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Abstract
Modern NAS increasingly targets deployment constraints (latency,

energy, activation memory), yet common micro-search decisions (e.g.,
switching to heavier operators or larger kernels) are confounded by
hidden increases in cost. Building on the macro–micro global NAS
paradigm and the parameter-normalization idea in Siddiqui et al. (2025),
we generalize “parameter-equalized” micro-search to an iso-cost frame-
work for arbitrary hardware metrics. We formalize iso-cost neigh-
borhoods under a target device h, define an iso-cost micro-mutation
operator that compensates width/precision to preserve cost within
tolerance, and propose a layerwise micro-search algorithm with cost-
aware confidence bounds. Under mild assumptions (monotone cost in
width/precision, bounded cost-model error, sub-Gaussian proxy noise),
we prove the algorithm finds an (ε, τ)-approximate local optimum with
Õ(Lmσ2/ε2) proxy evaluations, and show a matching information-
theoretic lower bound. We outline how differentiable cost models (or
calibrated profilers) on multiple hardware targets enable practical iso-
latency/iso-energy comparisons, yielding cleaner Pareto fronts than
parameter-based normalization. Empirical validation (recommended)
would demonstrate improved ranking reliability and transfer across de-
vices for CNN/ResNet-like and hybrid Conv–Attention spaces.
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1 1. Introduction: the confounding problem in
micro-search; why parameter-normalization is in-
sufficient in 2026; contributions and claims.

Micro-search procedures for neural architectures are typically presented as
“local” improvements: one perturbs a baseline network by changing a kernel,
an operator, an attention window, or a normalization rule, and one retains
the change if the measured utility increases. On current accelerators this
informal description hides a persistent confounder. A micro-change rarely
acts in isolation; it almost always changes the deployment cost—latency,
energy, or activation memory—and the proxy evaluation protocol is itself
sensitive to those cost-induced shifts (e.g., via implicit regularization, batch
size constraints, or optimization stability). Consequently, when a candidate
outperforms a baseline, it is generally unclear whether we have discovered a
better micro-choice or merely spent more compute in disguise. We treat this
as an identifiability problem: the “architectural effect” and the “cost effect”
are entangled unless cost is controlled.

A common response is to normalize by parameter count or nominal
FLOPs. In 2026 this is no longer adequate even as a rough surrogate for de-
ployment cost. First, FLOPs ignore the interaction between operator shape
and the hardware stack: the same arithmetic count can map either to a
compute-bound fused kernel or to a memory-bound sequence of small ker-
nels, and the latter can be an order of magnitude slower despite identical
FLOPs. Second, parameter count is insensitive to activation memory and
bandwidth, which dominate for attention-like modules, large feature maps,
and high-resolution stages. Third, modern runtimes perform graph-level
transformations (fusion, tiling, algorithm selection, quantization-aware low-
ering) that make cost strongly non-linear in seemingly minor micro-choices.
Finally, mixed precision and per-layer width scaling alter not only arith-
metic throughput but also tensor-core utilization, cache behavior, and mem-
ory traffic, so “same parameters” does not imply “same latency,” and “same
FLOPs” does not imply “same energy.” Hence any micro-search that com-
pares candidates at unequal true cost risks selecting changes that simply
allocate more capacity along the hardware-relevant axes.

We therefore advocate a different principle: micro-search decisions should
be made within iso-cost neighborhoods on a fixed hardware target. Con-
cretely, we restrict comparisons to architectures whose deployment cost lies
within a tolerance band around a baseline cost. This yields a controlled ex-
perimental setting in which observed utility differences are attributable to
micro-choices rather than to budget inflation. The tolerance is necessary be-
cause cost is measured through a combination of profilers and predictors, and
because discrete compilation effects can cause small discontinuities; never-
theless, keeping candidates within a narrow relative band suffices to remove
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the dominant degree of freedom.
To operationalize this principle we use compensated micro-mutations.

Given a proposed local change (e.g., swapping an operator at one layer), we
adjust a set of “knobs”—most naturally per-layer widths and/or per-layer
precision—to bring the mutated architecture back into the prescribed cost
band. The compensation step is not an afterthought: without it, the neigh-
borhood induced by micro-changes is biased toward cost-increasing moves,
since many expressive operators are also more expensive. By explicitly en-
forcing iso-cost feasibility, we ensure that the neighborhood is symmetric
in the sense relevant to local optimality: a move is judged by its utility at
essentially fixed cost.

This framing also clarifies the statistical burden of micro-search. Proxy
evaluations are noisy: short training runs, partial data, and stochastic opti-
mization introduce variability that can overwhelm small architectural gains.
Under a fixed proxy protocol, selecting among a small set of iso-cost candi-
dates is a best-arm identification problem with sub-Gaussian noise, and thus
admits fixed-confidence procedures with explicit sample complexity. Con-
versely, no algorithm can circumvent the need for a number of proxy eval-
uations proportional to the inverse square of the desired utility tolerance if
it aims to decide improvements reliably. We view this not as a pessimistic
obstacle but as a guide for principled budgeting and for separating the roles
of cost estimation and utility estimation.

Our contributions are accordingly threefold. First, we formalize iso-cost
neighborhoods for micro-search on a given device and show how they remove
the confounding present in unconstrained comparisons. Second, we present
a layerwise search scheme that uses compensated micro-mutations to main-
tain iso-cost feasibility while adaptively allocating proxy evaluations to iden-
tify, with high probability, an approximately best choice within each local
neighborhood. Third, we provide matching upper and lower bounds (up to
constants and mild logarithmic factors) on the number of proxy evaluations
required for such reliable local decisions under standard noise assumptions,
together with an explicit accounting of how cost-model error inflates the
iso-cost tolerance required for true feasibility.

The resulting perspective is intentionally modest in its optimization am-
bition: global optimality under hard cost budgets is intractable in general,
and a local theory is the appropriate level at which one can make non-
vacuous, device-specific claims. The practical implication is that micro-
search can be made scientifically interpretable: when we claim an improve-
ment, we can certify that it occurs at essentially fixed deployment cost on the
target hardware, rather than as a byproduct of untracked budget changes.
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2 Related work

Hardware-aware neural architecture search (NAS) has developed along three
largely independent lines: (i) incorporating device-dependent cost signals
during search, (ii) learning cost predictors that replace direct profiling, and
(iii) addressing the statistical and optimization artifacts introduced by proxy
evaluations and weight sharing. Our formulation of iso-cost micro-search is
most directly connected to all three, but differs in the unit of comparison (iso-
cost neighborhoods around a baseline) and in the type of guarantee sought
(approximate local optimality at fixed hardware cost).

Early hardware-aware NAS methods introduced explicit latency or en-
ergy terms into the objective, either via scalarization (e.g., accuracy minus
a weighted cost penalty) or via constraints (e.g., maximize accuracy subject
to a latency budget) ???. These approaches typically treat cost as a differ-
entiable surrogate, a look-up-table estimate, or a black-box measurement in-
voked during search. Subsequent works emphasized the strong dependence of
cost on the compilation stack and kernel selection, leading to device-specific
search spaces and per-device adaptation ??. Our work is aligned with the
device-specific viewpoint: the cost function is indexed by the hardware tar-
get, and micro-choices are evaluated with respect to that target. However,
rather than exploring a global constrained space, we focus on controlled local
comparisons that hold cost fixed up to tolerance.

A central practical difficulty is the construction of accurate and query-
efficient cost predictors. Many systems approximate latency by summing
per-operator measurements from a look-up table ?; others train regressors on
architectural features and a profiling dataset ??. Differentiable NAS variants
sometimes incorporate a continuous relaxation of latency to enable gradient-
based updates ??. These estimators are known to exhibit systematic error
when kernel fusion, tiling, and memory traffic dominate, and the error can be
architecture-dependent. We do not attempt to eliminate this error; instead
we treat the cost model as an estimator with explicit relative error and
propagate that error into a slightly inflated iso-cost tolerance, which is the
appropriate notion for feasibility when decisions are made adaptively.

Multi-objective NAS and Pareto-frontier methods provide a complemen-
tary perspective in which one seeks a set of trade-off solutions rather than
a single optimum ??. In practice, the Pareto approach is often instantiated
by repeated constrained searches at different budgets or by maintaining a
population under dominance relations. Our contribution is not a new multi-
objective algorithm, but a local primitive that can be used as a subroutine:
by anchoring at multiple baseline costs one may obtain a set of locally Pareto-
efficient architectures, while retaining interpretability of each micro-change
as a cost-controlled intervention.

The interaction between proxy evaluation and architecture selection has
been extensively studied. Weight-sharing approaches (e.g., one-shot NAS)
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reduce cost by training a supernet and inheriting weights for sub-architectures
???. It is now well documented that supernet ranking can be poorly cor-
related with stand-alone training due to coupling between candidates, opti-
mization bias, and unfair training exposure ??. Even without weight sharing,
short-training proxies and partial datasets introduce significant noise and can
mis-rank candidates when true performance gaps are small. Our framework
treats proxy measurements as noisy observations and makes the selection
step explicit as a fixed-confidence identification problem. This separates the
algorithmic role of proxy training (utility estimation) from that of profiling
or prediction (cost estimation), and it yields principled sample-complexity
accounting.

Finally, our setup is related to macro–micro NAS decompositions in
which a coarse macro-skeleton (stages, depths, resolutions) is fixed or searched
at a higher level, while micro-choices (operators, kernel sizes, expansion ra-
tios, attention windows) are refined locally ???. We adopt this decompo-
sition but concentrate on the micro stage under a fixed macro template,
because this is the regime where confounding by cost inflation is most acute:
micro-changes are often accepted based on small proxy gains that may be
attributable to implicit budget shifts rather than genuine operator improve-
ments. The iso-cost neighborhood formalism can be viewed as a device-
specific control mechanism for the micro stage, independent of the particular
macro-search strategy used upstream.

This discussion motivates the notation and problem statement in the next
section, where we formalize the architecture family, the hardware-indexed
cost function, the proxy evaluation model, and the notion of approximate
local optimality under iso-cost neighborhoods.

3 Preliminaries and notation

We work in a macro-fixed micro-search setting. A baseline template specifies
the stage layout (depth, resolutions, and connectivity) and identifies L mu-
table layers (or blocks) whose micro-choices may be altered. The resulting
architecture family is a finite set X : each x ∈ X is obtained by select-
ing, for every mutable layer ℓ ∈ {1, . . . , L}, an operator or kernel variant
(e.g., depthwise separable versus standard convolution, kernel size, expan-
sion ratio, attention window) together with admissible implementation-level
knobs such as width parameters (channels) and numeric precision. We write
x = (x1, . . . , xL) when emphasizing the layerwise decomposition, and we use
x−ℓ to denote all choices except those at layer ℓ.

A hardware target is denoted by h and represents a concrete device to-
gether with its runtime stack (compiler, libraries, and kernel implementa-
tions). Deployment cost is indexed by h: we let

gh : X → R+
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be the true cost of running x on h, where “cost” may refer to latency, energy,
or activation memory, depending on the application. Throughout, we assume
that gh is (i) stagewise separable up to standard measurement noise, and (ii)
monotone in the compensation knobs that we later use to enforce iso-cost
comparisons; concretely, increasing width or using higher precision does not
decrease cost. These assumptions are satisfied approximately for common
inference pipelines and are the minimal structure needed for a well-posed
compensation step.

Direct measurement of gh(x) on device is often expensive during search.
We therefore assume access to a cost estimator (profiler, regressor, or lookup-
table model)

ĝh : X → R+,

which may be queried cheaply. Our analysis treats ĝh as accurate up to
relative error: for each queried x, with probability at least 1− δg we have∣∣ĝh(x)− gh(x)

∣∣ ≤ η gh(x),

for some η ∈ (0, 1) and per-query failure probability δg. We emphasize that
we do not require unbiasedness or independence across x; the only property
we use is a high-probability multiplicative bound on queried points.

Utility is measured by a true function f : X → R (e.g., accuracy, or
accuracy minus a regularizer) under a fixed evaluation protocol. During
micro-search we do not observe f(x) directly; instead we obtain a noisy
proxy f̂(x) computed by a short-training routine (limited epochs, partial
data, or otherwise truncated optimization). We model this as

f̂(x) = f(x) + ξ,

where ξ is mean-zero and σ-sub-Gaussian. In particular, for each t ∈ R we
have E[exp(tξ)] ≤ exp(12σ

2t2), and repeated evaluations of the same x yield
independent copies of ξ. This abstraction covers the standard concentration
tools used in fixed-confidence selection and will allow us to account explicitly
for the proxy evaluation budget.

The primitive operation in our micro-search is a proposal π, which de-
notes a local edit at a single layer (e.g., “replace 3× 3 conv by 5× 5 conv at
layer ℓ”). Applying π to x yields a tentative architecture x′, which typically
changes cost. To control for such changes we will enforce iso-cost compar-
isons relative to a baseline cost. Fix a tolerance τ ∈ (0, 1) and define the
iso-cost band around x by

Bh,τ (x) =
{
x′′ ∈ X : gh(x

′′) ∈
[
(1− τ)gh(x), (1 + τ)gh(x)

]}
.

In practice we implement this band using ĝh together with compensation
knobs. We denote by w the (possibly vector-valued) width parameters that

7



may be scaled within prescribed bounds, and by p the precision choice drawn
from a finite set (e.g., {INT8,FP16}). When a proposal π increases esti-
mated cost, we compensate by reducing width and/or precision (and con-
versely) to bring the modified architecture back into the band. We denote
the resulting compensated operator by Mh,τ (x;π).

The induced iso-cost neighborhood of x is

Nh,τ (x) =
{
Mh,τ (x;π) : π allowed and compensation is feasible

}
,

where feasibility means that the compensated widths remain within [wmin, wmax]
and precisions remain in the allowed set. Finally, we formalize the local
optimality notion we will target. Given ε > 0, we say that x̃ is an (ε, τ)-
approximate local optimum (with respect to h and the allowed proposal set)
if

f(x̃) ≥ f(x′′)− ε for all x′′ ∈ Nh,τ (x̃).

Our algorithms will guarantee this property with probability at least 1−δ for
a user-specified failure probability δ, under a total proxy evaluation budget
C (counted in training steps or epochs), which dominates computation in
the micro-search stage.

4 Problem formulation

We study a micro-search problem in which the macro-structure is fixed and
only local, layerwise choices are mutable. The central difficulty is that a
micro-change proposal π typically alters deployment cost on the target hard-
ware h, and hence naïve utility comparisons confound architectural merit
with capacity or compute inflation. Our formulation therefore constrains
all comparisons to be iso-cost (up to tolerance) by introducing an explicit
compensation step.

(i) Iso-cost mutation feasibility. Fix a baseline architecture x ∈ X
and a proposal π affecting a single layer ℓ. Let Apply(x;π) denote the
tentative architecture obtained by applying π without compensation. We
allow compensation through a prescribed set of knobs, consisting of (a subset
of) width parameters w and possibly the precision choice p. We abstract a
compensation choice by a variable c in a feasible set C encoding bounds
(e.g. w ∈ [wmin, wmax] and p ∈ P). Let x(π, c) denote the compensated
architecture obtained from Apply(x;π) by applying c.

The iso-cost feasibility problem is:

given (x, π, h, τ), find c ∈ C such that
∣∣ĝh(x(π, c))− ĝh(x)

∣∣ ≤ τ ĝh(x).

When such c exists we say that π is (h, τ)-feasible at x. The iso-cost muta-
tion operator Mh,τ is any rule that returns a valid compensated architecture
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x′ = Mh,τ (x;π) = x(π, c) when feasible, and returns infeasible otherwise.
In typical implementations, width compensation is (approximately) mono-
tone in estimated cost, so c can be found by a one-dimensional search over a
width scaling factor, optionally coupled with a small discrete scan over pre-
cision levels. We emphasize that feasibility is hardware-dependent: the same
proposal may be feasible on one runtime stack and infeasible on another due
to kernel availability or precision constraints.

(ii) Iso-cost local improvement under noisy utility. Given a baseline
x, the iso-cost neighborhood Nh,τ (x) is the set of all compensated candidates
produced by applying allowed proposals and feasible compensation. Micro-
search is then a constrained local optimization problem in which admissible
moves are restricted to Nh,τ (·):

max
x∈X

f(x) subject to taking only iso-cost moves on h.

Since we only observe f̂(x), we require a high-probability approximate opti-
mality statement rather than exact ascent. Concretely, for tolerances (ε, τ)
and failure probability δ, our target is to output an architecture x̃ satisfying

f(x̃) ≥ f(x′)− ε ∀x′ ∈ Nh,τ (x̃)

with probability at least 1 − δ, under a total proxy-evaluation budget C.
This is a local guarantee: we do not seek a globally optimal architecture
under a hard budget, but rather an architecture for which no single allowed
compensated micro-change yields a utility gain exceeding ε. The role of
the iso-cost constraint is operational as well as inferential: it ensures that
comparisons between candidates may be attributed to the micro-choice itself,
rather than to an unaccounted cost increase.

(iii) Iso-cost Pareto local search (optional extension). In some de-
ployments, rather than fixing a single operating point, one seeks a small set
of architectures that trade off utility and cost. Iso-cost neighborhoods can be
used to construct an approximately Pareto set by repeating the local search
around multiple anchors. Let B1 < · · · < BK be a collection of target costs
(or baseline architectures x

(k)
0 with differing costs). For each anchor k, we

run an iso-cost local search constrained to the band

gh(x) ∈ [(1− τ)Bk, (1 + τ)Bk],

returning x̃(k) that is an (ε, τ)-local optimum within that band. The result-
ing set {x̃(k)}Kk=1 yields a discrete approximation to the Pareto frontier in
the sense that, near each anchor cost, x̃(k) cannot be locally improved with-
out leaving the band. One may then post-process the collection to remove
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dominated points using (f(x̃(k)), ĝh(x̃
(k))), while reserving occasional true

measurements of gh for final reporting. This extension preserves the same
primitive operations—iso-cost mutation feasibility and noisy best-candidate
selection—but changes the output from a single architecture to a set of lo-
cally optimal operating points across costs.

5 Cost modeling and calibration

Our micro-search procedure treats the deployment cost gh(x) on a fixed hard-
ware target h as the relevant constraint variable. Concretely, gh(x) denotes
the cost of running the full architecture x under a prescribed inference (or
training) setting on h, where the metric may be latency, energy, or peak acti-
vation memory. We regard gh as unknown to the algorithm, since it depends
on kernel implementations, runtime fusion, precision support, and memory
scheduling; moreover, direct evaluation on device is typically too expensive
to perform for every candidate encountered during search.

Defining the measurement target. To avoid ambiguity, we fix a mea-
surement protocol Proth that fully specifies: batch size, input resolution, se-
quence length (if applicable), number of warm-up iterations, number of timed
iterations, clock/power settings, and whether measurements are end-to-end
or exclude data transfer. We then define gh(x) as the (protocol-dependent)
mean cost under repeated runs:

gh(x) := E
[
Meash(x;Proth)

]
,

where Meash is the raw observation (e.g. time per inference). In practice,
the expectation is approximated by averaging multiple repetitions and op-
tionally trimming outliers. For energy, Meash may combine duration with
average power from a device-specific counter or external meter; for activa-
tion memory, Meash may be the maximum resident memory recorded by the
runtime. While we present gh as deterministic, the above definition makes
explicit that measurement noise exists and is separated from modeling error.

Estimator structure. We assume access to an estimator ĝh(x) that is
cheap to query. Typical constructions include (i) table-based summation
of per-operator costs measured on h, optionally parameterized by tensor
shapes and precision, and (ii) a learned regressor on architecture features
with a small number of on-device calibration points. In both cases we aim
to reflect the separability and monotonicity assumptions used later: stage-
wise additivity (or bounded interaction) and non-decreasing cost in width
and higher-precision choices. When the runtime admits graph-level fusion,
additivity is only approximate; we therefore view separability as a modeling
convenience and validate it empirically as part of calibration.
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Relative-error requirement and its empirical meaning. Our analysis
is phrased in terms of a multiplicative error bound: for architectures x that
the algorithm queries,∣∣ĝh(x)− gh(x)

∣∣ ≤ η gh(x) with probability at least 1− δg.

This statement should be understood as an “auditability” condition: if we
sample architectures according to the search distribution and occasionally
measure their true cost on device, then the empirical relative error

e(x) :=
|ĝh(x)− gh(x)|

gh(x)

should be small for most queried x, and large deviations should occur with
frequency at most δg (up to statistical uncertainty). The tolerance param-
eter τ used in iso-cost constraints is chosen in addition to η; later we will
propagate the estimator error into a slightly inflated true-cost tolerance.

Calibration protocol. We recommend building a calibration set Q =
{x(1), . . . , x(n)} ⊂ X that covers the anticipated tensor-shape and precision
regimes encountered in micro-search. For each x(i) we obtain a high-quality
estimate of gh(x

(i)) by repeated on-device measurement under Proth. We
then fit (or adjust) ĝh on a training subset of Q and reserve an audit subset
Qtest to estimate the tail of e(x). A conservative choice is

η := Quantile1−δg

(
{e(x) : x ∈ Qtest}

)
+ γ,

where γ > 0 is a safety margin accounting for finite-sample uncertainty
and possible distribution shift between Qtest and architectures visited during
search.

Testing monotonicity and diagnosing mismatch. Since our mutation
operator will search over compensation knobs (e.g. width scaling or pre-
cision) using cost estimates, we empirically verify that ĝh is approximately
monotone along these one-dimensional sweeps. For representative layers and
widths s1 < s2, we check that ĝh(x(s1)) ≤ ĝh(x(s2)) and, more importantly,
that the same inequality holds for measured gh on a small audit subset. Vi-
olations typically indicate kernel regime switches (e.g. Winograd vs. direct
convolution, tensor-core alignment thresholds, or different attention kernels),
in which case we either refine the estimator around the threshold or restrict
the allowable compensation range to remain within a stable regime.

Online calibration during search. Even with careful offline calibration,
search may propose architectures outside the support of Q. We therefore
allow occasional true measurements of gh on a small, adaptively selected set
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of visited candidates and update ĝh (or at least update the empirical estimate
of η). This online step is not required by the algorithmic description, but it
is the practical mechanism by which the stated η–δg condition is maintained
as the queried set evolves. The subsequent section treats ĝh as fixed and
accurate within (η, δg), and derives guarantees for iso-cost mutation under
this calibration discipline.

6 Iso-cost micro-mutation operator

We now define the primitive that allows us to compare micro-architectural
choices while controlling for deployment cost on a fixed target h. Fix a
baseline architecture x ∈ X and a micro-change proposal π that acts at a
designated layer (or block) ℓ; examples include changing the operator family
(e.g. depthwise → regular convolution), changing a kernel hyperparameter
(e.g. 3 × 3 → 5 × 5), or changing an attention window. Applying π to
x yields a tentative architecture, which we denote by xπ, whose cost may
differ substantially from that of x.

Compensation knobs and the iso-cost target. To enforce an iso-cost
comparison, we allow a restricted set of compensation knobs, typically a
width multiplier s applied to a designated subset of channels and/or a pre-
cision choice p from a finite set P (e.g. FP16/INT8). For notational conve-
nience, we write xπ(s, p) for the architecture obtained by applying proposal
π and then applying compensation (s, p), with the convention that s = 1
and p = p0 (the baseline precision) corresponds to no compensation. The
goal is to find (s, p) such that∣∣ĝh(xπ(s, p))− ĝh(x)

∣∣ ≤ τ ĝh(x), (1)

subject to feasibility constraints (bounds on s and admissible p), and then
to return the compensated architecture

Mh,τ (x;π) := xπ(s⋆, p⋆).

This definition makes explicit that iso-cost is enforced with respect to the
estimator ĝh; the subsequent guarantee converts (1) into a statement about
the true cost gh.

Feasibility conditions. We require that the compensation search space
be constrained in advance. For width scaling we assume an interval s ∈
[smin, smax] such that the resulting tensor shapes remain valid and lie in
regimes where the runtime is stable; in particular, we forbid scalings that
change divisibility constraints required by vectorization or tensor-core align-
ment. For precision we assume a finite set P supported by the deployment
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stack on h and compatible with the operator at layer ℓ (e.g. some layers may
not admit INT8 without additional quantization parameters). A proposal π
is declared infeasible if no admissible compensation achieves (1).

Construction by one-dimensional search. Under the monotonicity as-
sumption, the compensation search can be reduced to a small number of
one-dimensional problems. The most common case is width-only compensa-
tion with fixed precision, where we assume that for the family xπ(s) the true
cost gh(x

π(s)) is non-decreasing in s, and that ĝh(x
π(s)) is sufficiently well-

behaved to permit bracketing. We then search for s⋆ such that (1) holds,
using either (i) binary search over a discretized grid of admissible widths, or
(ii) a directed local search that steps s downwards if the estimated cost is
too high and upwards otherwise. When both s and p are allowed, we first
enumerate the small set of admissible precisions p ∈ P, and for each p solve
the width subproblem; we then select any feasible pair (s, p), breaking ties by
maximizing a secondary criterion such as keeping s closest to 1 (to minimize
representational drift away from the baseline).

Guarantee under cost-model error. Assume that on all queried archi-
tectures we have the multiplicative error condition∣∣ĝh(z)− gh(z)

∣∣ ≤ η gh(z),

with probability at least 1 − δg. Suppose that IsoCostMutate returns a
compensated candidate x′ = xπ(s⋆, p⋆) satisfying (1). Then, on the event
that the above error bounds hold simultaneously for x and x′, we can relate
true costs via the inequalities

(1−η)gh(x) ≤ ĝh(x) ≤ (1+η)gh(x), (1−η)gh(x
′) ≤ ĝh(x

′) ≤ (1+η)gh(x
′).

Combining these with (1) yields a true iso-cost band of the form

gh(x
′) ∈

[
(1− τ ′)gh(x), (1 + τ ′)gh(x)

]
,

where τ ′ exceeds τ by an additive inflation on the order of η (e.g. one ad-
missible explicit choice is τ ′ = τ + 3η + 2ητ for small η). Thus the operator
Mh,τ enforces true iso-cost feasibility up to a predictable slack determined by
calibration quality. In the next section we treat τ ′ as the effective tolerance
and use it as an invariant when composing many such mutations inside a
layerwise micro-search routine.

7 Layerwise iso-cost micro-search with confidence
bounds

We now describe a concrete routine that composes the iso-cost mutation
operator across layers while controlling proxy-evaluation noise. Fix a baseline
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x0 ∈ X , tolerances (τ, ε, δ), and a hardware target h. Our search proceeds
layerwise: at each mutable layer ℓ ∈ {1, . . . , L} we enumerate a small set
of admissible micro-change proposals Pℓ = {πℓ,1, . . . , πℓ,m}, construct the
corresponding iso-cost compensated candidates, and then select among them
using a fixed-confidence comparison rule under f̂ .

Candidate set at a layer. Let x denote the incumbent architecture at
the beginning of layer ℓ. For each proposal π ∈ Pℓ we compute

xπ := Mh,τ (x;π),

discarding π if Mh,τ returns infeasible (i.e. no admissible compensation achieves
the estimated iso-band). We then form the comparison set

Sℓ := {x} ∪ {xπ : π ∈ Pℓ feasible}, |Sℓ| ≤ m+ 1.

All elements of Sℓ are, by construction, comparable at (estimated) equal
cost on h up to tolerance τ , and differ only in the local micro-choice plus
compensating knob values.

Noisy selection by confidence bounds. We implement the selection
step by repeated proxy evaluations. For each z ∈ Sℓ we maintain an empir-
ical mean f(z) from n(z) i.i.d. proxy runs f̂(z). Under the σ-sub-Gaussian
assumption, a standard confidence radius is

r(n; δ′) := σ

√
2 log(2/δ′)

n
,

yielding (simultaneous) bounds f(z)± r(n(z); δ′) after n(z) samples. A con-
venient fixed-confidence rule is to return any ẑ ∈ Sℓ satisfying the termina-
tion condition

LCB(ẑ) ≥ max
z∈Sℓ\{ẑ}

UCB(z) − εℓ, (2)

where LCB(z) = f(z)−r(n(z); δℓ/|Sℓ|) and UCB(z) = f(z)+r(n(z); δℓ/|Sℓ|).
Condition (2) ensures that ẑ is εℓ-optimal within Sℓ on the event that all
confidence intervals hold. We may allocate samples uniformly (simplest) or
adaptively by sampling the currently most ambiguous candidates (e.g. those
with largest UCB among competitors).

Per-layer budgets and global parameters. To obtain an overall (ε, τ)
guarantee after L layer updates, we choose schedules (εℓ, δℓ) with

∑L
ℓ=1 εℓ ≤

ε and
∑L

ℓ=1 δℓ ≤ δ. A canonical choice is εℓ = ε/L and δℓ = δ/L, which
makes the union bound explicit and yields the sample complexity stated
in §8. We additionally enforce an external compute budget C on the total
number of proxy steps; if the selection subroutine would exceed the remaining
budget, we terminate early and return the current incumbent (which weakens
the formal ε guarantee but preserves the cost invariants).
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Invariants maintained throughout the search. Writing xℓ for the in-
cumbent after completing layer ℓ, the procedure maintains:

1. Estimated iso-cost invariant: by construction of Mh,τ , each accepted
update satisfies |ĝh(xℓ)− ĝh(xℓ−1)| ≤ τ ĝh(xℓ−1).

2. True iso-cost invariant (high probability): on the event that the cost-
model error bounds hold for all queried architectures, the above implies
a true band gh(xℓ) ∈ [(1 − τ ′)gh(xℓ−1), (1 + τ ′)gh(xℓ−1)] with τ ′ =
τ +O(η) as in §6.

3. Feasibility invariant: all widths/precisions remain within the admis-
sible sets (divisibility, quantization support, and any layerwise con-
straints).

4. Fairness invariant: all candidates in each Sℓ are evaluated using the
same proxy protocol, so comparisons are attributable to micro-choices
rather than evaluation artifacts.

Stopping criteria beyond fixed-confidence. In addition to budget ex-
haustion, we may stop early at a layer if the incumbent is already competi-
tive, e.g. if

LCB(x) ≥ max
z∈Sℓ\{x}

UCB(z) − εℓ,

in which case no feasible iso-cost proposal at layer ℓ appears to improve
utility by more than εℓ given the accumulated evidence.

Optional multi-device variant. If we have a finite set of targets H, we
can enforce iso-cost simultaneously by defining a multi-constraint neighbor-
hood

NH,τ (x) :=
{
x′ : ∀h ∈ H, gh(x

′) ∈ [(1− τ)gh(x), (1 + τ)gh(x)]
}
,

and modifying Mh,τ to search for a common compensation (e.g. a shared
width scaling and a per-device admissible precision, or a single precision
supported by all h ∈ H). In practice we implement this by checking the esti-
mated band (1) for each h ∈ H and declaring infeasible unless all constraints
pass; the subsequent analysis proceeds by replacing δg with a union bound
over devices and treating the effective tolerance as the maximum inflation
across h ∈ H.

Fixed-confidence upper bound. We formalize the proxy-evaluation cost
needed to obtain an (ε, τ)-approximate local optimum under the iso-cost
neighborhood. Fix a layer ℓ and its comparison set Sℓ of size Kℓ := |Sℓ| ≤
m+ 1. On the event that all confidence intervals f(z)± r(n(z); δℓ/Kℓ) hold
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simultaneously for all z ∈ Sℓ and all sampling times, any termination rule of
the form (2) returns an εℓ-optimal element of Sℓ, i.e.,

f(ẑℓ) ≥ max
z∈Sℓ

f(z) − εℓ.

A standard argument (sub-Gaussian concentration plus a union bound over
arms and sampling rounds) implies that we can ensure this event with prob-
ability at least 1−δℓ by choosing radii r(·; δℓ/Kℓ) and by sampling each can-
didate sufficiently many times. In particular, a uniform allocation n(z) ≡ nℓ

with

nℓ = O

(
σ2

ε2ℓ
log

Kℓ

δℓ

)
suffices to guarantee that every interval half-width is at most εℓ/2, hence
(2) holds for some ẑℓ and yields εℓ-optimality in Sℓ. This yields a per-layer
proxy-evaluation count of

O

(
Kℓ ·

σ2

ε2ℓ
log

Kℓ

δℓ

)
under the simplest sampling strategy; adaptive sampling (successive elimi-
nation or LUCB-style rules) can reduce constants and improve dependence
on instance-specific gaps, but does not change the worst-case σ2ε−2

ℓ log(1/δℓ)
scaling.

From per-layer selection to local optimality. Let xℓ−1 be the incum-
bent at the start of layer ℓ, and let xℓ be the selected architecture after
running the fixed-confidence selector on Sℓ. By construction, Sℓ contains
xℓ−1 and all feasible one-step iso-cost mutations at layer ℓ (with compen-
sation), so εℓ-optimality in Sℓ implies that no feasible proposal at layer ℓ
improves upon xℓ by more than εℓ when evaluated at the incumbent state.
Summing this guarantee across layers gives, for any architecture x′′ obtain-
able from the final x̃ := xL by a single feasible iso-cost proposal at some
layer, the bound

f(x̃) ≥ f(x′′) −
L∑

ℓ=1

εℓ,

on the event that all per-layer selection guarantees hold. Choosing a sched-
ule with

∑L
ℓ=1 εℓ ≤ ε and

∑L
ℓ=1 δℓ ≤ δ therefore yields the stated (ε, τ)-

approximate local optimality with probability at least 1 − δ (by a union
bound over layers). The canonical choice εℓ = ε/L and δℓ = δ/L yields the
total proxy-evaluation complexity

O

(
L∑

ℓ=1

Kℓ ·
σ2

ε2ℓ
log

Kℓ

δℓ

)
= O

(
L · (m+ 1) · σ

2

ε2
log

L(m+ 1)

δ

)
,
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up to universal constants, matching the dependence claimed earlier. We
emphasize that this is a guarantee for a local optimum with respect to the
iso-cost neighborhood induced by the allowed proposal set and compensation
rule; it is not a statement about global optimality over X .

Matching lower bound and tightness. The worst-case dependence on
(σ, ε, δ) cannot be improved without additional structure. In the special case
L = 1 and |S1| = 2, with gh(x0) = gh(x1) (exact iso-cost) and f̂(x) = f(x)+ξ
for σ-sub-Gaussian ξ, deciding which of x0, x1 is better by at least ε reduces
to a two-hypothesis testing problem with mean gap ε. Standard information-
theoretic reductions (Le Cam or a change-of-measure argument) show that
any algorithm that returns an ε-optimal choice with probability at least 1−δ
must use

Ω

(
σ2

ε2
log

1

δ

)
proxy evaluations in expectation. Consequently, our upper bound is minimax-
optimal in σ2/ε2 and in log(1/δ), and the remaining multiplicative factor
L(m + 1) is unavoidable in the worst case when each layer contributes an
independent ambiguous choice.

Assumptions and their roles. The sub-Gaussian and independence as-
sumptions are invoked only to obtain explicit confidence radii and a clean
fixed-confidence stopping rule; other noise models (bounded, sub-exponential,
or mildly dependent) can be accommodated by modifying radii and incurring
corresponding constants. The cost-model accuracy assumption affects only
feasibility of the iso-cost constraint: the selection analysis compares utilities
within Sℓ and is agnostic to gh, while the translation from estimated iso-cost
to true iso-cost inflates τ by a factor O(η) as discussed earlier. Finally, we
note that tighter bounds are possible in benign instances (large utility gaps,
many dominated candidates), but without such gap conditions the lower
bound shows that no algorithm can uniformly beat the stated scaling.

8 9. Practical evaluation plan (implementation-
dependent): benchmarks, devices, cost metrics,
baselines (parameter-normalization, cost-penalty
search), and metrics (Pareto front quality, rank
correlation, transfer).

We regard empirical validation as an implementation-dependent complement
to the preceding guarantees, and we therefore separate (i) the choice of
benchmark families and hardware targets, (ii) the measurement protocol
for the “true” deployment costs gh, and (iii) the comparative methodology
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against natural baselines that do not enforce iso-cost constraints. Concretely,
we select a small number of macro-templates with L mutable layers (e.g. a
mobile CNN stage template and a small vision transformer template) and
instantiate micro-choice sets that reflect realistic operator alternatives (ker-
nel size, expansion ratio, attention windowing, fused vs. unfused blocks, and
optional precision changes). We run all methods on the same set of su-
pervised tasks (e.g. ImageNet-1k for vision and a smaller proxy dataset for
rapid iteration) with a fixed evaluation protocol for f̂ (identical optimizer,
schedule, augmentation, and number of steps), so that differences in f̂(x)
are attributable to the architectural choice and not to training confounders.

For hardware targets, we treat h as the pair (device, runtime stack) and
explicitly include heterogeneity that is known to affect micro-choices: a mo-
bile CPU with a vendor BLAS / XNNPACK backend, a mobile GPU (e.g.
OpenCL/Vulkan), and a server GPU with TensorRT/cuDNN; optionally an
edge accelerator with compiler-based deployment. For each h we specify a
primary cost metric (latency) and one secondary metric (energy or activa-
tion memory) to ensure that improvements are not achieved by shifting cost
into an unmeasured resource. The true deployment cost gh(x) is obtained
by compiling/exporting x into the target stack and benchmarking on-device
using repeated runs with warm-up; we report median latency and an un-
certainty estimate (e.g. median absolute deviation) to expose kernel-level
variance. When energy is the target, we use an external power monitor or
on-device counters when reliable; when activation memory is the target, we
use runtime peak memory (or a conservative static upper bound) under a
fixed batch size. This measurement protocol defines the reference against
which ĝh is judged.

To validate the estimator assumptions used by the iso-cost mutation
operator, we audit ĝh by measuring (ĝh(x), gh(x)) on a stratified sample of
architectures spanning the width/precision bounds and a representative set
of operator choices. We then report (a) relative error statistics to estimate
a practical η and (b) rank correlation (Spearman/Kendall) between ĝh and
gh within an iso-cost band, since compensation relies on preserving order as
width is adjusted. Because cost models are often biased in specific regions
(e.g. depthwise kernels, small channel counts), we also include a lightweight
calibration step (a small set of on-device measurements to fit a monotone
correction) and report the before/after impact on feasibility, namely the
empirical frequency with which a candidate satisfying |ĝh(x′) − ĝh(x)| ≤
τ ĝh(x) also satisfies gh(x

′) ∈ [(1− τ)gh(x), (1 + τ)gh(x)].
We compare against baselines that reflect common practices for con-

trolling cost without explicit iso-cost neighborhoods. First, a parameter-
normalization baseline: for each proposal π we adjust width to match pa-
rameter count (or FLOPs) rather than gh, then evaluate with the same f̂
protocol; this tests whether hardware-specific iso-cost is necessary beyond
crude capacity matching. Second, a cost-penalty (Lagrangian) baseline that
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optimizes f̂(x)− λĝh(x) over the same micro-choice space, with λ tuned to
hit the target budget; this reflects penalty-based NAS and highlights sen-
sitivity to multiplier selection. Third, a constrained search baseline that
rejects candidates with ĝh(x) > B for a fixed budget B but allows arbitrary
slack below B, which tests the confounding effect of “free” cost reductions.
We additionally include random local mutation under the same evaluation
budget C as a sanity check on sample efficiency.

We evaluate outcomes along three axes. (i) Anchor-wise improvement :
for each initial anchor architecture x0 we report the achieved utility f(x̃) (or
a higher-fidelity surrogate) together with its measured cost gh(x̃) and the
iso-cost deviation relative to gh(x0). (ii) Pareto quality : by repeating iso-
cost search at multiple anchors (different budgets or different x0 widths), we
obtain a set of candidates and compute standard Pareto metrics (hypervol-
ume and dominated fraction) under true costs gh; this directly tests whether
iso-cost local optima trace a meaningful frontier. (iii) Predictive validity :
we report the correlation between proxy utility f̂ and final trained utility
f (or a longer training protocol) to quantify proxy fidelity, and we measure
the extent to which the ordering among iso-cost neighbors is preserved as
training is extended.

Finally, we test transfer. Given a solution x̃ found on hardware h, we
re-deploy the same micro-choices on a different hardware h′ while re-running
compensation (width/precision) to satisfy the iso-cost constraint on h′, and
we report the retained utility gain relative to the corresponding anchor on
h′. This isolates whether the micro-choices are intrinsically beneficial or
merely exploit idiosyncrasies of a particular kernel library. We also repeat
the search across random seeds and across at least one dataset shift (e.g.
ImageNet → a downstream classification task) to assess robustness of the
local improvements.

Limitations and extensions. We record several respects in which the
iso-cost formalism is not, by itself, a complete theory of deployment-aware
micro-search, and we indicate extensions that preserve the central idea while
relaxing assumptions that are convenient for analysis but imperfect in prac-
tice.

Non-monotone or irregular cost responses. Our use of compensation via
a single width scaling parameter (and optional precision choice) tacitly ap-
peals to a monotonic relationship s 7→ gh(x(s)), which justifies binary search
and yields a clean propagation of the cost-model error in Thm. 1. Real
systems may violate this monotonicity because of kernel selection thresh-
olds, padding-induced layout changes, cache effects, or compiler heuristics;
empirically, gh can be piecewise monotone with discontinuities and small in-
versions. In such regimes, a direct extension is to replace binary search by a
finite compensation set S (a small grid of admissible widths and/or a finite
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set of precisions) and define

Mh,τ (x;π) ∈ arg min
x′′∈{x′( s,p ):(s,p)∈S}

∣∣ĝh(x′′)− ĝh(x)
∣∣ s.t. feasibility,

followed by rejection if the best achievable deviation exceeds τ ĝh(x). This
modification trades analytic simplicity for robustness: we no longer require
global monotonicity, only that S is rich enough to approximate the iso-cost
band. One may further assume a bounded number of inversions (a “K-
quasi-monotone” model), in which case a bracketed search over S recovers an
O(K log |S|) cost-query bound. When non-monotonicity is severe, it becomes
natural to insert occasional true cost measurements for a small subset of
candidates and treat ĝh as a proposal mechanism rather than a hard gate.

Kernel-level implementation variance and stochastic costs. Even when
the compiled graph is fixed, measured latency and energy are random due
to OS scheduling, DVFS, thermal throttling, and nondeterministic kernel
dispatch. Our definition of gh(x) as a deterministic quantity should then
be interpreted as a functional of the underlying distribution, e.g. gh(x) =
E[lat(x)] or a high quantile. This suggests an extension in which both f̂(x)
and the measured ĝh(x) are noisy, with separate concentration parameters.
The iso-cost constraint can be enforced via confidence intervals: we accept
x′′ only if

LCB
(
gh(x

′′)
)
≥ (1−τ)UCB

(
gh(x)

)
and UCB

(
gh(x

′′)
)
≤ (1+τ) LCB

(
gh(x)

)
,

where bounds are computed either from repeated on-device measurements or
from a calibrated predictor with an uncertainty model. This change makes
the feasibility statement probabilistic in a second dimension and forces an
explicit allocation of measurement budget between utility and cost; how-
ever, it also prevents silent violations caused by rare but systematic kernel
slowdowns.

Multi-objective iso-cost neighborhoods. Many deployments constrain more
than one resource (e.g. latency and peak activation memory), in which case
a scalar gh is insufficient. A direct generalization is to take a vector cost
ch(x) ∈ Rk

+ and define an iso-cost band componentwise:

Nh,τ (x) =
{
x′′ : ∀j ∈ {1, . . . , k}, ch,j(x′′) ∈

[
(1−τj)ch,j(x), (1+τj)ch,j(x)

]}
.

All preceding constructions extend syntactically with ĝh replaced by ĉh, al-
though feasibility becomes stricter and compensation may require multiple
knobs (e.g. width for compute, precision for memory). One may also define
iso-cost sets via a norm constraint ∥ log ch(x′′) − log ch(x)∥∞ ≤ τ , which
is equivalent to a multiplicative band and is convenient for error propaga-
tion. Finally, if one wishes to optimize multiple utilities (e.g. accuracy and
robustness) under iso-cost, the appropriate outcome is a local Pareto set
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within Nh,τ (x); layerwise best-arm identification can be replaced by elimi-
nation with dominance checks, but the sample complexity necessarily scales
with the number of nondominated candidates.

Coupling with dynamic proxy-training budgets. Our analysis fixes a proxy
protocol and counts the number of independent evaluations, thereby treating
each sample of f̂(x) as having equal cost. In practice, we may trade training
steps for variance reduction: letting f̂t(x) denote the proxy after t steps, we
often have Var(f̂t(x)) decreasing in t while the bias (relative to final f) may
increase or decrease depending on optimization dynamics. An extension is to
combine iso-cost neighborhoods with multi-fidelity racing: within each layer,
we begin with small t for all candidates, eliminate clearly suboptimal ones
using confidence bounds, and allocate larger t only to survivors. The fairness
invariant then becomes: candidates are compared at equal current fidelity
before elimination, while the overall budget C is allocated adaptively. For-
mally, one may view this as best-arm identification with variable sampling
costs and time-varying noise σ(t), yielding improved constants (and some-
times improved effective sample complexity) without changing the core (ε, τ)
notion.

These extensions do not alter the principal interpretation: iso-cost con-
straints remove a dominant confounder, but they must be instantiated with
care when the cost surface is irregular, noisy, multi-dimensional, or when the
proxy evaluator admits adaptive fidelity.

Conclusion: iso-cost as a fairness primitive for micro-search. We
have treated deployment-aware micro-search as a problem in which a designer
wishes to ascribe observed utility changes to architectural micro-decisions
rather than to accidental changes in effective capacity induced by higher
latency, energy, or memory. The central device is the iso-cost neighborhood
Nh,τ (x), together with a mutation operator that compensates each proposal
by adjusting permitted knobs so that cost remains within a multiplicative
band around the incumbent. In this view, the iso-cost constraint is not
an afterthought appended to search; it is the mechanism that makes local
comparisons meaningful on a fixed hardware target h.

The key conceptual consequence is that iso-cost acts as a fairness prim-
itive for micro-search: when we compare two candidates inside the same
band, the nuisance degree of freedom corresponding to spending more de-
ployment budget is (approximately) removed, and the remaining differences
can be attributed to the micro-choice itself. This fairness interpretation is
operational rather than philosophical. It says that, under a fixed evalua-
tion protocol for f̂ , the algorithm’s preference relation is constrained to be
invariant to cost-inflation tricks, and thus a selected improvement is, by con-
struction, not merely a larger model in disguise. The identifiability claim
embodied by this restriction underlies the usefulness of iso-cost neighbor-
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hoods as a unit of scientific comparison: the same primitive supports both
automated search and human-guided ablations.

On the algorithmic side, the layerwise scheme we analyzed can be read as
a template: at each layer we generate at most m feasible iso-cost mutations
and solve a noisy best-arm identification problem over the incumbent and
these candidates. The guarantee is local—we do not claim global optimal-
ity in X—but it is the correct granularity for micro-search under realistic
budgets. In particular, an (ε, τ)-approximate local optimum is a statement
that the algorithm has paid enough samples to rule out, with high probabil-
ity, any single allowed compensated micro-change that would improve f by
more than ε without leaving the iso-cost band. The matching lower bound
in the simplest case emphasizes that this sample cost is not an artifact of the
proof: even when the cost constraint is exact, reliable choice among near-tied
candidates requires Ω(σ2ε−2 log(1/δ)) proxy evaluations.

For deployment-aware neural architecture search (NAS), the immedi-
ate implication is that one may decouple concerns that are often conflated.
Macro-search may propose stage layouts and overall budgets, while micro-
search, constrained by iso-cost, can refine operator choices, kernel variants,
attention windows, or precision patterns without drifting away from the in-
tended deployment point. Moreover, because the constraint is anchored to
a particular h, the resulting architecture is explicitly hardware-conditional :
the same macro template can induce distinct micro-optima on different de-
vices, and the iso-cost formalism tells us how to compare those optima fairly
within each device’s own cost scale.

The same primitive also clarifies how to approximate cost–utility trade-
offs without turning micro-search into a fully multi-objective problem. By
repeating iso-cost local optimization from several anchors (distinct baseline
costs), one may assemble a discrete approximation to a Pareto frontier, where
each point is locally stable under iso-cost mutations. This is often the right
outcome for deployment: practitioners rarely need a single “best” network in
the abstract, but rather a small menu of architectures that are each near-
optimal around a prescribed operating regime and can be selected by product
constraints.

Finally, we emphasize what our formalization is and is not. It is a state-
ment about comparisons under controlled cost, and thus about the reliability
of micro-search decisions under noisy proxy evaluation. It is not, by itself,
a complete account of how to build accurate cost predictors, how to choose
mutation sets that span the relevant design degrees of freedom, or how to
guarantee global optimality under hard budgets. Nevertheless, as a primi-
tive, iso-cost neighborhoods provide a principled interface between hardware
models, search heuristics, and statistical decision rules. In our judgment,
this interface is the right abstraction for deployment-aware NAS: it keeps
the search honest with respect to the resource that ultimately matters, while
remaining compatible with the practical realities of noisy evaluation and lim-
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ited compute.
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