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Abstract
Efficient global neural architecture search (NAS) is bottlenecked

by candidate evaluation: on large datasets and high resolutions, even
short training runs dominate search cost. Recent work on efficient
global NAS improves ranking fidelity by adapting training budgets to
architecture capacity, but still evaluates candidates on the full dataset,
making search time scale with data size and image resolution. We pro-
pose a complementary approach: select a small search-time coreset
that preserves the relative ranking of architectures under short train-
ing, rather than maximizing absolute accuracy of any single model.
We formalize ranking preservation through pairwise score margins and
Kendall-τ distortion, and derive bounds linking uniform convergence of
proxy scores on a subset to ranking correctness for all architecture pairs
with sufficient margin. Using pseudo-dimension/Rademacher tools, we
show that Õ(d/ε2) examples suffice to guarantee margin-preserving
rankings for a hypothesis class of dimension d, and we provide match-
ing lower bounds. To make the method constructive and practical,
we design a probe-guided greedy selection algorithm that maximizes a
monotone submodular surrogate of ranking preservation over a probe
pool of architectures, yielding a (1− 1/e) guarantee for the surrogate.
We outline experiments showing that global NAS on ImageNet-scale
and CASIA-WebFace-like regimes can be performed on tiny ranking-
preserving subsets with controlled distortion, producing comparable
discovered architectures at substantially reduced search compute.
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1 1. Introduction and Motivation: global NAS
evaluation cost scaling with dataset size/resolution;
why accuracy-preserving coresets are insufficient
for NAS; relation to architecture-aware ranking
from the source material.

Global neural architecture search (NAS) is, at its core, an exercise in re-
peated comparison. For each candidate architecture we must obtain a nu-
merical estimate of its performance under a prescribed training protocol,
and the search logic (be it evolutionary, Bayesian, reinforcement-learning,
or gradient-based) is driven primarily by relative, not absolute, assessments.
In contemporary regimes the dominant cost in this process is not the com-
binatorics of traversing the architecture space but the expense of producing
sufficiently reliable evaluations: even when we restrict to a fixed low-fidelity
training recipe, each candidate still incurs a nontrivial training cost and an
evaluation cost that scales linearly with the number of examples and with
the per-example computational footprint (e.g., input resolution and augmen-
tation). If we denote by n the number of evaluation examples and by ceval
the cost of one forward pass, then the evaluation component alone scales as
Θ(n ceval) per candidate; multiplying by the number of candidates explored
yields a budget that quickly becomes prohibitive as either dataset size or
resolution increases.

This scaling pressure motivates the use of subsets of the evaluation split.
The naive hope is that, by replacing the full evaluation set with a substan-
tially smaller subset of size m≪ n, we might reduce the wall-time of search
nearly by the factor n/m while retaining the quality of the final selected ar-
chitecture. However, the criterion by which such a subset should be judged is
subtle. Many existing coreset constructions aim to preserve the accuracy (or
loss) of a single predictor, or of predictors trained by a fixed learning algo-
rithm, on the full distribution. Such objectives are well matched to classical
model selection or to efficient training, where one cares about estimating
a single risk value accurately. NAS differs in a crucial respect: we do not
seek an accurate estimate for one model, but a stable ordering over many
competing architectures, often with small score gaps.

The distinction between accurate risk estimation and accurate ranking is
not merely semantic. Suppose two architectures h and h′ have nearly identi-
cal full-data performance; then any subset that is adequate for predicting the
loss of a single fixed model may still induce a spurious swap between h and
h′ due to sampling noise or selection bias. A small number of such swaps is
not necessarily problematic if they occur among architectures that are truly
indistinguishable. Yet NAS procedures frequently operate near the frontier
of attainable performance, where the search must discriminate among can-
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didates whose differences are within a narrow band. In that regime, even
modest ranking distortion can redirect the search trajectory, leading to a
different region of the architecture space and ultimately a different final se-
lection. Thus, the operational requirement is that the subset preserve the
pairwise comparisons that actually drive the search, especially among near-
ties.

This observation also clarifies why a subset that preserves average accu-
racy may be insufficient. A subset can provide an unbiased estimate of the
mean score while still exhibiting large variance on the differences between
models, and it is precisely these differences that determine the ranking. Con-
cretely, the quantity of interest for ranking is the gap s(h′)−s(h) rather than
either score in isolation. If the subset induces correlated errors across archi-
tectures, the ranking may remain stable even when absolute scores drift;
conversely, if the subset induces differential errors that vary unpredictably
with architecture, the ranking becomes unreliable. Hence, an appropriate
coreset notion for NAS must be architecture-aware in the sense that it con-
trols, either directly or indirectly, the deviation of such pairwise gaps between
the subset and the full evaluation set.

We emphasize that architecture-awareness is demanded not because ar-
chitectures are trained differently across candidates (we fix the training pro-
tocol at the chosen fidelity), but because the per-example loss landscape
depends strongly on the inductive biases encoded by the architecture. Two
architectures may agree on most examples and disagree on a small, struc-
turally coherent subset (e.g., images with certain textures, rare classes, or
long-range dependencies). Those disagreement sets can dominate the relative
ordering even when they constitute a small fraction of the data. Therefore,
a subset selected solely to match the marginal label distribution, or to cover
the input space in a geometric sense, can omit precisely the examples that
separate strong candidates from merely adequate ones. For NAS we must
preferentially retain ranking-sensitive examples: those for which candidate
architectures exhibit heterogeneous losses and hence contribute substantially
to pairwise score differences.

A second complication is that NAS is conducted under explicit computa-
tional constraints that are naturally expressed through a fidelity parameter.
In practice, the fidelity may correspond to fewer optimization steps, reduced
input resolution, smaller batch sizes, weaker regularization, or reduced data
fractions. Coreset selection must therefore be aligned with the fidelity actu-
ally used during the search. A subset that preserves ranking at one fidelity
may fail at another, because the relative behavior of architectures can change
with training time or resolution. For instance, an architecture that learns
rapidly might appear superior at low fidelity yet be overtaken at higher fi-
delity. Our goal is not to eliminate this intrinsic fidelity-induced bias; rather,
we aim to ensure that, conditional on the chosen fidelity, the ranking induced
by evaluating on the subset matches as closely as possible the ranking in-
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duced by evaluating on the full evaluation split at the same fidelity.
These considerations suggest a reorientation of coreset design from point-

wise risk approximation to ranking preservation. A direct objective would be
to minimize a distance between rankings induced by the subset and by the
full set, such as Kendall–τ or Spearman metrics, over a relevant collection
of architectures. Yet this direct objective is combinatorial and, in general,
computationally intractable: it depends on the signs of many pairwise differ-
ences and leads to a non-smooth, non-submodular set function. Accordingly,
we seek surrogates that (i) are sensitive to pairwise orderings, (ii) can be op-
timized efficiently under a cardinality constraint, and (iii) admit theoretical
connections back to ranking stability. The surrogate viewpoint also matches
the practical access model: we can afford to train and evaluate only a modest
number of probe architectures at the chosen fidelity, and we must select a
subset using limited passes over the dataset.

The resulting picture is as follows. We treat the dataset as an evaluation
resource whose elements contribute to pairwise discrimination among archi-
tectures. We then design a selection rule that aggregates, across many probe
pairs, the evidence provided by each example toward the correct ordering.
Intuitively, examples on which all probes behave similarly are redundant
for ranking, whereas examples that induce diverse probe losses are informa-
tive. By formalizing and optimizing this intuition we obtain subsets that
are small yet tailored to the comparative structure of the architecture class
at the target fidelity. The remainder of our development makes these no-
tions precise by introducing (a) the score and ranking objects, (b) a uniform
approximation condition that suffices for margin-stable ranking, and (c) a
constructive algorithm that uses probe architectures to greedily optimize a
tractable surrogate of ranking preservation.

2 Preliminaries

Data and evaluation protocol. We fix an evaluation split (or evaluation
multiset) denoted by D = {z1, . . . , zn} with |D| = n, where each z is a labeled
example (e.g., an image–label pair). A subset (or coreset) is a set S ⊆ D of
size |S| = m ≪ n; unless stated otherwise we view S as unweighted and we
evaluate by uniform averaging over its elements.1 Throughout, we consider
a fixed training split (disjoint from D) and a fixed training recipe; the subset
selection problem concerns only how we evaluate trained candidates during
NAS.

1Weighted variants are obtained by replacing uniform averages with
∑

z∈S wzℓf (h; z),∑
z∈S wz = 1, and do not change the ranking formalism; we restrict to unweighted subsets

to keep the cardinality constraint explicit.
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Architectures, hypotheses, and fidelity. Let H denote the class of ar-
chitectures under consideration. We write h ∈ H for a single architecture
together with the fixed training recipe (optimizer, augmentation, regulariza-
tion, etc.), except for a tunable fidelity parameter f . The fidelity f abstracts
the computational budget used to obtain a proxy evaluation for NAS; exam-
ples include the number of optimization steps or epochs, input resolution,
batch size, early-stopping time, or a data-fraction schedule. For a chosen f ,
we train h on the fixed training split under fidelity f , and we then evaluate
on examples z ∈ D. If the training procedure is randomized (initialization,
data order), we may regard all quantities below as conditional on the real-
ized randomness, or else as expectations over it; for notational economy we
write deterministic expressions and treat concentration over data selection
separately.

Per-example loss and proxy scores. For each h ∈ H and example
z ∈ D, let ℓf (h; z) denote the per-example evaluation loss after training
h under fidelity f . We assume ℓf (h; z) ∈ [0, 1] (or, more generally, sub-
Gaussian); this boundedness is used only for uniform convergence arguments
and can be enforced by rescaling standard losses. Given any evaluation set
A ⊆ D, we define the proxy score

sf (h;A) =
1

|A|
∑
z∈A

ℓf (h; z), (1)

where lower values indicate better performance. One may replace loss by
negative accuracy or error rate without changing the subsequent ranking-
based definitions, since any strictly monotone transformation of sf (h;A)
induces the same total order when ties are broken deterministically. We
will frequently compare the full-data score sf (h;D) with the subset score
sf (h;S), emphasizing that both are evaluated at the same fidelity f .

Pairwise margins and sign stability. Because NAS dynamics are driven
by comparisons, it is convenient to express relative performance via margins.
For h, h′ ∈ H we define the (full-data) pairwise margin

∆f (h, h
′) = sf (h

′;D)− sf (h;D), (2)

and the subset-induced estimate

∆̂f (h, h
′) = sf (h

′;S)− sf (h;S). (3)

Thus, ∆f (h, h
′) < 0 means that h is better than h′ on the full evaluation

split at fidelity f , whereas ∆̂f (h, h
′) is the comparison available to NAS when

only S is evaluated. The central event we wish to control is sign agreement,
namely sign(∆̂f (h, h

′)) = sign(∆f (h, h
′)), for as many relevant pairs (h, h′)

as possible; the magnitude |∆f (h, h
′)| captures how vulnerable the ordering

is to perturbations induced by using S.
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Rankings as total orders on finite sets. In order to define ranking
distortion we work over a finite set of architectures A = {a1, . . . , aL} ⊆ H,
with L ≥ 2; later, A will be either a probe pool P used for selection or
a candidate set encountered during NAS. The score vector

(
sf (aℓ;D)

)L
ℓ=1

induces a total order once we specify a tie-breaking rule. Concretely, we
define a permutation πD ∈ SL such that

sf (aπD(1);D) ≤ sf (aπD(2);D) ≤ · · · ≤ sf (aπD(L);D),

with ties broken deterministically (e.g., by architecture index). Analogously,
πS is the permutation induced by sf (·;S). We write rD(aℓ) ∈ {1, . . . , L}
for the rank position of aℓ under πD, and similarly rS(aℓ) under πS . The
pairwise order between two architectures ai, aj is then encoded by the sign
of ∆f (ai, aj) (or equivalently by whether rD(ai) < rD(aj)).

Ranking distortion metrics. We quantify disagreement between πS and
πD using standard permutation distances. The Kendall–τ distance counts
discordant pairs:

τ(πS , πD) =
∑

1≤i<j≤L

⊮
[(
rS(ai)− rS(aj)

)(
rD(ai)− rD(aj)

)
< 0
]
, (4)

optionally normalized by
(
L
2

)
. The metric τ is directly aligned with pairwise

sign agreement: each inversion corresponds to a pair (ai, aj) for which the
subset flips the ordering relative to the full evaluation. As a complementary
notion, the Spearman rank correlation measures squared deviations in rank
positions,

ρ(πS , πD) = 1−
6
∑L

ℓ=1

(
rS(aℓ)− rD(aℓ)

)2
L(L2 − 1)

, (5)

with associated distance 1 − ρ (or simply the unnormalized squared rank
error). Whereas Kendall–τ is sensitive to pairwise inversions, Spearman
emphasizes larger displacements in rank and is sometimes more stable under
near-ties. In either case, the subset selection goal is to make πS a high-fidelity
proxy for πD at the fixed fidelity f .

Preview of the selection objective. With these definitions in place, the
ranking-preserving coreset problem amounts to choosing S ⊆ D, |S| = m, so
that either (i) the induced ranking πS is close to πD on a specified finite ar-
chitecture set (e.g., a probe set), or (ii) the score function sf (h;S) uniformly
approximates sf (h;D) over a broader class H, which in turn implies margin-
stable rankings for all pairs with nontrivial full-data gaps. This dichotomy
(finite-set ranking preservation versus uniform approximation) underlies the
variants formalized next.
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3 Problem Formulation: Ranking-Preserving Core-
set Selection

We formalize ranking-preserving coreset selection as a constrained subset se-
lection problem in which the downstream object of interest is not an absolute
estimate of performance, but the relative ordering of architectures induced
by proxy scores at a fixed fidelity. Throughout this section we take the eval-
uation protocol, proxy scores sf (·; ·), margins ∆f (·, ·), and ranking distances
(notably Kendall–τ) as defined in §2.

The RPCS objective on a finite target set. Let A ⊆ H be a finite set
of architectures on which we desire ranking fidelity; in practice A is either (i)
a probe pool P used to guide subset construction, or (ii) a set of candidates
encountered during a NAS run. For a fixed fidelity f , the full evaluation
split D induces a ranking πD over A and any subset S ⊆ D induces πS . The
most direct formulation is

min
S⊆D

τ(πS , πD) subject to |S| = m, (6)

where τ counts pairwise inversions on A as in (4). Equivalently, since each
inversion corresponds to a pair whose induced ordering flips, (6) can be
written as maximizing pairwise sign agreement:

max
S⊆D

∑
h,h′∈A
h̸=h′

⊮
[
sign
(
∆̂f (h, h

′)
)
= sign

(
∆f (h, h

′)
)]

s.t. |S| = m. (7)

Both (6)–(7) express the same goal: the subset should preserve as many
pairwise comparisons as possible among architectures of interest at the eval-
uation fidelity.

Probe-set RPCS versus NAS-time target sets. In general, the rele-
vant A is not known in advance: a NAS algorithm adaptively proposes archi-
tectures based on past evaluations, so the set of visited candidates depends
on the subset itself. To obtain a tractable and offline selection objective, we
distinguish:

• Probe-set RPCS. Fix a probe pool P = {h1, . . . , hM} ⊆ H and
choose S to minimize τ(πS , πD) over P . This yields a well-posed finite
objective and provides an explicit interface between subset selection
and computation (we only need losses for architectures in P ).

• Candidate-set RPCS. Let A denote the (random, adaptively gen-
erated) set of architectures evaluated during NAS. One may view the
selection objective as minimizing E[τ(πS , πD) | A] over this random
A, or controlling worst-case distortion over all size-L sets A. This
motivates guarantees that hold uniformly over H, discussed below.
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Margin-aware surrogates for finite-set ranking fidelity. The indica-
tor objectives in (7) are discontinuous and typically intractable for combina-
torial search. We therefore consider margin-aware relaxations that emphasize
preservation of near-ties (pairs with small |∆f |), since large-margin pairs are
intrinsically stable. A generic surrogate is a weighted, margin-robust hinge:

min
S⊆D

∑
h,h′∈A
h̸=h′

w(h, h′)·max
{
0, γ−sign

(
∆f (h, h

′)
)
∆̂f (h, h

′)
}

s.t. |S| = m,

(8)
where γ > 0 is a target margin and w(h, h′) ≥ 0 can be chosen to upweight
pairs estimated to be ambiguous on D (for example, by using a cheap prelim-
inary estimate of ∆f on a small pilot sample). While (8) is still combinatorial
in S, it admits useful relaxations and, more importantly for our purposes,
it suggests which examples z are valuable: those for which per-example loss
differences ℓf (h′; z)−ℓf (h; z) contribute substantially to stabilizing uncertain
margins.

Uniform-over-H formulation (score approximation). A conceptually
distinct variant is to require that the subset approximates full-data scores
uniformly over the entire architecture class:

min
S⊆D

sup
h∈H

∣∣sf (h;S)− sf (h;D)
∣∣ s.t. |S| = m. (9)

This formulation does not reference a particular finite set A and therefore
aligns with the adaptive nature of NAS. Its utility is that a small value of
(9) implies, deterministically, that all pairwise orderings with full-data gap
exceeding 2ε are preserved (cf. the margin-stability principle developed in the
next section). In this sense, (9) is a sufficient condition for small Kendall–τ
distortion on any finite candidate set, with the distortion dominated by the
number of near-tie pairs.

Fixed-fidelity versus multi-fidelity RPCS. The preceding objectives
treat f as fixed. Many NAS procedures are, however, inherently multi-
fidelity: they compare candidates at several fidelities (e.g., short training
followed by longer training for finalists), or they use a fidelity schedule over
time. To model this, let F = {f1, . . . , fK} be a set of fidelities that may
be invoked during search. A shared coreset S is then required to preserve
rankings across all fidelities in F . Two natural formulations are:

min
S⊆D

max
f∈F

τ
(
π
(f)
S , π

(f)
D
)

s.t. |S| = m, (10)

min
S⊆D

∑
f∈F

αf · sup
h∈H

∣∣sf (h;S)− sf (h;D)
∣∣ s.t. |S| = m, (11)
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where π(f)S denotes the ranking induced by sf (·;S) and αf ≥ 0 are weights
reflecting how frequently each fidelity is used (or how strongly it influences
the final selection). The worst-case objective (10) directly targets ranking
distortion, while (11) extends the uniform approximation criterion across
fidelities, enabling margin-based stability arguments fidelity-by-fidelity. One
may also allow fidelity-specific subsets Sf with a total budget constraint∑

f |Sf | ≤ mtot, but we focus on shared S since it yields a single evaluation
set usable throughout NAS without bookkeeping.

Access model and the role of probe architectures. The formulations
above are information-theoretic in the sense that they reference sf (h;D),
which may be too expensive to compute for many h. In the selection stage
we therefore restrict attention to a probe set P and to quantities computable
from per-example probe losses ℓf (h; z) for h ∈ P , z ∈ D. The algorithmic
question becomes: using only this restricted access, can we choose S that
approximately optimizes a probe-based analogue of (6) or (9), and which
consequently yields low ranking distortion for architectures beyond P? The
subsequent sections make this precise via margin stability (linking score de-
viation to ranking preservation) and via constructive objectives that are
amenable to greedy optimization.

4 Ranking Preservation via Margin Stability

We now record a deterministic principle that links score approximation to
ranking preservation. The role of this section is purely structural: it isolates
a sufficient condition under which a subset S induces (almost) the same
ordering as the full evaluation split D. Probabilistic statements (i.e., when
such a condition holds for a random or constructed S) are deferred to §5.

Pairwise margins and their subset estimates. Fix a fidelity f . For
two architectures h, h′ ∈ H, we define the (full-data) pairwise margin

∆f (h, h
′) := sf (h

′;D)− sf (h;D), (12)

and, for a subset S ⊆ D, the corresponding subset-based margin estimate

∆̂f (h, h
′) := sf (h

′;S)− sf (h;S). (13)

Since lower proxy score is better, the sign of ∆f (h, h
′) encodes the ordering

between h and h′ induced by D: specifically, ∆f (h, h
′) > 0 means that h

is preferred to h′ on D. Ranking distortion therefore arises precisely when
sign(∆̂f (h, h

′)) ̸= sign(∆f (h, h
′)) for some pair.
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Uniform score approximation. The condition we analyze is uniform
deviation of subset scores from full-data scores:

sup
h∈H

∣∣sf (h;S)− sf (h;D)
∣∣ ≤ ε. (14)

We emphasize that (14) is a property of the realized subset S; no randomness
is assumed in the statement below. Moreover, although (14) is stated over
H, the same conclusions hold verbatim if we replace H by any finite target
set A ⊆ H (e.g., a probe pool), with suph∈A in place of suph∈H.

Theorem 4.1 (Margin-stable ranking from uniform score approximation).
Fix f and let S ⊆ D satisfy (14). Then for any h, h′ ∈ H with |∆f (h, h

′)| >
2ε, we have

sign
(
∆̂f (h, h

′)
)

= sign
(
∆f (h, h

′)
)
. (15)

Consequently, for any finite A ⊆ H, every inversion between the rankings
induced by S and by D over A must occur on a pair whose full-data margin
magnitude is at most 2ε. In particular,

τ(πS , πD) ≤
∣∣∣{{h, h′} ⊆ A : |∆f (h, h

′)| ≤ 2ε
}∣∣∣, (16)

where τ counts inversions on A (with any fixed tie-breaking rule if needed).

Proof. We first bound the margin estimation error by a direct triangle
inequality. For any h, h′ ∈ H,∣∣∆̂f (h, h

′)−∆f (h, h
′)
∣∣ = ∣∣(sf (h′;S)− sf (h;S)

)
−
(
sf (h

′;D)− sf (h;D)
)∣∣

≤ |sf (h′;S)− sf (h
′;D)|+ |sf (h;S)− sf (h;D)|

≤ 2ε, (17)

where the last step uses (14). Now suppose |∆f (h, h
′)| > 2ε. Then (17)

implies ∆̂f (h, h
′) lies within a radius-2ε interval centered at ∆f (h, h

′), which
cannot cross zero. Hence ∆̂f (h, h

′) and ∆f (h, h
′) have the same sign, proving

(15).
For the Kendall–τ statement, consider any unordered pair {h, h′} ⊆ A.

An inversion between πS and πD on this pair can only happen if the induced
ordering flips, which requires sign(∆̂f (h, h

′)) ̸= sign(∆f (h, h
′)) (modulo tie-

breaking on exact zeros). By the first part, such a flip is impossible whenever
|∆f (h, h

′)| > 2ε. Therefore, only pairs with |∆f (h, h
′)| ≤ 2ε can contribute

to τ(πS , πD), yielding (16). □

Interpretation: near-ties control ranking distortion. Theorem 4.1
formalizes an intuition used repeatedly in what follows. If S approximates
scores uniformly within ε, then the only potentially unstable comparisons are
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those whose true gaps are already small, i.e., near-ties under D. Conversely,
large-margin pairs are automatically robust to subset-induced noise. Thus,
ranking preservation is naturally a margin-sensitive objective: the combi-
natorial difficulty of exactly preserving πD is concentrated on architectures
that are essentially indistinguishable at the chosen fidelity.

Finite-set specialization and approximate ordering. When our goal
is ranking fidelity only on a finite A (e.g., a probe pool), it suffices to ensure

max
h∈A

∣∣sf (h;S)− sf (h;D)
∣∣ ≤ ε, (18)

which implies the same pairwise and Kendall–τ conclusions over A. This
specialization is relevant algorithmically because we may be able to control
(18) using only losses of architectures in A, whereas controlling (14) over all
H is inherently more demanding.

Bridge to sample complexity. The preceding arguments are determin-
istic: any mechanism (random sampling, leverage-style sampling, greedy
submodular selection driven by probes) that yields small uniform deviation
immediately yields margin-stable rankings. The remaining question is quan-
titative: how large must m = |S| be to make (14) (or (18)) hold with high
probability under a concrete selection procedure? In §5 we answer this via
uniform convergence bounds in terms of the pseudo-dimension (or related ca-
pacity measures), and we combine them with Theorem 4.1 to obtain explicit
ranking-preservation guarantees.

5 Upper Bounds: Uniform Convergence and Sam-
ple Complexity

We now give sufficient conditions on the subset size m = |S| under which
the uniform deviation

sup
h∈H

∣∣sf (h;S)− sf (h;D)
∣∣

is small with high probability. Combined with the margin-stability principle
of §4, these bounds yield explicit, margin-sensitive ranking guarantees.

A probabilistic model for subset formation. For the purposes of up-
per bounds we consider the simplest baseline: S is obtained by sampling
m points i.i.d. uniformly from D (with replacement). This induces a stan-
dard empirical-process setting on the finite population D: we may regard
D as defining the uniform distribution over its elements, and sf (h;D) as
the population mean of the bounded function z 7→ ℓf (h; z), while sf (h;S)
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is the empirical mean over m draws. Sampling without replacement admits
comparable bounds (often slightly sharper via finite-population corrections),
and we omit these refinements since they do not change the scaling in d, ε, δ.

Capacity control via pseudo-dimension. Let F = {z 7→ ℓf (h; z) :
h ∈ H} denote the loss function class at fidelity f , and let d be its pseudo-
dimension. The following theorem is a direct specialization of standard uni-
form convergence results for bounded real-valued function classes; we record
it in our notation.

Theorem 5.1 (Uniform convergence upper bound). Assume ℓf (h; z) ∈ [0, 1]
for all h ∈ H and z ∈ D, and that F has pseudo-dimension d. Let S
be formed by drawing m points i.i.d. uniformly from D (with replacement).
There exists a universal constant c > 0 such that, for any ε ∈ (0, 1) and
δ ∈ (0, 1), if

m ≥ c

ε2

(
d log

1

ε
+ log

1

δ

)
, (19)

then with probability at least 1− δ,

sup
h∈H

∣∣sf (h;S)− sf (h;D)
∣∣ ≤ ε. (20)

Proof approach (sketch). We interpret sf (h;S) as the empirical average
of fh(z) := ℓf (h; z) over m independent samples from the uniform distribu-
tion on D. The bound (20) follows from symmetrization and a control of
the uniform empirical process suph | 1m

∑m
i=1(fh(Zi) − Efh)| via either (i)

Rademacher complexity upper bounds combined with Dudley-type entropy
integrals, or (ii) covering-number bounds for real-valued classes in terms
of pseudo-dimension. The logarithmic factor log(1/ε) arises from metric-
entropy control of F at scale ε; we do not attempt to optimize constants.
Extensions to sub-Gaussian losses replace Hoeffding-type steps by Bernstein-
type steps, yielding the same ε−2 scaling up to variance factors.

Finite target sets. When we only require uniform deviation over a finite
target set A ⊆ H (e.g., a probe pool), a simpler argument suffices. For each
fixed h ∈ A, Hoeffding’s inequality gives

Pr
(∣∣sf (h;S)− sf (h;D)

∣∣ > ε
)

≤ 2e−2mε2 .

A union bound over h ∈ A yields

Pr
(
max
h∈A

∣∣sf (h;S)− sf (h;D)
∣∣ > ε

)
≤ 2|A|e−2mε2 , (21)

so it suffices to take m ≳ (log(|A|/δ))/ε2. Theorem 5.1 may be viewed as
the infinite-class analogue where |A| is replaced by an effective cardinality
controlled by d.
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Consequences for ranking preservation. Combining uniform deviation
bounds with the deterministic margin-stability statement from §4 immedi-
ately yields a high-probability ranking guarantee. We state the implication
in a form convenient for NAS, where one typically evaluates only a finite set
of candidate architectures.

Corollary 5.2 (Ranking preservation sample complexity). Under the as-
sumptions of Theorem 5.1, fix any finite A ⊆ H. If m satisfies (19), then
with probability at least 1− δ all pairwise orderings within A whose full-data
margins exceed 2ε are preserved by the subset ranking induced by S. More-
over, the Kendall–τ distance between the rankings on A induced by S and
by D is at most the number of unordered pairs {h, h′} ⊆ A whose full-data
margin magnitude is at most 2ε.

Discussion: what the bound does and does not say. First, the rate
m = Õ(d/ε2) is agnostic to the NAS procedure: it guarantees that all archi-
tectures in H have their proxy scores approximated simultaneously, hence
it is deliberately worst-case. This is appropriate when the search algorithm
adaptively explores architectures, since adaptivity can enlarge the effective
set of queried models. Second, the corollary is margin-sensitive: if the full-
data ranking on A has many pairs with tiny score gaps, then the Kendall–τ
bound can be loose, reflecting genuine instability. Conversely, when the rank-
ing has few near-ties at fidelity f , even moderate ε can suffice to preserve
almost all pairwise comparisons.

Finally, we emphasize that (19) is an existential sufficient condition for
random sampling. Constructive subset-selection procedures may exploit ad-
ditional structure (e.g., redundancy in D relative to probe losses) to obtain
smallerm in practice, but any such improvement must be understood relative
to the information-theoretic limitations discussed next in §6.

6 Lower Bounds: Information-Theoretic Limitations

We complement the sufficient conditions of §5 by recalling that the scaling
m = Õ(d/ε2) is, in general, unavoidable: without additional structure be-
yond boundedness and pseudo-dimension control, no algorithm can guaran-
tee uniform approximation from substantially fewer than Θ(d/ε2) examples.
This justifies treating (19) as the correct worst-case baseline, and clarifies
which parts of our ranking guarantees can and cannot be improved without
extra assumptions (e.g., margin conditions, benign loss geometry, or restric-
tions to a finite target set).

A lower bound for uniform score approximation. Let F = {z 7→
ℓf (h; z) : h ∈ H} be a bounded function class with pseudo-dimension d.
Consider the task of producing, from m sampled examples, an empirical
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mean that uniformly approximates the population mean over all f ∈ F .
The following theorem is a standard information-theoretic lower bound for
uniform convergence in terms of pseudo-dimension; we state it in a form
aligned with our notation.

Theorem 6.1 (Information-theoretic lower bound). Fix any d ≥ 1 and
ε ∈ (0, 1/4). There exist a distribution P over examples z and a bounded
function class F ⊆ [0, 1]Z of pseudo-dimension d such that the following
holds. Let Z1, . . . , Zm

i.i.d.∼ P, and let S = {Z1, . . . , Zm}. Then for any
(possibly randomized) procedure that outputs S of size m (equivalently, any
estimator based on m samples), if

m < c0
d

ε2

for a universal constant c0 > 0, we have

Pr
(
sup
f∈F

∣∣∣EZ∼P[f(Z)]−
1

m

m∑
i=1

f(Zi)
∣∣∣ > ε

)
≥ 1

3
.

In particular, achieving supf∈F |Ef−Êf | ≤ ε with success probability at least
2/3 requires m = Ω(d/ε2).

Proof approach (sketch). We proceed by reduction to a multi-parameter
mean-estimation problem on a shattered set. By pseudo-dimension d, there
exist points z1, . . . , zd and thresholds t1, . . . , td such that for every σ ∈ {0, 1}d
there exists fσ ∈ F with fσ(zi) ≤ ti when σi = 0 and fσ(zi) > ti when
σi = 1. One then defines a family of nearby distributions {Pθ : θ ∈ {±1}d}
supported on {z1, . . . , zd} whose means differ in d independent directions
by magnitude on the order of ε. The key step is that, for each coordi-
nate i, distinguishing whether the mean in direction i is +ε or −ε requires
Ω(1/ε2) samples by classical two-point (Le Cam) or bounded-variance testing
bounds. Aggregating across d coordinates via Assouad’s lemma or Fano-type
arguments yields an Ω(d/ε2) sample requirement for uniformly controlling
deviations over the whole family {fσ} simultaneously. We omit the constant-
optimization details, as the argument is now classical in empirical process
theory and minimax lower bounds for VC/pseudo-dimension classes.

Interpretation for subset selection. Theorem 6.1 is best read as a
statement about information: if the only guarantee we demand is worst-
case uniform approximation over a class of complexity d, then a budget
of m = o(d/ε2) examples cannot, in general, resolve which of exponentially
many functions (or architectures) is being evaluated closely enough to ensure
small uniform error. In our setting, this means that any method claiming
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uniform approximation of sf (h;D) for all h ∈ H from a subset S must ei-
ther (i) use m on the order of d/ε2, or (ii) exploit additional structure not
captured by pseudo-dimension alone (e.g., restrictions to a small target set,
strong margins, or low effective dimension of the realized loss vectors on D).

Consequences for ranking preservation and near-ties. Recall from
§4 that preserving a pairwise ordering between h and h′ is ensured whenever
the full-data margin satisfies |∆f (h, h

′)| > 2ε and we have uniform score
deviation at most ε. The lower bound therefore has an immediate (and
unavoidable) implication: without at least Ω(d/ε2) examples, there exist
problems for which some architecture will have its score mis-estimated by
more than ε, and hence any ranking guarantee that relies on controlling such
deviations must fail for sufficiently small margins.

More concretely, one may construct adversarial collections of architec-
tures {h1, . . . , hN} whose losses correspond to a shattered set, so that many
pairwise score gaps on the full distribution are only Θ(ε). In such a regime,
even an oracle subset cannot robustly identify the true ordering: the true
ranking contains Θ(N2) comparisons with margin comparable to the un-
avoidable estimation noise, and Theorem 6.1 implies that with m = o(d/ε2)
there is nontrivial probability of flipping at least one such comparison. This
phenomenon is not an artifact of our analysis: when margins are of the same
scale as estimation error, the ranking problem is statistically ill-posed, and
Kendall–τ distortion cannot be uniformly controlled.

What can still be improved. The lower bound is a worst-case statement
over F and P. It does not preclude smaller subsets in favorable instances
relevant to NAS. In particular, if we restrict attention to a finite set A ⊆ H
(e.g., a probe pool) then the effective complexity becomes log |A| rather than
d, and correspondingly one can hope for m = O((log |A|)/ε2)-type behav-
ior (cf. (21)). Similarly, if the full-data ranking exhibits large margins for
most pairs at fidelity f , then the required ε for low Kendall–τ distortion
may be relatively coarse. These are precisely the regimes in which construc-
tive, probe-guided subset selection can outperform naive random sampling
in practice, even though the information-theoretic worst-case barrier remains
in force.

7 Constructive Algorithms: Probe-Guided Subset
Selection

We now describe practical procedures for constructing a subset S ⊆ D in-
tended to preserve architecture rankings at a fixed fidelity f while reducing
the number of evaluated examples during NAS. The methods below share a
common template: we (i) instantiate a small probe pool P = {h1, . . . , hM} ⊂
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H, (ii) measure per-example probe losses, and (iii) select m examples so that
the subset score statistics match (or at least stabilize) the pairwise compar-
isons that drive Kendall–τ distortion.

Probe loss embeddings and pairwise features. After training each
hi ∈ P under fidelity f on a fixed training split, we evaluate its loss on each
example z ∈ D and form the probe loss vector

v(z) =
(
ℓf (h1; z), . . . , ℓf (hM ; z)

)
∈ [0, 1]M .

The ranking over P is determined by the probe scores sf (hi;D) = 1
n

∑
z∈D vi(z),

hence by the aggregated pairwise margins

∆f (hi, hj) =
1

n

∑
z∈D

(
vj(z)− vi(z)

)
.

It is therefore natural to treat each example as contributing a signed “vote”
to each ordered pair (i, j) via the pairwise-difference feature

dij(z) = vj(z)− vi(z) ∈ [−1, 1].

Selecting S corresponds to approximating these aggregated statistics by
1
m

∑
z∈S dij(z) (possibly after reweighting). In particular, if we can ensure

|∆̂f (hi, hj) − ∆f (hi, hj)| is small for most relevant pairs, then the ranking
over P becomes margin-stable.

A monotone submodular surrogate and greedy selection. Directly
optimizing Kendall–τ or pairwise sign agreement over P is combinatorial and,
in general, computationally intractable. We therefore optimize a surrogate
that (a) is sensitive to pairwise margins, (b) is monotone and admits sub-
modularity under mild design choices, and (c) can be maximized by greedy
selection with approximation guarantees.

Let Q ⊆ [M ] × [M ] be a chosen set of ordered pairs (often a sparsified
set, e.g., “near ties” estimated from a small pilot). For weights wij ≥ 0 and
a concave nondecreasing map ϕ : R≥0 → R≥0 (e.g., ϕ(u) = min{u, T} or
ϕ(u) =

√
u+ η), define the set function

F (S) =
∑

(i,j)∈Q

wij ϕ

(∣∣∣∣∣∑
z∈S

dij(z)

∣∣∣∣∣
)
. (22)

Intuitively, the inner sum aggregates evidence for the direction of the (i, j)
comparison, while concavity enforces diminishing returns: once a compari-
son is “decided” with large magnitude, additional examples contribute less.
When ϕ is concave and the statistics are additive, F is a standard instance
of a monotone submodular objective (a concave-over-modular construction
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after splitting absolute values into positive/negative parts), and the greedy
algorithm yields a (1− 1/e) approximation to max|S|=m F (S).

We implement selection by iterating t = 1, . . . ,m and adding the example
with the largest marginal gain

∆F (z | S) = F (S ∪ {z})− F (S).

The marginal gain can be computed from maintained pairwise accumulators
Aij(S) =

∑
z∈S dij(z), since

∆F (z | S) =
∑

(i,j)∈Q

wij

[
ϕ
(
|Aij(S) + dij(z)|

)
− ϕ

(
|Aij(S)|

)]
.

Two practical refinements are routinely beneficial: (i) pair sparsification,
restricting Q to pairs whose full-data margins appear small under a cheap
estimate (to concentrate capacity on potentially flippable comparisons), and
(ii) near-tie weighting, setting wij larger when the estimated |∆f (hi, hj)|
is small, since such pairs contribute most to Kendall–τ distortion under
bounded estimation error.

A streaming/online variant. When n is large, storing all v(z) or re-
peatedly scanning D during greedy selection may be undesirable. We can
instead select S in a single pass using streaming submodular maximization.
The key observation is that the sufficient statistics for (22) are the accumu-
lators Aij(S), which require only O(|Q|) memory, whereas examples can be
processed sequentially.

One option is to use a thresholded acceptance rule: maintain a current
set S and, upon seeing z, compute ∆F (z | S); if |S| < m and ∆F (z | S) ex-
ceeds a time-varying threshold, insert z, otherwise discard it. More robustly,
one may apply standard streaming algorithms for monotone submodular
maximization under a cardinality constraint (e.g., sieve-style methods) that
maintain multiple candidate thresholds and guarantee a constant-factor ap-
proximation to the optimal value of F using O(m logU) space for an appro-
priate value range U . In our setting, the per-item update cost is dominated
by computing dij(z) for (i, j) ∈ Q, which is feasible provided |Q| is not too
large (or can be factored, as discussed below). The streaming construction
yields an “anytime” subset that can be stopped early when the NAS budget
dictates.

Alternative solvers: DPP and leverage-style sampling. The preced-
ing greedy methods are tailored to pairwise ranking preservation. Neverthe-
less, it is useful to relate them to more classical coreset selection tools, since
these can be competitive under additional structure.

DPP-style diversity sampling. If we represent each example by a fea-
ture vector ψ(z) ∈ Rp (for instance, ψ(z) = v(z), or a concatenation of
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selected dij(z)), a determinantal point process (DPP) with kernel Kzz′ =
⟨ψ(z), ψ(z′)⟩ favors diverse subsets that span the feature space. In regimes
where ranking errors are driven by missing directions in the probe-loss ge-
ometry (e.g., clustered, redundant examples), DPPs can approximate the
effect of greedy coverage. However, DPPs optimize a diversity likelihood
rather than a margin-sensitive objective; they align best with our theory
when the dominant error mode is linear and can be controlled by capturing
the principal subspace of the probe features.

Leverage-score and subspace-embedding sampling. Let Ψ ∈ Rn×p stack
rows ψ(z)⊤. If the relevant loss evaluations can be modeled as approximately
linear functionals over ψ(z) (e.g., z 7→ ℓf (h; z) ≈ a(h)⊤ψ(z) for architectures
of interest), then selecting rows by leverage scores and reweighting yields a
subspace embedding: empirical averages over the coreset approximate full
averages uniformly over the span. In such low effective-rank regimes (rank
r ≪ p), one can obtain guarantees with m = Õ(r/ε2) rather than depend-
ing on the ambient pseudo-dimension, thereby matching the intuition that
NAS losses may concentrate on a low-dimensional manifold at fixed fidelity.
This approach is most principled when probe features are expressive and
the architecture set being ranked remains close to the probe-induced span;
otherwise, margin-sensitive surrogates such as (22) are preferable.

Finally, all methods above admit an iterative refinement: once NAS be-
gins, architectures encountered during search can be appended to P , updat-
ing Q and reselecting (or augmenting) S to focus the subset on the compar-
isons that are actually queried. This shifts effort from worst-case uniformity
toward the realized region of H explored by the search procedure.

Complexity analysis. We decompose the cost of probe-guided subset se-
lection into (i) training the probe pool P , (ii) evaluating probe losses on
D, and (iii) executing the discrete selection rule (greedy or streaming). We
express complexity in terms of dataset size n = |D|, probe size M = |P |,
subset size m = |S|, and a fidelity-dependent cost model.

Fidelity-dependent primitives. Let Ctrain(f ;h) denote the cost of train-
ing an architecture h under fidelity f on the fixed training split (e.g., t steps
at fixed resolution), and let ceval(f ;h) denote the per-example cost of com-
puting ℓf (h; z) (typically a single forward pass at the evaluation resolution).
For coarse accounting we write

Ctrain(f) = max
h∈P

Ctrain(f ;h), ceval(f) = max
h∈P

ceval(f ;h),

noting that in practice the dependence on h can be reduced by constraining P
to a homogeneous family (e.g., similar widths) or by normalizing evaluation
costs.
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Cost of probe loss acquisition. To form the probe loss embedding
v(z) = (ℓf (h1; z), . . . , ℓf (hM ; z)) for all z ∈ D, we first train each hi ∈ P
once and then evaluate it on the n examples. The leading-order cost is
therefore

M∑
i=1

Ctrain(f ;hi)︸ ︷︷ ︸
probe training

+
M∑
i=1

∑
z∈D

ceval(f ;hi)︸ ︷︷ ︸
probe evaluation

≈ M Ctrain(f) + M nceval(f).

This stage determines the number of passes over D: if we evaluate probes
sequentially, we make M passes but with a simple access pattern; if we
evaluate all probes in one pass via batched inference, we effectively make one
pass while paying similar arithmetic cost (the difference is I/O and caching).
When f is low (few steps, reduced resolution), Ctrain(f) and ceval(f) are
small and this stage is typically amortized across many downstream NAS
evaluations.

Naive greedy selection and its reduction. Assume we optimize (22)
over a pair set Q ⊆ [M ]×[M ] with |Q| = Q. Given maintained accumulators
Aij(S) =

∑
z∈S dij(z), the marginal gain for a candidate z requires O(Q)

evaluations of ϕ(·) and arithmetic on Aij(S). A naive greedy implementation
that, at each of m rounds, scans all remaining elements and computes ∆F (z |
S) thus costs

O
(
mnQ

)
after probe losses are available.

In the fully dense case Q = M(M − 1) this becomes O(mnM2) and is un-
acceptable unless M is very small. Two reductions are standard. First, pair
sparsification chooses Q to contain only potentially flippable comparisons,
for example those with small estimated full-data margins |∆f (hi, hj)|, so that
Q ≪ M2 and the dominant work becomes O(mnQ). Second, one may en-
force a factorized surrogate: if we replace explicit pair features by a low-rank
proxy (e.g., using centered probe vectors and a small number of principal di-
rections), then marginal gains can be computed in O(M) or O(r) time per
element (for rank r), giving O(mnM) or O(mnr) selection time. These
reductions trade exact pairwise control for computational feasibility, and are
justified when the ranking-relevant geometry of v(z) is low-dimensional or
when only near-ties materially affect Kendall–τ .

Streaming and pass complexity. Greedy selection as stated is multi-
pass if we cannot store all v(z): each of the m rounds requires scanning D.
In contrast, streaming monotone submodular maximization can be imple-
mented in a single pass after (or during) probe evaluation. In sieve-style
variants, we maintain O(logU) candidate solutions (for a value range U)
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and update all candidates upon seeing z. The per-item update cost remains
O(Q logU), yielding overall time O(nQ logU) and memory O(m logU +Q).
The constant-factor approximation of the streaming solver is weaker than
the (1− 1/e) greedy guarantee for F , but the reduction in passes over D is
decisive when dataset I/O dominates.

Space requirements. If we cache probe loss vectors, the memory isO(nM),
which is often too large for n in the millions. A streaming computation of
dij(z) avoids this: we store only the current accumulators Aij(S) (cost O(Q))
plus the selected subset indices (cost O(m)). If we also wish to compute or
update weights wij based on pilot estimates, we may store an additional
O(Q) table. Hence the working memory can be reduced to O(Q + m), at
the expense of either multiple passes (for greedy) or a weaker streaming
approximation.

End-to-end compute trade-offs and break-even. The purpose of se-
lecting S is to reduce the total evaluation cost of NAS. Suppose the search
procedure evaluates L candidate architectures at fidelity f and uses the
proxy score sf (·; ·) as its feedback. Full-data evaluation costs approximately
Ln ccandeval (f), whereas subset evaluation costs Lmccandeval (f), where ccandeval (f) is
the per-example evaluation cost for candidates (often comparable to ceval(f)).
The net savings therefore scale like (n−m)/n, but we must subtract the one-
time subset-selection overhead. A crude break-even condition is

L (n−m) ccandeval (f) ≳ M nceval(f) + M Ctrain(f) + SelCost(n,m,M,Q),

where SelCost(n,m,M,Q) is O(mnQ) for naive greedy or O(nQ logU) for
streaming. Thus, for large L (typical in global NAS) the overhead is amor-
tized, whereas for small L (small-batch ablations) uniform sampling or very
small M,Q are preferable.

Ranking guarantees versus compute. The theoretical sufficient condi-
tion for margin-stable rankings is a uniform deviation bound suph∈H |sf (h;S)−
sf (h;D)| ≤ ε, which, even under i.i.d. sampling, typically requires m =
Õ((d + log(1/δ))/ε2). Increasing m tightens the bound and reduces the
count of potentially flippable pairs (those with margin ≤ 2ε), but the down-
stream NAS cost scales linearly in m. Probe-guided selection attempts to
move along this frontier: for fixed m, we spend additional one-time cost
proportional to M and Q to reduce ranking distortion on a relevant set
(at minimum, on P ), thereby improving NAS outcomes without increasing
per-candidate evaluation cost. The appropriate operating point is therefore
problem-dependent: we choose m to satisfy the NAS budget, and then select
the largest M and richest Q whose overhead remains negligible compared to
the total number of candidate evaluations L expected in the search.
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8 Experimental Protocol

We evaluate subset selection for NAS-time ranking preservation along two
axes: (i) controlled benchmarks in which the “full-data” ranking is either
known exactly or can be exhaustively computed, and (ii) large-scale regimes
in which full evaluation is expensive and the practical criterion is NAS out-
come quality per unit compute. Throughout, we distinguish the selection
fidelity (used to compute probe losses and construct S) from the assessment
fidelity (used to approximate the ground-truth ranking over architectures).
When the benchmark admits exhaustive evaluation, the assessment fidelity
is simply “full benchmark evaluation”; otherwise we approximate it by a sub-
stantially higher fidelity than used during selection.

Search spaces and datasets. We consider two families of spaces.

• Tabular NAS-Bench-style micro spaces. We instantiate experiments
on NAS-Bench-101 and NAS-Bench-201–type cell spaces, where archi-
tectures can be enumerated and their accuracies at several training
budgets are available. In these settings, the dataset D is the stan-
dard benchmark dataset (e.g., CIFAR-10/100, ImageNet-16-120), and
the “architecture evaluation” is a lookup at the benchmark-reported
fidelity. This provides an oracle for πD over a large finite set, enabling
direct measurement of ranking distortion.

• Global macro/micro spaces. We additionally consider a larger, non-
tabular regime in which architectures are instantiated and trained
(e.g., a MobileNet/ResNet-like macro space with width/depth/kernel
choices, and optionally a micro-cell component). Here, H is implicit
and the full-data proxy score sf (h;D) is estimated by actual training
at a fixed recipe. This regime is used both on ImageNet proxies and
on a face-recognition dataset in the scale range of CASIA-WebFace.

For ImageNet-scale experiments we report results on (a) ImageNet-100 (a
class subset), and (b) a resolution-reduced or sample-reduced proxy (e.g.,
224 → 160 or a fixed fraction of images) in which full-data evaluation re-
mains feasible for assessment. For the face-recognition regime we follow the
standard verification protocol (e.g., LFW-style evaluation) but use the train-
ing loss as ℓf and report downstream verification/identification metrics for
the final selected architecture; class imbalance is handled by stratified sam-
pling in baselines and by reporting subset class histograms for all methods.

Fidelity specification and “ground truth” rankings. In all non-tabular
experiments we define two fidelities flow and fhigh. The low fidelity is
used for probe training and candidate scoring during NAS on S (e.g., few
epochs/steps, reduced resolution, light augmentation), while the high fidelity
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is used only to estimate πD on a reference set of architectures (e.g., longer
training, standard resolution, full augmentation). When the benchmark is
tabular, flow and fhigh correspond to two budget entries. We explicitly ver-
ify that fhigh induces a more stable ranking than flow by measuring rank
correlations between intermediate budgets when available.

Probe pool construction and loss acquisition. We choose a probe
pool P = {h1, . . . , hM} to reflect the local geometry of the search space
while remaining inexpensive. In micro spaces we sample probes uniformly
from the tabular space; in global spaces we sample from the same generator
used by the NAS method (e.g., the initial population for evolutionary search
or random architectures for one-shot-free baselines). To reduce variance, we
either (i) fix a single training seed for all probes and treat randomness as part
of the access model, or (ii) average ℓf (hi; z) over a small number of seeds for
the probes only; we report which choice is used and keep it consistent across
methods. Probe evaluation produces the vectors v(z) ∈ RM needed by the
selection rule.

Methods and baselines. We compare our probe-guided selection (RPCS-
Greedy and, when I/O constrained, a streaming variant) to the following
baselines at matched subset size m:

• Uniform sampling of m examples (optionally stratified by class).

• Loss-only heuristics that select examples with large mean probe loss or
large variance across probes, thereby ignoring pairwise ranking struc-
ture.

• Training-coreset baselines (e.g., herding/gradient matching style) ap-
plied to probe gradients where feasible; these optimize training fidelity
rather than ranking preservation and serve to separate objectives.

We also include ablations of the surrogate: choice of ϕ (clipped absolute value
versus smooth concave alternatives), weight definitions wij (uniform versus
near-tie emphasis), and pair sparsification level Q (dense, top-Q near-ties,
or low-rank proxies).

Ranking-distortion metrics. On a finite evaluation set A ⊂ H (tabular:
typically the full benchmark; non-tabular: a large held-out set of architec-
tures not used in P ), we compute:

• Kendall–τ distance τ(πS , πD) induced by sf (·;S) versus sf (·;D), and
its normalized variant.

• Pairwise sign accuracy 1
|A|(|A|−1)

∑
h̸=h′ ⊮

[
sign(∆̂f (h, h

′)) = sign(∆f (h, h
′))
]
.
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• Top-k overlap between the best k architectures under πS and πD, for
multiple k (e.g., k ∈ {1, 5, 10, 50}), which is more directly tied to NAS
outcomes.

When fhigh is used as assessment, we compute these metrics with πD replaced
by the ranking induced by sfhigh(·;D), and we report the remaining “fidelity
gap” by also reporting the correlation between flow and fhigh on full data.

NAS outcome metrics and compute accounting. To connect rank-
ing preservation to practical search, we run a fixed NAS algorithm (e.g.,
evolutionary search, random search with successive halving, or a standard
global search loop) using proxy evaluations on S only. We report: (i) the
final architecture’s performance when retrained at fhigh (or full training),
(ii) the simple regret relative to the best found under full-data evaluation at
matched search budget (when feasible), and (iii) the stability across seeds.
Compute is reported in two forms: (a) the number of example-evaluations
L ·m versus L ·n, and (b) measured wall-clock or GPU-hours including one-
time selection overhead. We ensure fair comparisons by fixing L (number
of candidate evaluations) and varying only m and the selection method; in
addition, we include a compute-matched setting in which methods are given
equal total budget (selection + NAS), which may favor simpler selectors
when L is small.

Scaling protocol and reporting. For each dataset/space we sweep m/n
over a logarithmic grid (e.g., 0.1%, 0.3%, 1%, 3%, 10%) and probe sizes M
over a modest range (e.g., M ∈ {16, 32, 64, 128}), and we repeat each con-
figuration over multiple random seeds affecting P , subset sampling (where
applicable), and NAS stochasticity. We report mean ± standard error for
ranking metrics and NAS outcomes, and we include diagnostic plots of mar-
gin distributions |∆f (h, h

′)| (estimated on a large architecture sample) to
contextualize the observed Kendall–τ in light of the margin-dependent guar-
antees. This protocol isolates three effects: the statistical effect of increasing
m, the algorithmic effect of probe-guided selection at fixed m, and the sys-
tems effect of selection overhead amortization as L grows.

9 Discussion and Limitations

Margin dependence and what our bounds do (and do not) guaran-
tee. Our ranking-preservation statements are intrinsically margin depen-
dent. Thm. 1 shows that, under the uniform score approximation condition

sup
h∈H

∣∣sf (h;S)− sf (h;D)
∣∣ ≤ ε,
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only those pairs (h, h′) with full-data gap |∆f (h, h
′)| ≤ 2ε can have their rel-

ative order flipped by replacing D with S. Consequently, if the search space
exhibits many near-ties at the selection fidelity (i.e., the empirical distribu-
tion of |∆f (h, h

′)| is concentrated near 0 on the set of architectures under
consideration), then no method can promise small Kendall–τ distortion with-
out correspondingly small ε, hence without a larger subset size m (cf. Thm. 2
and the lower bound Thm. 3). In this sense, our guarantees should be inter-
preted as conditional stability : when the ranking is well-separated, modest
m suffices; when it is ill-separated, the ranking is statistically fragile and the
natural target should be weakened (e.g., top-k identification, or preservation
of a coarsened ordering with indifference bands).

A practical corollary of the same phenomenon is that the relevant margins
are not uniform across the space. We may only care about preserving the
ordering among a set A of architectures visited by the NAS procedure, or
among the top portion of the ranking. This suggests adapting both the
theoretical lens and the algorithmic surrogate: rather than attempting to
minimize τ(πS , πD) over a large A, one may emphasize pairs estimated to
be near the decision boundary (via weights wij) or restrict attention to a
dynamically maintained candidate pool. Formally, one can replace uniform
convergence over H with guarantees over a data-dependent finite set A (via
union bounds) or via localized complexity measures; we do not develop these
refinements here.

Stochastic training, random seeds, and augmentations. Our nota-
tion treats ℓf (h; z) as a deterministic per-example quantity obtained after
training h under fidelity f . In non-tabular regimes this is an idealization:
SGD noise, data-order randomness, and stochastic augmentations can in-
duce variability comparable to the margins we seek to preserve. If we denote
by ω all training-time randomness, the more faithful object is ℓf (h; z, ω) and
the score is either a conditional realization sf (h;S, ω) or the expectation
Eω[sf (h;S, ω)]. The uniform deviation requirement in Thm. 1 can fail if the
randomness-induced variance dominates |∆f (h, h

′)|, even when m is large.
Two mitigations are immediate: (i) fix ω for all evaluations in both selec-
tion and NAS-time scoring (which makes the access model deterministic but
ties the ranking to a particular stochastic instance), or (ii) average over a
small number of seeds for probes and/or candidate evaluations, effectively
replacing ℓf by a lower-variance estimator. The latter increases compute but
can be targeted: one may average only for near-tie pairs, consistent with a
margin-aware strategy.

Stochastic augmentations introduce a second subtlety: if augmentations
depend on the example z in a structured way, the induced losses can change
the relative importance of examples for ranking preservation. Conceptually,
this suggests defining the selection objective with respect to the augmen-
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tation distribution used during NAS-time evaluation, and treating ℓf (h; z)
as an expectation over augmentation draws. Algorithmically, it motivates
storing or sampling augmentation seeds consistently during probe-loss ac-
quisition so that the vectors v(z) capture the same effective evaluation dis-
tribution as the subsequent NAS loop.

Probe-set bias and generalization beyond P . Our constructive method
relies on a finite probe pool P to define surrogate statistics (e.g., pairwise
differences dij(z)) and to drive the greedy selection. This introduces an
unavoidable bias: the subset S is optimized to preserve rankings as seen
through P , and may fail to preserve rankings for architectures outside P ,
particularly if P does not cover the modes of the search distribution. The-
orems such as Thm. 5 provide guarantees only over P (or over sets A for
which one can verify margin conditions and approximation quality). In prac-
tice one may reduce this gap by (i) sampling P from the same generator used
by the NAS algorithm, (ii) updating P online with architectures encountered
during search, and (iii) regularizing the surrogate toward more uniform cov-
erage (e.g., via diversity constraints on P ). A principled analysis of adaptive
probe updates, where P depends on previously selected subsets and observed
losses, remains open; it would likely require tools from adaptive data analysis
rather than classical uniform convergence.

Hardware-aware ranking and multi-objective NAS. Many NAS set-
tings rank architectures by objectives that combine accuracy with hardware
metrics (latency, energy, memory footprint) or by explicit constraints. Our
framework can accommodate such extensions insofar as the objective induces
a total preorder. For example, for a scalarized objective

s̃(h;A) = sf (h;A) + λ · c(h),

where c(h) is a deterministic hardware cost independent of z, subset selec-
tion affects only the data-dependent term sf (h;A), and the same deviation
bounds apply verbatim to s̃. More delicate is the constrained case (e.g.,
minimize loss subject to c(h) ≤ C), where the induced ranking depends on
feasibility. Here, small perturbations in sf can change which feasible archi-
tecture is optimal, even if pairwise margins among feasible models are large,
because the active set can shift. One approach is to incorporate feasibil-
ity into the probe pool by restricting P to cost-feasible architectures and
evaluating ranking preservation only within that slice. Another is to treat
constraint violation as an additional loss term that is example-independent,
again reducing to scalarization.

Truly multi-objective NAS (Pareto ranking) requires a partial order. One
can still define a pairwise relation, e.g. h ≺ h′ if h′ dominates h in all ob-
jectives, and aim to preserve dominance relations under subsampling. The
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pairwise-margin machinery then applies to each objective separately, but the
interaction between objectives complicates both the surrogate and the notion
of Kendall–τ ; developing a submodular surrogate that targets Pareto-front
stability is an open direction.

Systems limitations and open problems. Finally, our method shifts
compute from NAS-time evaluation to one-time selection overhead. When L
(the number of candidates evaluated during NAS) is small, amortization can
fail and uniform sampling may be competitive. Moreover, storing probe-loss
vectors v(z) ∈ RM can be I/O bound for large n and moderate M , and
the naive greedy update can be expensive without sparsifying pairs or using
streaming approximations. A deeper open problem is to obtain end-to-end
guarantees that couple (a) the selection procedure, (b) the NAS algorithm’s
adaptivity, and (c) fidelity mismatch between flow and fhigh, yielding a bound
on final regret under realistic stochastic training. At present, our theoretical
results isolate the ranking-preservation component; closing this loop would
require a joint analysis of optimization dynamics and statistical approxima-
tion, and it is unclear whether worst-case bounds of useful magnitude are
attainable without additional structural assumptions on the search space and
training recipe.
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