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Abstract

Quantization is essential for deploying 2026-era large language and
reasoning models under tight latency and memory budgets, yet prior
work shows that extreme low-bit quantization (e.g., 2-bit) can col-
lapse emergent abilities to near-random performance, while 4-bit often
preserves them. We propose a formal framework that explains and ex-
ploits this threshold behavior: emergent task success is controlled by
a margin that crosses a baseline threshold, and quantization reduces
this margin through structured noise. We define parameter/activation
groups and estimate their task-aggregated margin sensitivities near
emergence tipping points, identifying a small critical subspace whose
precision determines whether emergent abilities survive. We then for-
mulate mixed-precision quantization as a budgeted selection problem,
prove NP-hardness, and provide approximation algorithms with ex-
plicit guarantees (and an FPTAS in a linearized regime). Our main
certified guarantee shows that if the unquantized model has sufficient
verified margin, then protecting the critical subspace at higher pre-
cision while aggressively quantizing the remainder preserves above-
baseline performance for emergent tasks. We outline experiments to
validate the bound’s tightness, reproduce known 2-bit collapse vs 4-
bit preservation, and demonstrate near-2-bit average mixed precision
that retains both reasoning capability and key safety behaviors, link-
ing emergent abilities to localized circuit fragility emphasized in recent
emergence surveys.
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1 Introduction

Empirical “emergence” in large language models is often operationalized as
the appearance of above-baseline performance on a task once the model (or
its training compute) crosses a regime boundary. Although the phenomenol-
ogy is familiar, two aspects are in tension when one attempts to make emer-
gence actionable for deployment. First, emergence is frequently observed
through discrete evaluation metrics whose dependence on underlying model
scores is highly nonlinear. Second, deployment constraints (memory, band-
width, latency) induce interventions—in particular low-bit quantization—
that act as structured perturbations to the pretrained parameters and can
interact sharply with such nonlinearities. Our guiding premise is that emer-
gence should be studied at the level of margins (logit gaps or verifier-score
gaps), where “above-baseline” behavior corresponds to a margin exceeding a
task-dependent threshold. In this view, quantization brittleness is not myste-
rious: if the unquantized model sits near an emergence threshold, then even
moderate perturbations can flip the sign of the margin on a non-negligible
fraction of inputs.

The practical problem is immediate. Modern post-training quantization
and mixed-precision deployment can reduce memory footprints by an or-
der of magnitude, yet it is well documented that capability regressions are
not uniform across behaviors: some tasks degrade smoothly with bitwidth,
while others collapse abruptly. The abrupt failures are particularly salient
for tasks that are close to the regime boundary in the full-precision model—
including multi-step reasoning, compositional generalization, and certain
safety-relevant behaviors whose evaluation is mediated by a learned or pro-
grammatic verifier. A uniform-bit quantizer treats all parameters (or activation/KV-
cache components) as equally responsible for these fragile margins, which is
incompatible with observed heterogeneity across layers, heads, and modules.

We therefore study mixed-precision quantization through the lens of a
critical subspace hypothesis: for a fixed set of tasks of interest, there exists
a comparatively small subset of parameter (or activation) groups whose pre-
cision dominates the post-quantization margins. Informally, we posit that
many groups can be aggressively quantized with little effect on the relevant
margins, provided that a critical subset is preserved at higher precision. Our
goal is not merely to state this hypothesis but to make it quantitative and al-
gorithmic under an explicit noise model. Concretely, we model quantization
as inducing an additive perturbation in each group, with controlled second
moment that decreases with bitwidth, and we ask for a bit-allocation that
maximizes a certified lower bound on task margins subject to a total bitrate
budget. This yields a natural notion of “criticality”: a group is critical to the
extent that its quantization noise, when filtered through the local sensitivity
of the margin functional, is capable of consuming the available margin slack.

Positioning this approach relative to existing interpretations of emer-
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gence clarifies what we do and do not claim. In the “emergence-as-loss” line
of thought, a task appears emergent because small improvements in a smooth
surrogate (e.g. cross-entropy) produce large changes in a downstream metric
once the model crosses a decision boundary. In the “emergence-as-metric”
view, the apparent discontinuity is largely an artifact of thresholded evalua-
tion, finite sample size, or metric design. We remain agnostic to the extent
to which either explanation accounts for any particular empirical curve; in-
stead, we exploit a common structure shared by both. Regardless of whether
the underlying learning dynamics are smooth, deployment decisions are ul-
timately made using discrete task scores; and these scores are mediated by
some real-valued statistic—a logit gap, a calibrated verifier score, or an-
other margin-like quantity—whose sign or magnitude determines correct-
ness. Thus, even if emergence is a metric artifact, it is still the relevant
artifact: preserving above-baseline performance under quantization requires
controlling how that underlying statistic shifts.

The margin-centric view also suggests why mixed precision should be
formulated as a structured optimization problem rather than a layerwise
heuristic. If we denote by mt(x; θ) the task-specific margin at input x, then
the full-precision model is safely above baseline on task t when mt typically
exceeds a threshold ηt calibrated to the desired “emergent” regime (e.g. a
correctness rate exceeding random-guessing or a verifier-induced baseline).
Under quantization, the parameters become θ+δθ, and the relevant question
is whether the degradation

mt(x; θ + δθ)−mt(x; θ)

can be controlled uniformly over x in the evaluation distribution or, at min-
imum, in expectation with sufficiently small variance. This immediately
reduces capability preservation to bounding the interaction between (i) the
noise magnitude induced by assigning a given bitwidth to a group and (ii)
the sensitivity of the margin to perturbations in that group. It is precisely
this interaction that motivates a groupwise sensitivity score and a budgeted
allocation procedure: when the cost of increasing precision is constrained, we
should spend bits where the sensitivity-weighted noise reduction is largest.

Two further considerations motivate our emphasis on verifier-based se-
mantic margins. First, for many tasks of interest—especially those involving
reasoning, alignment, or safety—syntactic string matching is inadequate.
Verifiers provide a principled way to define correctness via semantic equiv-
alence classes or property checks, at the cost of introducing an additional
model or program into the evaluation pipeline. Second, verifiers naturally
induce continuous scores (or at least score differences) that can be used as
margins; this is crucial for any certification argument, because discrete suc-
cess indicators are too coarse to admit useful perturbation bounds without
further structure.
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From the deployment standpoint, our aim is to formalize the following
implication: if the unquantized model has a certified margin slack above an
emergence threshold, then there exists a mixed-precision assignment within
the budget that preserves above-baseline success on all tasks in a designated
emergent set. The certification requirement is not an aesthetic choice. With-
out an explicit bound relating the assigned bitwidths to margin degradation,
mixed-precision selection becomes a combinatorial search guided only by
empirical trial-and-error on finite calibration sets, which is both expensive
and unreliable near thresholds. Conversely, once we can upper bound the
margin loss as a function of per-group sensitivities and per-bit noise proxies,
the selection problem becomes a knapsack-like optimization with transparent
tradeoffs between memory and guaranteed retained margin.

In summary, we treat quantization as structured noise, emergence as
thresholded margin behavior, and mixed precision as an optimization over
bit allocations. The central object is a task-aggregated sensitivity profile
over groups, which induces a notion of a critical subspace to preserve at
higher precision. The remainder of the paper makes these statements pre-
cise: we specify the task and verifier model and the margin definitions, derive
a degradation bound under the groupwise noise assumptions, and then re-
duce mixed-precision selection to a budgeted combinatorial problem with
corresponding approximation algorithms.

2 Preliminaries and Task Model

We fix a pretrained model fθ with parameters θ, and we study its behavior
on a finite collection of tasks T . Each task t ∈ T comes with an evaluation
distribution (or a finite evaluation set) Dt over inputs x (prompts, questions,
contexts), and a notion of semantic correctness implemented by a verifier.
Our goal in this section is to isolate a real-valued margin functional mt(x; θ)
whose sign (or excess above a threshold) controls the task success indicator
and which is sufficiently regular in θ to admit perturbation analysis in later
sections.

Verifiers and semantic correctness. For each task t we assume a verifier
Vt that, given an input x and a candidate output y, returns either a Boolean
decision Vt(x, y) ∈ {0, 1} or, more generally, a score Vt(x, y) ∈ R that is
monotonically related to correctness. The verifier may be programmatic
(unit tests, theorem checker, constraint solver), symbolic (exact match up
to normalization), or learned (a classifier or reward model). We emphasize
that Vt is part of the task definition: it specifies which variations in surface
form preserve correctness, and it allows us to treat correctness as a property
of the pair (x, y) rather than as equality to a single reference string.

In particular, for open-ended generation tasks, syntactic metrics such
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as exact match or character-level overlap are often misaligned with semantic
correctness; conversely, verifier-based semantics can declare multiple distinct
strings correct when they are equivalent under a problem-specific relation.
This is essential for our analysis: if correctness is defined only by syntactic
coincidence, then the induced decision boundary can be arbitrarily brittle
with respect to small perturbations of the model, while a semantic verifier
typically induces a smoother separation in an appropriate score space (even
if the verifier itself is discrete, it often arises from an underlying scoring
procedure).

Model scoring and decoding. We assume the model induces a scoring
function ℓθ(x, y) ∈ R over candidate outputs y given input x. Concretely, ℓθ
may be the log-probability of y under an autoregressive model, a classifier
logit for a label, or a reranker score. We also fix a decoding or selection rule
ŷθ(x), typically

ŷθ(x) ∈ arg max
y∈Yt(x)

ℓθ(x, y),

where Yt(x) is the relevant candidate set (e.g. multiple-choice options, a
beam-search list, or an implicit large set). Our subsequent bounds are
phrased in terms of margins defined from ℓθ and Vt; this choice abstracts
away the particular decoding algorithm, provided the deployed procedure is
consistent with maximizing (or approximately maximizing) ℓθ over a candi-
date set.

Margin functionals. Given Vt and ℓθ, we define a margin that compares
the model’s best verified-correct candidate to its best verified-incorrect can-
didate. Let

Y+
t (x) := {y ∈ Yt(x) : Vt(x, y) = 1}, Y−

t (x) := Yt(x) \ Y+
t (x).

When Vt is Boolean and both sets are nonempty, we set

mt(x; θ) := max
y∈Y+

t (x)
ℓθ(x, y) − max

y∈Y−
t (x)

ℓθ(x, y). (1)

When Vt is real-valued, we may instead work with a calibrated score-gap
margin, for instance

mt(x; θ) := Vt

(
x, ŷθ(x)

)
− max

y∈Yt(x): y ̸=ŷθ(x)
Vt(x, y), (2)

or any task-specific variant that is (i) larger when the model is more con-
fidently correct and (ii) differentiable (or almost everywhere differentiable)
in θ through ℓθ and the selection rule used to define the competing outputs.
In either case, the fundamental property is that positive margin implies se-
mantic correctness under the induced decision rule in a suitably idealized
setting. For (1), if the model selects the overall maximizer of ℓθ over Yt(x),
then mt(x; θ) > 0 implies ŷθ(x) ∈ Y+

t (x), hence Vt(x, ŷθ(x)) = 1.
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Success probabilities and baselines. We define the task success indi-
cator under the deployed decoding rule by

Succt(x; θ) := 1
{
Vt

(
x, ŷθ(x)

)
= 1

}
, pt(θ) := Ex∼Dt

[
Succt(x; θ)

]
.

We also fix a baseline success probability pbaset , representing performance
of a trivial strategy (random guessing for multiple choice, a null heuristic,
or a verifier-implied prior). In our setting, “above-baseline” means pt(θ) ≥
pbaset + ϵ for a target slack ϵ > 0.

To connect these discrete success probabilities to margins, we introduce
an emergence threshold ηt ∈ R such that exceeding ηt (in expectation, or
with high probability over x) implies above-baseline success. In the simplest
logit-gap setting, ηt = 0 is natural; for verifier-score margins (2), ηt may
be calibrated on held-out data so that P[mt(x; θ) > ηt] tracks the desired
success regime. Our later certification statements are stated in terms of ηt
and the slack by which the unquantized model exceeds it.

Emergent versus non-emergent tasks. We partition T into an “emer-
gent” subset Tem and the remainder Tnon. This partition is not meant to
encode a claim about training dynamics; it is an operational designation of
tasks whose performance is near threshold and hence susceptible to pertur-
bations. Formally, one convenient criterion is that t ∈ Tem if (on a calibration
set) the empirical distribution of mt(x; θ) places nontrivial mass near ηt, so
that small negative shifts in margin can cause a large drop in Succt. Tasks in
Tnon may still be important, but they typically exhibit larger slack and there-
fore admit more aggressive compression for the same certified guarantee. In
the mixed-precision optimization we will aggregate task requirements across
Tem either by worst-case control (via a maximum over t) or by weighted
objectives with weights wt reflecting deployment priorities.

Calibration sets. For each task t we assume access to a finite calibration
set {x(t)j }nt

j=1 drawn from (or representative of) Dt. We use it to estimate

baseline margins µ̂t := 1
nt

∑
j mt(x

(t)
j ; θ) and, later, to estimate sensitivity

quantities derived from gradients of mt with respect to subsets of θ. The
role of calibration is purely algorithmic: it supplies the empirical quanti-
ties needed to compute a conservative degradation bound and to allocate
precision under a deployment budget. The validation of any resulting allo-
cation is performed on a separate evaluation set, but the certification logic
is expressed in terms of the margin functionals introduced above.

3 Quantization as Structured Noise

We model mixed-precision quantization as a structured perturbation act-
ing on a fixed set of disjoint groups. Concretely, we fix an index set G =
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{1, . . . , g} and a decomposition of the deployable state into groupwise blocks.
In the simplest case the state is the parameter vector θ and we write

θ = (θ1, . . . , θg), θi ∈ Rdi ,

where groups correspond to layers, submodules (e.g. attention projections,
MLPs), or finer partitions such as per-head blocks. In deployments where
activation and KV-cache quantization is relevant, we extend the state to
include additional tensors that are produced and stored during inference.
We will write this abstractly as

ζ := (θ, a, k, v),

where a denotes quantized intermediate activations (or pre-activations) and
(k, v) denotes the KV cache. The grouping G is then understood as a parti-
tion of all quantized quantities that contribute to memory/latency; we still
denote the ith block by ζi and use the same notation δζi for its quantization-
induced perturbation.

Groupwise quantization operator. For each group i and allowed bitwidth
b ∈ B we fix a quantizer Qi(·; b) mapping ζi to a low-precision representation
(uniform affine, per-channel, blockwise, etc.). A mixed-precision assignment
b = (b1, . . . , bg) induces the quantized state

Q(ζ, b) :=
(
Q1(ζ1; b1), . . . , Qg(ζg; bg)

)
,

and we define the perturbation by the identity

Q(ζ, b) = ζ + δζ, δζ := (δζ1, . . . , δζg). (3)

When only weights are quantized, ζ = θ and we write δθ accordingly. When
activations and KV cache are quantized, (3) should be read as an analysis
device: the quantized inference trace is equivalent to injecting additive per-
turbations into the corresponding tensors at the points where quantization
occurs.

Moment bounds and variance proxies. Our certification arguments
will be expressed through conservative second-moment bounds on δζi. For
each group i and bitwidth b we assume an a priori bound

E
[
δζi

]
= 0, E

∥∥δζi∥∥22 ≤ vi(b), (4)

where vi(b) is a nonincreasing function of b that summarizes the quantization
noise magnitude at that precision. The expectation in (4) is taken over the
quantization randomness (e.g. stochastic rounding, dithering), and, when
activations are quantized, may also include randomness induced by drawing
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an input x from the task distribution, since the quantized tensors depend on
x.

In many practical schemes vi(b) admits a simple calibration model. For
instance, for a uniform affine quantizer applied elementwise with step size
∆i(b) and stochastic rounding, the per-coordinate error is approximately
mean-zero with variance ∆i(b)

2/12, yielding the proxy

vi(b) ≈ di ·
∆i(b)

2

12
. (5)

More refined versions track per-channel scales and nonuniform ranges, and
can be estimated empirically by repeatedly quantizing a representative snap-
shot of ζi (for weights) or of (a, k, v) collected on a calibration set (for acti-
vations/KV), then averaging ∥δζi∥22.

We also allow deterministic quantizers (round-to-nearest) by interpreting
(4) as a worst-case-to-moment relaxation: if ∥δζi∥2 ≤ ri(b) deterministically,
then (4) holds with vi(b) := ri(b)

2 and an arbitrary choice of mean-zero
centering can be enforced by randomized tie-breaking or subtracting the
empirical mean over a calibration set. This makes the analysis conservative
but keeps the optimization problem and the resulting guarantees in a uniform
form.

Weights versus activations versus KV cache. When quantizing weights,
δθ is input-independent at deployment time, hence the only source of ran-
domness in (4) is the quantization procedure itself (or an abstracted dis-
tribution over weight perturbations capturing the effect of a deterministic
rounding rule). When quantizing activations, the perturbation is injected
into the forward computation and depends on the realized activation values;
a convenient modeling choice is to treat quantization as adding a random
perturbation with conditional mean zero given the pre-quantized activation.
For KV cache quantization, the same key/value vectors are reused across
autoregressive steps; thus δk and δv can have structured temporal reuse.
Our grouping permits this explicitly: we may take each KV group to cor-
respond to a layer-head block aggregated over a fixed window of positions,
and absorb the reuse into a larger effective di and an empirically calibrated
vi(b). The certification bound will depend on vi(b) but not on how it arose,
provided (4) holds for the chosen groups.

Independence and weak dependence. To obtain additive degrada-
tion bounds, we impose an (approximate) independence assumption across
groups. The cleanest statement is the following.

Assumption (independent group perturbations). The random vec-
tors {δζi}gi=1 are mutually independent.

9



Independence is exact if each group is quantized with independent dither-
ing or independent stochastic rounding conditioned on the unquantized val-
ues. It is not exact when quantization shares scale parameters across groups,
when activation quantization couples tensors through shared clipping statis-
tics, or when KV-cache quantization introduces repeated use of a fixed per-
turbation across time. For these cases we note that the role of independence
is to justify decompositions of aggregate second moments into sums. A stan-
dard relaxation is to allow weak correlations controlled by a correlation ma-
trix. Namely, it suffices for many steps that cross-covariances are bounded
as ∣∣E⟨δζi, δζj⟩∣∣ ≤ ρij

√
vi(bi)vj(bj) (i ̸= j), (6)

for some ρij ∈ [0, 1) estimated or upper bounded. Under (6), any subsequent
bound that would involve

∑
i

√
vi(bi) under independence typically acquires

an additional inflation factor depending on ρ, or an additive term involving∑
i̸=j ρij

√
vi(bi)vj(bj). For simplicity and because randomized quantization

is available in many deployments, we present the main results under inde-
pendence and treat weak dependence by conservative rescaling of vi(·) when
needed.

Budget coupling via costs. Finally, each bitwidth choice bi incurs a de-
ployment cost ci(bi) (memory footprint for weights and KV, bandwidth/latency
for activations), and the mixed-precision assignment must satisfy the budget
constraint

∑
i ci(bi) ≤ B. The key point for what follows is that (4) supplies

a per-group noise magnitude as a function of bi, while the budget constraint
couples the bi across groups. This sets up the subsequent sensitivity anal-
ysis, where we bound the induced change in task margins in terms of the
sensitivities of mt to each group and the corresponding noise proxies

√
vi(bi).

4 Sensitivity Measures and Certified Margin Degra-
dation

We now relate the structured perturbation δζ induced by mixed-precision
quantization to changes in task margins. Fix a task t ∈ T and recall that
mt(x; ζ) denotes a (logit- or verifier-based) margin functional evaluated at
input x. Our objective in this section is twofold: (i) to define groupwise
sensitivity quantities that can be estimated from calibration data, and (ii)
to express certified (i.e., provable under the moment bounds) degradation of
the margin in terms of these sensitivities and the variance proxies {vi(bi)}.

Per-group sensitivities. Let ζ = (ζ1, . . . , ζg) be grouped as in Section 3.
Assuming mt(x; ·) is differentiable in a neighborhood of the unquantized
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state, we define the task–group sensitivity at x by the block gradient norm

κt,i(x) :=
∥∥∇ζimt(x; ζ)

∥∥
2
.

Since we ultimately require distributional (or calibration-set) guarantees, we
aggregate over x ∼ Dt (or a finite calibration set {xj}nt

j=1) by the second
moment

st,i :=
(
Ex∼Dt κt,i(x)

2
)1/2

≈
( 1

nt

nt∑
j=1

∥∥∇ζimt(xj ; ζ)
∥∥2
2

)1/2
. (7)

The square-root-of-second-moment form is convenient because it interacts
cleanly with Cauchy–Schwarz when combined with the moment bound (4).
When only weights are quantized, ζ = θ and the gradients in (7) are or-
dinary parameter gradients of the margin. When activations/KV-cache are
included in ζ, the gradients are Jacobians with respect to the stored tensors;
these can be obtained by backpropagating through the inference trace on
the calibration inputs, treating the quantization injection points as additive
perturbations as in (3).

Expected degradation: first-order bound with remainder. Write
δζ = (δζ1, . . . , δζg) for the quantization-induced perturbation. For fixed x,
a Taylor expansion yields

mt(x; ζ + δζ) = mt(x; ζ) +

g∑
i=1

〈
∇ζimt(x; ζ), δζi

〉
+ rt(x; δζ), (8)

where rt(x; δζ) is a second-order remainder. Taking expectation over the
quantization randomness and using E[δζi] = 0 from (4), the linear term
vanishes in expectation at each x. However, to obtain a usable lower bound
that depends only on the second moments, we bound the magnitude of the
linear term and keep it as a conservative penalty (this is the step that remains
valid even if mean-zero holds only approximately after calibration centering).
Conditioning on x and applying Cauchy–Schwarz gives

E
[∣∣⟨∇ζimt(x; ζ), δζi⟩

∣∣ ∣∣∣x] ≤
∥∥∇ζimt(x; ζ)

∥∥
2
·
(
E
∥∥δζi∥∥22)1/2

≤ κt,i(x)
√

vi(bi).

Averaging over x and using Jensen’s inequality in the form Eκt,i(x) ≤
(Eκt,i(x)

2)1/2 = st,i, we obtain the first-order degradation penalty
∑

i st,i
√
vi(bi).

It remains to control the remainder rt. One convenient sufficient con-
dition is blockwise Hessian smoothness: suppose that for each task t and
almost every x the Hessian satisfies ∥∇2

ζmt(x; ζ
′)∥op ≤ Ht for all ζ ′ in a

neighborhood of ζ. Then the standard Taylor remainder bound implies

|rt(x; δζ)| ≤ Ht

2
∥δζ∥22 ≤ Ht

2

g∑
i=1

∥δζi∥22,
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and therefore, using (4),

Ex,δζ

[
mt(x; ζ + δζ)

]
≥ Ex

[
mt(x; ζ)

]
−

g∑
i=1

st,i
√
vi(bi)−

Ht

2

g∑
i=1

vi(bi). (9)

We will denote the final term by Rt(b) := Ht
2

∑
i vi(bi) (or any other valid

upper bound derived from a task-specific smoothness estimate). In many
regimes of interest the first-order term dominates because vi(bi) is small at
moderate precision and because the margin gradients concentrate on a small
subset of groups.

High-probability bounds and success certification. Expected mar-
gins suffice for some objectives, but emergent capability preservation is often
formulated as a lower bound on the probability that the post-quantization
margin remains positive. A general-purpose route is to bound the variance
of the random margin perturbation. Linearizing (8) and using independence
across groups, we obtain the proxy

Var
(
mt(x; ζ + δζ)

∣∣x) ≲
g∑

i=1

∥∥∇ζimt(x; ζ)
∥∥2
2
vi(bi), (10)

where the ≲ hides higher-order contributions controlled by the same smooth-
ness conditions used for Rt(b). Averaging (10) over x yields an unconditional
variance proxy

σ2
t (b) :=

g∑
i=1

s2t,i vi(bi),

using the definition (7). Writing µt(b) for the certified mean lower bound
from (9), Cantelli’s inequality gives

P
[
mt(x; ζ+δζ) ≤ 0

]
≤ σ2

t (b)

σ2
t (b) + µt(b)2

, µt(b) := Ex[mt(x; ζ)]−
∑
i

st,i
√
vi(bi)−Rt(b).

(11)
Thus any allocation b that ensures µt(b) is appreciably positive yields a quan-
titative lower bound on P[mt > 0], and hence (by the task construction) on
semantic success probability. When a Gaussian approximation is empiri-
cally justified for the aggregated noise, we may replace (11) by the sharper
surrogate

P
[
mt(x; ζ + δζ) > 0

]
≈ Φ

(µt(b)

σt(b)

)
,

which directly exhibits the signal-to-noise ratio µt(b)/σt(b) as the controlling
quantity.
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Task aggregation. Since the optimization in the next section will allocate
bits jointly across tasks, we also define an aggregated per-group score. For
a specified emergent subset Tem ⊆ T and weights {wt}, we will use either

si := max
t∈Tem

wtst,i, or si :=
∑
t∈Tem

wtst,i,

depending on whether we pursue worst-task guarantees or average-case ob-
jectives. The role of si is purely to convert the family of bounds (9) into a
single benefit function per group that is compatible with a budgeted selection
problem.

5 Budgeted Mixed-Precision Allocation

Having expressed certified margin degradation in terms of the sensitivities
{st,i} and the noise proxies {vi(b)}, we now formalize the mixed-precision
allocation problem. Throughout, we fix a finite admissible bitwidth set B
(e.g. {2, 3, 4, 8, 16}), a grouping G = {1, . . . , g}, and per-group costs ci(b)
satisfying ci(b

′) ≥ ci(b) when b′ ≥ b. Our decision variable is the vector
b = (b1, . . . , bg) ∈ Bg, and feasibility is the budget constraint

g∑
i=1

ci(bi) ≤ B. (12)

Bound-induced objective. For each task t ∈ Tem we write the certified
expected post-quantization margin lower bound in the form

µt(b) := µ̂t −∆t(b), ∆t(b) :=

g∑
i=1

st,i
√
vi(bi) +Rt(b), (13)

where µ̂t denotes an empirical estimate of Ex[mt(x; ζ)] on calibration data,
and Rt(b) is any valid remainder upper bound (for instance, a smoothness-
based term scaling with

∑
i vi(bi)). The most direct certified objective is to

maximize the worst-task lower bound:

max
b∈Bg

min
t∈Tem

µt(b) s.t.
g∑

i=1

ci(bi) ≤ B. (14)

When one prefers an average-case objective, we may maximize
∑

twtµt(b), or
(using the variance proxy) a success surrogate such as

∑
twtΦ(µt(b)/σt(b)).

In either case, the optimization is discrete and structured by groups.
A useful simplification is to choose an a priori low baseline precision

blow ∈ B and view all other bitwidths as upgrades from this baseline. Let
blow := (blow, . . . , blow). Since

√
vi(b) is nonincreasing in b, allocating higher
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precision reduces the penalty term in (13). We therefore define a per-group
benefit for assigning bitwidth b to group i by

beni(b) := si

(√
vi(blow)−

√
vi(b)

)
, (15)

where si is an aggregate sensitivity score across tasks (e.g. maxtwtst,i for
worst-task control, or

∑
twtst,i for weighted averaging). Up to task-specific

constants (absorbed into µ̂t) and remainder handling, maximizing (14) can
be approximated by maximizing the total benefit

∑
i beni(bi) under the same

budget.

Knapsack structure and multi-level discretization. In the special
case B = {blow, bhigh}, the decision reduces to selecting a subset S ⊆ G of
groups to upgrade. Writing bi = bhigh iff i ∈ S, we obtain the 0–1 knapsack
form

max
S⊆G

∑
i∈S

∆i s.t.
∑
i∈S

ci ≤ B, ∆i := si

(√
vi(blow)−

√
vi(bhigh)

)
,

(16)
with item values ∆i and costs ci := ci(bhigh)− ci(blow). Thus, even under a
linearized bound, selecting the best upgrade set is NP-hard (cf. Theorem 3),
and exact optimization is intractable in general at the scales of interest.

For multiple precision levels, we obtain a multi-choice knapsack: each
group i must pick one level b ∈ B, yielding value beni(b) and cost ci(b). A
standard reduction expands each group into |B|−1 incremental upgrades with
appropriate costs and marginal values; however, this introduces precedence
constraints (one cannot take a higher upgrade without taking intermediate
ones), so we will instead treat the multi-level case directly in the algorithmic
section.

Submodularity in multi-task certification. When we optimize a bound
that couples tasks, the effective objective may exhibit diminishing returns.
To make this explicit, we consider the set view under two levels and define,
for each task t, a task-specific retained-margin surrogate

Ft(S) := µ̂t −
∑

i∈G\S

st,i
√
vi(blow)−

∑
i∈S

st,i

√
vi(bhigh)−Rt(S), (17)

where Rt(S) denotes the remainder bound evaluated at the corresponding
bit assignment. If we seek to maximize the number (or weighted fraction) of
tasks whose certified margin exceeds a threshold ηt, we are led to objectives
of the form

F (S) :=
∑
t∈Tem

wt 1{Ft(S) ≥ ηt} , (18)
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or smooth relaxations thereof. Under natural overlap assumptions (the same
upgraded groups contribute to multiple tasks, and additional upgrades yield
diminishing marginal gains once a task is already comfortably above thresh-
old), F is well-modeled as monotone submodular, rendering greedy selection
provably near-optimal (cf. Theorem 4). We emphasize that submodularity
is not assumed in the degradation bound itself; rather, it is a property of the
task-aggregated certification objective one chooses to optimize.

Critical subspace. Finally, we formalize the notion of a critical subspace
as the subset of groups assigned higher-than-baseline precision under an
allocation b:

S(b) := { i ∈ G : bi > blow }. (19)

Operationally, S(b) identifies the small collection of parameter blocks (or
activation/KV blocks) that dominate certified margin degradation through
large sensitivities st,i and/or unfavorable quantization noise vi(b). The aim
of the optimization is therefore twofold: to satisfy the deployment budget
(12) while (i) keeping S(b) small and interpretable, and (ii) guaranteeing
that for every t ∈ Tem the certified post-quantization margin µt(b) remains
above the task emergence threshold ηt (or yields a quantitative success lower
bound via the probabilistic inequalities of the previous section). In the next
section we give approximation algorithms that compute such an allocation
efficiently at scale.

6 Theoretical Results

We now record the guarantees that justify the mixed-precision allocation pro-
cedure implied by the bound and the subsequent approximation algorithms.
Conceptually, the analysis splits into three components: (i) a certification in-
equality translating per-group perturbation magnitudes into a margin lower
bound (Theorems 1–2), (ii) an optimization layer describing what can and
cannot be computed under a budget (Theorems 3–5), and (iii) a statistical
layer quantifying how much information is required to estimate the sensitiv-
ities that drive the certificate (Theorem 6).

Certified correctness from sensitivity-weighted noise. Fix a task
t ∈ Tem and a feasible bit assignment b ∈ Bg. Under the independent, zero-
mean group noise model, Theorem 1 yields an expected margin guarantee of
the form

Ex,δθ[mt(x; θ + δθ)] ≥ Ex[mt(x; θ)] −
g∑

i=1

st,i
√
vi(bi) − Rt(b). (20)

Thus any allocation algorithm that outputs b immediately induces a task-
wise certified lower bound µt(b) = µ̂t − ∆t(b) as in (13). Theorem 2 then
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formalizes the implication for emergence preservation: whenever µt(b) ≥
ηt, the quantized model lies in the above-baseline regime for task t (either
in expectation, or with an explicit success lower bound after applying a
probabilistic inequality to the margin random variable).

A point worth making explicit is that the certification statement is algorithm-
agnostic: it does not require the allocation to be optimal, only feasible, and
it only depends on (st,i, vi(·), Rt). In particular, if an approximation algo-
rithm returns an allocation b that is merely near-optimal with respect to a
surrogate objective, the certification (20) remains valid for that returned b.

Robustness to sensitivity estimation error. In practice, st,i is esti-
mated from a finite calibration set via gradient-based statistics. Let ŝt,i be
an estimator satisfying a uniform deviation bound

Pr
[
∀t, i :

∣∣ŝt,i − st,i
∣∣ ≤ α

]
≥ 1− δ. (21)

Conditioning on the event in (21), we obtain a conservative certified degra-
dation bound by replacing st,i with ŝt,i + α:

∆t(b) ≤
g∑

i=1

(ŝt,i + α)
√

vi(bi) +Rt(b). (22)

Hence, with probability at least 1−δ, any computed allocation b that satisfies
µ̂t −

∑
i(ŝt,i + α)

√
vi(bi)−Rt(b) ≥ ηt also satisfies the corresponding claim

with the true sensitivities. This is the standard “plug-in certificate with
slack” principle: estimation error affects only the tightness of the certificate,
not its logical validity.

Approximation guarantees under submodular task aggregation.
When the chosen optimization objective over upgrade sets S is a monotone
submodular function F (S) under a knapsack constraint (as in Theorem 4),
we may apply the classical greedy paradigm for budgeted submodular max-
imization. Concretely, writing c(S) =

∑
i∈S ci for incremental costs and

assuming F (∅) = 0, the density-greedy rule that iteratively adds the group
with maximal marginal gain-per-cost yields a constant-factor approximation;
with standard knapsack-feasibility modifications (e.g. partial enumeration of
a constant number of high-value items combined with greedy completion),
one obtains the familiar

F (Sgreedy) ≥
(
1− 1

e

)
F (S⋆) (23)

up to the customary constant-factor adjustments specific to knapsack con-
straints (Theorem 4). The relevance here is that many multi-task certi-
fication objectives saturate once tasks clear their thresholds, creating the
diminishing-returns structure that submodularity captures. Under such ob-
jectives, greedy selection is not merely a heuristic but a provably near-
optimal mechanism for identifying a small critical subset of groups.
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Pseudo-polynomial optimality and an FPTAS in the linearized two-
level case. In the two-precision specialization (16), the allocation reduces
exactly to 0–1 knapsack with values ∆i and costs ci. Consequently, dynamic
programming solves the problem optimally in O(gB) time (and O(B) space
with standard rolling-array optimization) when B is moderate and integral.
When B is large, Theorem 5 supplies an FPTAS: after scaling values to a
bounded range, DP on scaled values returns S such that∑

i∈S
∆i ≥ (1− ε)

∑
i∈S⋆

∆i, (24)

with polynomial runtime in g and 1/ε. This provides an explicit sense in
which the “critical subspace” can be computed near-optimally under a sim-
plified (but often informative) linearized bound model.

Hardness barriers. Theorem 3 shows that even the two-level linearized
allocation problem is NP-hard by direct reduction from 0–1 knapsack. This
hardness is not an artifact of our certificate; rather, it reflects the intrin-
sic combinatorics of distributing a limited precision budget across heteroge-
neous groups. Moreover, when the multi-task objective is posed as maxi-
mizing the number of tasks whose certified margin exceeds thresholds (cf.
(18)), the resulting problem subsumes budgeted maximum coverage in nat-
ural constructions, suggesting that exact optimization is intractable even
when the per-group benefits are easily computed. Accordingly, our algorith-
mic posture—greedy under submodularity, and DP/FPTAS in a restricted
linearized regime—is essentially the strongest one can expect in polynomial
time without additional structural assumptions.

Information-theoretic lower bounds for identifying the critical sub-
space. Even if optimization were free, the selection requires sufficiently
accurate sensitivity estimates. Theorem 6 gives a worst-case lower bound:
to estimate a given st,i to additive error α with confidence 1− δ, one needs
Ω(σ2 log(1/δ)/α2) samples, where σ2 controls the variance of the underlying
gradient-norm statistic. This directly implies a lower bound on the informa-
tion required to choose S(b) reliably: if two groups i and j have nearly equal
benefit-to-cost ratios under the bound, then distinguishing which one should
be upgraded (to achieve a target certificate) requires resolving differences on
the order of that gap, forcing α to be comparably small and the calibration
burden correspondingly large. In particular, in near-threshold regimes—
precisely those relevant for emergence preservation—the sample complexity
necessarily increases, regardless of the subsequent knapsack solver.

Finally, these lower bounds clarify the role of practical estimation tricks
used at scale (mini-batching, gradient subsampling, or Hutchinson-type es-
timators): such techniques primarily trade compute for variance. They can
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reduce wall-clock time, but they cannot circumvent the α−2 dependence in
the information requirement, and thus they cannot eliminate the need for
sufficiently rich calibration evidence when the critical subspace is only weakly
identifiable.

7 7. Theoretical Results: correctness and approx-
imation guarantees; NP-hardness; lower bounds
on information required to select the critical sub-
space.

To make the optimization layer completely explicit, we view a mixed-precision
policy as a vector b = (b1, . . . , bg) ∈ Bg, or equivalently as a set of upgrade
decisions relative to a fixed baseline precision blow. Writing ∆t(b) for the
certificate-implied degradation term in (20), the most direct certified objec-
tive is

max
b∈Bg

min
t∈Tem

(
µ̂t −∆t(b)

)
s.t.

g∑
i=1

ci(bi) ≤ B, (25)

or the thresholded feasibility variant µ̂t −∆t(b) ≥ ηt for all t ∈ Tem. Even
under the first-order bound (dropping Rt), (25) is a combinatorial budgeted
allocation, because each coordinate bi is discrete and the costs need not be
uniform.

A standard simplification is to introduce per-group benefits as reductions
in the bound relative to blow. Fixing an aggregation of sensitivities si (e.g.
si = maxt∈Tem wtst,i), define the per-group retained-margin contribution at
precision b by

gaini(b) := si

(√
vi(blow)−

√
vi(b)

)
, gaini(blow) = 0, (26)

and let costi(b) := ci(b) − ci(blow). Maximizing
∑

i gaini(bi) subject to∑
i costi(bi) ≤ B′ := B −

∑
i ci(blow) yields a multiple-choice knapsack in-

stance (each group chooses exactly one level). Theorem 3 corresponds to
the two-choice restriction, in which each group either stays at blow or up-
grades to bhigh, with value ∆i = gaini(bhigh) and weight costi(bhigh); the
NP-hardness then follows by a direct encoding of items as groups. The same
reduction also shows hardness for multi-level precision: by creating dummy
bitwidth options whose (gain, cost) pairs replicate an arbitrary set of items,
one obtains NP-hardness of the general discrete allocation even when vi(·)
is monotone and ci(·) is increasing.

Given this hardness barrier, the correctness statement we rely on is
deliberately modular: any feasible output b implies (20), hence any post-
processing step (greedy, DP, or heuristic) is automatically certified once its
output is plugged into ∆t(b). Thus the only algorithm-dependent claims
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concern proximity of the chosen allocation to the optimum of a chosen sur-
rogate objective (and, separately, the statistical reliability of estimated sen-
sitivities).

For approximation, two structural regimes are relevant. First, in the
linearized two-level case, the objective

∑
i∈S ∆i under a budget is exactly

0–1 knapsack, admitting (i) pseudo-polynomial dynamic programming and
(ii) the FPTAS of Theorem 5. In this regime, the approximation guarantee
is particularly interpretable: if Sε is the FPTAS solution, then the resulting
certified bound under the linearized model is within a factor (1 − ε) of the
best achievable improvement over baseline, and consequently the certified
retained margin µ̂t −∆t(b) is correspondingly close to the optimum among
two-level allocations.

Second, in multi-task settings it is often more faithful to optimize a sat-
urated objective that reflects emergence thresholds. For instance, one may
define

F (S) :=
∑
t∈Tem

wt min
{(

µ̂t − ηt
)
−∆t(S), Mt

}
+
, (27)

where ∆t(S) denotes the degradation bound induced by upgrading the set
S (with all other groups at blow), and Mt caps marginal value once a task
is safely above threshold. Under the common case that ∆t(S) decomposes
as a sum of per-group contributions and the only nonlinearity is the outer
truncation in (27), F is monotone and submodular: each additional upgrade
yields diminishing returns because tasks that already exceed their capped
slack stop benefiting. In that case, Theorem 4 applies and a density-greedy
procedure gives a constant-factor approximation to the best upgrade set
under the knapsack constraint. Importantly, the certificate is compatible
with this saturation: when the greedy algorithm increases F (S), it is directly
increasing a conservative proxy for the number (or weighted measure) of tasks
that remain above threshold under the bound.

We finally connect the statistical layer (Theorem 6) to the identifiability
of the critical subspace. Suppose we are in a two-level regime for clarity. Let
ρi := ∆i/ci denote the (unknown) value-to-cost density. Any algorithm that
attempts to select an (approximately) optimal set must, implicitly, separate
groups with near-tied densities, because swapping one such group for another
can change feasibility and objective value while leaving the certificate near
the threshold. More formally, if there exist two groups i ̸= j with |ρi−ρj | ≤
γ, then any procedure that outputs, with probability at least 1 − δ, a set
whose total value is within o(γ) of the optimum must estimate ρi and ρj
to accuracy o(γ). Since ∆i depends linearly on si through (26), Theorem 6
implies a calibration lower bound of order Ω(log(1/δ)/γ2) samples (up to
problem-dependent variance factors) to resolve the ordering. This is the
same “gap” phenomenon familiar from best-arm identification: the closer the
instance is to having multiple nearly optimal critical subspaces, the larger
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the unavoidable sample requirement for reliably selecting one.
Consequently, the difficulty of selecting S is not purely computational.

Even if one could solve the knapsack problem exactly, near-threshold deploy-
ment (where µ̂t − ηt is small for some t) forces α in (21) to be small enough
that the plug-in slack in (22) does not dominate the margin, and this in
turn forces calibration sets large enough to overcome the α−2 information
barrier. This clarifies why, in practice, we treat the critical subspace as an
empirically stable object only when it is separated by a nontrivial “benefit
gap” from competing allocations, and why the certificate is best interpreted
as a conservative sufficient condition rather than a tight characterization in
regimes of weak identifiability.

8 Experimental Protocol

We describe an experimental protocol intended to (i) instantiate the cali-
bration objects appearing in the certificate (margins, sensitivities, and noise
moments), (ii) compare the resulting certified degradation to observed post-
quantization regressions, and (iii) evaluate whether mixed-precision policies
that preserve emergent capabilities also preserve safety-relevant behaviors.
Throughout, we treat the certificate as a sufficient condition and report both
certified and empirical outcomes.

Models and grouping. We consider a pretrained transformer fθ and
form groups G = {1, . . . , g} by layerwise blocks, with a default partition
into (a) embeddings, (b) attention projection matrices (optionally split into
Q,K, V,O), (c) MLP matrices, (d) layer norms and biases, and (e) output
head. When activation or KV-cache quantization is studied, we introduce ad-
ditional groups for per-layer activations and per-layer KV tensors. Costs ci(b)
are taken as realized deployment memory (for weight-only) or peak mem-
ory/latency proxies (for activation/KV), measured using the target runtime.
We impose hardware constraints when applicable (e.g. embeddings ≥ 8-bit).

Task suite. We instantiate Tem using a mixture of emergent reasoning and
arithmetic tasks, and we include a broad general-knowledge slice to test dis-
tributional robustness. Concretely, we recommend: (i) multi-step arithmetic
(GSM-style word problems) and synthetic long addition/multiplication with
controlled length; (ii) symbolic and logical reasoning (e.g. compositional de-
duction, chain-of-thought-free variants with verifier scoring); (iii) selected
MMLU slices emphasizing reasoning (mathematics, formal logic, abstract
algebra) alongside non-reasoning controls (history, sociology) to detect un-
even regressions. For each task t, we define a margin functional mt(x; θ) that
is compatible with the evaluation: for multiple-choice tasks, we use the logit
gap between the correct option and the best incorrect option; for free-form
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tasks with a verifier, we use a verifier-score gap between a correct and an
incorrect completion or a calibrated score minus a threshold. The threshold
ηt is set by a baseline criterion (random-guess or majority-class) plus a fixed
slack, or by calibrating the margin-to-success link on the unquantized model.

Calibration sets and data hygiene. For each t we form a calibration set
{xj}nt

j=1 disjoint from the test set. We recommend nt in the range 256–2048,
with larger nt for tasks known to be near emergence thresholds. All sensi-
tivity and noise-moment estimates are computed exclusively on calibration
data; evaluation uses held-out test splits. We repeat the entire pipeline over
several random seeds for subsampling and quantization stochasticity (when
present).

Estimating sensitivities. We estimate st,i =
√
Ex∥∇θimt(x; θ)∥22 by Monte

Carlo averaging over the calibration set. To reduce cost, we optionally use
(a) microbatching across tasks, (b) per-layer gradient checkpointing, and (c)
randomized estimators (e.g. Hutchinson-style sketches) for large groups. We
report both point estimates and confidence intervals obtained by empirical
Bernstein or bootstrap, which are then propagated into a conservative sen-
sitivity st,i used by the certificate. When aggregating across tasks we use
si = maxt∈Tem wtst,i with weights wt either uniform or chosen to emphasize
tasks near threshold.

Calibrating quantization noise moments. For each group i and bitwidth
b ∈ B, we estimate vi(b) by directly quantizing the group in isolation (keep-
ing the rest at a high-precision reference), computing δθi, and measuring
∥δθi∥22 under the chosen quantizer (uniform, per-channel, or learned scale).
We take vi(b) as an upper confidence bound (e.g. mean plus two standard
errors) over several calibration batches and, if applicable, over several quanti-
zation parameter initializations. This step makes the independence and zero-
mean assumptions operational: we enforce mean-zero by centering stochastic
rounding noise or by subtracting the empirical mean perturbation when a
deterministic quantizer is used.

Policies and baselines. We evaluate: (i) uniform b-bit baselines for b ∈
{2, 4, 8} (and 16-bit reference), (ii) layerwise heuristics (attention at higher
precision than MLP, embeddings high), and (iii) our certificate-driven mixed-
precision policy obtained by optimizing the surrogate objective induced by
gaini(b) under the budget. In the two-level setting we solve the induced
knapsack either exactly (pseudo-polynomial DP when feasible) or via an
FPTAS; for multi-level precision we use a multiple-choice knapsack solver or
a greedy density heuristic, and we always record the achieved budget and
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the resulting critical set S = {i : bi > blow}. Budgets are reported as average
bits per parameter and as realized memory/latency.

Evaluating certificate tightness. For each task t we compute: (a) the
certified degradation ∆t(b) and the certified retained margin µ̂t − ∆t(b);
(b) the observed margin drop on test data, ∆obs

t := µ̂t − µ̂Q
t , where µ̂Q

t

is the empirical mean margin under the quantized model; and (c) the ob-
served success drop. We summarize tightness by the ratio ∆obs

t /∆t(b) and
by the fraction of instances where the sign of the margin is preserved.
We also measure correlation between per-group predicted importance (e.g.
ρi = gaini(bhigh)/costi(bhigh)) and empirical ablations that upgrade a single
group at a time from blow.

Safety-behavior retention. We evaluate safety-relevant behaviors under
the same quantized policies, treating them as additional tasks with margins
defined by a safety verifier. We recommend two classes of tests: (i) harm-
lessness and refusal compliance under adversarial prompts (jailbreak-style
and benign but sensitive topics), and (ii) toxicity and bias metrics on stan-
dard prompt sets. For each, we define a margin as the difference between
a refusal/compliance score and a threshold, or the negative of a toxicity
score relative to an acceptable bound. We report whether mixed precision
increases unsafe completion rates, and whether the certificate (computed on
a safety calibration set) predicts when safety margins are at risk. To avoid
conflating calibration with evaluation, we maintain disjoint safety calibration
and safety test sets, and we report worst-case degradation over the safety
tasks under the same budget that targets Tem.

Reporting. We report: (i) the chosen bitwidth vector b and the size and
composition of S; (ii) per-task accuracy and margin statistics pre/post quan-
tization; (iii) certified versus observed degradation; and (iv) safety metrics.
All results are stratified by budget and by whether activation/KV quanti-
zation is enabled, and we include ablations that vary group granularity to
assess how sensitive the learned critical subspace is to the partitioning choice.

9 Discussion: Assumption Failures, Extensions, and
Deploy-Time Policy

Our certificate is deliberately modular: it isolates (i) a perturbation model
for quantization, (ii) a sensitivity object derived from gradients of margins,
and (iii) a budgeted optimization of bitwidths. This modularity makes clear
where the argument may become loose or invalid, and it suggests several
extensions that preserve the overall structure while altering the technical
inputs.
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Correlated or biased quantization noise. Theorem 1 uses two struc-
tural assumptions that may fail in practice: independence across groups
and mean-zero perturbations. Independence is often violated when a shared
quantization scale couples multiple tensors, when per-layer clipping is tuned
jointly, or when activation quantization introduces correlated errors along
the computation graph. In this case, the first-order Taylor term no longer
decouples by groups in expectation, and one obtains cross-covariance contri-
butions. Concretely, letting gt,i(x) := ∇θimt(x; θ), the leading term becomes

E⟨∇θmt(x; θ), δθ⟩ =
∑
i

E⟨gt,i(x), δθi⟩+
∑
i̸=j

E⟨gt,i(x), δθj⟩,

and a conservative bound can be written in terms of a covariance operator
for δθ. One simple repair is to aggregate groups into larger blocks so that the
remaining inter-block correlations are reduced, at the cost of a coarser allo-
cation. A more quantitative repair is to replace the diagonal moment bounds
vi(bi) by a block covariance bound: for a partition into blocks P1, . . . , Pk,
assume E∥δθPℓ

∥22 ≤ vPℓ
(bPℓ

) and proceed as before. This preserves the knap-
sack structure but may reduce granularity.

Mean-zero can also fail for deterministic round-to-nearest quantizers, es-
pecially when scales are estimated from a finite calibration sample and then
held fixed. In that setting, the perturbation decomposes as δθi = µi + ξi
with E[ξi] = 0 and µi ̸= 0. The certificate then acquires an additional de-
terministic bias term

∑
i ∥gt,i∥2∥µi∥2, which can dominate at low bitwidth.

Operationally, we can estimate µi empirically and either (a) subtract it by re-
centering (when stochastic rounding is available), or (b) include it explicitly
as a separate penalty in ∆t(b). The latter typically changes the optimization
only through modified per-group “values” and thus remains compatible with
our selection algorithms.

Second-order effects and near-threshold tasks. Even when first-order
assumptions hold, the remainder Rt can be non-negligible in regimes where
quantization is aggressive (e.g. b = 2) or where mt is highly curved in relevant
directions. This is most salient for tasks near emergence thresholds ηt, where
the relevant slack is small. A practical implication is that the certificate
should be treated as a sufficient condition with an explicit “margin buffer”:
we should demand µ̂t −∆t(b) ≥ ηt + τ for a tunable τ > 0 chosen to absorb
unmodeled curvature. Methodologically, one can tighten Rt by estimating
a local smoothness constant along the quantization directions (e.g. by finite
differences on δθ restricted to candidate groups), but we emphasize that such
tightening is model- and quantizer-dependent.

Post-quantization fine-tuning and the meaning of a certificate. If
we fine-tune after quantization, we are no longer analyzing fθ+δθ but rather
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fθ+δθ+∆θft , where ∆θft depends on optimization dynamics and data. Two
interpretations are then possible. The first is conservative: we certify the
initial quantized model and treat fine-tuning as an empirical improvement
step that may (but need not) recover margins beyond the certified lower
bound. The second is analytic: we incorporate fine-tuning into the pertur-
bation model by bounding ∥∆θft,i∥2 as a function of learning rate, gradient
norms, and step count, and then add

∑
i st,i∥∆θft,i∥2 to ∆t(b). This yields

a joint certificate for “quantize-then-train” pipelines, but it is only meaning-
ful if we can upper bound the optimization trajectory in a way that is not
vacuous. In practice, we view fine-tuning as a mechanism for reallocating
error: it can reduce effective sensitivity in some groups while increasing it in
others, suggesting an alternating scheme (estimate st,i, choose b, fine-tune
briefly, re-estimate) with the understanding that each iteration certifies only
its current iterate.

LoRA-style recovery as a certified extension. A more structured re-
covery mechanism is to add a small set of trainable high-precision parameters
(e.g. LoRA adapters) while quantizing the base weights aggressively. In our
framework this corresponds to augmenting the parameter vector by addi-
tional groups θAk with bitwidth fixed at 16 (or 8) and cost accounted for in
the budget. The certificate then applies to the composite parameterization,
and the optimizer may rationally spend a small fraction of B on adapters if
they yield large effective margin gains. The technical point is that adapters
can change both µ̂t (baseline margins of the adapted model) and the sensitiv-
ities st,i with respect to quantized groups, potentially shrinking the needed
critical set S. This suggests a deploy-time design principle: when the bud-
get is extremely tight, it may be preferable to maintain a tiny high-precision
subspace that is explicitly trained to be robust to quantization, rather than
attempting to protect many original groups by raising their bitwidth.

Activation and KV-cache quantization. Weight-only quantization treats
δθ as the sole perturbation. Activation and KV quantization introduce state
perturbations that depend on inputs and on intermediate representations.
One can still reuse the margin-sensitivity template by defining groups over
activation/KV tensors and replacing ∇θimt with the appropriate Jacobian
of mt with respect to the quantized state. Formally, for an activation group
ai with perturbation δai satisfying E∥δai∥22 ≤ vi(bi), we obtain a bound of
the same shape with st,i :=

√
E∥∇aimt∥22. The principal complication is

that independence and stationarity are less plausible for activations, so one
should expect to fall back to blockwise grouping or empirically calibrated
worst-case variance bounds.
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Implications for deploy-time mixed-precision policy. The preced-
ing points imply that mixed precision should be treated as a policy rather
than a one-shot decision. In deployment, we recommend enforcing three
guardrails derived from the certificate: (i) maintain explicit slack in certi-
fied margins on emergent and safety tasks, rather than operating exactly at
threshold; (ii) prefer allocations that are stable under plausible model drift
(e.g. minor prompt distribution shift), which can be operationalized by using
si = maxt∈T st,i over a broader task set than the one optimized for; and (iii)
reserve a small “precision contingency” (unused budget) that can be spent to
raise bitwidth for a small number of groups if monitoring indicates margin
erosion. In this sense, the critical subspace S is not merely descriptive; it
is an actionable handle for safe adaptation when assumptions or operating
conditions change.

Limitations and open problems: tightness, mechanisms, and adap-
tation. Our guarantees are only as useful as they are tight. The degrada-
tion terms in Theorem 1 (and hence the slack conditions in Theorem 2) are
driven by three upper bounds: (i) the second-moment proxy vi(b) for quan-
tization error, (ii) the Cauchy–Schwarz step that produces

∑
i st,i

√
vi(bi),

and (iii) the treatment of curvature through the remainder Rt. Each of these
steps can introduce orders-of-magnitude looseness, particularly when the ef-
fective quantization noise is highly anisotropic within a group. In practice,
quantization error often concentrates on a low-dimensional subspace (e.g. a
few principal directions induced by scale/clipping), whereas our bound treats
it as if it could align adversarially with ∇θimt. A natural technical goal is
therefore to replace the scalar variance proxy by a covariance-sensitive quan-
tity. One concrete direction is to model E[δθiδθ⊤i ] ⪯ Σi(bi) and to bound
the first-order term by

E⟨∇θimt, δθi⟩ ≥ −
√
E
[
∇θim

⊤
t Σi(bi)∇θimt

]
,

which interpolates between isotropic and highly structured noise. The open
difficulty is that estimating Σi(b) reliably is expensive and quantizer-dependent,
yet without it we cannot expect certificates to predict the empirically ob-
served “sharp transition” behavior of extreme low-bit quantization.

A related limitation is that our use of groupwise sensitivities implicitly
assumes that the natural grouping reflects the geometry of the margin. When
groups are chosen by layer or tensor type, st,i conflates directions that have
very different functional roles. This can lead to overly conservative allo-
cations in which we spend budget to protect parameters that are large in
norm but functionally redundant for the tasks of interest. Conversely, if we
choose groups that are too fine (e.g. per-channel or per-head), the optimiza-
tion improves but sensitivity estimation becomes sample-inefficient, and the
noise model becomes harder to justify. This exposes a basic open problem:
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determine, from limited calibration data, a grouping that is simultaneously
(a) stable under quantization backends, (b) aligned with the local curva-
ture of margins, and (c) tractable for knapsack-style selection. Even partial
progress—for instance, grouping by low-rank directions discovered via Hes-
sian sketches or Fisher information—would directly strengthen the certificate
without changing its overall logic.

A second set of open questions concerns mechanistic alignment: does
the critical set S correspond to identifiable computational circuits? Our
method outputs a subset of groups whose precision is predicted to matter
for certified margins, but it does not explain why those groups matter, nor
whether they constitute a coherent mechanism across tasks. We view this as
an opportunity rather than a defect. If emergent capabilities are mediated
by sparse circuits (e.g. specific attention heads, MLP neurons, or composi-
tionally interacting modules), then a tight mixed-precision policy ought to
recover those circuits as the “high-precision” subspace, and should do so ro-
bustly across prompt paraphrases and task variants. Formally, this suggests
studying whether the sensitivity map i 7→ st,i concentrates on groups that
coincide with independently discovered mechanistic features (via activation
patching, path attribution, or linear probes). An affirmative result would
provide evidence that our bound is not merely a worst-case inequality but is
tracking real causal pathways. A negative result would indicate either that
the circuit picture is incomplete at the scale relevant for quantization, or
that our sensitivity surrogate is missing key second-order interactions (e.g.
products of perturbations across layers). Making this precise appears to re-
quire a joint theory of (a) margin geometry and (b) circuit identifiability
under weight perturbations, which is currently unavailable.

Third, distribution shift creates a fundamental tension for deploy-time
quantization. Our optimization uses calibration distributions {Dt} both to
estimate baseline margins and to define st,i; under shift, the relevant gra-
dients and margins can change, so the chosen S may cease to be critical in
the intended sense. This motivates adaptive quantization policies: instead
of a single b ∈ Bg, we may wish to output a mapping π from a lightweight
prompt statistic (or a task classifier) to a bitwidth assignment π(z). The
challenge is that the budget constraint is now either an average constraint
(expected cost under the prompt stream) or a worst-case constraint (cost
must never exceed B), and the certificate must account for selection bias:
if we raise precision on “hard” prompts, we are implicitly conditioning on
prompts with smaller margins, where the Taylor approximation is least sta-
ble. A principled approach would couple a shift-robust sensitivity definition,
e.g. si = supt∈T

√
Ex∼Dt∥∇θimt(x; θ)∥22, with an online monitor that esti-

mates margin proxies and triggers contingency precision increases. Provid-
ing a non-vacuous guarantee for such a closed-loop policy remains open: one
needs to control both estimation error (how well we detect margin erosion)
and actuation error (how quickly increasing bi restores margins).
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Finally, even in the static setting, we do not yet have a characterization
of when the knapsack relaxation matches the true “minimal precision” struc-
ture. Theorems 3–5 explain computational hardness and approximation, but
they do not address statistical or geometric conditions under which the opti-
mal solution is stable (small changes in calibration data do not change S) or
sparse (a small fraction of groups dominate). Establishing such conditions
would matter operationally: stable sparsity is what would make the notion
of a critical subspace actionable. One plausible hypothesis is a separation
condition on sensitivities, e.g. a gap between a small set of high-si groups and
the rest, together with diminishing returns in vi(b); under such a condition,
greedy selection should be near-optimal and insensitive to estimation noise.
Proving this would require combining approximation analysis with concen-
tration bounds for ŝt,i, thereby linking Theorem 6-style sample complexity
to stability of the selected set.

In summary, the certificate provides a coherent scaffold, but three re-
search directions appear decisive for turning it into a sharp and mechanisti-
cally informative tool: covariance-aware noise models to improve tightness,
circuit-aligned groupings to improve interpretability, and adaptive policies
to remain valid under distribution shift.
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