models is driven by an
interplay between score estimation noise (from finite data and non-
convergent SGD), discretization, and truncation/early stopping. Re-
cent Gaussian-linear analyses show that the end-to-end Wasserstein
sampling error can be written as a kernel-type norm of the data power
spectrum, with kernels determined by training and sampling param-
eters. We operationalize this perspective into a practical diagnostic
that predicts the sampling error curve—versus stopping time and step
schedule—without running the sampler. Our method estimates (i)
spectral summaries of the data distribution in a convenient basis (e.g.,
Fourier bandpower) and (ii) score-error covariances from training-time
denoising residuals on a held-out set. In the Gaussian-linear setting, we
prove that the resulting estimator is consistent and give finite-sample
uniform concentration bounds, yielding provable guarantees for select-
ing near-optimal stopping times. Beyond Gaussians, we provide kernel-
based upper bounds with explicit remainder terms controlled by score
nonlinearity certificates. Empirically (to be validated), the predictor
forecasts optimal stopping and relative quality across runs while re-
ducing evaluation cost by orders of magnitude.
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to estimate/upper bound Nonlin(r) from validation probes.

7. 7. Complexity and Lower Bounds: sample complexity needed to es-
timate spectra/residual covariances; reductions from covariance esti-
mation/trace estimation; show near-tightness of upper bounds (up to
logs) under mild assumptions.

8. 8. Implementation Details (to strengthen contribution): scalable spec-
trum estimation (Hutch++/randomized bandpower); residual-statistic
collection during training; numerical stability; calibration mapping
from predicted W2 to FID/sliced-W2; failure modes.

9. 9. Experimental Plan (recommended): synthetic Gaussians and mix-
tures for exact ground truth; real-image diffusion runs (medium scale)
comparing predicted vs measured curves; ablations on basis choice,
correlation modeling, and solver choice.

10. 10. Discussion and Future Work: using correlated-time kernels (shared-
network covariance), extending to distillation and guidance, integrating
into automated schedulers.

2



1 Introduction

Empirical evaluation of diffusion and Langevin samplers is commonly per-
formed by actually running the reverse-time procedure, generating a large
collection of samples, and measuring a downstream discrepancy (e.g. a per-
ceptual metric, a classifier-based score, or a proxy for distributional mis-
match). This approach is computationally expensive for two intertwined
reasons. First, each evaluation of a candidate stopping rule (or terminal
time) requires producing full trajectories whose length scales with the num-
ber of discretization steps between the stopping time and the terminal noise
level. Second, the evaluation must be repeated across multiple random seeds
to control Monte Carlo variance, and across multiple candidate stopping
times to obtain an error curve rather than a single number. In the regimes
of interest—high-dimensional data, moderately large batch sizes, and tens to
hundreds of solver steps—the cost of sampler-based evaluation is often com-
parable to (or larger than) the cost of training-time ablations, which makes
systematic tuning of stopping times and step schedules impractical.

We study a different objective: given a trained model and access to held-
out data, we aim to predict the end-to-end sampling error curve as a function
of the reverse-time terminal gap. Concretely, for a grid of stopping gaps R,
we seek an estimator Ê(r) of

E(r) := E
[
W 2

2 (pdata, qr)
]
,

where qr denotes the distribution of the sampler output when the reverse-
time procedure is stopped at gap r (equivalently, the sampler is run only
from time T down to time tk = T − r). The operational goal is then to
select a recommended stopping rule r̂∗ ∈ argminr∈R Ê(r) without generat-
ing long reverse trajectories. The constraint is essential: we allow forward
noising of held-out data, and we allow querying the denoiser/score network
on corrupted inputs, but we disallow iterative sampling for evaluation.

Our approach is based on a kernel-norm view of sampling error that be-
comes exact in a Gaussian-linear regime. When pdata is Gaussian and the
reverse-time drift (induced by the learned score) is affine in the state, the
reverse dynamics preserve Gaussianity: for each r, the law qr is itself Gaus-
sian with mean and covariance obtained by linear propagation. In that case,
the squared Wasserstein distance admits a closed form in terms of the means
and covariances; for example, for Gaussians N (m1,Σ1) and N (m2,Σ2),

W 2
2

(
N (m1,Σ1),N (m2,Σ2)

)
= ∥m1−m2∥2+tr

(
Σ1 +Σ2 − 2(Σ

1/2
2 Σ1Σ

1/2
2 )1/2

)
.

In the same regime, discretization error and score error can be propagated
mode-by-mode along the eigendirections of the data covariance C, yielding
an expression for E(r) as a sum (or integral) of contributions weighted by
sampler-dependent kernels. Informally, each eigenvalue λi contributes to the
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total error through a scalar weight determined by the noise schedule {σt}
and the discretization rule Γ, and the contribution is modulated by second
moments of the score error along that mode.

The crucial consequence is that, under linearization of the score error,

et(x) = sθ(x, t)−∇ log pt(x) ≈ −∆tx+ δt,

the dependence of E(r) on the learned model enters only through (i) the
spectrum of the data covariance and (ii) the second moments of (∆t, δt)
across times. Both of these are estimable from held-out data without running
the reverse-time sampler. The spectrum of C can be estimated either exactly
in low dimensions or approximately via bandpower summaries in a suitable
basis (e.g. Fourier bands). The score-error moments can be accessed through
denoising residuals evaluated on forward-corrupted data: for x ∼ pdata and
w ∼ N (0, I), the quantity

rt(x,w) :=
x−Dσt(x+ σtw; θ)

σ2
t

is a standard proxy for the score, and its fluctuations across held-out samples
and noise draws provide unbiased estimates of the covariance terms that
appear in the kernel expression. Thus, the expensive operation—reverse-
time iterative sampling—is replaced by two inexpensive primitives: forward
noising and network evaluation.

We therefore formulate the following practical task. Given a trained dif-
fusion (or Langevin) model with a fixed schedule and solver, we compute a
predicted curve r 7→ Ê(r) on a user-chosen grid R, together with a recom-
mended stopping gap r̂∗. The predicted curve decomposes into interpretable
components: a truncation/noise-floor term, a discretization term (depending
on the solver and step schedule), and a score-error term which is an explicit
kernel functional of estimated spectral summaries and residual covariances.
In the Gaussian-linear setting, this plug-in construction is unbiased for each
r, and with sufficiently many held-out samples and residual draws it concen-
trates uniformly over R, which implies near-optimal stopping-time selection
by standard argmin stability arguments.

Our contributions are accordingly: (a) a no-sampling evaluation method
that produces an entire predicted error curve and a recommended stopping
rule; (b) a finite-sample analysis showing uniform deviation bounds for Ê(r)
and regret guarantees for r̂∗ under natural concentration assumptions; (c)
high-dimensional implementations via bandpower and randomized spectral
estimation that reduce dependence on d to dependence on the number of
spectral bands; and (d) an extension beyond Gaussianity in which the same
estimator yields a certified upper bound with an additional remainder term
controlled by measurable nonlinearity/curvature proxies of the learned score
on the validation distribution. The remainder of the paper formalizes the
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diffusion/Langevin setup, the residual estimators, and the spectral approxi-
mations, after which we state the kernel formulas and the associated guar-
antees.

2 Preliminaries

We collect the diffusion/Langevin notation used throughout, recall the closed-
form expression of W2 for Gaussians, and formalize the validation-time resid-
ual quantities from which we estimate score error moments. We also sum-
marize the spectral and bandpower statistics required to evaluate the kernel
functionals that appear later.

Forward noising and reverse-time dynamics. Let x0 ∼ pdata on Rd.
We consider a continuous-time diffusion with noise schedule {σt}t∈[0,T ] such
that the forward marginal pt is obtained by Gaussian corruption of the form

xt = x0 + σtw, w ∼ N (0, I), (1)

which is the marginal relation in variance-exploding (VE) diffusions and is
also the primitive used in denoising score matching (DSM). In this setting,
the (Stein) score of the forward marginal is ∇ log pt(x), and the learned
model provides either a score estimate sθ(x, t) or a denoiser Dσt(x; θ) from
which one can obtain a score proxy.

The reverse-time sampling procedure is determined by the choice of re-
verse dynamics (reverse SDE, or the probability-flow ODE) and a discretiza-
tion rule with step schedule Γ. Concretely, we consider a time grid

T = t0 > t1 > · · · > tK ≥ 0, γk := tk − tk+1 > 0,

and an update map of the generic form

Xtk+1
= Ψk(Xtk ; sθ(·, tk), γk) ,

where Ψk is Euler–Maruyama for the reverse SDE, or an ODE integrator for
the probability-flow ODE. We will index early stopping by the terminal gap

r := T − tk,

meaning we run the reverse procedure from T down to tk = T − r and stop.
We denote by qr the output distribution at this stopping gap.

W2 and Gaussian closed forms. For probability measures π, ν on Rd

with finite second moments, the squared 2-Wasserstein distance is

W 2
2 (π, ν) := inf

γ∈Π(π,ν)

∫
∥x− y∥2 dγ(x, y),
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where Π(π, ν) is the set of couplings with marginals π and ν. When both
measures are Gaussian, π = N (m1,Σ1) and ν = N (m2,Σ2), we have the
classical identity

W 2
2 (π, ν) = ∥m1 −m2∥2 + tr

(
Σ1 +Σ2 − 2(Σ

1/2
2 Σ1Σ

1/2
2 )1/2

)
. (2)

In particular, if Σ1 and Σ2 commute (e.g. they are simultaneously diago-
nalizable in a common eigenbasis), then (2) reduces to a mode-wise sum.
Writing Σj =

∑d
i=1 λ

(j)
i uiu

⊤
i with the same {ui}, we obtain

W 2
2 (π, ν) = ∥m1 −m2∥2 +

d∑
i=1

(√
λ
(1)
i −

√
λ
(2)
i

)2

. (3)

This mode-wise form is the reason that, in the Gaussian-linear regime consid-
ered later, the sampling error decomposes into a sum of scalar contributions
indexed by the eigendirections of the data covariance.

Denoising residuals and score error. We assume access to a denoiser
Dσt(·; θ) (possibly implemented implicitly via a score network). Under Gaus-
sian corruption (1), the Bayes-optimal denoiser is D⋆

σt
(y) = E[x0 | xt = y].

The following identity (Tweedie’s formula) relates this conditional mean to
the score of the noisy marginal:

∇ log pt(y) =
D⋆

σt
(y)− y

σ2
t

. (4)

Accordingly, given a learned denoiser, we form the standard score proxy

rt(x,w) :=
x−Dσt(x+ σtw; θ)

σ2
t

, x ∼ pdata, w ∼ N (0, I), (5)

which coincides with −∇ log pt(x+ σtw) when Dσt = D⋆
σt

and µ = 0 (more
generally one accounts for the mean shift in the usual way). We denote the
learned score by sθ(·, t) and define the pointwise score error at time t by

et(y) := sθ(y, t)−∇ log pt(y).

In the regime where the reverse-time drift is well-approximated by an affine
map in y (e.g. near a Gaussian reference), we model this error by a lineariza-
tion

et(y) ≈ −∆ty + δt, (6)

where ∆t ∈ Rd×d and δt ∈ Rd are random (capturing randomness induced
by the learned network and the data/noise), with E[δt] = 0 and finite second
moments. The prediction formulas we use later depend on Cov(δt) and
on second moments of ∆t (typically through Cov(vec(∆t))). Our validation-
time procedure estimates these moments from fluctuations of (5) across held-
out samples and independent noise draws.
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Spectrum and bandpower summaries. In the Gaussian setting, we
write pdata = N (µ,C) with C ≻ 0 and eigendecomposition C =

∑d
i=1 λiuiu

⊤
i .

The kernel expressions for sampling error depend on C through scalar func-
tionals of its spectrum (e.g. sums of the form

∑
i f(λi) for sampler-dependent

f). When d is small, we may estimate C directly from held-out data and
compute its eigenvalues. In high dimensions, we instead compute compressed
spectral statistics that are sufficient for a given approximation class.

One convenient option is a fixed orthogonal basis (e.g. Fourier) with a
partition into B spectral bands. Let Πb denote the orthogonal projector onto
band b. We define the bandpowers

Pb := E
[
∥Πb(x− µ)∥2

]
= tr(ΠbC), (7)

and estimate them by the empirical averages (1/n)
∑n

i=1 ∥Πb(xi − x̄)∥2 on
held-out data. These summaries replace explicit eigenvalues by B aggregate
variances, which reduces both computation and statistical complexity from
scaling with d to scaling with B in the subsequent kernel evaluation.

More generally, when the kernels require quantities of the form tr(f(C))
for scalar functions f , we may use randomized trace estimation (e.g. Hutchinson-
type estimators) applied to the sample covariance operator, yielding esti-
mates without forming a full d×d matrix. The later sections specify exactly
which spectral summaries are needed for a given sampler and kernel approx-
imation, and how these summaries interface with the residual covariance
estimates to produce a predicted curve r 7→ Ê(r).

3 Problem formulation

We formalize the no-sampling prediction task addressed in this work. Fix a
trained diffusion or Langevin model θ, together with its sampling specifica-
tion: a noise family {σt}t∈[0,T ] (or a fixed σ in the Langevin-DSM setting),
a reverse-time dynamic (reverse SDE or probability-flow ODE), and a dis-
cretization rule with step schedule Γ on a descending grid T = t0 > t1 >
· · · > tK ≥ 0. For a terminal gap r := T − tk, we denote by qr the out-
put distribution produced by running the reverse procedure from T down to
tk = T − r and stopping. Our target is the end-to-end sampling error curve

E(r) := E
[
W 2

2

(
pdata, qr

)]
, r ∈ [0, T ],

where the expectation is over the sampler randomness (and, when relevant,
over any randomness in the learned score through its stochastic error model).

No-sampling prediction task. We assume access to a held-out dataset
{xi}ni=1 ∼ pdata and oracle access to the trained denoiser/score in the fol-
lowing restricted sense: for user-chosen time points t and for sampled w ∼
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N (0, I), we may query

y = xi + σtw, and evaluate Dσt(y; θ) and/or sθ(y, t).

Equivalently, we may form the standard DSM residual/score proxy

rt(xi, w) :=
xi −Dσt(xi + σtw; θ)

σ2
t

,

and compute empirical moments of rt(xi, w) across held-out samples and
independent noise draws. Crucially, we disallow reverse-time rollout : we do
not generate trajectories (Xtk)k from the sampler, even for a small number
of steps, since the aim is to predict long-horizon behavior without incurring
the computational cost (or design entanglement) of running the sampler
itself. The only permitted operations are (i) forward corruptions of held-out
data, (ii) network evaluations at those corrupted points, and (iii) lightweight
spectral estimation routines on the held-out data (e.g. bandpowers in a fixed
orthogonal basis, or randomized trace estimation).

Allowed statistics and interface to the predictor. We constrain the
predictor to depend on the held-out data and model only through a finite
collection of summary statistics, computed on a modest set of probe times
T ⊂ [0, T ] and a finite stopping grid R ⊂ [0, T ]. Concretely, we permit:

1. Spectral summaries of the data covariance. In the Gaussian regime
these are functions of C (or of C projected to a bandpower basis), such
as tr(ΠbC) for bands {Πb}Bb=1, or more general functionals tr(f(C))
estimated by randomized linear algebra. The predictor may use any
such summaries as long as they are computable from {xi} without
forming long Markov chains.

2. Per-time residual/error covariances. For each t ∈ T , from m indepen-
dent noise draws per xi (or an equivalent batching strategy), we may
estimate second moments of the score error model in (6), summarized
by empirical estimators V̂t and Ŵt targeting Cov(δt) and Cov(vec(∆t)),
respectively. We emphasize that we do not require estimating full d×d
covariances when d is large: diagonal, bandpower-projected, or low-
rank sketches are admissible provided the subsequent kernel evaluation
only depends on these projections.

Given these statistics, the predictor outputs a curve Ê : R → R+ and a
recommended stopping gap

r̂∗ ∈ argmin
r∈R

Ê(r).

Optionally, the predictor may also output a recommendation for modifying
the discretization (e.g. a refined step schedule Γ), but in the present formu-
lation we treat Γ as fixed and known.
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Evaluation metrics. We evaluate the quality of the predicted curve and
the induced stopping rule via two complementary criteria. First, we measure
the accuracy of the curve estimate uniformly over the grid:

Eunif(Ê;E) := sup
r∈R

∣∣Ê(r)− E(r)
∣∣. (8)

In applications one may also consider an average version 1
|R|

∑
r∈R |Ê(r) −

E(r)|, but the uniform metric is the natural quantity for guaranteeing stable
argmin selection on a discrete grid.

Second, we measure the quality of the predicted early-stopping choice by
its regret relative to the best grid point:

Regret(r̂∗) := E(r̂∗)−min
r∈R

E(r). (9)

This notion isolates the operational consequence of prediction error: even
if Ê has nontrivial pointwise deviations, it may still yield a near-optimal
stopping time if the minimizer is robust. In later sections we relate (9) to
(8) through standard argmin stability conditions.

Statistical goal under restricted access. Under the Gaussian-linear
assumptions stated in the enclosing scope, we aim to design a plug-in esti-
mator Ê(r) built solely from the allowed statistics above, such that for given
accuracy/failure parameters (ε, δ),

Pr
[
Eunif(Ê;E) ≤ ε

]
≥ 1− δ,

with sample sizes (n,m) and computational cost that scale tractably in di-
mension (or in the compressed dimension B under bandpower structure).
The subsequent section constructs Ê by identifying an explicit kernel func-
tional Ksampler(r; ·) for the chosen sampler (SDE or ODE, fixed-noise Langevin
or scheduled diffusion), and by specifying how the spectral and residual
statistics are assembled into that kernel to produce the predicted curve and
stopping recommendation.

4 Kernel predictor construction

We construct an explicit plug-in predictor by reducing the sampler, under
the Gaussian–linear assumptions, to a family of decoupled one-dimensional
linear systems in the eigenbasis of the data covariance. Throughout we write
C =

∑d
i=1 λiuiu

⊤
i and analyze each coordinate ξt,i := ⟨ui, Xt−µ⟩ separately;

all kernels below are scalar functions of λi and the sampler specification.
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Ideal dynamics and error injection. Let pt denote the forward noised
distribution at time t. In the VE (additive-noise) setting, pt = N (µ,C+σ2

t I)
and hence

∇ log pt(x) = −(C + σ2
t I)

−1(x− µ).

We decompose the learned score as sθ(x, t) = ∇ log pt(x)+ et(x) and impose
the linearized error model et(x) ≈ −∆tx + δt with E[δt] = 0 and second
moments accessible through validation residual statistics. Substituting into
a reverse-time scheme yields a linear(ized) recursion whose mean and co-
variance admit closed-form propagation; the contribution of Cov(δt) and
Cov(∆t) appears linearly through kernels determined by the solver.

4.1 (A) Fixed-noise Langevin (DSM) kernel

We first treat the fixed-noise DSM/Langevin setting at noise level σ. The
target of the ideal Langevin chain is the σ-smoothed density pσ = N (µ,C +
σ2I), with score s∗(x) = −(C+σ2I)−1(x−µ). Consider the Euler–Maruyama
discretization with constant step γ > 0:

Xk+1 = Xk + γ sθ(Xk) +
√

2γ Zk, Zk ∼ N (0, I). (10)

In the eigen-direction ui, the ideal drift coefficient is ai := 1/(λi + σ2).
Writing ξk,i := ⟨ui, Xk − µ⟩ and linearizing e(x) ≈ −∆x+ δ yields

ξk+1,i = (1− γai)︸ ︷︷ ︸
=:ρi

ξk,i − γ ⟨ui,∆Xk⟩ + γ ⟨ui, δ⟩ +
√
2γ zk,i, (11)

where zk,i ∼ N (0, 1). Ignoring higher-order products between ∆ and the
state (which vanish in expectation under the Gaussian–linear closure as-
sumed in the enclosing scope), we obtain an explicit kernel representation
for the second moment of ξK,i as a weighted sum of per-step error covari-
ances. Concretely, let w

(δ)
i,j := γ ρK−1−j

i denote the sensitivity of ξK,i to an
additive perturbation at step j. Then the additive-score-error contribution
takes the form

E
[
ξ2K,i

]
⊃

K−1∑
j=0

(
w

(δ)
i,j

)2
Var

(
⟨ui, δj⟩

)
, (12)

and the multiplicative error ∆j contributes analogously with weights pro-
portional to ρK−1−j

i and factors depending on E[ξ2j,i] (hence, ultimately, on
λi). Collecting these terms defines a sampler-dependent kernel KLan which
is polynomial in ρi and linear in the required projected covariances of δ and
∆.

For the truncation/noise-floor term, we note that stopping Langevin at
stationarity would match pσ rather than pdata, so the irreducible gap is

E
(0)
Lan(σ) = W 2

2

(
N (µ,C),N (µ,C + σ2I)

)
=

d∑
i=1

(√
λi + σ2 −

√
λi

)2
, (13)
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which is computable from spectral summaries of C. Discretization error
Edisc

Lan is obtained by comparing the discrete covariance propagation induced
by (10) under the ideal score to the corresponding continuous-time Ornstein–
Uhlenbeck flow; in the eigenbasis this comparison is again scalar and depends
only on (λi, γ,K).

4.2 (B) Scheduled diffusion kernel: reverse SDE versus probability-
flow ODE

We next treat a scheduled diffusion with noise levels {σt}t∈[0,T ] discretized
on T = t0 > · · · > tK ≥ 0. For a broad class of VE parameterizations, an
Euler step of the reverse SDE has the schematic form

Xtk+1
= Xtk + bk sθ(Xtk , tk)∆tk +

√
bk ∆tk Zk, (14)

with known scalar coefficient bk (determined by the schedule) and ∆tk :=
tk+1 − tk < 0. In the eigen-direction ui, the ideal linear drift coefficient is
bk/(λi + σ2

tk
). Defining the per-step propagator

Πi(k→ℓ) :=
ℓ−1∏
j=k

(
1− bj

λi + σ2
tj

∆tj

)
, k < ℓ,

we obtain weights describing how an error injected at time tk influences the
stopped output at tℓ. In particular, for additive error δtk the contribution is
governed by

w
(δ)
i,k (r) := Πi(k→kr) bk ∆tk, kr := min{j : T − tj ≥ r}, (15)

and the associated kernel term is a Riemann-sum approximation of
∑

k(w
(δ)
i,k (r))

2Var(⟨ui, δtk⟩)
(with an analogous multiplicative term for ∆tk). The truncation term E(0)(r)
corresponds to stopping at nonzero tkr even with a perfect solver; in the VE
Gaussian case it reduces to

E
(0)
diff(r) = W 2

2

(
N (µ,C),N (µ,C +σ2

tkr
I)
)
=

d∑
i=1

(√
λi + σ2

tkr
−
√
λi

)2
. (16)

For the probability-flow ODE, the update is identical to (14) but without
the stochastic term and with the standard drift scaling change (replacing bk
by a known multiple, typically bk/2 under the usual SDE–ODE correspon-
dence). Consequently, the kernel weights (15) and the discretization term
Edisc are modified deterministically, while the plug-in dependence on Cov(δt)
and Cov(∆t) remains linear with the same projected statistics.
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4.3 Plug-in estimator from spectral and residual statistics

Given (i) spectral summaries of C (either {λ̂i} in low dimension or band-
powers {P̂b}Bb=1 in a fixed basis) and (ii) per-time residual-based estimates
V̂t and Ŵt, we define

Ê(r) := Ê(0)(r) + Êdisc(r) + Êscore(r).

Here Ê(0) and Êdisc are computed by running the ideal mean/covariance re-
cursions in the eigen- or bandpower-reduced representation, using the known
schedule and solver. The term Êscore(r) is obtained by evaluating the sampler-
specific kernel (Langevin or diffusion; SDE or ODE variant) on the estimated
projections of V̂t and Ŵt:

Êscore(r) =
∑

t∈T : t≥T−r

B∑
b=1

(
κ
(δ)
b,t (r) v̂b,t + κ

(∆)
b,t (r) ŵb,t

)
, (17)

where v̂b,t and ŵb,t denote the bandpower (or eigen-coordinate) projections
of the error covariances, and the coefficients κ

(δ)
b,t (r), κ

(∆)
b,t (r) are determined

by the propagators of the chosen sampler. The finite-sample properties of
this plug-in construction are established in the next section by combining
unbiasedness of the residual statistics with concentration of the spectral and
covariance estimates.

5 Finite-sample guarantees in the Gaussian–linear
regime

We now state finite-sample properties of the plug-in curve Ê(·) when the
enclosing Gaussian–linear assumptions hold, so that Rem(r) = 0 and E(r)
is an explicit multilinear functional of (i) spectral summaries of C and (ii)
second moments of the linearized score-error parameters. Throughout, we fix
a finite stopping grid R and a finite probe-time set T ⊂ [0, T ] used to form
the residual statistics, and we regard the sampler specification (schedule,
solver, and discretization rule) as fixed and known.

5.1 Unbiasedness and consistency of the plug-in curve

The first guarantee is that, in the idealized regime where the spectral quan-
tities entering the kernel are known exactly, the residual-based portion of
Ê(r) is unbiased for the corresponding contribution to E(r). Concretely, the
score-error term admits a representation of the form

Escore(r) =
∑

t∈T : t≥T−r

〈
At(r), Cov(δt)

〉
+

∑
t∈T : t≥T−r

〈
Bt(r), Cov(vec(∆t))

〉
,
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for deterministic coefficient operators At(r), Bt(r) determined by the sam-
pler propagators and by C only through its spectral summaries. By con-
struction of the residual proxies (DSM/Tweedie identities under the Gaus-
sian forward corruption model), our estimators satisfy E[V̂t] = Cov(δt) and
E[Ŵt] = Cov(vec(∆t)), whence linearity yields

E
[
Êscore(r)

∣∣∣ spectral inputs
]
= Escore(r) for each r ∈ R.

The remaining terms Ê(0)(r) and Êdisc(r) depend only on the sampler and C
(through scalar functions of its eigenvalues). If we are in a low-dimensional
regime where C is estimated by the sample covariance and eigenvalues are
plugged in, these terms are generally only consistent (since eigenvalues are
nonlinear in the sample covariance). However, in the bandpower/trace-
functional setting the dependence on C can be arranged to be linear in
moments such as tr(f(C)) for explicit scalar functions f (rational functions
in the VE Gaussian case), and then standard randomized trace estimators
yield unbiased estimates of these spectral inputs. In either case, as n,m → ∞
with |T |, |R| fixed, we have Ê(r) → E(r) in probability pointwise for each r,
and under the concentration bounds below the convergence is uniform over
R.

5.2 Uniform concentration over a stopping grid

We next bound supr∈R |Ê(r) − E(r)| with high probability. The argument
is a stability inequality for the kernel functional plus concentration of the
estimated inputs. We write schematically

Ê(r)− E(r) = Errspec(r)︸ ︷︷ ︸
spectral summary error

+ Errres(r)︸ ︷︷ ︸
residual-covariance error

,

where Errspec(r) captures the effect of using λ̂ (or bandpowers P̂b) in place
of the population spectral summaries, and Errres(r) captures the effect of
using V̂t, Ŵt in place of their expectations.

Since pdata is Gaussian and the residual proxies are (conditionally) sub-
Gaussian under the corruption model, standard matrix concentration (e.g.
matrix Bernstein for sample covariances and Hanson–Wright for quadratic
forms) yields, for each fixed t and each fixed band/eigendirection sum-
mary, deviations of order O

(√
log(1/δ)/(nm)

)
(for residual statistics) and

O
(√

log(1/δ)/n
)

(for spectral summaries). The kernel assembly step is Lips-
chitz in these inputs: there exists a sampler-dependent constant L such that,
for all r ∈ R,

|Ê(r)−E(r)| ≤ L
(
∥ŝpec−spec∥+max

t∈T
∥V̂t−Cov(δt)∥+max

t∈T
∥Ŵt−Cov(vec(∆t))∥

)
,
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with norms chosen compatibly with the representation (coordinatewise for
eigen-directions, bandpowerwise for Fourier bands, or operator/Frobenius
norms for low-rank models). Applying a union bound over |T | and the finite
grid R (or, more precisely, over the finite set of kernel coefficients that are
re-used for all r) yields the stated uniform guarantee: there exists an explicit
N(·) such that if

n,m ≳
B + log

(
|R||T |/δ

)
ε2

(bandpower model), n,m ≳
d+ log

(
|R||T |/δ

)
ε2

(full-spectrum model),

then
Pr

[
sup
r∈R

|Ê(r)− E(r)| ≤ ε
]
≥ 1− δ,

up to absolute constants and mild dependence on the schedule through L.
The key point is that no reverse-time sampling is needed: all randomness
comes from held-out data and forward corruptions.

5.3 Stopping-time selection and regret

Let r̂∗ ∈ argminr∈R Ê(r) and r∗ ∈ argminr∈RE(r). On the event supr∈R |Ê(r)−
E(r)| ≤ ε, we have the deterministic inequality

E(r̂∗) ≤ Ê(r̂∗) + ε ≤ Ê(r∗) + ε ≤ E(r∗) + 2ε,

hence the regret is bounded by E(r̂∗)−minr∈RE(r) ≤ 2ε. If, additionally,
E(·) satisfies a discrete margin condition on R (e.g. strong convexity around
its minimizers), then the same uniform deviation bound converts directly
into a bound on the distance from r̂∗ to the set of minimizers, with scaling
proportional to ε divided by the margin parameter.

5.4 Improved rates under bandpower structure and spectral
decay

The preceding bounds scale with d only through the complexity of estimating
the spectral inputs required by the kernel. When we replace full eigenvalue
dependence by a bandpower approximation in a fixed basis (e.g. Fourier
bands for image-like data), the effective dimension becomes B ≪ d, yielding
the sample complexity n,m = Õ(B/ε2) plus an approximation bias term
BiasB in the final curve. This bias is deterministic and can be bounded by
smoothness of the scalar kernel functions in λ together with the bandwidth
of the spectral partition: if the kernel depends on λ through a Lipschitz
function f , then BiasB is controlled by the within-band variation of f times
the mass of the spectrum in that band.

More generally, when the spectrum of C decays, one can quantify an
effective rank dependence. Many kernel components reduce to trace func-
tionals of the form tr(f(C)) for monotone, bounded rational f (arising from

14



resolvents (C + αI)−1 along the schedule). For such f , standard effective-
dimension quantities (e.g. deff(α) := tr

(
C(C+αI)−1

)
or reff := tr(C)/∥C∥op)

control the variance of randomized trace estimators and, correspondingly, the
required n for a given accuracy. In this regime the curve predictor can be
implemented with rates depending on deff(α) (uniformly over the relevant α
induced by σt), rather than on the ambient dimension d, without altering
the no-sampling nature of the procedure.

5.5 Beyond Gaussian: robust upper bounds with nonlinear-
ity certificates

When pdata is not Gaussian (and, concomitantly, when the learned score
is not globally affine on the region explored by the reverse dynamics), the
remainder term Rem(r) in the kernel decomposition need not vanish. In this
regime we do not interpret Ê(r) as an unbiased predictor of E(r); instead,
we use it as a baseline and derive a certified upper bound of the form

E(r) ≤ Ê(r) + Nonlin(r),

where Nonlin(r) is a computable quantity estimated from the same validation
probes used to form V̂t, Ŵt.

A surrogate linearized sampler and a drift-gap inequality. Fix a
probe set T ⊂ [0, T ] and construct, for each t ∈ T , an affine approximation
to the learned score (or, equivalently, to the learned reverse drift on that time
slice). Concretely, we fit parameters (∆̂t, δ̂t) (by least squares over validation
probes, bandwise regression, or any restricted parametric fit compatible with
the kernel representation) and define the surrogate score

s̃t(x) := −∆̂tx+ δ̂t.

Let qr denote the distribution produced by the actual sampler (using sθ)
when stopped at gap r, and let q̃r denote the distribution produced by the
same sampler specification (same σt and discretization rule) but with sθ
replaced by s̃t at the probed times (or interpolated between them). By
construction, the quantity Ê(r) is precisely the kernel evaluation associated
with this affine surrogate (together with the estimated second moments);
hence Ê(r) is the natural proxy for W 2

2 (pdata, q̃r) in the regime where the
kernel derivation is accurate.

We then compare qr and q̃r by a drift perturbation bound. Writing the
reverse-time dynamics abstractly as an SDE

dXt = bt(Xt) dt+
√
2 dBt, t ∈ [T − r, T ],

where bt is the (schedule-dependent) drift induced by the sampler and score,
we decompose

bt(x) = b̃t(x) + ∆bt(x), ∆bt(x) := bt(x)− b̃t(x),
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with b̃t the drift obtained by replacing sθ with s̃t. For standard VE/VP
samplers, ∆bt is a known scalar multiple of sθ(·, t) − s̃t(·); we denote this
scalar factor by αt so that ∥∆bt(x)∥ ≤ αt∥sθ(x, t)− s̃t(x)∥.

Assume a one-sided Lipschitz (contractivity) condition for the surrogate
drift: there exists a measurable κt ∈ R such that

⟨x− y, b̃t(x)− b̃t(y)⟩ ≤ −κt∥x− y∥2 for all x, y in the relevant region.
(18)

Under (18), the standard synchronous coupling argument yields a stability
inequality of the schematic form

W 2
2 (qr, q̃r) ≤

∫ T

T−r
exp

(
− 2

∫ T

t
κu du

)
E
[
∥∆bt(X̃t)∥2

]
dt, (19)

where (X̃t)t∈[T−r,T ] denotes the surrogate process. (If κt is negative, (19)
still holds with an exponential growth factor; in practice this merely worsens
the certificate.)

Finally, by the triangle inequality and (a+ b)2 ≤ a2+2ab+ b2, we obtain

E(r) = W 2
2 (pdata, qr) ≤ W 2

2 (pdata, q̃r) + 2W2(pdata, q̃r)W2(q̃r, qr) +W 2
2 (q̃r, qr).
(20)

We therefore define the nonlinearity remainder by upper bounding the last
two terms in (20) using (19) and the baseline proxy Ê(r) ≈ W 2

2 (pdata, q̃r):

Nonlin(r) := 2

√
Ê(r) · D(r) + D(r)2, D(r)2 ≥ W 2

2 (qr, q̃r),

where D(r) is any computable upper bound on W2(qr, q̃r).

Estimating the certificate from validation probes. It remains to up-
per bound the integrand in (19) without running the reverse sampler. We
introduce the pointwise nonlinearity residual

ηt(x) := ∥sθ(x, t)− s̃t(x)∥, so that ∥∆bt(x)∥ ≤ αt ηt(x).

We estimate moments of ηt on the forward noised validation distribution.
Specifically, for each t ∈ T we draw xi ∼ pdata from held-out data and
wij ∼ N (0, I), form yij,t := xi + σtwij , and compute

η̂ij,t :=
∥∥sθ(yij,t, t)− s̃t(yij,t)

∥∥.
Then

M̂
(2)
t :=

1

nm

n∑
i=1

m∑
j=1

η̂2ij,t

is an unbiased (and, under sub-Gaussian tails, concentrated) estimator of
EY∼pt [ηt(Y )2], where pt is the forward-corrupted distribution at noise level
σt.

16



To connect this forward expectation to the surrogate-path expectation
in (19), we impose a localization condition stating that the surrogate reverse
process does not leave the region where the validation probes are represen-
tative. A convenient sufficient form is an absolute-continuity domination
inequality: there exists Λt ≥ 1 such that

E
[
ηt(X̃t)

2
]

≤ Λt EY∼pt

[
ηt(Y )2

]
for t ∈ [T − r, T ],

which can be justified under log-concavity/contractivity or verified empir-
ically by monitoring the score norm and denoiser residual norms on the
validation distribution.

Combining these ingredients, we obtain the computable bound

D(r)2 :=

∫ T

T−r
exp

(
− 2

∫ T

t
κu du

)
α2
t Λt M̂

(2)
t dt,

(with a Riemann-sum discretization over t ∈ T ), and hence the certified in-
equality E(r) ≤ Ê(r)+Nonlin(r). In summary, the same forward-corruption
probes used to estimate V̂t, Ŵt also yield a quantitative nonlinearity certifi-
cate via the fitted-score residual ηt; the only additional sampler-dependent
inputs are the scalar factors αt and a stability profile κt (which may be cho-
sen conservatively, e.g. via an upper bound on the Jacobian norm of the drift
estimated by randomized directional finite differences on the same validation
probes).

5.6 Complexity and lower bounds

We separate the cost of the predictor into (i) estimating spectral information
about the data covariance (or its compressed surrogates) and (ii) estimating
the second moments of the score-error surrogates from validation residuals.
Both are unavoidable, in the sense that they match natural statistical lower
bounds inherited from classical covariance/trace estimation problems.

Computational complexity of the no-sampling predictor. Fix a
probe set of times T ⊂ [0, T ], a grid of stopping gaps R, and m noise draws
per held-out point and per probed time. The dominant cost is the collection
of residual statistics. For each t ∈ T and each held-out xi we form m cor-
rupted inputs yij,t = xi + σtwij and evaluate the denoiser/score to compute
residual proxies. Thus the number of network evaluations is nm |T | (up to
constant factors depending on whether we evaluate both Dσt and sθ(·, t)).
Kernel assembly is negligible by comparison: once spectral summaries and
per-time error summaries are available, the curve evaluation for all r ∈ R
reduces to deterministic algebra whose complexity depends on the represen-
tation. In a full-eigendecomposition regime (small d), this is O(|R| d2); in a
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bandpower regime with B bands, it is O(|R|B2) (or O(|R|B) if the kernel
depends only on bandwise diagonal statistics).

Spectrum estimation is the other nontrivial cost. If we work in an orthog-
onal basis with fast transforms (e.g. Fourier), and define Πb as the projec-
tor onto band b, then bandpowers P̂b = (1/n)

∑
i ∥Πbxi∥2 cost O(nd log d)

with FFT-type primitives. More generally, randomized trace estimators
(Hutchinson/Hutch++) estimate functionals tr(f(C)) at cost O(s) matrix-
vector products with the empirical covariance; implemented in streaming
form, this becomes O(s n d) arithmetic with small s, avoiding d× d storage.
In all cases, memory is dominated by the activation footprint of the denoiser
evaluations; the predictor-side state is O(|T |B) (or O(|T | d) in diagonal
form).

Statistical complexity: how n and m enter. The predictor depends on
two classes of random inputs: the held-out data {xi}ni=1 (governing the spec-
trum estimate) and the injected noises {wij} (governing residual estimates).
Under sub-Gaussian assumptions (satisfied in the Gaussian-linear regime),
the relevant spectral/bandpower estimates concentrate at rate O(

√
B/n)

(or O(
√

d/n) without compression), while residual second-moment estimates
concentrate at rate O(

√
P/(nm)), where P is the number of retained pa-

rameters per time slice (e.g. P = d for a diagonal V̂t, P = B for bandwise
V̂t, and potentially larger if cross-band or low-rank structure is modeled). A
union bound over |T | probed times and |R| stopping points introduces only
logarithmic factors, yielding sample requirements of the schematic form

n ≳
SpecDim + log(|R||T |/δ)

ε2
, nm ≳

ErrDim + log(|R||T |/δ)
ε2

,

where SpecDim ∈ {d,B} and ErrDim is the effective parameter count needed
to represent the score-error moments at the fidelity demanded by the kernel.
This separation is operationally useful: when denoiser calls are expensive,
one may increase n and keep m small (even m = 1) while still driving down
the dominant variance term, whereas if the held-out set is small one may
partially compensate by increasing m to reduce residual-noise variance.

Lower bounds via covariance and trace estimation reductions. The
preceding rates are not artifacts of our analysis: in the Gaussian-linear
regime they are near-tight up to logarithmic factors, because predicting E(r)
uniformly over r contains covariance estimation as a special case.

We sketch a standard two-point reduction. Consider two data distribu-
tions p0 = N (0, C0) and p1 = N (0, C1) with

C0 = Id, C1 = Id + τ uu⊤,

for a fixed unit vector u. For many sampler/kernel specifications, the ker-
nelized component of E(r) depends on C through spectral functionals of
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the form
∑d

i=1 fr(λi) or, in bandpower form,
∑B

b=1 fr,b(Pb). In the rank-one
spiked construction above, the functional gap is typically linear in τ for small
τ , i.e. there exists r (or a finite subset of r values) such that

|E1(r)− E0(r)| ≥ c τ

for a constant c depending on the schedule and kernel family. Choosing
τ = Θ(ε) makes the E(r)-gap of order ε. On the other hand, the Kullback–
Leibler divergence between n i.i.d. samples satisfies

KL
(
p⊗n
0 ∥ p⊗n

1

)
=

n

2

(
tr(C−1

1 C0)− d− log det(C−1
1 C0)

)
= Θ(n τ2),

so that taking τ = Θ(ε) keeps the divergence O(nε2). By Le Cam’s method,
any procedure that estimates E(r) to additive error o(ε) with constant suc-
cess probability would distinguish p0 from p1, which requires KL = Ω(1)
and hence n = Ω(1/ε2). To recover the dimension dependence, we random-
ize u over an orthonormal set (or use a packing of rank-one perturbations)
so that distinguishing among d alternatives requires n = Ω(d/ε2); this is the
classical covariance-estimation lower bound transported through the kernel
functional. Under a B-band model where the predictor only accesses band-
powers, the same argument with perturbations supported within a band
yields n = Ω(B/ε2).

A parallel lower bound applies to residual-statistic estimation: if the ker-
nel includes a term of the form

∫
⟨Kt,Cov(δt)⟩dt (or its discrete analogue),

then estimating E(r) implies estimating at least ErrDim mean-square pa-
rameters of δt (or linear functionals thereof). By reduction from mean es-
timation in RErrDim (or from covariance estimation when cross-terms are
retained), one obtains nm = Ω(ErrDim/ε2) for fixed T , again matching the
concentration-based upper bounds up to logs.

These lower bounds clarify what can and cannot be improved: substan-
tial gains are only possible by exploiting structure (small B, spectral decay,
low-rank residual covariances, or smoothness across t) and by careful im-
plementation so that the constants in the denoiser-evaluation budget are
controlled.

5.7 Implementation details

Scalable spectrum estimation. The kernel assembly step requires access
to spectral functionals of the data covariance C (or of its noised variants im-
plicit in the sampler). Since C is not formed explicitly at image scale, we
implement two interchangeable estimators whose outputs match the suffi-
cient statistics assumed by the chosen kernel approximation.

First, in a bandpower regime, we fix an orthogonal transform F admit-
ting a fast multiply (typically FFT/DCT or a learned orthobasis with fast
application) and define bands {Πb}Bb=1 as disjoint coordinate blocks in the
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transform domain. Writing zi = Fxi, we estimate Pb = E∥Πbz∥22 via the
streaming average

P̂b =
1

n

n∑
i=1

∥ΠbF (xi − µ̂)∥22,

where µ̂ is the held-out mean (or the training-set mean if fixed preprocessing
is used). This estimator is O(nd log d) with an FFT and does not require
storing zi. If the kernel uses additional spectral moments (e.g.

∑
i f(λi)

for a small family of f), we can also estimate bandwise higher moments
M̂b,k = (1/n)

∑
i ∥Πbzi∥2k2 when the approximation calls for kurtosis-like

corrections, though in our baseline predictor we restrict to second moments
for robustness.

Second, in a randomized trace regime, we estimate quantities of the form
tr(f(C)) without diagonalizing C. We use Hutch++: for i.i.d. gℓ ∼ N (0, I)
we estimate tr(A) by 1

s

∑
ℓ g

⊤
ℓ Agℓ and reduce variance by a low-rank range

finder on A; here A = f(Ĉ) for Ĉ the empirical covariance operator. Cru-
cially, we never materialize Ĉ; rather, we implement v 7→ Ĉv as a single pass
over the held-out set:

Ĉv =
1

n

n∑
i=1

(xi − µ̂)
〈
xi − µ̂, v

〉
.

When f is a polynomial or a rational approximation of the kernel-required
map (as is typical when the kernel depends on (C + αI)−1 or similar), we
apply f(Ĉ) through repeated calls to this linear operator, using Chebyshev
polynomials or conjugate gradients with preconditioning. This approach is
basis-agnostic and reduces to O(s n d) arithmetic with small s.

Residual-statistic collection as a training-time callback. To avoid a
separate post-hoc pass, we implement residual-statistic estimation as an op-
tional validation callback that runs every K training steps. For each probed
time t ∈ T and each minibatch {xi} from the held-out loader, we draw noises
wij ∼ N (0, I) and evaluate either the score sθ(·, t) or the denoiser Dσt(·; θ)
to form the DSM proxy

rt(xi, wij) =
xi −Dσt(xi + σtwij ; θ)

σ2
t

,

which equals ∇ log pt(·) in the idealized Gaussian-linear calibration. We then
aggregate second moments needed for V̂t and Ŵt in the same representation
as the spectrum estimator: either diagonal-in-pixel, diagonal-in-transform-
band, or a small set of random projections. Concretely, for bandpower resid-
uals we store

v̂t,b ≈ E
∥∥ΠbF (δt)

∥∥2
2
, ŵt,b ≈ E

∥∥ΠbF (∆t)
∥∥2
F
,
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where the second quantity is implemented via Jacobian-vector products or,
more simply, via linear regression of the residual on x in the chosen basis
when we restrict to a diagonal (per-band) ∆t. We update these statistics
with numerically stable streaming formulas (Welford updates for means and
second moments), and we store the effective sample counts per (t, b) to expose
variance diagnostics.

Numerical stability and variance reduction. Several implementation
choices materially affect stability. (i) We explicitly center data by µ̂ when
estimating P̂b, and we treat preprocessing (e.g. scaling to [−1, 1]) as part
of the definition of C. (ii) For small σt, the proxy rt can have large mag-
nitude; we therefore compute in float64 for the accumulation even if the
network runs in float16/float32, and we optionally clip rt only for diag-
nostic plotting, not for the estimator (since clipping introduces bias). (iii)
We use antithetic noise pairs w and −w to reduce odd-moment fluctuations
in residual estimates without changing expectations. (iv) When the ker-
nel assembly requires integrals over t, we precompute quadrature weights
consistent with the solver discretization and use the same T grid to avoid
interpolation artifacts.

Calibration from Ê(r) to practical metrics. Although W 2
2 is mathe-

matically convenient, practitioners often report FID or sliced-W2. We treat
calibration as a monotone post-processing map g applied to the predicted
curve. Specifically, we run a small number of short sampling experiments at
a few gaps {rℓ} (far fewer than would be required to map the entire curve) to
obtain empirical pairs (Ê(rℓ),FID(rℓ)) or (Ê(rℓ), sW2(rℓ)), and we fit g via
isotonic regression or a low-degree spline constrained to be increasing. The
output g(Ê(r)) then provides a calibrated predictor for the chosen metric
while preserving the predicted minimizer ordering in typical regimes; we em-
phasize that this calibration is optional and separate from the no-sampling
guarantee for Ê(r) itself.

Common failure modes and diagnostics. The predictor can fail in
structured ways. The most important is model mismatch: if the score er-
ror is strongly nonlinear so that et(x) ≈ −∆tx + δt is inaccurate on the
validation distribution, the plug-in curve may be over-optimistic; this typ-
ically manifests as a systematic underprediction at intermediate r and can
be detected by monitoring a nonlinearity certificate such as the residual of
the best affine fit of rt versus x in the chosen basis. A second failure mode
is an inadequate spectral basis: if C is far from diagonal in the selected
transform, bandpower compression merges incompatible directions and in-
troduces BiasB, often visible as sensitivity of Ê(r) to the number of bands
B. Third, solver mismatch matters: the kernel Ksampler must match the
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actual discretization (SDE vs ODE, predictor–corrector vs Euler), otherwise
the discretization term is misspecified. Finally, distribution shift between
the held-out set and the sampler’s effective training distribution (e.g. due
to augmentations or classifier-free guidance) can invalidate both spectrum
and residual estimates; we therefore recommend reporting predictor-side un-
certainty bars derived from empirical variability across held-out shards and
across independent noise seeds.

5.8 Experimental plan

We organize experiments to (i) validate the plug-in kernel predictor in regimes
where the ground truth curve E(r) is known or can be estimated to negli-
gible error, (ii) test the predictor end-to-end on standard image diffusion
models under realistic resource constraints, and (iii) isolate the contribu-
tions of spectral compression, score-error modeling, and solver specification
through targeted ablations.

Synthetic Gaussians with exact ground truth. We first work in the
setting of Thm. 1 where pdata = N (µ,C) and where we can either (a) con-
struct a score model whose error is exactly affine with prescribed (∆t, δt),
or (b) train a small denoiser on Gaussian data and empirically verify that
its residuals are well-approximated by an affine map on the validation dis-
tribution. We generate C with controlled spectra: (i) isotropic (C = αI),
(ii) power-law decay λi ∝ i−p, and (iii) spiked models with a small num-
ber of large eigenvalues. For each case we fix a noise schedule σt and a
discretization rule (SDE Euler–Maruyama and ODE probability flow) and
compute the kernel-defined E(r) either in closed form (when the induced qr
is Gaussian and the dynamics are linear) or to numerical precision by sim-
ulating the resulting linear Gaussian state-space model (which yields exact
mean/covariance recursions). Since W 2

2 between Gaussians is explicit,

W 2
2

(
N (µ1,Σ1),N (µ2,Σ2)

)
= ∥µ1 −µ2∥22 +tr

(
Σ1 +Σ2 − 2(Σ

1/2
2 Σ1Σ

1/2
2 )1/2

)
,

this yields a ground-truth curve E(r) without Monte Carlo error. We then
run KernelPredict using only held-out samples and denoiser queries, pro-
ducing Ê(r) on a grid R (log-spaced in r to emphasize small terminal gaps).
The primary evaluation is the uniform deviation supr∈R |Ê(r) − E(r)| as a
function of (n,m), compared to the Õ(1/

√
n) and Õ(1/

√
m) scaling sug-

gested by Thm. 2. We also report stopping-time regret E(r̂∗)−minr∈RE(r)
to validate the argmin stability in Thm. 3.

Mixtures and controlled non-Gaussianity. To probe robustness be-
yond the Gaussian-linear regime while retaining tractable evaluation, we
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consider mixtures of Gaussians with known parameters, including symmet-
ric two-component mixtures and higher-K mixtures with separated means.
In these settings W 2

2 (pdata, qr) is no longer closed-form even if qr were known,
so we estimate E(r) by a high-accuracy offline procedure used only for eval-
uation: for each r we generate a large batch from the sampler (with many
independent chains), and we approximate W 2

2 via sliced Wasserstein (many
random projections) or via entropic OT on a moderate subsample. We treat
this as ground truth for experimental purposes and compare it to Ê(r) and
to the certified upper bound interpretation E(r) ≤ Ê(r) + Nonlin(r) by in-
stantiating a nonlinearity certificate based on the residual of the best affine
fit of rt versus x (measured in the same basis used by the predictor). We
expect systematic underprediction when mixture separation induces strong
curvature in ∇ log pt at intermediate t, and we quantify whether Nonlin(r)
correctly tracks this deviation.

Real-image diffusion: predicted versus measured curves. We next
evaluate on medium-scale image diffusion models where sampling is expen-
sive but still feasible for limited sweeps. We select a standard pretrained
model (e.g. on CIFAR-10 or ImageNet-64) and fix a reference sampler (SDE
Euler, probability-flow ODE, and optionally a predictor–corrector variant).
We compute Ê(r) using a held-out set (e.g. n = 104 images), a modest time
grid |T | ∈ [32, 128], and a small number of noises per time m ∈ [1, 8], re-
porting runtime and memory overhead. For evaluation we perform a sparse
sampling sweep: for a small subset of gaps {rℓ} ⊂ R we run the actual sam-
pler to obtain empirical metrics, including (i) a proxy for W 2

2 via sliced-W2

in a fixed feature space and (ii) FID. We then assess (a) rank consistency
of gaps (Kendall τ between Ê(r) and measured error), (b) accuracy of the
predicted minimizer r̂∗ relative to the measured best r, and (c) whether the
curve shape (monotonicity at extremes, presence of an interior optimum) is
correctly recovered.

Ablations: basis choice, correlation modeling, solver mismatch.
We perform three ablation families designed to stress each modeling decision.

Basis choice. We compare (i) pixel-diagonal statistics, (ii) Fourier/DCT
bandpowers with varying B, and (iii) randomized projections (Hutch++-
style traces) holding compute fixed. We report sensitivity of Ê(r) and r̂∗ to
B and to the transform, thereby empirically characterizing BiasB.

Correlation modeling. Our baseline treats per-time residual statistics
independently. Since a single network induces correlated errors across t, we
compare this baseline to a correlated-time model in which we estimate cross-
time covariances on a coarse subset of T and interpolate, and we evaluate
whether incorporating these correlations improves prediction of the shape of
Ê(r) (particularly around the optimum).
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Solver choice. We deliberately assemble kernels using an incorrect solver
(e.g. ODE kernel for an SDE sampler) and quantify the resulting bias. This
isolates discretization-model mismatch as a distinct failure mode and moti-
vates solver-aware kernel libraries.

Across all experiments we fix seeds and report uncertainty bars from
held-out sharding and noise resampling, emphasizing that the predictor is
itself a statistical estimator whose variability should be visible to the user.

6 Discussion and Future Work

Our formulation treats the predicted curve r 7→ Ê(r) as a plug-in evaluation
of an explicit sampler-dependent kernel functional, driven by two classes of
inputs: spectral summaries of the held-out data and second-moment statis-
tics of the model error as revealed by denoising residuals. The experiments
above are designed to validate the estimator under controlled regimes; here
we discuss extensions which, in our view, are structurally natural within the
same “no-reverse-sampling” access model.

Correlated-time kernels induced by a shared network. The base-
line predictor estimates per-time covariances Cov(δt) and Cov(vec(∆t)) in-
dependently across t ∈ T . This is statistically convenient, but it is also a
modeling choice: a single parameter vector θ induces strongly coupled errors
across time, and the resulting dynamics accumulate these errors through
time-integrated propagators. In the Gaussian-linear regime one can make
this dependence explicit. Writing schematically the linearized drift error
along the reverse dynamics as

et(x) ≈ −∆tx+ δt,

the contribution of score error to the terminal mean/covariance (hence to
W 2

2 ) depends not only on E[δtδ⊤t ] and E[∆t ⊗ ∆t] but also on cross-time
second moments such as E[δtδ⊤t′ ] and E[∆t ⊗ ∆t′ ] for t ̸= t′. A correlated-
time refinement therefore replaces the diagonal-in-time summary

{V̂t, Ŵt}t∈T by {V̂t,t′ , Ŵt,t′}t,t′∈T ,

with V̂t,t′ ≈ Cov(δt, δt′) and an analogous definition for Ŵt,t′ . The resulting
kernel assembly becomes a quadratic form in these matrices, reflecting the
fact that the terminal error is obtained by integrating (or summing, in dis-
crete time) propagated perturbations. Practically, full estimation of V̂t,t′ at
fine |T | is expensive, but the structure of shared networks suggests compres-
sions: (i) low-rank models in the time index (e.g. a small number of temporal
factors), (ii) coarse-to-fine schemes estimating correlations on a sparse skele-
ton of times and interpolating, or (iii) parametric covariance models (e.g.
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Matérn/Gaussian kernels in t) fit to empirical cross-covariances. Any such
approach yields a principled bias–variance trade-off: the uncorrelated base-
line corresponds to enforcing V̂t,t′ = 0 for t ̸= t′, whereas correlated-time
kernels aim to reduce systematic misprediction of the shape of Ê(r) near its
minimizer when temporal error correlations dominate.

Predicting the effect of distillation and step reduction. Diffusion
distillation methods (progressive distillation, consistency models, and related
student–teacher procedures) primarily alter the effective solver: they reduce
the number of steps, modify the time grid, and sometimes replace the reverse-
time dynamics by an alternative parameterization. Our predictor is, by
design, solver-aware through Ksampler and Γ. This suggests a direct use case:
given a candidate distilled sampler specified by (σt,Γ) and a fixed trained
network (teacher or student), we can compute Ê(r) for that sampler without
generating samples. When distillation changes the network itself, we can still
use the same pipeline by recomputing residual statistics on held-out data
for the student. This yields a mechanism for selecting, among a family of
distilled variants, a recommended terminal gap r̂∗ and step schedule before
any expensive visual evaluation. Conceptually, the predictor separates two
effects that are often conflated empirically: the discretization effect Edisc

driven by step size and solver choice, and the score-error effect driven by
model mismatch, which distillation may either improve (by training objective
alignment) or worsen (by reducing capacity).

Guidance as a controllable perturbation of the score. Classifier
guidance and classifier-free guidance replace the base score sθ(x, t) by a
guided score s

(g)
θ (x, t), typically of the form

s
(g)
θ (x, t) = sθ(x, t) + g · a(x, t),

where a is a guidance term (e.g. ∇x log p(y | x, t) or the conditional–unconditional
difference in classifier-free guidance) and g ≥ 0 is a guidance scale. Even if
sθ is well-calibrated, guidance alters both the drift magnitude and the ef-
fective error statistics, often causing stiffness near small σt. Our estimator
can be adapted by measuring residual proxies for the guided score directly
on corrupted held-out inputs, thereby obtaining V̂

(g)
t , Ŵ

(g)
t as functions of

g. This would enable predicting an error curve Êg(r) that can be opti-
mized jointly over (g, r), and potentially traded against perceptual metrics
or conditional accuracy when a differentiable surrogate is available. From a
robustness perspective, guidance is also a stress test for the non-Gaussian
remainder: large g may push trajectories into regions where the lineariza-
tion certificate ηt (cf. Thm. 4) is large, and the upper-bound interpretation
E(r) ≤ Ê(r) + Nonlin(r) becomes operational.
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Integration into automated schedulers and model-selection loops.
Finally, we view Ê(r) as a primitive for automated configuration. Given a
fixed network, one may wish to choose: (i) a stopping rule r, (ii) a step sched-
ule Γ (including adaptive step sizes), and (iii) a solver family (SDE vs. ODE
vs. predictor–corrector). Since our estimator is fast relative to sampling, we
can place it inside an outer-loop optimizer that searches over discrete design
choices. A minimal version performs a grid search over candidate schedules
and selects the minimizer of Ê; more ambitious variants exploit the smooth
dependence of the kernel on Γ to perform continuous optimization under con-
straints (e.g. a fixed budget of function evaluations). Importantly, because
the predictor is itself statistical, a scheduler should propagate uncertainty: if
Ê is flat within confidence bands over a range of r, one should prefer conser-
vative choices or incorporate secondary objectives (runtime, stability) rather
than overfit to estimator noise. We expect this “predict–then-optimize” per-
spective to be most effective when combined with compressed spectral rep-
resentations (bandpowers or randomized traces), yielding a practical tool
that can be run routinely during training checkpoints to monitor sampler
performance without repeated sampling sweeps.
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