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Abstract

Modern diffusion systems (2026) are dominated by compute trade-
offs: how to allocate training effort across noise levels, how many
sampling steps to take, and where to stop. Building on fine-grained
Wasserstein error expansions in the Gaussian-linear setting, we formal-
ize diffusion training+sampling as a single budgeted optimization prob-
lem. We derive a kernelized surrogate for the end-to-end expected W3
error that isolates (i) truncation/early-stopping bias, (ii) discretiza-
tion bias, and (iii) a kernel-weighted accumulation of score estima-
tion error whose coefficients depend on the data power spectrum and
the diffusion/solver schedule. Under a stylized but analyzable model
of training noise—capturing both finite-data effects and constant-step
optimizer stationarity—we solve for compute-optimal training weights
w*(t) (or update allocations m*(t)), sampler step schedules v*(t), and
optimal stopping times r*. The optimum is characterized by equal-
ized marginal improvements, yielding explicit scaling laws that gener-
alize prior heuristics (e.g., r* scaling with optimizer noise and schedule
smoothness). We provide matching lower bounds in the Gaussian-
linear model showing that, up to constants (and inevitable log factors
for VP schedules), no method can beat the derived compute—accuracy
frontier. We outline an implementable scheduler that estimates re-
quired spectral quantities online and validates the theory on synthetic
anisotropic Gaussians and medium-scale diffusion models.
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1 Introduction

We take the point of view that, in contemporary diffusion models, the lim-
iting resource is not representational capacity but compute: the number
of stochastic gradient evaluations available for training and the number of
function evaluations available for sampling. In the regime where the score
network is sufficiently expressive and optimization is run long enough to
approach a stationary stochastic dynamics, improvements in sample quality
are predominantly controlled by how this compute is distributed across noise
levels during training and across time steps during sampling. Consequently,
it is not natural to treat “training schedule” (noise reweighting, curriculum,
or per-time sampling probability) and “sampling schedule” (step sizes, solver
order, and early stopping) as independent design problems. We instead view
them as a single constrained optimization problem: under a fixed total bud-
get, one must decide where to reduce score error (training allocation) and
where to spend steps to reduce numerical and truncation error (sampling
allocation).

Our analysis is organized around a kernelized error budget for the end-to-
end generative discrepancy, measured in squared Wasserstein distance. The
guiding principle is that, after linearization in the score error, the effect of
imperfect score estimation at a given noise level is not uniform: it is amplified
or damped by the sampler dynamics and by the data covariance geometry.
This yields an explicit sensitivity operator, denoted K (r,t;C'), which maps
score-estimation uncertainty at time ¢ into contribution to the final sampling
error when the reverse-time procedure is stopped at terminal reverse-time r.
The introduction of K is not merely notational. It allows us to convert a
high-dimensional, time-inhomogeneous learning problem into an analytically
tractable resource-allocation objective whose structure is essentially that of
a weighted integral of variances.

The main technical advantage of working in the Gaussian-linear setting
is that the relevant objects admit closed forms in the eigenbasis of the data
covariance C. In particular, both (i) the Wasserstein geometry for Gaussian
laws (which reduces to mean error plus a Bures-type term) and (ii) the reverse
diffusion dynamics with linear scores lead to expressions where each spectral
direction u; can be tracked independently, up to kernel couplings that can
be summarized as spectral kernels k,(X;, Aj). This makes it possible to state
and solve a co-design problem that depends on the data distribution only
through its power spectrum {\;} (or bandpower approximations), and on
the diffusion process only through its schedule-dependent coefficients.

The first theorem establishes the form of the compute—accuracy decom-
position. The surrogate expected error splits into three contributions: a
truncation (or early-stopping) term E(©)(r), a discretization term EU¢(r, ~)
determined by the solver family and step sizes, and a kernel-weighted score-
error term. The latter takes the form of an integral over noise levels of the



step size y(t) times an inner product (K(r,t;C),Cov(6; — 65)). Under a
stationary constant-step optimizer model, we bound the parameter covari-
ance by a sum of a reducible component scaling as 1/m(t) and an irreducible
component scaling as 7. This yields an explicit objective of the schematic
form

T
EO(r) + BY(r ) + / ’y(t)<K(7“, t;0), Al | TB(t)> dt,

i m(t)
up to higher-order remainders controlled by the linearization accuracy and
the discretization granularity. The content of the theorem is not the exis-
tence of such a decomposition in the abstract, but rather that each term
is computable from the diffusion schedule and the spectrum, and that the
dependence on m(t) is convex.

The second theorem concerns the optimal distribution of training up-
dates across noise levels when the sampling schedule and stopping time are
held fixed. The allocation subproblem is a continuum analogue of classical
variance-reduction under cost constraints. Because the integrand is propor-
tional to 1/m(t) with nonnegative weights, convexity is immediate and the
KKT conditions yield a closed-form minimizer. In particular, on the active
set where training is worthwhile, the optimal m*(¢) scales as the square root
of a “sensitivity over cost” ratio:

mh(t) \/’y(t)<K(7zt; 0), A(t))

Ctrain (t)

Equivalently, the marginal error decrease per unit training compute is equal-
ized across noise levels. This rule provides a mathematically precise state-
ment of an intuition that is often invoked informally: one should train more
where errors matter more for sampling, but the correct notion of “matter”
is determined jointly by the sampler kernel K, the spectrum of C, and the
optimizer-induced noise model A(t), B(t).

The third theorem addresses a distinct design choice: where to stop the
reverse-time procedure. Decreasing r reduces truncation bias but typically
increases accumulated error from irreducible training noise (and, depending
on the schedule, may also stress discretization). Under regularity assump-
tions on near-zero noise behavior, we obtain an explicit scaling law for the
compute-optimal r* by balancing the leading truncation term against the
dominant optimizer-limited accumulation term. The resulting expression
explains, in a unified way, why VP-like schedules can exhibit logarithmic
sensitivity to the smallest noise level and why early stopping is not merely
a numerical convenience but can be compute-optimal.

Finally, the fourth theorem provides a matching-order lower bound in
the same Gaussian-linear model. It shows that the dependence on m(t)
and 7 in the kernelized term is not an artifact of the proof technique: any



method that accesses training through at most m(t) stochastic gradients at
noise level ¢ must incur error of order 1/m(t) in the relevant directions, and
any constant-step stationary optimizer induces an unavoidable )(7) variance
floor. When propagated through the sampler sensitivity operator, these con-
straints yield a minimax lower bound that matches the upper bound achieved
by the KKT-optimal allocation, up to constants and the discretization or-
der. Thus, within the assumed regime, the derived schedules are not only
principled but essentially optimal.

The overall consequence is a concrete co-design methodology: estimate
(or bandpower-approximate) the spectrum of C, specify a diffusion schedule
and solver family, posit or fit a training-noise model A(t), B(t) together with
cost models, and then compute m*(t), v(t), and r* by solving a small col-
lection of convex subproblems and a one-dimensional search over candidate
stopping times. The subsequent sections supply the background connect-
ing DSM/EDM training and reverse-time solvers to the Gaussian Wasser-
stein/Bures geometry, and then derive the kernel representations that make
this optimization explicit.

2 Background: DSM/EDM training, reverse-time
dynamics, and Gaussian Wasserstein geometry

We recall the standard correspondence between (i) denoising-score training
at fixed noise level and (ii) reverse-time sampling driven by the learned score.
In the unified VP /VE/EDM parameterization, we may represent the forward
noising mechanism at time ¢ € [0, 7] by

Ty = $x0 + 012, z N(07 Id); Lo ~ Pdatas

where s; and oy are schedule-dependent scalars (for VP, s; decays and oy
grows; for VE, s; = 1 and o; grows). When pgata = N (i, C) with C' > 0,
the marginal law is explicit:

Pt = N(Stua Zt)u Et = S?C + 0752Id?
and hence the exact score is linear,
s*(x,t) = Vylogpi(x) = =S (@ — sep).

This linearity is the basic reason the Gaussian setting admits closed-form
error propagation: any score model which is linear in = at each ¢ can represent
s*(+,t) exactly, and deviations from optimality can be summarized by time-
dependent parameter errors.

At the level of training, DSM /EDM objectives fit the score by a weighted
regression against either the perturbation z or the conditional score. Con-
cretely, for a chosen weight w(t) (or, operationally, a sampling frequency



over t), one considers objectives of the schematic form

T
mein/o W) E[lso(zr,t) — 5" (2o, O)|7] dt,

possibly up to schedule-dependent rescalings (e.g. EDM parameterizations
that predict zop or € can be rewritten as score matching by an invertible
linear transform in the Gaussian case). Under the assumption that, for
each fixed t, optimization runs long enough to reach a stationary regime
with constant optimizer step size 7, the residual parameter error 6; — 65
behaves like a noisy equilibrium whose covariance decomposes into a part
reducible by more updates and a part induced by stationary optimizer noise.
We encode this through a bound of the form Cov(6; — 0;) =< A(t)/m(t) +
TB(t), where m(t) is the effective number of gradient evaluations allocated
to noise level ¢ (or to the time bin containing ¢). In the Gaussian-linear
regime this is not merely a qualitative statement: since the population DSM
objective is quadratic, the optimum 6} is unique in the identifiable subspace
and the covariance scaling in 1/m(t) corresponds to the familiar variance
decrease under repeated stochastic estimation, while 7B(t) represents the
non-vanishing stationary variance floor.
On the sampling side, the forward diffusion is represented as an SDE

dr; = f(ilft, t) dt + g(t) dWy

(for appropriate drift f and diffusion coefficient g determined by the sched-
ule). The reverse-time SDE, run from ¢ = T down to ¢ = r (equivalently,
reverse-time variable r = T — t increasing), takes the standard form

dry = (f(ze,t) — g(t)? Vi logpi(xe)) dt + g(t) dWr,

and replacing V log p; by the learned score sy(-,t) yields the practical sam-
pling dynamics. For the probability-flow ODE, the stochastic term is re-
moved and the reverse drift becomes f — %gQVlog p¢; both cases share the
key structural property used later: the dependence on the score enters lin-
early in the drift. Discretization with step sizes {7} (or a piecewise-constant
v(t) on a time grid) produces a numerical method whose global error decom-
poses into (i) truncation effects from stopping at ¢ = r rather than ¢ = 0
and (ii) solver-dependent discretization effects, both of which may be ana-
lyzed separately from score-estimation error once we work to leading order
in perturbations.

The metric used to assess end-to-end generative quality is the squared
Wasserstein distance. For Gaussian laws P = N (mq, X1) and Q = N (ma, X9),

WE(P,Q) = llmi —ma|® + T3y + To - 2(25°2155/%)*),

where the second term is the Bures metric between covariances. In perturba-
tive regimes, the Bures term admits a quadratic expansion around a reference



covariance: if ¥ = Yo + A with ||Al| small, then W2(N(0,X), N'(0, X)) is,
to second order, a positive semidefinite quadratic form in A whose coeffi-
cients are diagonal in the eigenbasis of ¥y (equivalently, of C after propa-
gating through the linear forward map). In particular, if Cu; = A;u;, then
quadratic forms associated with Bures-type expansions decompose into sums
over pairs (7,7) with weights depending smoothly on (\;, A;), a fact we will
exploit by introducing spectral kernels.

Finally, we recall how these components combine in the Gaussian-linear
analysis. Because the reverse dynamics is linear in x when the score is lin-
ear, the effect of a score error e;(x) := sg(x,t) — s*(x,t) can be propagated
through the solver as a linear response: the induced perturbations in the
terminal mean and covariance are linear functionals of the time-indexed er-
ror process, with coefficients determined by the diffusion schedule and the
discretization scheme. Consequently, the leading contribution to E[W2] from
score error is quadratic in e;; after taking expectation over training random-
ness and over the sampling path, this quadratic term becomes an inner prod-
uct between a sampler-induced sensitivity operator and the covariance of the
score parameters. This is the origin of the kernel representation K (r,t;C): it
summarizes, at each noise level ¢, how uncertainty in the learned linear score
(encoded by Cov(#; — 6;)) is amplified by the remaining reverse-time evolu-
tion down to the stopping time r. In the eigenbasis of C', K(r,t; C') reduces
to explicit spectral weights k,.(X\;, A;), so that both training and sampling
design can be expressed in terms of the power spectrum {)\;} (or its band-
power approximation) together with schedule-dependent scalar coefficients.
This background will allow us, in the next section, to write the sampling
error as an error budget with a truncation term, a discretization term, and
a kernel-weighted score-error term amenable to resource allocation.

3 Gaussian-linear diffusion as an error budget

We now specialize the end-to-end sampling error to the Gaussian-linear
regime and isolate the three contributions that will later be traded off by
schedule design: truncation from stopping at r > 0, discretization from the
numerical solver, and amplification of training-induced score error through
the remaining reverse-time dynamics. Throughout we regard the sampler as
producing an output at terminal forward-time ¢t = r (reverse-time 7" — ),
followed by the standard deterministic “denoising” rescaling II,.(x) := z/s,
in the unified VP /VE parameterization, so that the output is comparable to
Pdata €ven when r > 0. (In VE one has s, = 1 and II, is the identity.)

Truncation / early-stopping bias. Let ¢ denote the law obtained by
running the ezact reverse-time dynamics (SDE or probability-flow ODE, as
chosen) with the ezact score and with vanishing discretization error, but



stopped at time r and postprocessed by IL.. In the Gaussian case this law
is explicit. Indeed, if z,, ~ p, = N (s,p, s2C + 02I) then I1,(z,) is Gaussian
with mean p and covariance

~ 2
C, = C+6,;, 6= (7) ,
so we define the truncation bias term by
EO(r) i= WHN (1, C), N (11, Cr)).

Since C and C, commute, the Bures term diagonalizes in the eigenbasis {u;}
of C, yielding the closed form

B0 = Y (VA E - VA

=1

This is the irreducible price of stopping at r even with an oracle score and an
exact integrator; it vanishes as r | 0 under any schedule for which 4, — 0.

Discretization bias. Fix a solver family of order ¢ (Euler, Heun, Runge—
Kutta, etc.) and a reverse-time grid T' =ty > t1 > -+ > tx = r with step
sizes Yy := tp—1 —tr (equivalently a piecewise-constant step-size proxy ~y(t)).
Let gy, denote the law of the discretized sampler when driven by the ezact
score. We define the discretization term as the residual error relative to g;:

EdiSC(T’, ,Y) = WQQ(Q:; Q::,'y).

In the Gaussian-linear setting the reverse dynamics is affine, hence both
¢, and ¢y, are Gaussian and E95¢ is again a function of mean/covariance
discrepancies. While the exact closed form depends on the chosen solver and
on whether we sample the SDE or the probability-flow ODE, in all cases we
may view E9¢(r ) as a deterministic functional of the schedule and the
grid satisfying the expected order condition

erer - o)
k=1

under standard stability regularity (bounded coefficients and a step-size fea-
sibility condition depending on Apax through the linear drift). We will keep
E%5¢ a5 an explicit term in the surrogate rather than absorbing it into higher-
order remainders, since it competes directly with the training-driven term
when sampling compute is limited.



Kernel-weighted score-error term. We next quantify how imperfect
scores perturb the terminal output. At each time ¢, let the learned score be
sg(+,t) and define the score error process e;(x) := sg(x,t) — s*(z,t). In the
Gaussian-linear regime e; is linear in  (and affine if u # 0), hence its effect
on the sampler can be expressed via linear response: the perturbations in
the terminal mean and covariance are linear functionals of the time-indexed
parameter errors. Consequently, after expanding W3 to second order around
the oracle trajectory and taking expectation over training randomness (and,
for the SDE, the sampling noise), the leading contribution from score error
is quadratic in the parameter error and therefore depends on its covariance.

We encode this dependence by a time-dependent positive semidefinite
operator K (r,t;C) such that the leading score-error contribution takes the
form

T
Escore(,r.’ v, m) = / ’y(t) <K(T7 t; 0)7 COV(et - 92()> dt,

where (-, -) denotes the Frobenius inner product after identifying parameters
with the corresponding linear-score coefficients (e.g. the matrix multiplying
x in sg(x,t), together with the affine part when present). The factor ~(t)
reflects that, on a grid, each step contributes proportionally to its local
integration length, and in the continuous-time limit the sum becomes an
integral.

The crucial point is that K(r,¢;C) is explicit in the eigenbasis of C.
Writing ¥; = s2C + 021 so that Yyu; = (s?\; + 0?2 )u;, the reverse-time prop-
agator from ¢ down to r acts diagonally on each eigen-direction. As a result,
the second-order Bures expansion for the terminal covariance perturbation
decomposes into pairwise interactions between eigen-directions, and we may
write

d d

<K(r,t; ), Cov(@t — 92‘)> = szr,t()\iv)‘j) Ei(i, 7)),

i=1 j=1

where k;.1(Ai, Aj) > 0is a schedule- and solver-dependent spectral kernel (the
“sampler sensitivity”) and E;(i, 7) denotes the appropriate covariance compo-
nent of the score-parameter error in the (u;,u;) block. In particular, when
the learned linear score (and its estimation noise) respects the eigenspace
decomposition of C—a common situation in isotropic parameterizations or
when one analyzes each eigen-direction separately—the off-diagonal compo-
nents vanish and the score term reduces to a one-dimensional spectral sum
> i ket (i) Var(6y,; — 9;‘1) for an explicit Ky .

Spectral /bandpower reduction. For large d it is convenient to replace
{A\i} by a spectral measure v := 52?:1 ), or by a bandpower approxima-
tion {\p,np} ; (band representative and multiplicity). Since k..(-,-) is a



smooth function of its arguments in the Gaussian-linear formulas, we may
approximate the double sum by

B B
> k(i A) Euli, ) ZZ npny kit (Ao, M) Z4(, 1),
b=1b'=1

7]

or, in the continuum limit, by a kernel integral [[ k.;(A,X')dv(X)dv(N)
with an analogous averaged covariance term. This reduction is the step
that makes co-design computationally tractable: all dependence on the data
distribution enters through its spectrum, and all dependence on the sampler
enters through £, ; and the discretization functional Edisc,

Collecting the preceding pieces, we arrive at the surrogate error budget
used throughout:

T
E[W3 (paatas 4r)] = EO(r)+E™(r,7)+ / A(t) (K (r,1;0), Cov(60,-6;) ) dt,

with remainder terms of higher order in (score-error magnitude, discretiza-
tion scale). The remaining task is to relate Cov(6; — 6;) to training compute
via a resource allocation model, which we do next.

4 Training noise model under resource allocation

We now connect the covariance term Cov(6; —6;) appearing in the kernelized
error budget to the amount of training compute expended at each noise level.
The co-design problem will treat training as an allocatable resource over
t € [r,T]: we may choose to spend more gradient evaluations at those noise
levels whose score accuracy is amplified most strongly by the sampler kernel

K(r,t;C).

Allocating training updates across noise levels. We model training as
producing, for each t, a score parameter vector (or matrix) 6; by optimizing
a time-conditioned denoising-score-matching objective. Concretely, when
training proceeds by sampling noise levels and taking stochastic gradient
steps, the allocation is described by a nonnegative function m(t) such that,
for any measurable set U C [r,T], the quantity fU t) dt is proportional
to the expected number of gradient evaluations performed with noise levels
in U. Equivalently, if one uses a normalized sampling distribution w(t)
over noise levels and a total of M training updates, then m(¢) plays the role
m(t) = M w(t) (in continuous time) or m; = Mw; (in a discretized binning).
We emphasize that m(t) is an effective number of updates: it can absorb
minibatch size, gradient accumulation, or reuse of cached features, and it
will later be paired with a cost density Cirain (%)

10



Stationary constant-step covariance: reducible versus irreducible.
Our surrogate is driven by the second moment of the parameter error at
each t. We adopt the standing assumption that, for each ¢, the optimizer
is run at constant step size 7 sufficiently long that the iterates are well
approximated by a stationary distribution in a neighborhood of the time-
t optimum 6 (the DSM minimizer in the Gaussian-linear regime, or its
NTK-linearized analogue). In this regime it is standard to approximate
constant-step stochastic gradient methods by a linear stochastic recursion
around 6, or by an Ornstein-Uhlenbeck diffusion after appropriate scaling.
Both viewpoints yield a decomposition of the stationary covariance into (i) a
component that decreases with the number of independent gradient samples
used to form the estimate of 6 and/or to reduce gradient noise, and (ii)
a component that persists even as the number of updates grows, because
constant-step methods do not converge to a point mass.

Motivated by these considerations, we posit the generic covariance upper
bound Al

Cov(6; — 67) =< m((t)) + T B(), (1)

where A(t) = 0 and B(t) = 0 are time-dependent matrices in the parameter
space (matching the representation used by the kernel operator K (r,t;C)).
The term A(t)/m(t) is the reducible part: holding all else fixed, spend-
ing twice as many effective gradient evaluations at time ¢ halves this con-
tribution. The term 7B(t) is the irreducible optimizer-noise floor induced
by constant-step stationarity: it vanishes only in the limit 7 | 0 or under
variance-reduced / annealed-step procedures not modeled here.

Where do A(t) and B(t) come from? In the Gaussian-linear DSM set-
ting, the time-t objective is a quadratic function of the linear score coeffi-
cients. Writing the population loss in the form

£i6) = {667, (0~ 07)).

with Hessian H; = 0, a single stochastic gradient takes the form ¢(; z,t) =
Hi(0 — 0f) + €(2), where z denotes the randomness from drawing a data
point and noise, and ¢; is a zero-mean gradient noise with covariance ¥; :=
Elete, ]. If we replace m(t) independent gradient samples by their aver-
age (or, equivalently, if we imagine a batch size scaling linearly with m(t)),
then the effective noise covariance scales as 3;/m(t), yielding parameter
fluctuations on the order of H; 'Y;H; ! /m(t). This motivates taking A(t)
proportional to lLIt_lEltlLIt_1 (with additional factors depending on momen-
tum/preconditioning and on the precise parameterization of the score). Sep-
arately, for constant-step SGD without averaging, the stationary covariance
solves an approximate Lyapunov equation of the form

Hth+Hth ~ TZt,

11



so that II; is of order 7; in the commutative or well-conditioned regime
one obtains the heuristic IT; ~ ZH; 'S, H; !, motivating B(t) as a (possibly
preconditioned) analogue of H, "¥;H, ! In more realistic settings with finite
dataset size N, the gradient noise itself decomposes into sampling noise
and finite-sample effects; such dependence can be absorbed into A(t) (e.g.
A(t) o< 1/N in regimes where estimation dominates) without changing the
co-design structure, since the only required property is the 1/m(t) scaling of
the reducible term and the 7 scaling of the irreducible floor.

Estimation and usable surrogates. The co-design procedure does not
require full knowledge of A(t) and B(t) as matrices; it requires them only
through the scalar contractions (K (r,t;C'), A(t)) and (K (r,t;C), B(t)) that
appear in the objective. Accordingly, we may estimate A(t) and B(t) (or
directly these contractions) by any of the following standard routes: (i) the-
oretical plug-in in the Gaussian-linear model, where H; and X; are explicit
functions of (C, oy, s;) and the DSM parameterization; (ii) empirical cur-
vature/noise estimation from training diagnostics, using moving averages
of per-t gradient covariances together with (approximate) Fisher or Gauss—
Newton curvature to form H, IZth_ Loor (iii) replicated runs, where one
measures sample covariances of the learned score parameters across inde-
pendent trainings restricted to a fixed time bin, and regresses the observed
variance against 1/m and 7 to obtain A(t) and B(t). In practice we often
further scalarize by assuming that, in the eigenbasis relevant to K (r,t;C),
both A(t) and B(t) are approximately diagonal or isotropic within spec-
tral bands, which suffices for the bandpower reduction used later. Under
any of these estimation procedures, the model provides the missing link
between training compute and the sampler-amplified score error term in

E(r,y (), m())-

5 The budgeted co-design problem

We now formalize the joint design of (i) the terminal reverse-time r (equiv-
alently the forward-time truncation point ¢t =T — r), (ii) the sampling step
schedule 7(+), and (iii) the training allocation m(-), under a single compute
budget. Throughout we view r as controlling the bias—variance tradeoff in-
herent to stopping sampling before reaching the smallest noise levels: smaller
7 reduces the truncation term E(© (1) but typically increases both discretiza-
tion burden and the kernel-amplified score-error accumulation.

Continuous-time co-design program. Let ciain(t) denote the cost (in
abstract compute units) per effective training update at noise level ¢, and
let csamp(t,7(t)) denote the cost density of sampling at time ¢t when using
step size y(t) (this cost may be taken constant per step, or may depend on

12



v if, e.g., adaptive correctors or higher-order methods are used). Given the
kernelized surrogate

T
E0:70)m() = B+ BP0 [ (0 (Kirnti€), 20 B0 .
our co-design problem is
_min - Era0).m() @)
s.t. /T Ctrain (1) m(t) dt + /T Csamp (L, (1)) dt < B, (3)
m(t) >0, ~(t) > 0, r € [0,7], (4)

~(t) obeys solver feasibility /stability constraints for all t € [r, T).

(5)

We emphasize that is well-defined whenever t +— (K(r,t;C), A(t)) is

integrable on [r,T] and m(t) > 0 on the set where this contraction is

positive. In particular, if m(t) = 0 on a set of positive measure where

(K(r,t;C), A(t)) > 0 and (t) > 0, then the reducible term diverges; thus

optimal solutions will either allocate m(t) > 0 where the kernel sensitiv-

ity is nonzero, or else rely on regimes where the contraction vanishes (e.g.,
directions/time regions rendered irrelevant by K).

Discretized-time version. In implementation we optimize over a finite
grid. Fix a candidate stopping time r and a partition r = t; < to <

- < t;, = T with associated representative times {t;}-,. We param-
eterize a piecewise-constant training allocation by nonnegative integers or
reals {m;}l, (effective updates in bin 4) and a sampling schedule by step
sizes {7v;}L; (or, equivalently, by per-step values {v4}X | when the grid is
indexed by reverse-time steps). Writing K;(r) := K(r,t;;C), A; == A(t;),
B; := B(t;), and absorbing bin widths into ; if desired, a canonical Riemann
approximation yields

L
min - EO@) + BY(r {1+ <Ki r),— +7B;), (6
i EO0) (i) 2o (), ). (©)
subject to the discrete compute budget
L L
thrain(ti) m; + Z Csamp@h’ﬂ) < B> m; > 07 Yi > 07 (7>
i=1 i=1

and solver feasibility constraints analogous to . This discretized form
makes explicit that, conditional on r and {7;}, the training decision couples
across times only through the single linear budget ; conversely, condi-
tional on {m;}, the sampling decision trades off EU¢ against the weighted
contractions (K;(r), A;/m; + 7B;).
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Convexity structure and separability. The joint program f is
not, in general, convex in the pair (y(-),m(-)) once EY¢(r v(-)) and the
sampling cost are included, nor is it convex in r due to the dependence of
K(r,t;C) and E© (1) on 7. The crucial property we exploit is conditional
convexity in m(-): for fixed (r,7(+)), the mapping

T
ml) [0 (K60, ) mi) ! de

is convex on {m(t) > 0} because x — 1/x is convex and v(t)(K (r, t; C), A(t)) >

0 whenever K (r,t; C') = 0 and A(t) > 0. The irreducible term fTT N (K (r, t;C), B(t))dt
does not depend on m and therefore does not affect convexity. This con-

ditional convexity implies that, for each fixed (r,v(:)), the optimal training

allocation admits KKT characterization and, under mild regularity, a closed-

form rule. This will be the content of the next section.

Sampling feasibility and stability constraints. Finally, we specify the
constraint . Since we restrict attention to explicit or semi-explicit solvers
(Euler, Heun, low-order RK, or their ODE analogues), stability imposes
upper bounds on 7. In the Gaussian-linear regime, the reverse-time dynamics
are linear in x with a time-dependent drift matrix whose spectrum depends
on (B, &, o, 01, 8¢) and on the data spectrum {\;}. Consequently there exists
a computable function Ymax(t; Amax) such that requiring

0< ’Y(t) < 'Ymax(t; Amax) (8)

ensures that each one-step update is well-defined and does not amplify er-
rors catastrophically in the stiffest spectral direction. In practice can be
instantiated either by classical explicit stability criteria (e.g. v < 2/L(t) for
an effective Lipschitz constant L(t)) or by solver-specific constraints derived
from the linear test equation in each eigen-direction. These constraints in-
teract with r: when the schedule becomes stiff near ¢ | 0, stability may force
~(t) to be prohibitively small, making early stopping (larger r) compute-
optimal even when E(© (r) is not negligible.

6 Optimal training allocation m*(t)

We now fix a candidate stopping time r and a feasible sampling schedule 7(-),
and solve for the compute-optimal training allocation m(-). Since the irre-
ducible optimizer-noise term fTT y(&)T(K (r,t;C), B(t))dt does not depend on
m(+), the relevant subproblem is

i /T W g st /T i (t) m(t) dt < Biai 9)
mH(l)lgO g m(t) S.t. : Ctrain(l) T > Dtrain;
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where we abbreviate the (nonnegative) kernel sensitivity
s(t) == () (K(r,t;C), At)) > 0, (10)

and where Biyain is the training sub-budget remaining after accounting for
sampling cost (either fixed a priori or induced by the outer optimization).
We assume s(-) and cgain(-) are measurable and integrable on [r,T], with
Ctrain(t) > 0 almost everywhere. Note that if s(¢) > 0 on a set of positive
measure, then any feasible m(-) that vanishes on that set makes the objective
in @ diverge; thus optimal solutions necessarily satisfy m(t) > 0 almost
everywhere on {t: s(t) > 0}.

KKT conditions and square-root rule. Problem @D is convex because
m +— s/m is convex on (0, 00) for each fixed s > 0, and the constraint set is
linear. Writing the Lagrangian

Lim,\v) = / ' ;L((’?) dt +( / ¥ eain (Om() dt—Bussin) — / ) mit) de,

with A > 0 and v(¢) > 0, the pointwise stationarity condition on {¢t: m(t) >
0} yields

-3 + )\ctrain(t) - V(t) =0 (11)

Complementary slackness gives v(t)m(t) = 0 and )\( | ctrainm — Btrain) = 0.
On any ¢ with s(¢) > 0 we must have m(t) > 0 and hence v(t) = 0, so (11)

implies
K(r,t;C), A(t)) .
f .e. T h .
=\~ )\ctram \/ pY—r or a.e. t € [r,T] with s(t) >0

(12)
If s(t) = 0, then m*(¢) = 0 is optimal (any positive allocation would consume
budget without reducmg @D . The multiplier A is chosen so that the budget
is saturated whenever By, > 0 and s # 0:

T
/ Ctrain(t) m* (t) dt = DBirain- (13)

In particular, substituting into yields

T s cmmm@ dt\’ B t
A= Jr v/3()ctrain(t) , and thus m*(t) = frain al )
Btrain f \/S Ctraln du Ctram

This is the continuous-time analogue of the familiar “water-filling” prln(:lple.
budget concentrates where the geometric mean \/s(t)cirain () is large, and
within those regions the allocation scales as a square root of sensitivity and
inverse square root of cost.
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Equal marginal gain interpretation. The rule (12)) can be read as an
equalization of marginal improvement per unit compute. Indeed, the re-
ducible contribution at time t is s(t)/m(t), so the infinitesimal decrease in
objective from increasing m(t) is

0 <s(t)) _s)

~am(t) \mi(t) m(t)2
Dividing by the marginal cost cain(t), the KKT condition (with v(t) =

0) is precisely
1 s(t)
Ctrain (t) m* (t)2
i.e. the “error decrease per unit training compute” is constant across all times

that receive positive allocation. Times with s(¢) = 0 have zero marginal gain
and are optimally ignored.

= A (15)

Discrete-time version and rounding. For the discretized objective @f
(@, fixing (r, {:}) yields

L L
. S
min =L st g c¢im; < Birain, si = 7i(Ki(r), Ai), ¢ = Ctrain(ti).
mi20 S M i—1

The KKT conditions give, for all ¢ with s; > 0,

L
% S; . *
m; = 1//\;, with g cim; = DBirain. (16)
i i=1

If integer m; are required, one may round m; while preserving the total bud-
get (e.g. via greedy adjustment by largest marginal gains s;/ m?), convexity
implies that such rounding incurs only a controlled additive increase in the
surrogate.

Common cost models and clipped water-filling. When ¢gain(t) = ¢
is constant, simplifies to

m*(t) o< V/s(t) = V(E)(E(r:0), Ab)),

so training concentrates at noise levels where the sampler is most sensitive
(large v and large kernel contraction) and where score estimation is intrin-
sically difficult (large A(t) in the relevant directions). If additional box con-
straints are present, e.g. 0 < m(t) < muyax(t) due to finite replay capacity or
per-time data constraints, then the same KKT calculation yields a clipped
rule

m*(t) = min {mmax(t)’ chg(t)}’
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with A adjusted so that the (possibly non-saturated) budget and active-set
constraints are jointly satisfied; this is the precise sense in which the solution
behaves like water-filling.

We shall henceforth regard m*(+) as an explicit functional of (r,v(-)) via
[12) (or (16)), and substitute it into the surrogate to reduce the co-design
problem to the remaining choices of sampling schedule and stopping time.

7 Optimal sampling schedule 7*(¢) and stopping time

*

r

Having optimized m(-) for fixed (r,7(-)) in Section [6] we now turn to the
remaining design variables: the sampling step-size schedule 7(-) and the ter-
minal time . We emphasize that (-) influences the surrogate both through
the discretization bias EU¢(r, +) and through the kernel-weighted amplifica-
tion of score error. In particular, for fixed r and fixed training budget Birain,
substituting into the reducible term yields the reduced functional

. 1 T 2 or
sredm)=E<°><r>+EdlSC<r,v>+Bm( | v <K<r,t;c>,A<t>>cminmdt) +[ e

(17)
where we have used s(t) = v(¢t)(K(r,t;C), A(t)) and the optimal value of
@D equals ([ M)Q / Birain. While is not pointwise separable in
because of the squared integral, it makes explicit the basic monotonicity:
decreasing 7y(t) reduces both score-error accumulation terms, whereas it typ-
ically increases sampling compute through a larger effective number of steps.

Sampling compute budget and KKT conditions. To state optimality
conditions, we adopt a standard continuous relaxation in which sampling cost
is proportional to step density:

T

c t

/ Mdt < Bsamp, 0 <v(t) < Ymax(t) a.e. on [r,T], (18)
e ()

where cgamp(t) > 0 captures per-step cost (e.g. one model evaluation) and

Ymax(t) encodes solver stability. For the discretization bias, we use the

generic order-q proxy

T
B (r, ) ~ / dy(t) 1 (1)7 dt, (19)

with ¢ > 1 the global order of the solver in the relevant weak/mean-square
sense and dg4(t) > 0 a problem-dependent local smoothness coefficient (de-
pending on the unified VP/VE drift and diffusion, and on the spectrum of
C' through stability constants). Fixing r and treating the training allocation
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as fixed (or as given by the previous section, in which case one may apply
the conditions below within an outer iteration), the y-subproblem takes the
schematic form

min / ' (@ (t) + dy()r()7) dt st / F () gy < g
5 : q .t. : ’)/(t) > Dsamp)
where a(t) := (K(r,t;C), A(t)/m(t) + 7B(t)) is the kernel-weighted score-
error coefficient. The Lagrangian with multiplier n > 0 yields the pointwise
stationarity condition on the active set {t: 0 < v(t) < Ymax(t)}:

Csamp (1)
v(t)?

Together with complementary slackness for and clipping at Ymax,
characterizes v*(t).

Two regimes are particularly transparent. If discretization dominates
locally (so that qd,(t)y(t)9~! > a(t)), then gives the power law

a(t) + qdg(t)y() — 1 = 0. (20)

() = (P (21)

1/(g+1)
qdq(t) ) ’

If instead kernel-weighted score error dominates (so that a(t) > qd,(t)y(t)971),
then
Y(t) =\ e, (22)

In both cases 7 is set so that the sampling budget is saturated unless Bgamp
is so large that the optimum is clipped by ymax everywhere.

Implications for VP/VE/EDM families. In the Gaussian-linear limit,
the kernel K (r,t; C) is explicit in the eigenbasis of C' and typically amplifies
score error more strongly at low noise. Consequently, across common sched-
ules one may regard a(t) as scaling like a negative power of the noise level
(up to spectral weights), so prescribes smaller step sizes precisely where
ot is small. Concretely: (i) for VP schedules, one commonly has o7 < t near
t = 0, leading to a(t) that is approximately proportional to o; ? (and in some
parametrizations o, 4); hence v*(t) decays roughly like a positive power of
oy as t | 0, producing a dense grid near the data end; (ii) for VE schedules
with oy increasing polynomially (e.g. oy =< ¢” near 0), the same principle
yields v*(t) < t* (or t27) up to the cost weight csamp(t); (iii) for EDM-type
schedules with o(t) a controlled power-law interpolation, the above behavior
persists with exponents determined by the local power p in oy < t” near
0, and clipping by ymax captures the empirically observed need for smaller
steps in stiff regions.
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Solver order ¢ and discretization decay. The proxy implies that,
at fixed step density, increasing g steepens the decay of E9¢ with maximal
step size. Under the budget model , the characteristic step size scales like
7 < (T —r)/K with K the effective number of steps, so E45¢ behaves like
O(K™9) (modulo stiffness through d;). Thus higher-order solvers convert
sampling compute into accuracy more efficiently in smooth regimes, but the
stability cap ymax(t) and stiffness encoded in d,(t) can limit attainable gains,
particularly near small o; where the reverse dynamics become ill-conditioned.

Stopping time r* via bias—variance balance. Finally, r trades trun-
cation bias against the accumulation of (optimized) score error and dis-
cretization effects. In the regime where E9¢ is controlled (e.g. by allo-
cating sufficient sampling budget), the leading balance is between E(© ()
and the optimizer-limited term. Assuming near-zero scaling o2 < r? and
EO(r) < o* =< r? and that the dominant kernel-weighted accumulation
behaves like 7. fTT oy 2 dt, the minimizing r* satisfies the scaling stated in
Theorem 3:

T
P o= /2P up to logarithmic factors when o 2dt diverges slowly (VP-like).
eff g t g Yy

For example, VP schedules yield a slow (logarithmic) divergence and hence a
r* that is a small power of 7. with an additional log correction; VE schedules
with o < t? and p > 1 yield a purely algebraic tradeoff; and EDM schedules
inherit the exponent through the local power-law behavior of o; near 0.

Matching lower bounds: minimax perspective under compute con-
straints. We now justify that the surrogate error achieved by the optimized
allocations is not merely an artifact of the upper-bound analysis, but is (in
the Gaussian-linear model) unavoidable up to constants and mild logarithmic
effects. Formally, we consider a class of algorithms that may (i) adaptively
choose which noise levels to train on, (ii) use at most m(t) effective stochastic
gradient samples at each ¢ (or time bin), and (iii) sample using any stable
reverse-time solver stopped at terminal reverse-time r. The minimax ques-
tion is: among all such procedures, how small can E[Wg(pdata, gr)] be as a
function of (r,v(-), m(-)) and the optimizer noise level 77

Reduction of score learning at fixed ¢ to Gaussian regression. Fix
a noise level t. In the unified VP/VE formulation, the forward marginal has
the affine form

Ty = 8120+ 02, xo ~N(u,C), z~N(0,1I),

s0 wy ~ N (e, X¢) with gy = sgp and Xy = S?C + 0152[. The exact score is
linear:
s*(x,t) = =N N w — ).
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Under our linear realizability assumption, learning the score at time t is
equivalent to estimating the linear operator >, 1 (and p¢, which we subsume
into an intercept parameter) from the training signal available at that ¢. In
DSM, the population objective at time t is a quadratic form whose Hessian is
the Fisher information of a Gaussian linear model; consequently, any estima-
tor based on m(t) i.i.d. samples (or m(t) unbiased stochastic gradients with
comparable noise) has a mean-squared error lower bounded by a constant
multiple of 1/m(t) in the directions where the information is nondegenerate.

One may make this explicit by restricting to a one-dimensional subprob-
lem in the eigenbasis of C. Writing Cu; = A\;u;, the marginal variance
along u; equals s?)\; + oZ. Along this coordinate, the score coefficient is
—(s?\; + 02)7!. Estimating this scalar from m(t) samples is a standard
Gaussian mean /variance estimation problem; by Cramér-Rao (or Le Cam’s
two-point method on a local parametric subfamily), the variance of any un-
biased (or sufficiently regular) estimator obeys

Var((s%)\i +U§)*1> > )
for an information factor Z;(t) depending only on (s?\; + 02). Aggregating
across coordinates and lifting back to matrices yields a matrix MSE bound
of the schematic form

m(t)’

E[|0: - 0;11%,] >

where H; = 0 is the DSM Hessian (a deterministic function of ¥;) and ¢ > 0
is universal in the Gaussian family. This is the origin of the (1/m(t)) term
in Theorem 4.

Irreducible optimizer noise as a (1) floor. If training is performed
by a constant-step stochastic optimizer that reaches stationarity, then even
with infinite data reuse at a fixed ¢, the stationary parameter fluctuations do
not vanish. In the quadratic (Gaussian-linear) regime, SGD-like dynamics
are well-approximated by a linear stochastic recursion, whose stationary co-
variance satisfies a discrete Lyapunov equation. Under standard regularity
(e.g. step size below the stability threshold), this yields a lower bound of the
form
inf Cov(0; — 0;) = ' 7B(t)
constant-step stationary schemes

for an appropriate noise-shape matrix B(t) determined by gradient noise,
with ¢ > 0 depending only on stability constants. Thus, alongside the
reducible 1/m(t) component, there is an irreducible Q(7) component that
no reweighting or additional compute at other times can remove.
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Propagation of per-time estimation error to a W} lower bound.
We next transfer these per-time limitations to a bound on the final sampling
error. In the Gaussian-linear setting, the effect of an additive score error e; ()
on the terminal law ¢, can be linearized, and E[WZ] admits a quadratic form
in the score-error process. The sensitivity operator K (r,t;C) (diagonaliz-
able in the eigenbasis of C') maps the parameter covariance at time ¢ into
the contribution to the Bures/mean perturbations of the terminal Gaussian.
Consequently, for any stable sampler with step schedule v(-), we obtain a
lower bound matching the structure of the upper surrogate:
E[W2( (0) ! . @

Hraaar)] = @EO0) + o [ 40 (Kirt:0) 28 + 7B (D) at

T

up to terms of the same order as the discretization bias (which cannot be
made negative and is separately controlled by the sampling budget). Intu-
itively, K (r,t;C) identifies the parameter directions that the sampler am-
plifies most strongly; the lower bound shows that errors in precisely these
directions must persist given the compute constraints at time t.

Comparison to the achieved upper bound (constants and logs).
Combining the lower bound above with the constructive upper bound from
Theorem 1 shows that our co-designed schedules are minimax-optimal in
order. In particular, under the linear training-cost model of Theorem 2, opti-
mizing m(+) yields the upper value (fTT \/W(t) (K(r,t;C), A(t)) Crain(t) dt)?/ Birain,
and the lower bound implies that no algorithm can improve the Bt_r;in scaling
or alter the kernel-weighted geometry encoded by K(r,t; C), except by con-
stant factors. The only systematic discrepancy arises in regimes where the
kernel-weighted accumulation fTT o, 2dt diverges slowly (VP-like schedules),
in which case both upper and lower bounds inherit unavoidable logarith-
mic dependence on r (and, in discrete time, mild additional logs from grid
regularity). Thus the remaining gap is limited to constants and such log fac-
tors, rather than any polynomial improvement, confirming that the co-design
principle is sharp in the Gaussian-linear model.

Practical scheduler: estimable inputs and an implementable co-
design routine. We now describe how the quantities appearing in the co-
design objective can be estimated from finite data and training diagnostics,
and how one may implement a scheduler that outputs a training weight w(t)
(equivalently m(t) under fixed total updates), a sampling step-size schedule
y(t) (or {7k }1—5"), and a stopping time r. The guiding principle is that all
model-dependent information enters through (i) the power spectrum of C' (or
a bandpower approximation), (ii) the diffusion schedule (s¢,0¢) and solver
family (to compute the kernel K and discretization proxy), and (iii) per-
noise-level training-noise statistics (to instantiate A(t) and B(t) or suitable
scalar surrogates).
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Estimating the spectrum or bandpower of C. Given samples z(") ~
Ddata, We form the empirical covariance C (after centering). In high di-
mension, we typically avoid a full eigendecomposition and instead estimate
bandpowers {(Ap, pp) }2_;, where Ay is a representative eigenvalue in band b
and p; is the multiplicity weight (fraction of energy or count). Concretely,
one may obtain: (i) top-eigenpairs via randomized SVD /power iteration; (ii)
the remaining bulk via stochastic trace estimation applied to resolvents, e.g.
tr((a +nI)~1) across a grid of 1, which can be inverted to fit a coarse spectral
density; or (iii) direct binning of approximate eigenvalues when moderate d
permits. For our purposes, a low-resolution bandpower is often sufficient
because the kernel K (r,t;C') varies smoothly in A under typical schedules;
we therefore recommend enforcing monotone bands and using conservative
Lipschitz-based error bars (e.g. enlarge bands) when the estimate is noisy.

Computing kernel sensitivities from bandpowers. Once (s;,0¢) and
the solver family are fixed, we precompute per-time-bin sensitivities

Sir) = (Kt 0), Alt:)),

or, in a bandpower approximation, replace the eigen-sums by band-sums of
the form
Si(r) =~ Z poPy Kt (Mg, Ay ) ap gy (t;),
b,/

where k,; denotes the spectral kernel induced by the sampler and ap (t) is
the representation of A(t) in the same spectral basis (often diagonal or nearly
so in Gaussian-linear surrogates). In practice, we frequently scalarize further
and use S;(r) ~ tr(K(r,t;;C))a(t;), where a(t) is a one-number proxy for
training difficulty at noise level ¢ (see below). This reduces preprocessing to
O(LB) for L time bins.

Estimating training-noise statistics A(t) and B(t) (or their sur-
rogates). The scheduler only requires the kernel-weighted contractions
(K,A) and (K, B). We therefore advocate estimating scalar proxies

a(t) = (K(r,;C), A®t)),  b(t) = (K(r,t;C), B(t)),

directly from training logs, rather than attempting to recover full matrices.
Two practical options are:

o Gradient-noise route: during training, at each ¢-bin we periodically col-
lect mini-batch gradients g of the DSM loss, estimate Cov(g), and ap-
proximate the stationary parameter covariance via a quadratic-model
Lyapunov proxy. This yields an empirical decomposition into a re-
ducible component scaling as 1/m(t) and an irreducible component
scaling with 7.
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e Learning-curve route: run short pilot trainings at fixed ¢ (or a small
set of ¢-bins), measure score-error proxies (e.g. validation DSM loss,
or denoising MSE) as a function of the number of updates, and fit a
two-term model err(m) =~ k1(t)/m + ro(t)7. The fitted K1, ko serve
as a(t),b(t) up to multiplicative constants absorbed by A in the KKT
allocation.

Both approaches are robust to moderate model mismatch because the sched-
uler depends primarily on relative magnitudes across ¢, not absolute calibra-
tion.

Closed-form training weights and discretization. Fix r and a pro-
visional sampling schedule ~(¢). Discretize [r,T] into bins {t;}L; and let
m; denote the number of effective updates allocated to bin ¢, with cost
> Ctrain(ti)m; < Birain. The KKT solution gives

. () a(t) . m V() alts)
A Ctraln(tz) Ej mj Ctram(tz)

We then implement training by sampling noise levels from the discrete distri-
bution w (or by reweighting the loss accordingly). To avoid degenerate be-
havior under estimation noise, we impose floors and caps wWmin < w; < Wmax,
followed by renormalization, which is equivalent to restricting m; to a com-
pact feasible set.

Sampling schedule and stopping time selection. Given a training al-
location (or under an alternating scheme), we choose (t) and r by evaluating
the surrogate

“T(? + bt

]

Elryw) = EO@) + B (r7) + (6

under the sampling-cost constraint and solver stability bounds (which yield
per-bin upper limits on «(¢;)). Practically, we search over a small grid of
r-candidates, and for each r we choose K and a monotone step schedule
(e.g. uniform in a transformed time variable) that approximately minimizes
E%5¢ per sampling compute, then re-solve for w using the KKT rule. This
yields an implementable outer loop with a few iterations; empirically, one or
two alternations suffice because the dependence of w on « is smooth through

()

Robustness considerations beyond the Gaussian-linear surrogate.
When the data are not exactly Gaussian and the score model is not ex-
actly linear, the kernelized objective should be regarded as a structured
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heuristic. Nonetheless, several robustness devices preserve its qualitative be-
havior: (i) use bandpowers rather than full spectra to prevent overfitting
to spurious eigenvalues; (ii) smooth a(t) and b(t) across adjacent t-bins (e.g.
total-variation or spline smoothing) to reduce variance; (iii) enforce minimum
training mass on intermediate noise levels to prevent catastrophic forgetting;
and (iv) validate the chosen r by monitoring an observable proxy (e.g. sample
quality vs. truncated reverse-time) and adjusting within the predicted basin.
Under these safeguards, the scheduler typically produces stable curricula
concentrating training where the sampler is most sensitive, while allocating
sufficient sampling resolution where discretization error dominates.

Experiments (recommended): validating tightness, isolating gains,
and testing predictivity. We recommend an experimental suite whose
purpose is not merely to improve sample quality, but to validate the struc-
tural claims encoded by the surrogate objective £(r,vy,m): (i) kernelized
propagation of score error to terminal W2; (ii) the 1/m(t) reducible scal-
ing and 7-limited irreducible floor; (iii) the KKT “equal-marginal-gain” al-
location rule; and (iv) the predicted compute—quality frontier as B varies.
We organize the experiments by increasing model mismatch: from exactly
Gaussian-linear settings (where all terms are measurable) to medium-scale
diffusion/EDM models (where £ is a structured predictor).

(A) Synthetic anisotropic Gaussians: end-to-end tightness under
controlled spectra. We begin with pgata = N(0,C) in dimension d €
{64,256,1024}, with spectra chosen to stress anisotropy: (1) power-law A;
i7" for v € [0,2]; (2) spiked models with a few large eigenvalues and a
flat bulk; and (3) banded spectra designed so that different eigen-bands
dominate at different noise levels through the kernel K(r,t;C). For each
C, we fix a diffusion schedule (s, 0¢) (VP and VE are both instructive)
and a solver family (Euler and Heun suffice to expose discretization effects).
In this setting, the reverse-time SDE with an inexact linear score induces a
terminal Gaussian ¢, = N (fi.., (1), and we can compute the true discrepancy
W2 (paata; @) exactly via the Gaussian Bures formula. We then compare it
to £(r,v, m) with Rem treated as an empirical residual.

(A1) Measuring the training-noise model. To isolate the % +7B(t)
structure, we train a realizable linear score at each time bin ¢; (either inde-
pendently, or by freezing all but a time-embedding head) with constant-step
SGD. We then estimate Cov(f;, — ;) directly from multiple independent

runs and verify the scaling

C1 (tz) 4

i

tr Cov(fy, — 0;) ~ co(ti)T,
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as well as the kernel-weighted variant (K (r,;; C'), Cov(0y, —0,)) used by the
scheduler. We recommend sweeping 7 over at least one decade and m; over
a range where stationarity is achieved (verified by flat training-loss traces).

(A2) Tightness of kernel propagation and equal-marginal-gain. With
a(t;) = (K(r,t;; C), A(t;)) and b(t;) ~ (K (r,t;; C), B(t;)) measured as above,

we run the co-design routine to produce w; \/’y(ti)a(ti)/ctrain(ti) and a

sampling schedule . We then validate: (i) g predicts the ordering of can-
didate (r,v,w) configurations; (ii) the realized allocation satisfies the KKT
identity m}2cerain(ti)/(v(ti)a(t;)) & const on active bins; and (iii) improve-
ments concentrate precisely in regimes where (K, A) is large (e.g. near small
oy for VP). For interpretability, we recommend plotting bandwise contri-
butions Zb,b’ pupy kr.t(Ap, Ap) to show which spectral components drive the
allocation.

(B) Ablations: disentangling training reweighting from sampling
improvements. To separate causes, we recommend three matched-compute
conditions: (i) training-only: optimize w(t) via KKT with a fixed sampler
(fixed r and «); (ii) sampling-only: optimize v and r under a fixed training
distribution (uniform w or a standard heuristic); (iii) joint: alternate until
convergence (typically one or two passes). In each case, keep total compute
B = Birain + Bsamp fixed and report both the terminal error and the de-
composition of £ into EO) pdisc and the score-error term. This ablation
directly tests whether gains come from reallocating updates toward sensitive
noise levels (large (K, A)) versus from resolving discretization bottlenecks
(large E4is),

(C) Medium-scale diffusion/EDM: predictive power under model
mismatch. We next test whether the scheduler remains predictive when
the Gaussian-linear assumptions fail. We recommend CIFAR-10 and one
higher-resolution dataset (e.g. FFHQ 642 or ImageNet 642) with an EDM-
style preconditioning or a VP baseline. Since C' in pixel space is both large
and not the correct representation, we use bandpower proxies computed in a
fixed feature space ¢(x) (e.g. low-frequency DCT blocks, a frozen encoder,
or early-layer activations of the score network) and treat the spectrum of
Cov(¢(x)) as a stand-in for the relevant anisotropy. We then estimate a(t)
and b(t) via a learning-curve route on a small pilot budget: for each ¢-bin,
run short segments of training, fit err(m) = k1(t)/m+ k2(t)T, and use K1, k2
in place of (K, A), (K, B). The primary evaluation is whether € correlates
with downstream metrics (FID, precision/recall, or likelihood proxies) across
schedules at fixed compute, and whether the learned weights w(t) exhibit
stable qualitative shifts (e.g. increased mass at low noise when sampling is
sensitive there).
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(D) Compute—quality frontier: predicted shifts with B, 7, and
solver order. Finally, we recommend a controlled sweep over total com-
pute B and optimizer step size 7, reporting the Pareto frontier of quality
versus compute for (i) a baseline schedule (uniform w, standard sampler),
(ii) training-only optimized, (iii) sampling-only optimized, and (iv) joint co-
design. The main check is that the frontier shifts are consistent with the
surrogate scaling: diminishing returns in By,in due to the irreducible 7B(t)
term, and movement of the optimal stopping time r* as 7 increases (consis-
tent with the balancing logic underlying Theorem 3). We recommend also
varying solver order ¢ (Euler versus Heun) to confirm that when E4¢ dom-
inates, the scheduler reallocates budget toward sampling resolution rather
than toward additional training at insensitive noise levels.

Limitations and extensions: correlated-time errors, non-Gaussianity,
and connections to distillation /solvers. Our surrogate objective £(r,~y, m)
is derived under a time-decoupled training-noise model in which each noise
level ¢ admits its own parameters 0; (or, equivalently, the covariance of the
score error is treated as block-diagonal across time bins). This abstraction
is faithful in the Gaussian-linear toy setting and in diagnostic regimes where
one can train per-t heads, but it is not literally satisfied by standard diffu-
sion models that share a single network across all ¢t. In the shared-parameter
setting, the random vector § — 0* induces correlated score errors e;(x) across
t, and the terminal error depends on their joint covariance rather than on
Cov(e;) alone. A minimal extension replaces the single-time integrand by a
quadratic form over times,

T T _
// Lt t';r,y) <K(r;t,t';C), Cov(@—@*)>dtdt',

where I' encodes the discretization weights (reducing to 7(t)d;= in the de-
coupled approximation) and K is the corresponding two-time sensitivity op-
erator obtained by composing the sampler’s linear response maps at times
t and t. Even in Gaussian-linear regimes this operator is explicit in the
eigenbasis of C, but the optimization changes qualitatively: allocating com-
pute at time ¢ reduces error at all times through shared parameters, so the
one-dimensional KKT rule of Theorem 2 is no longer exact.

A principled way to capture these correlations is to move from a per-time
covariance ansatz to a global linearization (NTK-style) in which the score
network is linear in € around #*, and each ¢-bin contributes a Fisher /feature
matrix F'(t) so that the (reducible) stationary covariance takes the schematic
form

T -1
Cov(0 — 6%) ~ (/ m(t) F(t) dt) (up to optimizer-noise terms).
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Substituting such a model yields an objective resembling optimal experimen-
tal design:

min <H(r, v), (/rTm(t)F(t) dt)_1> s.t. /TT Ctrain ()M (t) dt < Birain,

m(-)=0

for an appropriate PSD matrix H(r,v) summarizing sampler sensitivities.
Unlike the separable [ a(t)/m(t)dt structure, this objective is not gener-
ally reducible to a pointwise formula for m*(¢); however, it remains convex
in many linear models because X +— (H, X 1) is convex on X > 0, and
X = [m(t)F(t)dt is affine in m. Thus, while the closed form may be
lost, the co-design viewpoint persists: the relevant object is the interaction
between a sampler-induced sensitivity H and a training-induced informa-
tion accumulation f mF. Practically, one may approximate this coupled
problem by (i) coarse time binning with a low-rank model of cross-time co-
variances, (ii) block-diagonal surrogates calibrated by measuring correlations
of gradient features across ¢, or (iii) alternating minimization over m and a
parametric approximation of Cov(f — 0*).

A second limitation is the reliance on global Gaussianity to obtain an
explicit kernel K (r,t; C') and an exact W3 evaluation via the Bures formula.
For non-Gaussian pgata, the sampler output is not Gaussian even with an
exact score, and score errors propagate through nonlinear dynamics. Never-
theless, the local linearization principle suggests a workable extension: along
the forward noising path, each marginal p; is often closer to Gaussian than
Pdata, and the reverse dynamics can be linearized around typical trajectories.
In this regime, one may replace the single covariance C by a time-dependent
local covariance Cy := Cov(z) (or its bandpower proxy in a feature space
¢(xy)), and treat K (r,t;C) as an empirical sensitivity operator Kjo.(r,t) es-
timated from Jacobian-vector products of the sampler with respect to score
perturbations. The resulting surrogate retains the same formal structure,

T
Eioc(r,7,m) = O (r)+ BV (r,7)+ / V(t) (Kioe(r, 1), 2258 7 Bioc (1)) dit,

but now Ko, Aioc, Bioc are estimated rather than derived. The principal
caveat is that higher-order terms (ignored in Rem) need not be small at
low noise, so predictivity depends on whether the sampler’s linear response
dominates the nonlinear coupling.

Finally, it is useful to relate co-design to two practice-driven choices:
distillation and solver selection. In distillation (e.g. progressive distillation,
consistency training), one trades a costly teacher sampler for a cheaper stu-
dent while attempting to preserve terminal distribution. Our framework
suggests that the teacher’s compute should be spent where the student is
most sensitive: the kernel ~(¢)K(r,t;-) induces a principled reweighting
over t for teacher training (and for student regression targets) analogous
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to the KKT allocation rule, but now interpreted as importance weighting for
matching the teacher’s denoising field. Conversely, solver choice (Euler ver-
sus higher-order methods, ODE solvers, adaptive step control) enters only
through EU¢(r, ), the stability region for v, and the induced (t) weight-
ing of score error. This makes explicit a qualitative tradeoff often observed
empirically: when discretization dominates, it is compute-optimal to raise
solver order or allocate more sampling steps; when score error dominates, it
is compute-optimal to allocate training updates to time regions with large
kernel sensitivity and low training cost. Extending the co-design problem to
include discrete solver-family choices (order ¢, adaptive controllers) leads to
a mixed discrete—continuous optimization, but the surrogate provides a nat-
ural selection criterion by comparing the marginal return of reducing F4is
against the marginal return of reducing the kernel-weighted score error under
the same compute.

Conclusion: kernelized compute-optimal co-design as a unifying
perspective; open problems. We have advocated a co-design viewpoint
in which training and sampling schedules are chosen jointly under an explicit
compute budget, rather than tuned independently. In the Gaussian-linear
regime, this viewpoint admits a concrete expression: the terminal discrep-
ancy between the data distribution and the sampler output can be decom-
posed into a truncation term, a discretization term, and a kernel-weighted
propagation of score-estimation error,

T
Elrrm) = EO) + EW(r) + [ (0 (K 6:0), 2+ 7BO) e,

with K(r,t; C) capturing the sampler-induced sensitivity of the terminal law
to score perturbations injected at time ¢. This kernel is the unifying object: it
converts modeling and optimization noise into a task-relevant scalar cost, and
thereby endows training updates at different noise levels with comparable
units. In particular, the optimal allocation in the decoupled-time model
follows an equal-marginal-gain principle (Theorem 2), with the closed-form
rule

)

n*(t) \/'y(t) (K (r,t:C), A(t)

Ctrain (t)

showing that compute concentrates where (i) the sampler is sensitive, (ii)
reducible training variance is large in sensitive directions, and (iii) per-update
cost is favorable. The same surrogate also makes explicit why stopping
early at reverse-time r > 0 can be compute-optimal: one trades truncation
bias E(0)(r) against the accumulated effect of (partly irreducible) score error
amplified by the kernel, leading to scaling laws for r* (Theorem 3) and
matching-order lower bounds (Theorem 4) within the model class.
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Beyond providing closed-form schedules in a toy setting, we view the
kernelized surrogate as a conceptual reduction. First, it clarifies what infor-
mation about the data distribution is actually needed for schedule design:
not the full density pqata, but (in this regime) a spectral proxy for C' and a
mechanism for estimating the training-noise terms A(t), B(t). Second, it sep-
arates algorithmic choices into orthogonal levers: solver family and step sizes
primarily shape E4%¢ and the weighting (¢), while training allocation con-
trols the reducible part A(t)/m(t) up to the optimizer-imposed floor 7B(t).
Third, it places a variety of empirical heuristics—noise-level reweighting,
curriculum learning, and hand-designed step schedules—under a single vari-
ational objective, making it possible to compare them on a common scale:
marginal error decrease per unit compute.

Several open problems remain before this perspective becomes a predic-
tive design tool for modern, shared-parameter diffusion models. (i) Kernel
estimation and robustness. Even if one accepts a linear-response surrogate,
estimating K (r,t;-) (or its low-rank summaries) accurately and cheaply for
non-Gaussian data is nontrivial. A practical theory should quantify how
errors in K affect the resulting schedules, and should provide stable estima-
tors based on Jacobian—vector products, randomized probes, or bandpower
approximations, with guarantees in regimes where higher-order remainder
terms are controlled. (i1) Shared parameters and cross-time coupling. As
discussed in the preceding section, time-correlated score errors invalidate
the pointwise 1/m/(t) structure. While convexity often survives under global
linearizations, one needs scalable approximations (e.g. low-rank feature mod-
els, block-diagonal relaxations, or Nystrom methods) and a principled un-
derstanding of when the decoupled KKT rule is a good approximation. (i)
Nonstationary and adaptive training dynamics. The stationary covariance
model captures a compute-limited regime but ignores transient effects, mo-
mentum, learning-rate schedules, and nonconstant batch noise. A more
faithful theory would treat 7 and m(t) as time-varying controls and would
account for finite-horizon optimization error, ideally yielding a dynamic-
programming or continuous-time control characterization rather than a static
allocation. (iv) Discrete solver choices and stability-limited regimes. Our for-
mulation accommodates solver order through E45¢ and stability constraints,
but a complete co-design must treat solver selection (Euler/Heun/RK/ODE,
adaptive controllers, error estimators) as discrete decisions coupled to the
training plan. This yields mixed discrete—continuous optimization, for which
one would like approximation guarantees and interpretable selection criteria
based on marginal returns. (v) Objectives beyond W3. The Gaussian-linear
analysis privileges W2 because it is explicit and stable under small pertur-
bations. In applications, one often optimizes perceptual or downstream-task
metrics. Establishing when such metrics admit kernelized surrogates (or
when they are Lipschitz with respect to Wy over relevant model classes)
would clarify the scope of schedule optimality claims. (vi) Minimax limits
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under structural assumptions. The matching lower bounds we obtain rely
on Gaussian-linear structure. Extending lower bounds to non-Gaussian but
structured families (e.g. log-concave measures, mixtures with spectral decay,
manifold-supported data with intrinsic dimension) would sharpen the dis-
tinction between schedule-induced gains and information-theoretic barriers.

We thus regard kernelized compute-optimal co-design as a framework
that (a) makes the tradeoffs between training, sampling, and stopping ex-
plicit; (b) yields exact optimality statements in a tractable regime; and (c)
suggests a set of measurable primitives—sensitivities, training-noise covari-
ances, and costs—that can be estimated and optimized even when the full
generative model is far from linear. The primary remaining challenge is to
develop estimators and robustness theory for these primitives in realistic set-
tings, so that co-design moves from an explanatory surrogate to a reliable
engineering principle.
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