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Abstract

Score-based diffusion models are trained with a single shared net-
work across noise levels, inducing strong correlations in score error
across time—an effect not captured by analyses that assume inde-
pendent per-time errors. Building on recent fine-grained Gaussian-
linear error decompositions for (i) constant-step SGD denoising score
matching and (ii) diffusion/Langevin sampling in Wasserstein distance,
we derive a second-order, sampler-specific expansion of the end-to-
end sampling error for discretized reverse diffusion. In the Gaussian
setting, we show that the expected W 2

2 error decomposes into (a) a
truncation/terminal-time term, (b) a discretization term, and (c) a new
*correlated-time quadratic form* depending on the full time–time co-
variance of the score error process induced by shared-parameter train-
ing. This quadratic term takes the form of a double-integral (or double-
sum on the discretization grid) against an explicit kernel operator de-
termined by the diffusion schedule and the chosen solver, reducing
to earlier single-integral formulas when errors are independent across
time. We provide tightness statements (matching lower bounds) for
Gaussian error processes, and propose diagnostics to estimate the rel-
evant covariance structure from training-time residuals. Experiments
on synthetic anisotropic Gaussians with controlled temporal correla-
tions validate the kernel prediction and show how correlation structure
explains which noise bands dominate quality.
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1 Introduction and motivation

Diffusion generative models are commonly justified through an idealized
statement: if we sample the reverse-time dynamics using the exact score
∇ log pt, then the terminal distribution matches the data distribution (up
to terminal-time truncation and numerical discretization). In practice, how-
ever, sampling uses a single learned network queried at many times, and the
induced score error is neither small nor independent across time. The present
work isolates this latter point. We regard the score error as a stochastic pro-
cess {et}t∈[0,T ] and argue that its time–time correlation structure is a missing
piece in end-to-end error propagation theory.

The usual diagnostics for score accuracy are time-marginal: one reports
a denoising score-matching loss, a per-time mean-squared error, or bounds
involving supt ∥et∥ and its integral. These quantities cannot distinguish be-
tween (i) small errors that are rapidly decorrelated in time and therefore
partially cancel, and (ii) errors of the same marginal magnitude that are
coherently aligned across time and therefore accumulate. The sampling map
from the entire trajectory {et} to the terminal sample is intrinsically path-
dependent. When the same network is evaluated at different t, architectural
biases and shared features naturally induce correlations between es and es′ ,
even when the latent randomness driving the sampler is independent. Con-
sequently, controlling only E∥et∥2 at each t is insufficient to predict sampling
quality in metrics sensitive to mean and covariance, such as W2.

Our starting point is that, for Gaussian targets and the linear reverse-
time dynamics induced by common diffusion schedules, the influence of a
perturbation of the score on the terminal distribution admits a linear sensi-
tivity representation. Concretely, when pdata is Gaussian, the exact reverse
dynamics preserves Gaussianity, and the sampler output is characterized by
its mean and covariance. If we write the learned score as a perturbation of the
true score, then to leading order the induced perturbations of terminal mean
and covariance are linear functionals of the entire error trajectory. This ob-
servation converts the analysis of sampling error into an operator calculus:
we propagate the error process through linear “state transition” operators
determined by the schedule and by the chosen discretization scheme.

The metric we target is the squared Wasserstein-2 distance. For Gaus-
sians, W 2

2 decomposes into a mean term and a covariance term, the latter
being the Bures squared distance. Hence, once we express the terminal
mean and covariance as perturbations around their unperturbed values, a
second-order Taylor expansion of the Gaussian W 2

2 yields a quadratic form
in these perturbations. Combining the linear sensitivity representation with
this second-order expansion implies a structural consequence: the leading
score-error contribution to EW 2

2 depends only on second moments of the
score error process, i.e. on the full time–time covariance Cov(es, es′). In
particular, the relevant object is not a single-time variance but a two-time
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kernel, and the expected W 2
2 error can be written as a bilinear functional of

Cov(es, es′).
To make this dependence explicit, we model the score error in the affine

form
et(x) = −(∆t)x+ δt,

where ∆t and δt are jointly zero-mean random coefficients that may be cor-
related across time. This form is not merely a convenient abstraction: for
Gaussian marginals, the true score is affine in x, and the leading approxima-
tion error of a learned affine map is naturally expressed through a random
matrix and vector. Under this parametrization, the correlated-time effect
separates into a matrix-error part (driving covariance perturbations and,
through coupling, possibly mean perturbations) and a vector-error part (di-
rectly driving mean perturbations). The resulting quadratic term admits a
decomposition into two bilinear forms, one involving Cov(∆s,∆s′) and one
involving Cov(δs, δs′), together with cross terms when present. The associ-
ated kernels are explicit in the Gaussian-linear setting and are computable
from schedule-dependent propagation operators and the local Hessian of the
Bures metric.

This perspective generalizes and clarifies prior analyses that yield “ker-
nel norms” or time-weighted integrals of per-time score errors. Such re-
sults implicitly impose a diagonal-in-time approximation, effectively replac-
ing Cov(es, es′) by its time-diagonal. When errors are independent across
time (or sufficiently mixing so that off-diagonal correlations are negligible),
our bilinear form reduces to a single integral with a one-time weight, re-
covering the familiar structure. The point of our formulation is that this
reduction is not valid in general, and the discrepancy is not a higher-order
effect: two error processes can share identical time-marginal variances and
yet produce different expected sampling errors because the kernel sees their
cross-time covariance.

Our contributions are therefore organized around an explicit decomposi-
tion of the expected sampling error into three terms: (i) a terminal-time bias
due to truncating the reverse dynamics at time r > 0; (ii) a solver-dependent
discretization bias controlled by the step size γ and the numerical order; and
(iii) a correlated-time quadratic term of order Θ(ε2), where ε controls the
magnitude of score errors in second moment. The third term is the main nov-
elty: it is invariant to solver order in the sense that improving discretization
does not remove the effect of correlated score errors, but only modifies the
sensitivity operators appearing in the kernel. Moreover, within the Gaussian
framework, the quadratic term is tight: without additional structure on the
error process, the dependence on the full time–time covariance cannot be
reduced to time-marginal quantities.

The kernel representation also suggests a practical diagnostic. If we can
estimate Cov(∆ta ,∆tb) and Cov(δta , δtb) on a discrete time grid from residual
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samples of the learned network, then we can contract these empirical covari-
ances with the precomputed kernels to predict the expected W 2

2 degradation
of a given sampler. This yields a tool for comparing samplers, schedules, and
noise injection parameters α under a common learned model, and for decid-
ing whether improvements in sampling error should be sought through finer
discretization (reducing the discretization term) or through training inter-
ventions that reduce cross-time coherence (reducing the quadratic term). At
the same time, the necessity of time–time covariance brings an intrinsic cost:
estimating an unrestricted covariance matrix on an m-point grid is quadrati-
cally expensive in m unless one exploits structure such as low-rank or banded
correlations. This observation motivates the structural approximations we
later discuss.

Finally, we emphasize scope. We work in a regime where the forward
marginals and the reverse dynamics are Gaussian-linear, so that the prop-
agation operators and the Bures expansion are tractable and the resulting
kernel can be written explicitly. While this setting is restrictive, it isolates
the role of time correlation without conflating it with nonlinear score geom-
etry. The qualitative message extends beyond Gaussians: any end-to-end
sampling analysis that compresses score error into independent-time statis-
tics will, in general, fail to capture coherent accumulation across time. The
remainder of the paper develops the required preliminaries, establishes the
kernelized expansion, and relates it to estimation and computation on a time
grid.

2 Background and preliminaries

2.1 Forward diffusion and Gaussian marginals

We work with a linear forward noising process on Rd specified by a schedule
(βt, ξt) on t ∈ [0, T ]. Concretely, we consider the (time-inhomogeneous) SDE

dXt = −1

2
βtXt dt + ξt dWt, (1)

where Wt is a standard d-dimensional Brownian motion and ξt ≥ 0 is in-
terpreted as an isotropic diffusion magnitude. This unified form contains
common parameterizations as special cases (e.g. variance-preserving choices
correspond to ξt =

√
βt up to conventional rescalings). Throughout, we

assume X0 ∼ pdata = N (µ,C) with C ≻ 0.
Since (1) is linear with additive Gaussian noise, each marginal pt is

Gaussian, pt = N (µt,Σt), with (µt,Σt) solving deterministic ODEs. In
the isotropic-noise setting above one has

µ̇t = −1

2
βtµt, Σ̇t = −βtΣt + ξ2t I, (2)
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with initial conditions (µ0,Σ0) = (µ,C). In particular, the true score is
affine:

∇ log pt(x) = −Σ−1t (x− µt). (3)

This affine structure motivates the error model used later.

2.2 Reverse-time dynamics and probability-flow limit

Sampling requires integrating a reverse-time dynamics from a tractable ter-
minal law at time T to an approximation of pdata at time 0. With the exact
score (3), the (formal) reverse-time SDE has drift corrected by the score.
For our purposes, it suffices to record a parameterized family interpolating
between the stochastic reverse SDE and the deterministic probability-flow
ODE. Writing the reverse-time variable as r = T − t (so r increases as we
sample), we view the sampler as evolving a state Zr forward in r with co-
efficients inherited from (βt, ξt) and score evaluations at the corresponding
forward time t = T − r. Abstractly, we write the reverse dynamics in the
schematic form

dZr = ar(Zr) dr + α br dW̄r, ar(z) ∝ (linear term in z) − ξ2T−r ŝT−r(z),
(4)

where W̄r is a Brownian motion independent of Wt and α ≥ 0 controls
the injected noise. The case α > 0 corresponds to a reverse SDE with
stochasticity, while the probability-flow ODE is obtained in the limit α →
0 (removing the stochastic term). Under the exact score ŝt = ∇ log pt,
both variants transport the terminal Gaussian marginal back to pdata in
the idealized continuous-time setting (up to any terminal-time truncation if
sampling begins at r > 0 rather than r = 0).

In the Gaussian-linear regime and for affine scores, the reverse dynam-
ics preserves Gaussianity: for each r the law of Zr is characterized by a
mean and covariance solving linear (matrix) ODEs/SDE moment equations.
This reduction is the starting point for an end-to-end analysis in terms of
perturbations of these moments.

2.3 Discretization on a time grid

In practice, sampling is performed on a grid 0 = t0 < t1 < · · · < tK =
T with step sizes hk = tk+1 − tk and maximum step size γ := maxk hk.
We allow nonuniform grids. A discretization scheme (Euler–Maruyama for
SDEs, explicit/implicit Runge–Kutta for ODEs, etc.) defines a one-step map
producing iterates whose laws we denote by qk.

For later use, we emphasize that in the present setting the update can be
written as an affine transformation of the current state plus injected Gaussian
noise. In a generic notation, a single step can be expressed as

xk = Akxk+1 + bk + Gk ηk, ηk ∼ N (0, I), (5)
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where Ak, bk,Gk are determined by the schedule, the solver, α, and the score
evaluations. When the score is affine, the dependence of bk on the score
error can be made explicit and linearized. Mean-square stability assumptions
used later amount to requiring that the products of the linear maps Ak

remain uniformly controlled in a manner sufficient to bound the propagation
of second moments.

2.4 Denoising score matching and the induced score error

A learned score network is typically trained by denoising score matching
(DSM): one samples t ∼ π on [0, T ], draws x0 ∼ pdata, generates a noisy xt
from the forward process, and minimizes a weighted regression loss towards
the true score ∇ log pt(xt). In its idealized form, DSM targets the population
objective

min
ŝ

Et∼π Ext∼pt

[
w(t) ∥ŝt(xt)−∇ log pt(xt)∥2

]
, (6)

for some weight w(t). The key modeling point in our analysis is that the
same network is queried across all times, so the residuals ŝt(x)−∇ log pt(x)
at different times are generally statistically dependent, reflecting shared fea-
tures and inductive biases rather than independent noise.

Because (3) is affine in x, it is natural (and exact for affine predictors)
to parameterize the score error by an affine perturbation

et(x) := ŝt(x)−∇ log pt(x) = −(∆t)x+ δt, (7)

where ∆t ∈ Rd×d and δt ∈ Rd are random coefficients, jointly zero-mean, and
possibly correlated across time. The decomposition (7) separates a matrix
component that directly perturbs covariance evolution from a vector com-
ponent that directly perturbs the mean evolution. Later, the dependence of
sampling error on time–time covariances such as Cov(vec(∆s), vec(∆s′)) and
Cov(δs, δs′) will be explicit.

2.5 Wasserstein-2 distance for Gaussians and the Bures met-
ric

Our performance metric is W2. For Gaussian measures P = N (m,Σ) and
Q = N (m′,Σ′) on Rd, the squared Wasserstein-2 distance has the closed
form

W 2
2 (P,Q) = ∥m−m′∥2 + B2(Σ,Σ′), (8)

where B2 is the Bures squared distance

B2(Σ,Σ′) := tr(Σ) + tr(Σ′)− 2 tr
(
(Σ1/2Σ′Σ1/2)1/2

)
. (9)

We use the Frobenius pairing ⟨A,B⟩ := tr(A⊤B) and the Euclidean pairing
for vectors. The relevance of (8) is that once we represent the sampler output
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qk as a Gaussian (exactly, in our regime) and express its mean/covariance
as perturbations around the exact-score baseline, a second-order expansion
of (8) reduces expected sampling error to quadratic expressions in those
perturbations.

2.6 Operator notation and kernel contractions

We will repeatedly map perturbations injected at intermediate times to ter-
minal perturbations of mean and covariance. On a grid, we denote by Φk←a

a (solver-dependent) linear sensitivity operator that propagates an infinites-
imal score perturbation at time index a to its contribution at terminal index
k. In the Gaussian-linear setting, Φk←a can be written in closed form by
unrolling the linear recurrence implied by (20). In continuous time, Φr←s

is the corresponding state-transition operator obtained from variation-of-
constants.

The second-order expansion of (8) yields a quadratic form at terminal
time whose expectation depends only on second moments of the score error
process. Concretely, after linearizing terminal mean/covariance perturba-
tions in {∆t, δt} and taking expectations, we obtain bilinear contractions of
the form∑

a,b≥k

〈
K∆

k [a, b], Cov(∆a,∆b)
〉
+

∑
a,b≥k

〈
Kδ

k [a, b], Cov(δa, δb)
〉
, (10)

and similarly in continuous time as double integrals. Here the kernel blocks
K∆,Kδ are determined by composing (i) propagation/sensitivity operators
Φ with (ii) the local quadratic structure induced by (8)–(9). This operator
viewpoint is the mechanism by which correlated errors across time enter the
expected W 2

2 error, and it motivates the problem formulation in the next
section, where we treat {et}t∈[0,T ] as a stochastic process whose full time–
time covariance is the primary object of interest.

3 Problem formulation: correlated score error as a
stochastic process

Our objective is to characterize, for a fixed discretized sampler, how a shared-
network score approximation propagates to terminal sampling error when
its residuals are statistically dependent across time. We therefore elevate
the score residual to a time-indexed stochastic process and seek an explicit
functional relationship between its time–time covariance and the expected
terminal Wasserstein error.
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3.1 Sampler, terminal index, and the performance target

Fix a discretization scheme (for the reverse SDE with parameter α > 0 or for
the probability-flow ODE as α → 0) on a grid 0 = t0 < t1 < · · · < tK = T
with maximum step size γ := maxk(tk+1 − tk). Denote by qk the law of the
sampler iterate at index k (corresponding to time tk). We measure sampling
quality at step k by

Ek := EW 2
2

(
pdata, qk

)
, (11)

where the expectation is taken over all randomness present in the construc-
tion of qk, including the reverse-time noise (if α > 0), any randomized com-
ponents of the numerical scheme, and the randomness induced by the learned
score approximation (made precise below). We also use the reverse-time vari-
able r = T − t and write rk := T − tk to emphasize that terminal-time effects
appear naturally as functions of r rather than t.

When the sampler is run with the exact score ∇ log pt, we denote the
corresponding law by q⋆k. Even in this idealized setting, two unavoidable error
sources remain: (i) terminal-time truncation if the sampler is initialized from
a proxy law at time T and/or if we evaluate at rk > 0, and (ii) discretization
bias induced by the finite grid. Our aim is to isolate these components and
then quantify the additional degradation caused by correlated score errors.

3.2 Shared-network score error as a time-indexed random
element

We model the learned score as

ŝt(x) = ∇ log pt(x) + et(x), t ∈ [0, T ], (12)

where the residual et is viewed as a stochastic process in t. The central
modeling point is that a single network, trained once, is queried at all times;
thus {et}t∈[0,T ] need not be independent in time and, in general, exhibits
nontrivial cross-time dependence.

In the Gaussian setting, the true score is affine, and we restrict to affine
residuals,

et(x) = −(∆t)x+ δt, (13)

where ∆t ∈ Rd×d and δt ∈ Rd are random coefficients. We impose the basic
centering and small-error conditions

E∆t = 0, Eδt = 0, sup
t∈[0,T ]

(
E∥∆t∥2F + E∥δt∥2

)
≤ ε2, (14)

for a parameter ε → 0. We allow arbitrary cross-time correlations subject
to bounded second moments. In particular, for s, s′ ∈ [0, T ] we define the
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time–time covariance objects

Γ∆(s, s′) := Cov
(
vec(∆s), vec(∆s′)

)
, (15)

Γδ(s, s′) := Cov
(
δs, δs′

)
, (16)

and, when needed, the cross-covariances

Γ∆δ(s, s′) := Cov
(
vec(∆s), δs′

)
, Γδ∆(s, s′) := Cov

(
δs, vec(∆s′)

)
. (17)

On a grid {ta}Ka=0 we use the corresponding block matrices Γ∆
ab, Γ

δ
ab, etc. The

setting (13)–(17) captures both structured approximation error (e.g. system-
atic under/over-estimation of the score’s linear coefficient) and stochastic
residuals that may be temporally correlated due to shared features, archi-
tectural biases, or correlated training noise.

3.3 The object to characterize: a covariance functional for
expected W 2

2

We seek an explicit expansion of (11) in the joint regime of small step size
and small score error. Concretely, for each terminal index k we aim to express

Ek = E(0)
rk

+ Edisc
rk

(γ) + Qrk

[
Γ∆,Γδ,Γ∆δ

]
+ o(γ) + o(ε2), (18)

where E
(0)
rk depends only on the terminal-time initialization/truncation at

reverse time rk, Edisc
rk

(γ) depends only on the numerical scheme and schedule
(and vanishes as γ → 0 at the scheme’s order), and Qrk is a quadratic
contribution due to score error. The key requirement is that Qrk depend
on the score error process only through its second-order structure, namely
the time–time covariances in (15)–(17), and that it admit an explicit kernel
representation.

On a grid, the desired structure is a double sum of bilinear contractions,

Qrk =
∑
a,b≥k

〈
K∆

k [a, b], Γ∆
ab

〉
+

∑
a,b≥k

〈
Kδ

k [a, b], Γ
δ
ab

〉
+

∑
a,b≥k

〈
K∆δ

k [a, b], Γ∆δ
ab

〉
,

(19)
with an analogous double-integral form in continuous time. The kernel blocks
K∆

k [a, b], Kδ
k [a, b], and K∆δ

k [a, b] are deterministic objects determined by the
schedule (βt, ξt), the reverse-time parameter α, and the chosen discretization
through sensitivity/propagation operators. Importantly, (19) reduces to a
single sum only under an independent-time assumption (diagonal Γ in the
time indices), which we do not impose.

Finally, we require that the expansion (18) be meaningful under sta-
bility: score perturbations injected at intermediate times must not be am-
plified without control by the discretized dynamics. We therefore assume
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mean-square stability conditions sufficient to bound products of the dis-
cretized linear maps and to justify interchanging expectation with pertur-
bative expansions. Under these conditions, the next section makes (19) ex-
plicit by unrolling the linear-Gaussian reverse dynamics, expressing terminal
mean/covariance perturbations as linear functionals of {(∆t, δt)}, and com-
bining this with the second-order structure of W 2

2 for Gaussians.

4 4. Linear-Gaussian reverse dynamics with corre-
lated affine score perturbations: explicit propa-
gation of mean/covariance under correlated per-
turbations; stability and well-posedness condi-
tions.

We now make explicit the linear–Gaussian structure of the discretized reverse
dynamics under the affine score perturbation (13). Throughout, we write
Xk ∈ Rd for the sampler state at index k (time tk), so that the numerical
scheme updates Xk+1 7→ Xk.

In the Gaussian setting the exact reverse drift is affine in x at each time,
hence any one-step discretization of the reverse SDE/ODE can be written
(possibly after collecting terms) in the generic form

Xk = A⋆
kXk+1 + a⋆k + 1{α>0}G

⋆
kZk (Zk ∼ N (0, Id)), (20)

when the exact score is used, where A⋆
k ∈ Rd×d, a⋆k ∈ Rd, and G⋆

k ∈ Rd×d are
deterministic and depend on (βt, ξt), α, and the chosen solver. (For ODE
solvers, the noise term is absent.) The key point for our purposes is that
(20) is affine-Gaussian, so q⋆k is Gaussian with mean/covariance obeying the
standard recurrences

m⋆
k = A⋆

km
⋆
k+1 + a⋆k, Σ⋆

k = A⋆
kΣ

⋆
k+1(A

⋆
k)
⊤ + 1{α>0}G

⋆
k(G

⋆
k)
⊤. (21)

Under the learned score ŝt = ∇ log pt + et with et(x) = −(∆t)x + δt,
the same discretization produces an update which remains affine in Xk+1

conditional on the error coefficients. Namely, for each step k there exist de-
terministic solver-dependent matrices B∆

k and Bδ
k (depending on the schedule

and on whether we run the reverse SDE or ODE) such that the error enters
the update as

Xk =
(
A⋆

k −B∆
k ∆tk+1

)
Xk+1 +

(
a⋆k +Bδ

kδtk+1

)
+ 1{α>0}G

⋆
kZk + Rk, (22)

where Rk collects higher-order (in γ) terms specific to the discretization if
the score is evaluated at intermediate stages; for Euler-type schemes one
may take Rk ≡ 0 in the linear-Gaussian model. Since (22) is affine-Gaussian
conditional on {(∆ta , δta)}, we have that qk | {(∆ta , δta)}a≥k is Gaussian.
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Denoting conditional moments by (m̃k, Σ̃k), we obtain the exact conditional
recurrences

m̃k =
(
A⋆

k −B∆
k ∆tk+1

)
m̃k+1 + a⋆k +Bδ

kδtk+1
+ E[Rk | ∆, δ], (23)

Σ̃k =
(
A⋆

k −B∆
k ∆tk+1

)
Σ̃k+1

(
A⋆

k −B∆
k ∆tk+1

)⊤
+ 1{α>0}G

⋆
k(G

⋆
k)
⊤ +Cov(Rk | ∆, δ).

(24)

The unconditional law qk is therefore a mixture of Gaussians in general;
however, our expansion of EW 2

2 will only require the first two moments of
(m̃k, Σ̃k) up to second order in ε.

To expose the dependence on the full error trajectory, we unroll (23)–(24)
around the unperturbed trajectory (21). Define the unperturbed propaga-
tion operator

Φ⋆
k←a := A⋆

kA
⋆
k+1 · · ·A⋆

a−1, k < a, Φ⋆
k←k := I. (25)

Ignoring Rk for simplicity of exposition (it can be absorbed into the dis-
cretization term later), a first-order variation-of-constants expansion yields

m̃k = m⋆
k +

∑
a≥k

Φ⋆
k←aB

δ
a δta+1 −

∑
a≥k

Φ⋆
k←aB

∆
a ∆ta+1 m

⋆
a+1 + O(ε2), (26)

where B∆
a , Bδ

a are the step-a coefficients appearing in (22) (with a shift in
indices depending on whether the solver evaluates the score at ta or ta+1; this
is immaterial for the present structural statement). Importantly, (26) shows
that, to first order, the terminal mean perturbation is a linear functional of
the entire time-indexed perturbation process {∆ta , δta} with deterministic
weights given by Φ⋆

k←a.
For the covariance, we linearize (24) around Σ⋆

k. Let δΣk := Σ̃k − Σ⋆
k.

Expanding to first order in ∆ and using that Σ⋆
k+1 is deterministic, we obtain

the affine recursion

δΣk = A⋆
k δΣk+1 (A

⋆
k)
⊤−A⋆

kΣ
⋆
k+1(B

∆
k ∆tk+1

)⊤−(B∆
k ∆tk+1

)Σ⋆
k+1(A

⋆
k)
⊤ + O(ε2).

(27)
Thus, defining the linear operator Ak(M) := A⋆

kM(A⋆
k)
⊤ and the step forcing

Fk(∆) := −A⋆
kΣ

⋆
k+1(B

∆
k ∆)⊤ − (B∆

k ∆)Σ⋆
k+1(A

⋆
k)
⊤, (28)

we can unroll (27) as

δΣk =
∑
a≥k

(
Ak ◦ Ak+1 ◦ · · · ◦ Aa−1

)(
Fa(∆ta+1)

)
+ O(ε2). (29)

Equations (26)–(29) are the structural input for the kernel expansion: they
exhibit terminal mean and covariance perturbations as linear functionals of
(∆, δ), hence any second-order metric expansion (such as the Gaussian W 2

2
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expansion) becomes a quadratic form in the error process, and therefore
depends only on time–time covariances.

The remaining requirement is well-posedness and stability. We impose
a mean-square stability condition on the unperturbed propagators: there
exists M < ∞ such that for all k ≤ a ≤ K,

∥Φ⋆
k←a∥ ≤ M,

∥∥∥Ak ◦ · · · ◦ Aa−1

∥∥∥
op

≤ M, (30)

together with boundedness of the solver coefficients supk ∥B∆
k ∥ + ∥Bδ

k∥ +
∥G⋆

k∥ < ∞. Under (30) and the small-error regime (14), a perturbation argu-
ment shows that the perturbed one-step maps in (22) remain uniformly stable
for ε sufficiently small (and γ sufficiently small when stability is only guar-
anteed asymptotically). Concretely, one obtains uniform moment bounds of
the form supk E∥Xk∥2 < ∞ and supk E∥Σ̃k∥F < ∞, ensuring that the O(ε2)
remainders in (26)–(29) are controlled uniformly over k.

With these propagation identities and stability bounds in place, the next
section can treat W 2

2 between Gaussians as a smooth function of (mk,Σk)
around (m⋆

k,Σ
⋆
k) and identify the explicit correlated-time kernel obtained by

contracting the time–time covariances of (∆t, δt) against the deterministic
sensitivity operators induced by (26)–(29).

5 5. Main theorem: correlated-time kernel expan-
sion of EW 2

2 ; explicit kernels for Euler–Maruyama
reverse SDE and for probability-flow ODE; re-
duction to the independent-time case.

W 2
2

(
N (µ,C), N (m,Σ)

)
= ∥µ−m∥2 +B2(C,Σ), (31)

and we regard the right-hand side as a smooth functional of (m,Σ) ∈ Rd ×
Sd++. Although qk is generally a mixture (since (∆, δ) are random), the
conditional law qk | {(∆ta , δta)} is Gaussian with moments (m̃k, Σ̃k). We
therefore expand the random quantity

Fk := ∥µ− m̃k∥2 +B2
(
C, Σ̃k

)
around the deterministic reference (m⋆

k,Σ
⋆
k) and then take expectation. Writ-

ing δmk := m̃k−m⋆
k and δΣk := Σ̃k−Σ⋆

k, the first-order term in δmk vanishes
after expectation because E δmk = 0 under E∆ = Eδ = 0 and the stability
bounds; similarly, E δΣk = 0 at first order. Consequently, the leading depen-
dence on the score error is quadratic and is completely determined by the
time–time second moments.

To make this dependence explicit, we introduce the deterministic sensi-
tivity weights appearing in the first-order unrollings. For the mean, define

13



for a ≥ k the matrices

Sk,a := Φ⋆
k←aB

δ
a ∈ Rd×d, Tk,a := Φ⋆

k←aB
∆
a ∈ Rd×d,

so that the first-order perturbation can be written as

δmk =
∑
a≥k

Sk,a δta+1 −
∑
a≥k

Tk,a∆ta+1 m
⋆
a+1 +O(ε2).

For the covariance, define the linear propagation operator on matrices

Ψk,a := Ak ◦ · · · ◦ Aa−1, a ≥ k,

and the induced linear map Pk,a : Rd×d → Sd,

Pk,a(∆) := Ψk,a

(
Fa(∆)

)
,

so that
δΣk =

∑
a≥k

Pk,a

(
∆ta+1

)
+O(ε2).

Finally, let Hk : Sd → Sd denote the Hessian (second Fréchet derivative) of
Σ 7→ B2(C,Σ) evaluated at Σ⋆

k. Concretely, for U, V ∈ Sd we define the
bilinear form

⟨U, Hk(V )⟩ := d2

dτ dσ

∣∣∣∣
τ=σ=0

B2
(
C, Σ⋆

k + τU + σV
)
, (32)

which is well-defined and bounded on compact subsets of Sd++.
We can now state the correlated-time expansion in a form that directly

identifies the kernel blocks contracting the time–time covariances.

Theorem 5.1 (Correlated-time kernel expansion on a grid). Under the
standing assumptions (Gaussian data, mean-square stability, bounded mo-
ments, and supt E∥∆t∥2F + E∥δt∥2 ≤ ε2), we have for each k

EW 2
2

(
pdata, qk

)
= E(0)

rk
+ Edisc

rk
(γ) +Q∆

k +Qδ
k +Q∆δ

k + o(γ) + o(ε2),

where the correlated-time contributions are the quadratic forms

Qδ
k =

∑
a,b≥k

tr
(
Sk,aCov(δta+1 , δtb+1

)S⊤k,b

)
, (33)

Q∆
k =

∑
a,b≥k

〈
K∆,mean

k [a, b] +K∆,cov
k [a, b], Cov

(
vec(∆ta+1), vec(∆tb+1

)
)〉

,

(34)

Q∆δ
k = −2

∑
a,b≥k

E
[
δ⊤ta+1

S⊤k,aTk,b∆tb+1
m⋆

b+1

]
, (35)
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with deterministic kernel blocks given by

K∆,mean
k [a, b] :=

(
m⋆

a+1 ⊗ Tk,a

)⊤(
m⋆

b+1 ⊗ Tk,b

)
, (36)

K∆,cov
k [a, b] := P†k,a ◦ Hk ◦ Pk,b, (37)

where P†k,a denotes the adjoint of Pk,a with respect to the Frobenius inner
product on matrices and the Euclidean inner product on Rd2 after vectoriza-
tion.

In the Gaussian-linear case, the kernels in Theorem 5.1 are explicit once
the solver coefficients are fixed. We record the resulting one-step coefficients
for Euler-type schemes in the commonly used unified parametrization

dXt = −1
2βtXt dt+

√
βt ξt dWt, g2t := βtξ

2
t .

For Euler–Maruyama applied to the reverse SDE with noise parameter α (so
that the injected diffusion coefficient is αgt), the score enters the drift with
prefactor g2t , hence over a step γk := tk+1 − tk the score error contributes as
−γkg

2
tk+1

etk+1
(Xk+1). In the affine model et(x) = −(∆t)x + δt, this yields

the concrete choice

B∆
k = −ηkI, Bδ

k = −ηkI, ηk := γkg
2
tk+1

, (38)

with the unperturbed affine map determined by the exact Gaussian score
∇ log pt(x) = −Σ−1t (x− µt):

A⋆
k = I+γk

(
1
2βtk+1

I−ηk Σ
−1
tk+1

)
, a⋆k = γk ηk Σ

−1
tk+1

µtk+1
, G⋆

k = α
√
γk gtk+1

I,

so that all propagation operators in (33)–(37) are computable by forward
recursion. For the probability-flow ODE (the limit α → 0 with the standard
drift modification), the score prefactor is halved; correspondingly (38) holds
with ηk replaced by ηk/2, and G⋆

k ≡ 0.
Finally, the reduction to the independent-time case is immediate at the

level of the quadratic forms. If, for instance, Cov(δta , δtb) = 0 and Cov(vec(∆ta), vec(∆tb)) =
0 for a ̸= b (and similarly for the cross-covariance), then (33)–(35) collapse
to single sums:

Qδ
k =

∑
a≥k

tr
(
Sk,aVar(δta+1)S

⊤
k,a

)
, Q∆

k =
∑
a≥k

〈
K∆,mean

k [a, a]+K∆,cov
k [a, a], Var

(
vec(∆ta+1)

)〉
,

which recovers the familiar “diagonal-in-time” structure. Theorem 5.1 shows
that in general no such reduction is valid: correlated score errors contribute
through the full time–time covariance via the deterministic kernel blocks
induced by the sampler dynamics and by the Bures geometry.
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6 6. Tightness and lower bounds: show the quadratic
functional is unavoidable by constructing Gaus-
sian score-error processes matching any prescribed
time–time covariance; discuss identifiability/sample
complexity of estimating correlations.

We justify that the quadratic functional of the score-error process identified
above is not merely an artifact of the proof technique: in the small-error
regime it is the correct leading-order object, and its dependence on the full
time–time covariance (rather than only time-marginal variances) is in general
unavoidable.

Tightness in the Gaussian score-error class. Fix a sampling grid
{tk}Kk=0 and consider the affine error model eta(x) = −(∆ta)x + δta with
E∆ta = 0 and Eδta = 0. Let us collect all random coefficients into a single
finite-dimensional vector

Z :=
(
vec(∆tk+1

), . . . , vec(∆tK ), δtk+1
, . . . , δtK

)
∈ R(K−k)d2+(K−k)d.

Any choice of positive semidefinite covariance matrix ΣZ ⪰ 0 defines a cen-
tered Gaussian law Z ∼ N (0,ΣZ), hence a jointly Gaussian score-error pro-
cess on the grid realizing prescribed time–time covariances

Cov
(
vec(∆ta), vec(∆tb)

)
, Cov(δta , δtb), Cov

(
vec(∆ta), δtb

)
, a, b ∈ {k+1, . . . ,K}.

For such Gaussian inputs, the unrolled perturbations (δmk, δΣk) are (to
first order in ε) linear functionals of Z, hence themselves jointly Gaussian
at leading order. Therefore, when we expand Fk = ∥µ − m̃k∥2 + B2(C, Σ̃k)
around (m⋆

k,Σ
⋆
k), all odd-order terms in (δmk, δΣk) vanish under expecta-

tion by symmetry, while the second-order term is exact up to the controlled
remainder coming from (i) the O(ε2) truncation in the linearization of the
dynamics and (ii) the third-order Taylor remainder of the smooth functional
(m,Σ) 7→ ∥µ−m∥2 +B2(C,Σ). Concretely, for a centered Gaussian Z with
E∥Z∥2 = O(ε2) and mean-square stability ensuring uniform bounds on the
sensitivity operators, we obtain

EFk = F ⋆
k +

1

2
E
[〈
(δmk, δΣk), ∇2F ⋆

k (δmk, δΣk)
〉]

+O(ε3),

where F ⋆
k := ∥µ−m⋆

k∥2+B2(C,Σ⋆
k) and the Hessian is evaluated at the unper-

turbed point. Since (δmk, δΣk) are linear in Z to first order, the second-order
term is a quadratic form in Z, and taking expectation yields precisely a bi-
linear contraction against ΣZ , i.e., a sum/double-sum of the form appearing
in (33)–(35). This establishes that, within the jointly Gaussian affine-error
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class, the quadratic functional is attainable and the residual is of strictly
higher order (under the stated moment and stability controls). In particu-
lar, without additional structure on Z beyond second moments, one cannot
improve the dependence on Cov(es, es′).

Why off-diagonal time correlations cannot be ignored. The kernel
expansion shows that the leading error contribution is a quadratic form in
the entire error trajectory, hence depends on the covariance operator in time.
To see that off-diagonal terms are essential, it suffices to exhibit two error
processes with identical time-marginal variances but different cross-time co-
variances that yield different values of the quadratic form.

Consider, for simplicity, only the δ-part and two times ta, tb (with a ̸= b),
and assume ∆ ≡ 0 and m⋆ ≡ 0 to eliminate the mean–∆ coupling. Let
δta , δtb ∈ Rd be centered jointly Gaussian with

Var(δta) = Var(δtb) = σ2I, Cov(δta , δtb) = ρ σ2I,

where ρ ∈ [−1, 1]. The diagonal-in-time statistics (the per-time variances)
are independent of ρ, yet the quadratic contribution becomes

Qδ
k(ρ) = tr

(
Sk,aσ

2IS⊤k,a
)
+ tr

(
Sk,bσ

2IS⊤k,b
)
+ 2ρ tr

(
Sk,aσ

2IS⊤k,b
)
.

Unless the cross-sensitivity trace tr(Sk,aS
⊤
k,b) vanishes (a nongeneric condi-

tion tied to special choices of schedule/grid/solver), the value of Qδ
k(ρ) varies

with ρ. Thus any diagnostic that only measures Var(δta) at each time (e.g.,
per-time denoising MSE) cannot, in general, predict the sampling error: two
trained networks may have identical time-marginal validation losses while
producing different sampling quality due to different cross-time correlations
induced by shared weights and correlated features. The same phenomenon
holds, a fortiori, for ∆ and for mixed ∆–δ cross-covariances, where the ker-
nel blocks couple different times through the propagation operators and the
Bures Hessian.

Identifiability and the cost of estimating correlations. The preced-
ing argument is not only qualitative: it implies an information-theoretic
obstruction. The object that controls Q is the full time–time covariance,
which on a grid of size m := K−k comprises m2 blocks (scalar-valued when
d = 1, matrix-valued for d > 1). Even in the scalar case, estimating an m×m
covariance matrix from i.i.d. samples incurs a minimax sample complexity
scaling proportional to m2 for constant Frobenius accuracy. More precisely,
for R i.i.d. samples z(1), . . . , z(R) ∈ Rm from N (0,Σ) with bounded spec-
trum, the empirical covariance concentrates as

E∥Σ̂− Σ∥2F ≍ m2

R
,
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so achieving E∥Σ̂−Σ∥F ≤ η requires R = Ω(m2/η2). In contrast, estimating
only the diagonal variances needs R = Ω(m/η2). Therefore, any attempt to
compute the correlated-time term Q from residual samples must either (i)
accept quadratic scaling in the grid size, or (ii) exploit additional structure
in time such as low-rank covariances, bandedness (short-range correlations),
parametric kernels (e.g. exponential decay), or stationarity assumptions en-
abling spectral estimation.

These tightness and identifiability considerations motivate the next step:
given a trained score model, we must decide what portion of Cov(es, es′) is
practically estimable from denoising residuals, what structural approxima-
tions are reasonable, and how to contract estimated covariances with the
deterministic kernels to obtain actionable predictors and diagnostics.

7 7. Practical estimators and diagnostics: how to
estimate (approximations of) Cov(es, es′) from de-
noising residuals and how to compute the ker-
nel numerically; optional implications for sched-
ule selection.

7. Practical estimators and diagnostics

Our expansion reduces the leading score-error contribution to a deterministic
kernel contraction against the (generally unknown) time–time covariances of
the affine coefficients (∆t, δt). We now describe how we estimate approxi-
mations of these covariances from denoising residuals, and how we compute
the kernel numerically on a time grid.

Observable residuals on a common probability space. For each time
t we construct paired samples (X0, ε) with X0 ∼ pdata and ε ∼ N (0, I),
and then generate the corresponding noisy state Xt via the known for-
ward map of the chosen diffusion schedule (e.g. Xt = a(t)X0 + b(t)ε in
the Gaussian-forward setting). This coupling is essential: it induces a joint
law for (Xta , Xtb) and allows us to estimate cross-time statistics from i.i.d.
draws of (X0, ε). We then evaluate the trained network to obtain ŝt(Xt). In
the Gaussian target setting, ∇ log pt(x) is available in closed form; hence we
can form the pointwise score residual

Rt := ŝt(Xt)−∇ log pt(Xt).

In standard noise-prediction parameterizations, Rt can equivalently be ob-
tained (up to a known scalar factor) from the observable residual ε̂t(Xt)− ε;
thus the procedure does not rely on direct access to ∇ log pt beyond the
synthetic/controlled setting.
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From residual fields to affine coefficients. The kernel formulas are
stated in terms of the affine decomposition et(x) = −(∆t)x + δt. When pt
is Gaussian, the true score is linear in x and, empirically, ŝt(x) is often well-
approximated by an affine map on the typical set of pt. We therefore estimate
(∆t, δt) by projecting the residual field x 7→ Rt(x) onto affine functions under
pt. Concretely, given a batch {X(j)

t , R
(j)
t }Bj=1, we compute the (ridge) least-

squares fit

(∆̂t, δ̂t) ∈ argmin
∆,δ

1

B

B∑
j=1

∥∥R(j)
t +∆X

(j)
t − δ

∥∥2 + λ∥∆∥2F ,

with a small λ ≥ 0 for numerical stability. This estimator targets the L2(pt)-
best affine approximation of Rt(·). In the diagonalizable Gaussian regime
(working in an eigenbasis of Σt), we often further restrict ∆ to be diagonal
(or block-diagonal), which reduces variance and aligns with the per-mode
kernel evaluation described below.

The preceding fit yields one pair (∆̂t, δ̂t) per time. To estimate time–time
covariances, we need random affine coefficients. We obtain this randomness
by repeating the entire coupled draw (X0, ε), thereby producing i.i.d. real-
izations of the fitted coefficients

(∆̂
(r)
t , δ̂

(r)
t )t∈{tk+1,...,tK}, r = 1, . . . , R,

where each repetition r uses an independent batch of coupled forward sam-
ples and refits the affine map. This “refit-per-repetition” construction yields
empirical covariance estimates that capture the induced cross-time depen-
dence created by a shared network evaluated on correlated inputs. When d is
large, we replace refitting by a single fit of the mean affine map and estimate
fluctuations by linearizing (e.g. via Jacobians), but we keep the refit-based
estimator as a conceptually simple baseline in controlled experiments.

Estimating Cov(∆,∆), Cov(δ, δ), and cross terms. On a grid of size
m := K − k, we form empirical covariances

Σ̂δ
ab :=

1

R− 1

R∑
r=1

(
δ̂
(r)
ta − δta

)(
δ̂
(r)
tb

− δtb
)⊤

, δta :=
1

R

R∑
r=1

δ̂
(r)
ta ,

and analogously for Σ̂∆
ab using vectorization vec(∆̂

(r)
ta ). Cross-covariances

Σ̂∆δ
ab := Cov(vec(∆ta), δtb) are estimated similarly when we include the mixed

kernel blocks. In regimes where m is moderately large, we regularize these
block matrices by enforcing symmetry and positive semidefiniteness (e.g.
eigenvalue clipping on the full stacked covariance), which improves stability
of subsequent contractions.

19



Structured approximations in time. Because unrestricted estimation
scales poorly in m, we implement and compare several structured models
for the time–time covariance. (i) Banded time covariance: we set Σ̂ab = 0
for |a − b| > w, with bandwidth w chosen by validation on held-out repeti-
tions. (ii) Low-rank in time: we compute a truncated SVD of the empirical
m × m covariance in each scalar mode (or after trace aggregation) and re-
tain the leading r components. (iii) Separable (Kronecker) model: we fit
Cov(δs, δs′) ≈ k(s, s′) Σδ with k parametric (e.g. exponential decay), which
reduces estimation to a small number of time-kernel parameters. These
approximations interpolate between feasibility and fidelity, and they are di-
rectly compatible with the kernel contraction, since Q is linear in each co-
variance argument.

Numerical computation of the kernel. On the same time grid, we com-
pute sensitivity operators that map perturbations at time index a to first-
order perturbations of terminal statistics at step k. In the Gaussian-linear
setting, these operators are obtained by unrolling the linearized mean/covariance
recurrences, yielding matrices Sδ

k←a and S∆
k←a such that

δmk ≈
∑
a≥k

Sδ
k←a δta +

∑
a≥k

S∆,m
k←a vec(∆ta), δΣk ≈

∑
a≥k

S∆,Σ
k←a vec(∆ta).

We then assemble the kernel blocks by composing these sensitivities with
the Hessian of (m,Σ) 7→ ∥m− µ∥2 +B2(C,Σ) at the unperturbed terminal
pair (m⋆

k,Σ
⋆
k). Computationally, the only nontrivial step is evaluating the

Bures Hessian action, which we implement via spectral factorization in the
eigenbasis where C and Σ⋆

k are diagonal (or approximately so). In that
basis, the contraction decouples across coordinates and the kernel reduces to
per-mode scalar weights, leading to an O(m2d) assembly cost.

Diagnostics and schedule implications. Given (K∆
k [a, b],Kδ

k [a, b]) and
estimated covariances, we report: (i) the predicted terminal error curve k 7→
E

(0)
rk + Edisc

rk
(γ) + Q̂rk ; (ii) a time interaction matrix with entries

Iδab :=
〈
Kδ

k [a, b], Σ̂
δ
ab

〉
, I∆ab :=

〈
K∆

k [a, b], Σ̂∆
ab

〉
,

which localizes whether error arises primarily from marginal variances (a =
b) or from correlations (a ̸= b); and (iii) bootstrap confidence intervals over
repetitions. Finally, since the kernel depends on the schedule through the
sensitivities, a practical implication is that schedule or grid selection can be
informed by minimizing Q̂ subject to computational constraints, e.g. allocat-
ing smaller step sizes in time regions where the product “kernel magnitude
× estimated covariance” is largest.
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8 8. Experiments: synthetic anisotropic Gaussians
and shared random-feature scores; controlled cor-
relation ablations; kernel-predicted error vs mea-
sured W2; solver comparison; discuss where re-
mainders become visible.

8. Experiments: synthetic anisotropic Gaussians and
controlled time–time correlations

We validate the correlated-time expansion by constructing settings in which
(i) the target is anisotropic and hence the Bures contribution is nontrivial, (ii)
the sampler output remains exactly Gaussian (so W 2

2 is computable without
Monte Carlo bias), and (iii) we can tune the time–time covariance of the
score error while keeping time-marginal error magnitudes essentially fixed.

Synthetic anisotropic targets. We take pdata = N (µ,C) with µ = 0
and

C = diag(λ1, . . . , λd), λi ∝ i−p, p ∈ {0, 1, 2},

normalized so that tr(C) = d. This yields progressively stronger anisotropy,
ranging from isotropic (p = 0) to heavy-tailed spectra (p = 2). We fix a
diffusion schedule for which the forward marginals are Gaussian with known
(µt,Σt); in all experiments we work in the eigenbasis of C so that the kernel
assembly decouples per coordinate as described in the preceding section. We
report W 2

2 (pdata, qk) at several terminal indices k (equivalently reverse times
rk), computed in closed form from the mean and covariance of qk.

Shared random-feature score models with affine errors. To obtain
an exactly affine learned score with controllable cross-time dependence, we
define a family of random-feature score perturbations

et(x) = −(∆t)x+ δt

by generating a shared random matrix U ∈ Rm×d with i.i.d. N (0, 1/m)
entries and letting

∆t := U⊤AtU, δt := U⊤bt,

where At ∈ Rm×m and bt ∈ Rm are low-dimensional time-indexed random
coefficients. This construction induces nontrivial correlations in ∆t and δt
across t through the shared embedding U , while allowing us to modulate time
correlation by controlling (At, bt). We then define ŝt(x) = ∇ log pt(x)+et(x)
and run reverse-time sampling with this inexact score. Since the drift remains
affine in x (and the diffusion is state-independent), the sampler output is
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Gaussian for any discretization, so qk = N (mk,Σk) can be tracked exactly
by propagating (mk,Σk).

Correlation ablations at fixed marginal error. We compare three
regimes designed to separate the effect of time–time covariance from per-
time error magnitudes.

1. Independent-in-time: draw (Ata , bta) independently over grid points.
This makes Cov(∆ta ,∆tb) ≈ 0 and Cov(δta , δtb) ≈ 0 for a ̸= b up to
the shared-feature effect, which we suppress by resampling U per time.

2. Fully shared in time: draw a single pair (A, b) and set (Ata , bta) ≡ (A, b)
for all times. This keeps E∥∆ta∥2F and E∥δta∥2 comparable to the
independent regime but makes cross-time covariances maximal.

3. Band-correlated: generate an AR(1) process in time for (Ata , bta) with
correlation ρ|a−b|, varying ρ ∈ [0, 0.99] to interpolate between the two
extremes.

In each regime we scale the coefficient variances to enforce maxa E∥∆ta∥2F +
E∥δta∥2 ≈ ε2 for a prescribed ε, so that changes in sampling error can be
attributed primarily to changes in cross-time structure rather than marginal
magnitude.

Kernel prediction versus measured W 2
2 . For each configuration we

compute (a) the measured quantity EW 2
2 (pdata, qk) by averaging the closed-

form Gaussian W 2
2 over independent draws of the entire error trajectory, and

(b) the predicted quantity given by the expansion

E(0)
rk

+Edisc
rk

(γ)+
∑
a,b≥k

⟨K∆
k [a, b],Cov(∆ta ,∆tb)⟩+

∑
a,b≥k

⟨Kδ
k [a, b],Cov(δta , δtb)⟩,

including cross terms when present in the synthetic generator. We empha-
size that in this synthetic setting the covariances are known analytically (as
functions of (U, ρ) and the coefficient variances), so we can separate estima-
tion error from model error and directly test the correctness of the kernel
contraction.

Across all spectra p ∈ {0, 1, 2} we observe that, for small ε and stable
step sizes, the predicted curve matches the measured curve uniformly over
k up to a relative discrepancy consistent with o(ε2) + o(γ). The largest
improvements over diagonal-in-time predictors occur in the fully shared and
band-correlated regimes: holding the per-time variances fixed, the measured
W 2

2 increases substantially with ρ, and this increase is captured by the off-
diagonal kernel contraction terms. Conversely, a predictor that uses only the
diagonal blocks a = b remains nearly constant as ρ varies, demonstrating in
practice the necessity highlighted by the tightness statement for correlated
Gaussian processes.
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Solver comparison and discretization scaling. We compare several
discretizations on the same grid family: Euler–Maruyama for α > 0, and
first- and higher-order ODE solvers in the α → 0 regime. In all cases we
keep the score-error process fixed and decrease γ to isolate solver effects.
Empirically, after subtracting the estimated quadratic score-error term (ker-
nel contraction) from the total error, the residual scales with the expected
solver order, consistent with Edisc

r (γ) = O(γq). Meanwhile, the quadratic
term itself remains essentially invariant to solver order except through the
sensitivity operators inside the kernel, which produces only mild quantitative
changes when the solver is changed but γ is kept small.

Where the remainders become visible. We probe the boundary of the
small-error/stable regime in two ways. First, we increase ε at fixed γ and ob-
serve a clear deviation from quadratic scaling: plotting EW 2

2 versus ε shows
an ε2 regime followed by noticeable curvature, which we attribute to the
O(ε3) remainder and to the breakdown of the second-order Taylor approxi-
mation of the Bures term when δΣk is no longer small relative to Σ⋆

k. Second,
we increase γ toward the stability limit of the linear recurrence; in this case
the discretization term and the interaction between discretization and score
error (a higher-order effect not retained in our leading expansion) becomes
visible, and the kernel predictor begins to systematically under-estimate the
measured error. These observations delineate the practical range in which
the correlated-time kernel contraction is quantitatively predictive and, more
importantly, confirm that the dominant failure modes match the remainder
terms suggested by the theory.

9 9. Discussion and extensions: toward non-Gaussian/local
linearization, modern solvers, and linking to opti-
mizer dynamics (SGD/Adam) for predicting co-
variance structure.

9. Discussion and extensions: beyond Gaussianity,
solver families, and predicting time–time covariance
from training dynamics

Our analysis isolates a single object that governs the leading score-induced
degradation of sampling quality: the time–time covariance of the learned
score error, pushed through an explicit sensitivity–metric kernel. In the
Gaussian-linear setting the kernel can be written in closed form and the
remainder is controllable, but the structure of the expansion suggests several
extensions in which the same operator viewpoint remains meaningful.
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From Gaussian targets to local linearization around trajectories.
For general pdata, the reverse-time dynamics is nonlinear and the sampler out-
put need not remain Gaussian. Nevertheless, the derivation of a quadratic
functional in the score error is not inherently Gaussian; what is Gaussian-
specific is the availability of an exact W 2

2 formula in terms of mean and
covariance and the fact that affine perturbations of the score preserve Gaus-
sianity. A natural extension is therefore to replace the global Gaussian clo-
sure by a local linearization along the unperturbed sampling flow (defined
by the exact score and the chosen solver). Concretely, writing a generic
reverse-time update as

xk−1 = Ψk(xk) + Γk ŝtk(xk) + noise,

we may linearize Ψk and the score error around a reference path x⋆k (or
around the evolving mean of q⋆k) to obtain an approximate affine recursion
for perturbations δxk := xk − x⋆k:

δxk−1 ≈ Jk δxk + Γk etk(x
⋆
k) + Γk (∇xetk)(x

⋆
k) δxk.

In this form, the role played by (∆t, δt) is assumed by the Jacobian and
the value of et along the reference trajectory. If we further approximate
the law of δxk as Gaussian (a standard closure in weak-error analysis), then
the same kernel contraction logic applies with effective matrix and vector
errors derived from (∇xet)(x

⋆
k) and et(x

⋆
k). The main technical change is

that the kernels become path-dependent random operators, and the relevant
covariances are conditional on the reference flow. In practice one may esti-
mate these conditional covariances by running the sampler with the learned
model and recording residuals along trajectories, thereby obtaining an em-
pirical analogue of Cov(es, es′) in the region of state space actually visited
by the sampler.

Non-Gaussian metrics and the role of the Bures Hessian. Even if
we retain Gaussian closures, one may wish to replace W 2

2 by alternative dis-
crepancies used in diffusion evaluation (e.g. χ2, KL, MMD). Our derivation
separates (i) a linear sensitivity map from score perturbations to terminal
distributional parameters, from (ii) a second-order metric expansion. For
any discrepancy admitting a second-order expansion around a reference dis-
tribution, the quadratic term remains a bilinear form in the error process.
In the Gaussian case, the metric component is the Hessian of the Bures term
at Σ⋆

k; for alternative metrics one obtains a different curvature operator, but
the necessity of time–time covariance persists whenever the perturbation is
an integral/sum over time and the discrepancy is quadratic to leading order.

Modern solver families as kernel modifiers. Theorem 2 emphasizes
that solver order affects Edisc

r (γ), while the score-error term remains Θ(ε2)
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and depends on the solver only through sensitivity operators. This is con-
sistent with the practical behavior of higher-order samplers (Heun, Runge–
Kutta, predictor–corrector, exponential integrators, and multistep methods):
their benefit is primarily to reduce discretization bias for a fixed number of
function evaluations, not to suppress model error due to imperfect scores. In
our framework, adopting a different solver replaces Φ (or its discrete analogue
Φk←a) by a new propagation operator, hence modifying K∆

r and Kδ
r but not

changing the fundamental quadratic dependence on Cov(es, es′). This sug-
gests a principled way to compare solvers in the presence of correlated score
errors: two solvers with similar discretization error may still differ because
they weight early/late-time score perturbations differently, thereby amplify-
ing or attenuating correlations across specific time windows.

Guidance, conditioning, and the emergence of structured cross-
time correlations. Classifier-free guidance and related conditioning mech-
anisms effectively replace the score by a linear combination of scores (e.g.
conditional and unconditional). If each component has its own error process
and the same network parameters generate correlated residuals across time,
then the guided error inherits both within-time covariance (across score com-
ponents) and across-time covariance. In our notation this appears through
additional cross terms between multiple δt and ∆t processes. The kernel
formalism extends directly: one augments the covariance object to include
cross-covariances between the constituent errors and contracts with corre-
sponding block kernels. The main message is that guidance can change
sampling error not only by scaling marginal error magnitudes, but also by
altering the correlation structure across t through shared computations.

Linking Cov(es, es′) to training dynamics (SGD/Adam). A central
open direction is to predict (or at least parametrize) the time–time covariance
of score errors from properties of the trained network and the optimizer. Let
θ denote network parameters and define et(x; θ) as the score residual at time
t. Linearizing around the terminal iterate θ̂ yields

et(x; θ) ≈ et(x; θ̂) + Jt(x) (θ − θ̂), Jt(x) := ∇θet(x; θ̂).

If the randomness in et is dominated by parameter uncertainty induced by
stochastic optimization (or by ensembling/checkpoint averaging), then for
fixed evaluation distribution of x we obtain an approximate covariance fac-
torization

Cov
(
es(x; θ), es′(x

′; θ)
)
≈ E

[
Js(x) Cov(θ)Js′(x

′)⊤
]
,

with expectations over (x, x′) drawn from appropriate forward marginals.
This identifies a concrete source of cross-time correlations: the same random
parameter perturbation (θ−θ̂) simultaneously affects all times. In particular,
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if Cov(θ) is approximately low-rank (as suggested by implicit regularization
and sharpness structure), then Cov(es, es′) is also low-rank in time after
projection through Jt. Such a structure would reconcile the information-
theoretic barrier in Proposition 4 with feasible estimation, since one may
estimate a small number of dominant temporal modes rather than the full
m×m covariance.

Parametric time-covariance models and identifiable summaries. Mo-
tivated by optimizer-induced structure, we can posit models of the form

Cov(δs, δs′) ≈
L∑

ℓ=1

uℓ(s)uℓ(s
′)Sℓ, Cov(vec(∆s), vec(∆s′)) ≈

L∑
ℓ=1

vℓ(s) vℓ(s
′)Mℓ,

with small L and unknown PSD matrices Sℓ,Mℓ. Given such a model, the
kernel contraction reduces to a sum of L separable contributions, and one
may estimate {uℓ, vℓ} from training logs (e.g. per-time losses, gradient norms,
or checkpoint differences) while fitting {Sℓ,Mℓ} from a limited set of cross-
time residual measurements. This shifts the emphasis from estimating an
unrestricted covariance matrix to identifying the kernel-relevant subspace of
correlations, namely the directions that produce large ⟨Kr,Cov⟩.

Implications for practice. The expansion suggests two complementary
levers for improving sampling: reducing ε2 (better score accuracy) and re-
shaping Cov(es, es′) (decorrelating errors across time in kernel-sensitive di-
rections). The latter is not addressed by standard per-time training losses,
and may require explicit regularizers or architectural interventions (e.g. time-
embedding designs or per-time adapters) that reduce shared-mode coupling.
Our kernel viewpoint provides a target: correlations matter only insofar as
they align with the kernel; hence one may aim to penalize empirical cross-
time covariance projected onto dominant kernel eigenmodes rather than at-
tempting to decorrelate all residuals uniformly.

10 10. Limitations and open problems: beyond
Gaussianity, non-asymptotic control of remain-
ders, and bridging to large-scale image diffusion.

10. Limitations and open problems: beyond Gaus-
sianity, non-asymptotic control of remainders, and
bridging to large-scale image diffusion

We conclude by delineating what the present kernelized covariance view-
point does not yet resolve. Our results provide a second-order, small-error
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description of EW 2
2 (pdata, qk) in a Gaussian-linear regime, and they isolate

the time–time covariance of score errors as the relevant object. However,
several aspects of modern diffusion practice lie outside the current technical
envelope, and closing these gaps appears to require new ideas rather than
incremental refinements.

Beyond Gaussianity: identifying the correct state variables. The
Gaussian setting is restrictive not merely because real data are non-Gaussian,
but because the entire reduction to mean/covariance and the explicit Bures
curvature are special. In non-Gaussian settings the map e· 7→ qk is still a
time-accumulated perturbation, but the observable one would like to control
(e.g. W 2

2 or an image metric surrogate) depends on the full law and not on
finitely many moments. A basic open problem is to identify a tractable set
of sufficient coordinates for perturbation analysis: for instance, (i) a finite-
dimensional projection of the law (moments, score-matching residuals, or
feature statistics), (ii) a local Gaussian closure along the sampling flow, or
(iii) a functional analytic formulation in which the perturbation is measured
in a Sobolev-type norm of the density. Each choice leads to a different
“metric Hessian” and hence a different kernel operator. At present we do not
know which choice yields a theory that is both mathematically controlled
and empirically predictive for high-dimensional images.

Affine error modeling and its failure modes. We model et(x) as affine
in x so that the perturbed reverse dynamics remains Gaussian and sensitiv-
ity operators are linear. In practice, et can be highly nonlinear and state-
dependent, especially under guidance, clipping, or latent-space parameteri-
zations. A natural extension is to view

et(x) ≈ et(x
⋆
t ) + (∇xet)(x

⋆
t )(x− x⋆t )

along a reference trajectory x⋆t , but this introduces two complications: (i)
the effective coefficients (∇xet)(x

⋆
t ) and et(x

⋆
t ) are random and coupled to

the sampler state, and (ii) the relevant covariances become conditional and
path-dependent. Establishing a kernel representation in this setting appears
to require a stability theory for random linearizations and an understand-
ing of how trajectory dispersion feeds back into score-error statistics. We
do not currently have such a theory at a level that would justify replacing
global covariances Cov(es, es′) by trajectory-conditioned covariances without
additional assumptions.

Non-asymptotic remainder control and uniformity in d. Our expan-
sion is asymptotic in two small parameters: γ (mesh size) and ε (score-error
magnitude). While this is the appropriate regime for isolating leading mech-
anisms, it leaves open whether the remainder terms are small at the param-
eter values used in large-scale sampling. In particular, for high-dimensional
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problems one must ask for dimension-uniform bounds: a statement of the
form ∣∣EW 2

2 − (E(0) + Edisc +Q)
∣∣ ≤ c1(d) γ

q+1 + c2(d) ε
3

is only meaningful if c1(d), c2(d) do not grow prohibitively with d. Control-
ling these constants seems difficult because even in Gaussian settings, W 2

2

scales with trace-like quantities, and the Bures curvature can amplify per-
turbations in poorly conditioned directions of C. A sharp open problem is
to develop non-asymptotic inequalities that (i) track spectral conditioning
explicitly, (ii) separate the dependence on low-variance and high-variance
modes, and (iii) remain informative when d is large but the data lie near a
lower-dimensional manifold.

Estimating time–time covariances at scale and identifying kernel-
relevant structure. The kernel term depends on Cov(es, es′) across pairs
of times, and Proposition 4 formalizes the generic quadratic-in-grid-size cost
of estimating an unstructured covariance. For large image models, we face an
additional constraint: even computing et(x) (or its proxies) at many times
on many samples is expensive. Thus, a practical and theoretical challenge
is to identify compressed summaries of the covariance that are sufficient for
predicting ⟨K,Cov⟩. One direction is to treat the kernel itself as defining
a seminorm on covariance objects and to seek low-dimensional parameter-
izations that approximate Cov(e, e) only in that seminorm. Concretely, if
K is approximately low-rank in time or concentrated on a few time win-
dows, then only a small number of temporal modes are estimable and rel-
evant. Formalizing such statements requires spectral analysis of the opera-
tor (s, s′) 7→ Kr(s, s

′) and a corresponding minimax theory for estimating
⟨K,Cov⟩ directly, without estimating Cov pointwise.

Solver interaction beyond weak order: adaptivity and stiffness.
While higher-order solvers reduce discretization bias, in practice their per-
formance depends on stability under stiff schedules and on how they query
the score network. Our current framework treats the solver through a sen-
sitivity operator, but does not explain when adaptive step sizes, multistep
memory, or stochastic correctors improve (or worsen) the interaction with
correlated score errors. An open problem is to characterize optimal time
grids {tk} when Cov(es, es′) is nontrivial: the best grid is plausibly not the
one minimizing discretization error alone, but one that trades off discretiza-
tion bias against kernel-weighted amplification of correlated errors. This
suggests a design problem of the form min{tk}E

disc(γ) +Q under a budget
constraint on the number of score evaluations, which we do not solve here.

Bridging to image diffusion: from W 2
2 to perceptual metrics and

latent representations. Finally, even if one could extend the kernel ex-
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pansion beyond Gaussians, it remains unclear whether W 2
2 is the right end

metric for image generators evaluated by FID, precision/recall, or human
preference. The practical implication is that a theory predicting W 2

2 may
fail to predict perceived quality unless one can relate W 2

2 along the sampling
distribution to changes in feature-space statistics. A promising direction is
to push our analysis through a feature map φ (e.g. Inception features) and
study W 2

2 or Bures distances in that feature space, where Gaussian approx-
imations are empirically more plausible. This raises its own questions: the
induced dynamics in feature space is not Markov, the effective score is not
available, and the feature map can introduce strong anisotropy. Establish-
ing a principled connection between kernel-weighted score-error covariance
and downstream perceptual metrics therefore remains open, and we view
it as a necessary step for translating operator-level insights into actionable
diagnostics for large-scale diffusion models.
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