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Abstract

Neural architecture search (NAS) in global, high-variance spaces is
bottlenecked by evaluation: architectures are typically compared under
a single fixed training protocol, despite evidence (including in Efficient
Global Neural Architecture Search) that training settings can affect
accuracy as much as the architecture itself. We formalize architec-
ture evaluation as a cost-sensitive multi-fidelity best-arm identification
problem where each architecture can be queried at varying fidelities
(training steps, data fraction, resolution) producing noisy proxy ac-
curacies with a capacity-dependent, fidelity-decaying bias. We prove
a lower bound showing that any fixed-fidelity protocol can require
linear-in-| X’| compute on heterogeneous learning-curve instances, even
when an adaptive multi-fidelity strategy can succeed with sublinear
effective cost. We then introduce CASH, a capacity-aware successive-
elimination algorithm that chooses per-architecture training budget
from a learned/calibrated mapping of architecture statistics to fidelity
and uses bias-aware confidence intervals to eliminate suboptimal can-
didates safely. Under a parametric learning-curve/bias model, CASH
is (g,0)-correct and achieves near-minimax optimal expected cost up
to logarithmic factors. Finally, we outline an experimental validation
plan on NAS-Bench/JAHS-Bench and a global macro—micro space to
measure rank correlation improvements and compute-to-e-optimality,
turning the source paper’s dynamic ranking insight into a principled,
provably efficient evaluation primitive for modern NAS.
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1 Introduction and Motivation

Neural architecture search is routinely driven by proxy evaluations: we in-
stantiate an architecture x and train it for a limited budget (say, f epochs),
producing an observed score Y (z, f) that is then used to rank candidates
and decide which models deserve further compute. The prevalent simplifica-
tion is to fix a single protocol—a common training schedule, augmentation
recipe, and, critically, a common fidelity fo—and to treat the resulting rank-
ings as stable surrogates for the terminal ranking induced by the converged
means {(;}.ex. In practice, however, architecture rankings are not invari-
ant to training budget: the relative order of two architectures can change as
f increases, even when all other hyperparameters are held constant. This
phenomenon is visible in essentially any heterogeneous search space: smaller
or easier-to-optimize architectures often achieve high proxy accuracy early
and then saturate, while larger or harder-to-optimize architectures may learn
slowly but eventually overtake. Consequently, a fixed-fidelity protocol may
systematically mis-rank the set X', promoting “fast starters” and suppressing
“late bloomers.”

We view this instability as a structural issue rather than an implemen-
tation artifact. Even in the idealized setting where each proxy evaluation is
an unbiased noisy estimate of a monotone learning curve, a single snapshot
fo cannot capture heterogeneous rates. More pointedly, in realistic pipelines
the proxy is not merely noisy but also biased downward relative to the con-
verged performance: limited training typically underestimates the terminal
accuracy, and the magnitude of this underestimation depends on the archi-
tecture. Denoting by E[Y (x, f)] the expected proxy performance at fidelity
f, the proxy bias 8, (f) := pz —E[Y (z, f)] is nonnegative and decreases with
f, but it need not be uniform across arms. If 5,(fp) varies widely with z,
then the ranking induced by E[Y (z, fo)] can disagree with the ranking in-
duced by p, by more than any tolerance relevant to best-arm identification.
Importantly, this mis-ranking cannot be repaired by mere repetition at the
same fidelity: averaging reduces statistical noise but leaves systematic bias
intact.

This observation yields a dilemma for any fixed protocol. If we insist
on correctness guarantees for identifying an e-optimal architecture with high
probability, then we must choose fy large enough that the worst-case bias
at fo is below the relevant gaps. In heterogeneous spaces, this “worst-case”
fidelity is essentially the near-terminal budget, which forces training many
architectures far longer than needed. Conversely, if we choose a modest fy
to save compute, then there exist plausible instances where the proxy obser-
vations are information-theoretically insufficient to distinguish the optimum:
two arms may have terminal gap A, yet be indistinguishable at fidelity fo
because admissible biases can erase the gap at the proxy level. The central
thesis of this work is that this dilemma is not incidental; it is minimax. The



correct remedy is not to tune a single fidelity, but to allocate different fideli-
ties to different architectures in a way that respects their heterogeneous bias
scales.

Our first contribution is to formalize this proxy-evaluation setting as a
cost-sensitive multi-fidelity best-arm identification problem. We consider a
finite candidate set X with unknown terminal means p, € [0,1] and a set of
fidelities F C Ry. Querying (z, f) yields Y (z, f) with sub-Gaussian noise
and a one-sided bias: E[Y (z, f)] < pp and 0 < py —E[Y (z, )] < g(s(z))f~*
for a known statistic s(z) (e.g., parameter count) and known decay exponent

€ (0,1], but unknown nonnegative scale function g(-). Each query incurs
cost ¢(z, f) = k(x)f. The goal is to output & with pz > max, p, — & with
probability at least 1 — §, while minimizing total cost. This model isolates,
in a tractable manner, the empirical fact that larger-capacity or otherwise
complex architectures can exhibit larger short-budget underestimation.

Our second contribution is a minimax lower bound showing that fixed-
fidelity policies are fundamentally inefficient under heterogeneous bias. In-
formally, for any algorithm that evaluates every arm at (essentially) a single
shared fidelity fp, we construct instances with two “types” of arms having
different bias scales such that (g, d)-correctness forces the algorithm to in-
crease fidelity to a much larger value fharq > fo for a linear number of arms.
Equivalently, either one pays Q(/V) near-terminal cost or one cannot guaran-
tee correctness. This establishes a separation: the inability of a fixed protocol
to adapt to g(s(z)) can be exploited by adversarial (yet model-compliant)
learning-curve heterogeneity.

Our third contribution is an adaptive algorithm, CASH, that uses the
known statistic s(z) to choose per-arm fidelities and employs bias-aware
confidence bounds within a successive-elimination framework. At a high
level, CASH maintains an active set and, in each round, selects for each
active arm z a fidelity f,(x) just large enough to reduce the bias upper
bound below a round-dependent tolerance. It then queries the arm at that
fidelity, forms upper and lower confidence bounds that explicitly account for
one-sided bias, and eliminates arms whose (bias-corrected) upper bounds fall
below the incumbent’s lower bound. The design ensures that, on a single
high-probability event, the true terminal means remain sandwiched between
the bounds for all arms and rounds, so the optimal arm is never discarded.

Our fourth contribution is a matching (up to logarithmic factors) expected-
cost analysis. We show that the total cost decomposes into two unavoidable
components: a bias-resolution term scaling like k() (g(s(x))/Ax)l/a, which
is the cost needed to push the proxy bias below the gap for arm x, and a
statistical term scaling like r(z)0?/A2, which is the cost needed to over-
come sub-Gaussian noise. Summed over suboptimal arms, these terms yield
a near-minimax upper bound, and we complement it with a lower bound in-
dicating that no adaptive policy can do uniformly better (up to logs) under



the stated bias model.

Finally, we outline an empirical plan to validate the theory against prac-
tical NAS evaluation. We measure (i) rank instability as a function of f
(e.g., Kendall T across fidelities), (ii) compute-to-e-optimality, and (iii) the
distribution of per-architecture allocated budgets. We compare CASH to
fixed-fidelity baselines and standard multi-fidelity heuristics, using controlled
synthetic instances (where g(-) and « are known) and realistic search spaces
(where they are not), thereby testing whether capacity-aware fidelity selec-
tion delivers the predicted compute savings without sacrificing identification
accuracy.

2 Related Work

Multi-fidelity hyperparameter optimization. A large body of work in
hyperparameter optimization (HPO) exploits the fact that partial training
can be used as a cheap proxy for full training. Early-stopping and racing
methods instantiate many configurations at small budgets and progressively
allocate more resources to a shrinking subset. Canonical examples include
successive halving and its budget-adaptive variant Hyperband ?7. These
methods are designed to be simple, parallelizable, and robust when learning
curves are informative, and they provide worst-case guarantees for identify-
ing good configurations under stylized assumptions (e.g., stochastic rewards
at each budget). BOHB 7 combines Hyperband-style resource allocation
with model-based sampling (KDE-based Bayesian optimization), targeting
improved sample efficiency in large configuration spaces. More recent multi-
fidelity Bayesian optimization frameworks incorporate fidelity as an explicit
input and model correlations across budgets via Gaussian processes or related
surrogates ?7. Our setting shares the same operational primitive (querying
a configuration at a chosen budget), but the emphasis is different: we study
finite candidate sets with an explicit one-sided proxy bias relative to a ter-
minal objective, and we make the cost model and the fidelity-dependent bias
constraints central to the identification guarantee.

Best-arm identification with costs and structured sampling. The
best-arm identification (BAI) literature provides information-theoretic and
algorithmic foundations for identifying an e-optimal arm with probability
at least 1 — 0 under noisy observations ?7?7. Cost-sensitive variants allow
different arms to have different sampling costs, leading to policies that trade
off information gain and expenditure ??. There is also work on BAI under
additional structure (e.g., correlated arms, contextual information, or side
observations), where the goal is to reduce sample complexity by leveraging
known relationships between arms ?7?. Our contribution is orthogonal to
most of this literature: the principal obstruction we address is not purely



statistical noise but systematic underestimation that depends on fidelity and
varies across arms. In particular, repeated evaluation at a fixed fidelity
cannot remove this bias. Consequently, the relevant resource is not only the
number of samples but the fidelity required to make observations informative
about u, at the desired resolution.

Learning-curve modeling and extrapolation. Another line of work
seeks to predict terminal performance from partial learning curves via para-
metric fits, extrapolation, or meta-modeling across tasks and architectures
?7?77?7. These approaches can be effective empirically when curves conform to
a family of shapes and when sufficient meta-data are available. However,
their guarantees typically depend on modeling assumptions that can be vi-
olated by architecture-dependent optimization dynamics, regularization, or
training instabilities. By contrast, our proxy model is deliberately conserva-
tive: we assume only that proxy evaluations are biased downward and that
the bias admits an upper bound that decays with fidelity. This perspective
treats partial training as an admissible but systematically distorted obser-
vation of the terminal objective, and it suggests that one should allocate
fidelity until the distortion is provably dominated by the gap scale relevant
for elimination.

Neural architecture search evaluation pitfalls and proxy metrics.
Practical NAS pipelines commonly rely on proxy evaluation mechanisms be-
yond early stopping, including weight sharing (one-shot NAS), low-resolution
or shortened training schedules, and a variety of “zero-cost” predictors based
on architecture or gradient statistics 77?7. These proxies are motivated by
extreme computational constraints, but their relationship to true converged
accuracy can be unstable, and the induced ranking can vary substantially
with training protocol and budget ?77. In particular, weight sharing intro-
duces interference between candidates and can yield proxy scores that are not
comparable to standalone training ?. Zero-cost predictors can correlate with
final accuracy in some regimes but may fail under distribution shift, strong
regularization, or changes in optimizer and augmentation 7. Our work does
not attempt to replace these proxies; rather, we isolate a failure mode that
persists even when the proxy is “honest” partial training with independent
noise: heterogeneous, fidelity-dependent underestimation can force a fixed
evaluation protocol to either spend near-terminal compute broadly or suffer
irreparable mis-ranking.

How our formulation differs. The closest conceptual intersection is
multi-fidelity racing (e.g., Hyperband) combined with statistical elimination.
The key distinction is that we model proxy evaluations as biased estima-
tors of u, with a one-sided, fidelity-decaying envelope 5,(f) < g(s(x))f~¢,



where s(x) is known and g(+) is unknown. This yields two consequences that
are not addressed explicitly in standard multi-fidelity HPO analyses. First,
correctness depends on resolving bias below arm-dependent gaps, leading
to a fidelity requirement of order (g(s(x))/A,)Y® that cannot be bypassed
by repetition at low fidelity. Second, the presence of a known statistic s(z)
motivates capacity-aware fidelity assignment, which is neither purely bandit-
style cost weighting nor purely budget scheduling: the budget rule is chosen
to control bias as a function of architecture complexity. In this sense, we
treat fidelity not only as a resource but as an instrument for debiasing proxy
observations to the accuracy required for (g, d)-BAIL

3 Problem Setup and Preliminaries

We formalize neural architecture evaluation as a cost-sensitive, multi-fidelity
best-arm identification problem over a finite candidate set. Let X denote a
finite collection of architectures (arms) with |X'| = N. Each z € X has an
associated (unknown) terminal or converged mean performance p, € [0,1],
which we interpret as the expected validation accuracy (or any bounded
score) obtained by training x to completion under a fixed protocol. We let
T* € arg max,cx Uy denote an optimal architecture and define the subopti-
mality gap of an arm = by

Ay = g — pg € [0,1].

The goal is to identify an architecture whose terminal performance is near-
optimal while spending as little compute as possible.

Fidelities and evaluation costs. We model partial training via a fidelity
variable. Let F C Ry be a set of allowed fidelities (e.g., epochs, gradient
steps, tokens processed). A query consists of selecting a pair (z, f) € X x F
and observing a random proxy evaluation Y (z, f) € [0,1]. The cost of a
query is known and additive:

c(z,f) = r(x)f,

where k(z) > 0 is a known per-unit-fidelity cost for architecture x (e.g., sec-
onds per epoch). For a (possibly adaptive) sequence of queries {(x¢, fi)}i>1,
the accumulated cost is ), c(xy, fi). We will either (i) impose a hard bud-
get constraint ), c¢(x, fy) < C and study the best achievable identification
accuracy under that budget, or (ii) more commonly, treat C' as implicit and
study the minimal (or expected) cost needed to attain a target identification
guarantee.



Proxy observations: noise and one-sided bias. A central feature of
our setting is that low-fidelity training underestimates terminal performance
in a systematic way. Formally, for each (z, f) the random variable Y (z, f)
has mean E[Y (z, f)] and satisfies two conditions.

First, the noise is light-tailed: we assume that Y (x, f) — E[Y (z, f)] is
o%-sub-Gaussian uniformly over x and f. In particular, for any m i.i.d.
samples {Y;(z, f)}™, at the same pair (z, f), the empirical mean Y (z, f) =
m~1 3" Yi(x, f) concentrates around E[Y (z, f)] at rate O(y/02/m).

Second, the proxy is biased downward relative to the terminal mean.
Define the prozxy bias

Ba(f) = pa — E[Y (z, f)].

We assume a one-sided constraint E[Y (z, f)] < ug, equivalently 5,(f) > 0,
and we assume that the bias decreases with fidelity (higher budgets produce
less underestimation). Crucially, we assume only an upper envelope on this
bias of the form

0 < Bu(f) < gls(x)) £, (1)

where s(z) is a known architecture statistic (e.g., parameter count, FLOPs,
depth, or any scalar summary computed from the architecture), g(-) is an
unknown nonnegative function, and the exponent a € (0,1] is known. The
envelope is deliberately permissive: it asserts only that larger s(z) may
entail larger bias, and that increasing f reduces the bias at a polynomial
rate controlled by a. This model is compatible with the empirical observa-
tion that different architectures may require different training budgets for
their rankings to stabilize, while still allowing substantial heterogeneity in
learning-curve shape.

Algorithms and access model. An algorithm operates sequentially. At
each round t, it selects (x¢, f;) as a (possibly randomized) function of past
observations and costs, then receives Y (z¢, f). The algorithm has black-box
oracle access to Y'(-,-), but may freely inspect x(-) and s(-) without cost.
The principal resource is evaluation cost; memory and arithmetic costs are
secondary and will be controlled at the level of O(N) bookkeeping in our
constructions.

(e,6)-best-arm identification. Given ¢ € (0,1) and 6 € (0,1), we seck
an output £ € X such that

P(Mﬁ > max,uz—5> > 1-4.
TeEX

We call an algorithm satisfying this guarantee (g,0)-correct. The perfor-
mance criterion we optimize is the total evaluation cost required to achieve



(e,9)-correctness. In particular, we will study upper bounds on the expected
cost of specific adaptive strategies and lower bounds showing that certain
costs are unavoidable.

Fixed-fidelity protocols as a restricted class. To articulate the bene-
fit of multi-fidelity adaptivity, it is convenient to define a restricted baseline
class. We say an algorithm is fized-fidelity if, up to constant factors, it eval-
uates each arm using a single common fidelity fo (possibly with repetitions)
before producing an output. Such protocols encompass standard practices
in which every candidate architecture is trained for the same number of
epochs (or steps) and then compared by its resulting proxy score. Our lower-
bound construction in the next section shows that, under heterogeneous bias
envelopes , fixed-fidelity protocols can be forced to spend near-terminal
budgets on many arms, whereas an adaptive multi-fidelity algorithm can con-
centrate high fidelities only where bias resolution is information-theoretically
necessary.

4 Why Fixed Protocols Fail

We now formalize a limitation of the common “train every candidate for the
same number of epochs and pick the best” protocol. The key point is that,
under the one-sided bias envelope , repeating low-fidelity evaluations can-
not remove systematic underestimation, and if different architectures admit
different bias scales g(s(z)), then any single globally chosen fidelity must be
large enough to accommodate the worst case. This creates instances where
fixed-fidelity evaluation is either incorrect or incurs essentially linear-in-NV
high-fidelity cost.

A restricted class: fixed-fidelity evaluation. Fix fy € F. We call an
algorithm fo-fized if all of its oracle calls use the same fidelity fy (possibly
adaptively choosing which arm to query next and how many times to repeat,
but never changing f). This models the standard NAS practice in which
every candidate is trained for a fixed budget and compared by its resulting
proxy score, optionally with multiple seeds.

The difficulty is that, for any arm x, the observation distribution at fi-
delity fo is centered at E[Y (x, fo)] = pe — B (fo), and 5,(fo) is a determinis-
tic (non-random) downward shift that does not average out with repetitions.
Consequently, if two arms have proxy means that are nearly equal at fy due
to different biases, then no amount of repeated sampling at fy can reliably
recover their ordering in terms of pi,.

A hard instance via heterogeneous bias scales. The following theo-
rem (stated informally here, with a complete proof deferred to Appendix ?7)



captures the impossibility: for any globally fixed choice of fidelity, one can
construct an instance consistent with in which many suboptimal arms
appear competitive at fy because their bias is large, forcing the evaluator
either to increase the common fidelity to a much larger “hard” value or to
fail (e, 0)-correctness.

Theorem 4.1 (Fixed-fidelity lower bound under heterogeneous proxy bias).
Fiz any fo € F and consider the class of fo-fized algorithms. For any N > 2,
there exists an instance satisfying the sub-Gaussian noise assumption and
the one-sided bias envelope (with two groups of arms having different
bias scales g(s(x))) such that any (e, d)-correct fo-fized algorithm must incur
expected total cost at least

Q(N Kmin fhard IOg(1/5)) fOT some fhard > f0~

Equivalently, if the evaluator insists on using a single common fidelity for
all arms, then there are admissible instances where correctness forces a near-
terminal common fidelity for every arm, leading to linear-in-IN high-fidelity
cost.

Proof idea (indistinguishability at low fidelity). We sketch the con-
struction and the information-theoretic argument. Split the arms into two
groups. Let x* be the true optimal arm with terminal mean p,+ = % + 2¢
and a small bias scale g(s(z*)) = glow. Let the remaining N — 1 arms be
“decoys” with terminal means u, = % + ¢ (so A, = €) but much larger bias
scale g(s(x)) = gnigh > Glow- Choose ghigh and fuarq so that the envelope
permits

Bz (f) = gnighf ™ and Bex(f) = giowf ™,

and in particular the decoys can realize a bias at fy large enough to cancel
their true disadvantage:

E[Y(xvf())] = Mx_ﬁx(fo) g _/Bx*(fo) = E[Y(ﬂf*,fo)]'

Since the noise is centered and sub-Gaussian, this makes the distributions of
observations at fidelity fy (nearly) identical across the optimal arm and each
decoy. Therefore an fy-fixed algorithm, regardless of how many repetitions
it allocates, cannot confidently distinguish whether a particular arm is truly
optimal or merely appears optimal due to bias at fy. Formally, we com-
pare two instances that differ only in which arm has terminal mean % + 2¢
while maintaining identical proxy means at fidelity fo; by a Le Cam or Fano
change-of-measure argument, any decision rule based only on fy observations
has error probability bounded away from 4.

The only way to restore identifiability is to query at a fidelity where
the worst-case bias is smaller than the relevant gap. Under , ensuring

10



Bx(f) < e/10 for a high-bias decoy requires

[z (%)UQ =: fhard-

But fixed-fidelity evaluation applies the same f to all IV arms, hence it must
pay cost on the order of > k() fhard, yielding the stated (V) scaling (up
to log(1/0) factors arising from the confidence requirement).

Interpretation for NAS practice. In NAS terms, the statistic s(x) cap-
tures a capacity proxy (parameters, FLOPs, depth), while g(s(x)) quantifies
how much low-budget training underestimates the eventual performance of
that capacity class. The lower bound formalizes two empirical phenom-
ena: (i) larger or more difficult-to-optimize architectures often have learning
curves that rise more slowly, so their early-epoch validation scores can be
systematically pessimistic; and (ii) this pessimism is not removable by av-
eraging over seeds at the same short budget, because it is a deterministic
training-budget effect rather than a stochastic fluctuation.

Consequently, a single global training budget faces an unavoidable trade-
off. If it is set small, it can mis-rank high-capacity candidates relative to
smaller ones (and, in the worst case, cannot be made (e, §)-correct). If it is
set large enough to be fair to the worst-case bias scale, it wastes compute
on the many arms whose bias would have resolved at much smaller fidelities.
This motivates a capacity-aware multi-fidelity policy: we should allocate fi-
delity as a function of s(x) and refine only when needed to eliminate an arm,
rather than enforcing a uniform protocol across a heterogeneous candidate
set.

5 CASH: Capacity-Aware Multi-Fidelity Successive
Elimination

We now describe an adaptive policy that varies the fidelity as a function
of architecture capacity and of the current evidence for suboptimality. The
guiding constraint is the one-sided bias envelope (I)): since E[Y (z, f)] < g,
any upper confidence bound for p,; must explicitly account for the (unknown)
downward shift induced by finite fidelity. Our algorithm, which we call
CASH, implements a successive-elimination template in which each arm x
is evaluated only at the smallest fidelity sufficient to make its bias commen-
surate with the current elimination tolerance.

Calibration and the budget rule. The envelope depends on the
unknown function g(-), which scales the worst-case bias as a function of
the observed statistic s(z). In the idealized analysis below we may assume
access to an upper envelope ¢ such that g(s(z)) > g(s(x)) for all x € X; in
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practice we obtain g by a lightweight calibration stage. Concretely, we select
a small subset Xy C X, evaluate each x € X|) at a short ladder of fidelities
f1 <--- < fKk, and fit a conservative curve that upper-bounds the empirical
bias estimates as a function of s(z). Any procedure that returns a high-
probability upper envelope is admissible; a convenient choice is monotone
regression in s together with a union bound over the calibration points to
ensure that the fitted curve is conservative simultaneously for all x.

Given ¢, we define a budget rule by choosing, for each arm and each
round-specific bias tolerance 7 > 0, the smallest fidelity

b-(s(z)) == min{f € F: g(s(z)) f7* <7}, (2)

with the convention that b,(s(x)) = max F if the set is empty. The role of
is purely to ensure that the bias term entering the confidence bounds is
controlled at the scale 7, while respecting that different arms may require
vastly different fidelities because §(s(x)) may differ by orders of magnitude.

Rounds and adaptive fidelities. CASH maintains an active set A, C X
at round r, initialized as Ay = X. In each round we choose three schedules:
(i) a bias tolerance 7, decreasing in r; (ii) a statistical sample size m, (number
of repeated evaluations per arm at the chosen fidelity); and (iii) an elimina-
tion tolerance ¢, decreasing to the target €. For each active arm x € A, we
set

fr(x) = br,(s(2)),

and we obtain m, independent samples Yi(z, f(x)), ..., Y, (2, fr(x)) (e.g.,
distinct random seeds). Let Y,.(z) denote their empirical mean.

Bias-aware confidence bounds. Because the proxy is biased downward,
we treat Y,.(z) as a conservative estimate for u,, and we only inflate the
upper bound by the worst-case bias. Specifically, writing

202 log(4Nr?
rad, := \/U o8 ANT/9)

my

)

we define
L,(z) = Y.(x)—rad,, Up(z) = Yp(x) + g(s(2)) fr(x)~* +rad,. (3)

The choice reflects the model: the sub-Gaussian noise yields a two-sided
deviation term rad,, while the one-sided bias yields an additional nonnega-
tive term on the upper end only. The defining invariant we exploit later is
that, on a suitable high-probability event (union-bounded over r and x), we
have simultaneous coverage L,(z) < u, < U,(x) for all active arms and all
rounds.

12



Elimination rule and termination. Given (L,(z),U,(z))zca,, we com-
pute a provisional best arm according to the lower bound,

zP*t € arg max L, (z),

TEA,
and we eliminate any arm whose optimistic performance is separated from
this candidate by more than the round tolerance:

A1 = {3: €A Up(x)> Lr(x?es';) - 57«}.

The algorithm stops when |A,| = 1 (or when the remaining arms are mu-
tually e-indistinguishable under the current tolerances), and outputs any
Z € A,. In the analysis, the schedules are chosen so that ¢, | € and the con-
fidence coverage holds uniformly, ensuring that (i) the optimal arm is never
removed, and (ii) every arm with gap A, is removed once 7, +rad, + &, falls
below a constant fraction of A,.

Design choices and relation to NAS pipelines. Several implementa-
tion details map directly to common NAS evaluation workflows. First, the
statistic s(x) may be taken as parameter count, FLOPs, depth, or any scalar-
ized embedding; CASH requires only that s(x) is known before training.
Second, the fidelity set F is typically discrete (epochs, steps, or wall-clock
checkpoints); then becomes a lookup to the smallest admissible check-
point meeting the bias tolerance. Third, the unit cost x(x) may be measured
in GPU-seconds per epoch for each architecture; incorporating k() permits
the policy to avoid over-training architectures that are intrinsically slow. Fi-
nally, the per-round structure admits parallelism: at round r we evaluate all
r € A, at their selected fidelities f,.(z) concurrently, aggregate Y;(z), and
then apply the elimination rule. In this sense, CASH can be viewed as a
capacity-aware variant of successive halving in which the resource allocated
to each configuration is not a single shared budget but a statistic-dependent
budget chosen to control proxy bias.

6 Main Upper Bounds and Near-Minimax Opti-
mality

We now record the two main analytical guarantees for CASH: (g, §)-correctness
and an expected evaluation-cost bound that is instance-dependent through
the gaps A, and the bias scales g(s(z)). We then explain why this up-
per bound is unimprovable (up to logarithmic factors) under our proxy-bias
model.

13



(e,6)-correctness. Fix any schedules (7., my, ,),>1 With €, | € and m, >
1. Define the concentration event

£ = {¥r>1, Vo e X V() B (z, fy(x)]| < rad, },

where rad, = /202log(4Nr2/5)/m, as in (3). By sub-Gaussianity and
a union bound over arms and rounds (using ) -, r~2 < o0), we obtain
PE) >1-06.

On &, for every round r and arm x, we have simultaneously
E[Y (z, f-(x))] € [Yr(z) — rad,, Y,(z) + rad,].

Since E[Y (z, f)] < pa and po — E[Y (2, f)] < g(s(2)) /™ < g(s(x)) f 7%, it
follows that on &,

Li(2) = Vy(2)—rad, < E[Y(z, /()] < po < Vila)+rad,+9(s(@))fr(2) " = Uy (a).

Thus yields simultaneous coverage of u, for all arms and rounds.

We next show that the elimination rule is safe on €. Let * € argmaxy,, p,.
Consider any round 7, and let 22" € arg max,ca, L, (z). Since 2* € A, until
(possibly) eliminated, we have

LT($$eSt) > Lr(x*) > g — (,Ux* _Lr(x*)) > pgx — 0,

where the last inequality uses L, (z*) < p,+. Now suppose, for contradiction,
that z* is eliminated at round r, i.e.,

Ur(z%) < LT(:BEeSt) —&r.
Using pig« < Up(2z*) and L, (2Pt < fghest on €, we would obtain

//ng* < //[/xbcst - 877
T

contradicting optimality of x*. Hence x* is never removed on £. Finally,
when the algorithm terminates, either a single arm remains or all remaining
arms are e-indistinguishable under the final tolerances; in either case, since
x* is still present and €, | €, any output & € A, satisfies pz > p,» — e on €.
Therefore CASH is (g, d)-correct.

Expected evaluation-cost upper bound. We now specialize to sched-
ules that make the preceding argument effective for elimination and yield
a cost bound that decomposes into a bias-resolution term and a statistical
term. For a fixed suboptimal arm z # x*, elimination becomes possible
once both (i) the worst-case proxy bias at the chosen fidelity and (ii) the
statistical radius fall below a constant fraction of the gap A, = g — s
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Concretely, define the minimal fidelity needed to make the bias negligible at
scale Ag:

. . - 1/
fhias . — inf{f eF: g(s(x) f*< %Ax}, so that — fPias < (79(2(:))> / .

Similarly, choose m, so that eventually rad, < A, /4, which requires

stat — 0-72 (g)
m,, A2 log 5

up to constant and iterated-log factors arising from the round union bound.
Because CASH increases fidelity only as 7, decreases, arm z is evaluated at
fidelities no larger than a constant multiple of f1 before it is eliminated;
likewise it receives only O(ms'™") total repeated samples before elimination.
Since each evaluation at fidelity f costs c¢(x, f) = k(z)f, we obtain the
instance-dependent decomposition

9 i o? ~ s(x e’
E[Cost] < O Z r(w) £+ Z “(fc)ﬁ =0 Z /i(x)(g(A())>1/
THT* xAT* z r#T* T

where in the last step we use § > g and absorb schedule-dependent constants
and polylogarithmic factors into O() The first term is the compute required
to shrink proxy bias below the gap, while the second is the unavoidable
sampling cost needed to overcome sub-Gaussian noise.

Near-minimax optimality (matching lower bound up to logs). It
remains to justify that the above cost bound is essentially tight under our
assumptions. The statistical term 3 . k(z)o? /A2 follows from standard
best-arm identification lower bounds via change-of-measure: for each com-
peting arm z, distinguishing an instance where x is optimal from one where
r* is optimal requires Q(c?A;21og(1/9)) effective samples, hence propor-
tional cost when each sample incurs x(x)-scaled expenditure.

The bias-resolution term is specific to the multi-fidelity proxy setting.
We construct pairs of instances that agree on all low-fidelity proxy distribu-
tions but differ in terminal means by A,, made possible by the one-sided
nature of the bias constraint. If an algorithm never queries arm «x at fidelity
f = (g(s(z))/Az)"/*, then the admissible bias can hide the A, separation
in p by shifting E[Y (z, f)] downward so that observations are (nearly) in-
distinguishable from those of x*. Consequently, no amount of repetition at
too-small f can certify suboptimality with error probability < §. This yields
a per-arm lower bound of order x(z)(g(s(x))/Az)Y* (up to logarithms),
which matches the first term of the CASH upper bound.

Taken together, these two arguments establish that our upper bound is
minimax-optimal up to polylogarithmic factors in N and 1/6, and that adap-
tively assigning heterogeneous fidelities is not merely beneficial but necessary
to avoid worst-case linear-in- N over-training under heterogeneous proxy bias.
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Practical instantiation in neural architecture search. To deploy CASH
in a NAS pipeline, we must instantiate four ingredients that are abstract in
the model: the statistic s(z) used to modulate the bias bound, a discrete
fidelity grid F compatible with the training protocol, a high-probability up-
per envelope §(-), and the cost model ¢(x, f) = k(z)f (including the fact
that k(z) is typically architecture-dependent and not known a priori).

Choosing the statistic s(z). The role of s(z) is to summarize the aspects
of z that control the magnitude of proxy bias at low fidelity. In standard NAS
settings, proxy bias is largely induced by optimization and learning-curve ef-
fects; empirically it correlates with model capacity and per-step optimization
difficulty. We therefore choose s(x) from quantities available without train-
ing, such as parameter count Params(z), FLOPs per example FLOPs(z),
depth, width, or a low-dimensional vector of such features mapped to a
scalar. A simple and robust choice is

s(z) = log(1 + Params(x)),

or, when data-loading dominates and compute scales superlinearly, s(z) =
log(1 4+ FLOPs(z)). When multiple statistics are informative, we may set
s(z) = w' ¢(x) with ¢(x) containing (log(1+Params), log(1+FLOPs), depth)
and w > 0 fixed by a small calibration fit; this preserves the required ob-
servability of s(z).

Because §(-) is fitted from finite data, we typically discretize s into bins
and enforce monotonicity across bins. Concretely, define bins B; < --- < By
and let b(z) € [K] be the bin index of s(z). We then fit a nondecreasing
sequence (g1, ..., k) and set §(s(z)) = gp(z). This reduces variance of the
calibration step and makes the envelope property easier to enforce uniformly
over X.

Selecting the fidelity grid F. In practice, we evaluate at a discrete set
of fidelities corresponding to training budgets (epochs, steps, or wall-clock
minutes). We recommend a geometric grid

F={famy : 7=0,1,...,J}, v>1,

with fiax = fminVJ equal to the maximum budget for which we trust u, to
be effectively reached (or the benchmark provides the terminal score). The
geometric grid is aligned with the power-law form f~% and ensures that suc-
cessive rounds increase f by a constant factor, avoiding an excessive number
of near-duplicate fidelities. When the training process has an initialization
transient, we choose fiin beyond that transient so that Y (x, f) is meaning-
ful (e.g., at least one full epoch for supervised CNNs). If the benchmark
provides intermediate checkpoints at specific epochs, we set F to that native
grid.
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Estimating and upper-bounding g(-). The calibration step must pro-
duce ¢ such that g(s(z)) < g(s(x)) holds simultaneously for all z € X
with high probability. Since pu, is unobserved, we avoid direct estimation of
Bz (f) = pe —E[Y (z, f)] and instead use differences across fidelities. For any
f1 < f2, monotonicity of the bias implies

E[Y (z, f2)] = E[Y (z, f1)] = Ba(f1) — Ba(f2) < g(s(2)) (/1" = fz%)-
Thus, for a fixed pair (f1, f2), an admissible upper bound is

E[Y (z, fo)] = E[Y (2, f1)]
g9(s(z)) = - :
Ji% =1
We estimate the numerator by repeated evaluations at f1, fo on a calibration
subset Xy and add a concentration slack term derived from sub-Gaussianity.
Writing Y (z, f) for the sample mean from m.,) repeats, we set

= max
T (ffa)EP fre—f°

M
Mecal

_ (Y(x, f2) =Y (2, f1)), +n . 2\/202 log (4] Xo|[P]/6cat)

where P is a set of adjacent fidelity pairs (typically consecutive elements of
F) and (-)4+ enforces nonnegativity. We then fit the binned monotone en-
velope by isotonic regression: among nondecreasing sequences (g1, ..., JK),
choose the smallest g such that gy,) > g for all ¥ € Ap. Finally, to guard
against sampling sparsity in extreme bins, we apply a small inflation factor,
e.g. gr + (1 + p)gr with p € [0.05,0.2], and use a union bound to allocate
(5cal~

Handling unknown «. When « is unknown, we treat it as a nuisance
parameter controlling how aggressively fidelity must grow to resolve bias.
Two conservative approaches are effective. First, we may fix o = 1, which
yields a valid (though potentially loose) envelope because f~! < f~< for
a <1and f >1 after rescaling fmin = 1. Second, we may run a small grid
search over a € {a,... oM} during calibration and select the smallest
« consistent with the observed learning-curve increments, which is the most
conservative for bias decay. Concretely, for each candidate a®) we compute
G as above and choose the pair (a'¥,§(®)) that minimizes a validation
upper envelope criterion while maintaining coverage; a union bound over /¢
preserves the global § budget. In settings where calibration data are rich
(e.g. tabular NAS benchmarks), we may additionally fit « by a log—log slope
of estimated increments across f, but we do not rely on such estimation for
correctness.

Incorporating architecture-dependent wall-clock cost x(x). The fac-
tor k(z) is observable via short timing runs and can vary substantially with
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depth, width, and operator choice. We estimate x(x) online by timing the
first mini-batch or first epoch and normalizing by fidelity units, then setting
c(x, f) = R(z)f. This affects CASH only through the budget accounting and
through any optional cost-aware prioritization of queries within a round. If
strict per-round parallelism is not required, we may further reduce expected
wall-clock by ordering evaluations in increasing K(x), so that eliminations
occur earlier and expensive arms are evaluated at higher fidelities only when
necessary. When k(z) itself is noisy, we treat it as a deterministic upper
bound by taking a high quantile of observed timings for that architecture
class, ensuring that the realized spend does not exceed the planned budget
except with small probability.

These design choices yield an implementable instantiation: s(x) is com-
puted from the architecture encoding, F is a geometric grid of training bud-
gets, g is a monotone high-probability envelope from a small calibration set,
« is fixed conservatively or selected over a finite grid, and costs use on-
line estimates of k(x). Under these instantiations, the bias-aware confidence
bounds remain valid and the algorithmic tradeoff between bias resolution
and statistical uncertainty is realized in wall-clock compute rather than in
abstract sample counts.

7 Experimental Plan

Our experiments are designed to test the two claims implicit in the theory: (i)
that a fidelity-adaptive, bias-aware elimination strategy reduces total cost to
achieve a target identification accuracy, and (ii) that the reduction is driven
specifically by heterogeneity in proxy bias across architectures (as summa-
rized by s(x)), rather than by incidental implementation choices. We there-
fore emphasize settings in which terminal scores i, and intermediate-fidelity
evaluations are available (tabular benchmarks), together with a complemen-
tary “in-the-wild” global CNN search space in which we must actually train
networks and measure wall-clock costs.

Benchmarks and search spaces. We consider two classes of NAS prob-
lems. First, we use tabular multi-fidelity benchmarks where, for each archi-
tecture, validation /test performance is recorded at multiple training budgets.
Concretely, we evaluate on NAS-Bench-style spaces (cell-based micro search
with a finite X') and on JAHS-Bench-style spaces where architecture and
(a small number of) training hyperparameters are jointly varied. In these
benchmarks, the fidelity set F is given by recorded epoch/step checkpoints,
and the terminal mean p, is operationally taken to be the final-budget met-
ric provided by the benchmark (or the largest available fy.x € F). The
availability of u, allows us to compute ground-truth identification error and
compute-to-¢ curves without ambiguity.
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Second, we construct a global macro—micro CNN space in which an ar-
chitecture x specifies both a macro skeleton (e.g. depth, stage widths, down-
sampling pattern) and a micro cell/operator pattern within stages. This
space is continuous/large in principle; to match our finite-arm model, we
instantiate X' by sampling a large candidate pool (e.g. N € [10%,10%]) from
the space and then run best-arm identification over this pool. Fidelity f is
the number of training epochs (or optimizer steps) and cost is measured in
wall-clock seconds; we estimate x(x) online as described previously.

Protocols and budgets. For each task/benchmark we fix (g,d) and a
maximum budget C' expressed in the same units as ), c¢(ay, f;). On tabu-
lar benchmarks, we take ¢(x, f) from the benchmark-provided training-time
surrogate when available; otherwise we use c(x, f) = f and report results
in “epoch equivalents”. On real training runs, we log realized wall-clock and
enforce the budget constraint with an abort rule when the cumulative spend
reaches C. To isolate the effect of adaptivity, we use the same fidelity grid
F (typically geometric) across methods, and we control for total cost rather
than the number of queries.

Primary metrics. We report three families of metrics aligned with the
stated objectives. (1) Rank correlation to terminal performance. At any
time ¢ the algorithm has produced a set of proxy observations {Y (x;, fi) }i<t,
and hence a score for each evaluated arm (e.g. the latest Y (z,-), or the
upper/lower confidence bounds). For tabular benchmarks (where all u, are
known), we compute Spearman correlation

pe = Spearman ({5; () }eex,, {1z }zex, ),

where X is the set of arms evaluated up to time t and §;(x) is the method-
specific proxy score. We report p; as a function of cumulative cost, as well
as top-k overlap with the true top-k arms. This metric quantifies whether
the chosen fidelities improve ordering quality, not merely final selection.

(2) Compute-to-e-optimal identification. Because p, is known on tabular
benchmarks, we can compute the stopping cost

1. = inf{t: Mgy = Max iy —E}, Coste = Z (@i, fi),

i<T.

where Z; denotes the method’s recommendation at time t. We report the
empirical distribution of Cost. across random seeds. On real training tasks
(where max; i, is unknown), we approximate it by the best fully-trained ar-
chitecture found across all methods and seeds, and we additionally report the
fully-trained performance of the final recommendation under a standardized
training recipe.
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(3) Robustness across datasets and seeds. For each benchmark we run
multiple independent seeds controlling (a) the algorithmic randomness and
(b) stochastic training noise when applicable. We report mean and standard
error of the above metrics and, crucially, the failure rate

S
. 1
Pfail = g Z 1{,%3(5) < m;lxuw — 5},
s=1
to check empirical alignment with the desired confidence level 1 — §.

Baselines. We compare CASH to cost-matched alternatives that isolate
the role of fidelity adaptivity and bias modeling: (i) static fized-fidelity elim-
ination, which evaluates all arms at a single fy € F (with repetitions) and
performs successive elimination using standard sub-Gaussian confidence radii
(no bias term); (ii) static with high fidelity, setting fo = fimax to represent the
“train-everything” regime; and (iii) multi-fidelity without capacity awareness,
which uses a common fidelity schedule across arms (e.g. a Hyperband-style
ladder) but does not modulate f by s(x).

Ablations: separating the sources of gain. We perform targeted ab-
lations. (A) Static versus CASH. We hold the elimination rule fixed and
only vary the fidelity assignment: constant f.(z) = f, versus f.(z) cho-
sen by the bias tolerance condition §(s(z))f~ < 7.. (B) Learned versus
heuristic budget rule. We compare (i) calibration-based ¢ (binned isotonic
envelope) to (ii) a heuristic mapping §(s) o< s (or  log(1 + Params)) and
(iii) an oracle variant on tabular benchmarks where g(s(x)) is replaced by an
empirical upper quantile of realized bias increments for that arm/bin. This
isolates whether performance depends on accurately learning the envelope or
merely on using any monotone capacity proxy. (C) Sensitivity to a and to
s(z). We sweep conservative choices of o and alternative statistics (Params,
FLOPs, depth) to test whether the predicted compute savings persist under
misspecification.

Collectively, these experiments test not only whether CASH is faster, but
whether it is faster for the structural reason posited by the model: heteroge-
neous, capacity-dependent proxy bias that cannot be resolved by repetition
at a fixed, low fidelity.

8 Discussion, Limitations, and Extensions

Our formal model isolates a single structural feature of multi-fidelity NAS:
the presence of a one-sided proxy bias that decreases with fidelity, with
magnitude modulated by an architecture statistic s(z). This abstraction
is intentionally narrow. It gives a clean separation between two sources of
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error—statistical noise (handled by concentration) and systematic underesti-
mation (handled by paying fidelity until a bias tolerance is met). In practice,
both the bias model and the cost model can fail in ways that matter for algo-
rithmic design. We discuss the main limitations and how one might extend
the framework while preserving the basic identification guarantee.

Non-monotone and non-uniform learning curves. We assume [;(f)
is nonnegative and decreasing in f (equivalently, E[Y (z, f)] increases to
z). Empirically, learning curves can be non-monotone due to regularization
schedules, optimizer instabilities, or early overfitting; moreover, validation
accuracy can fluctuate even when training loss decreases. When E[Y (z, f)]
is not monotone, a naive use of low-fidelity observations can spuriously elim-
inate arms that would recover at higher budgets. Two directions appear
viable. First, one may replace monotonicity with a one-sided envelope as-
sumption of the form E[Y (z, f)] < p, for all f but without requiring im-
provement in f. This preserves safety if we always treat Y (z, f) as a lower
proxy and only use it to form lower bounds, at the price of potentially slower
elimination (since we cannot infer that larger f reduces bias). Second, one
may explicitly model shape constraints on the curve, e.g. piecewise mono-
tonicity beyond a warmup fidelity fyarm, or Holder/Lipschitz regularity in f.
These assumptions would permit interpolation and more aggressive schedul-
ing, but the associated guarantees would depend on additional, less standard
concentration arguments for correlated observations across fidelities.

What counts as “fidelity” beyond epochs. The present exposition
takes f to be training epochs or steps and cost c(z, f) = k(z)f. Mod-
ern training pipelines offer many alternative fidelity knobs: input resolution,
dataset subsampling, augmentation strength, optimizer precision (FP16/FP8),
width multipliers, or early-stopping criteria determined on the fly. These di-
als often produce proxies Y (z, f) with biases that are not ordered solely
by compute: e.g. increasing resolution increases cost and may reduce bias
for some architectures but not others; conversely, stronger augmentation
may increase cost and also change the target metric distribution. A prin-
cipled generalization is to let fidelity be a vector f € F C Ri with a par-
tial order and cost ¢(zx, f) defined on that set, together with a bias bound
Bz(f) < g(s(x))(f) for a known decreasing shape 1. The elimination mech-
anism remains conceptually the same—pay cost until a target bias tolerance
is reached—but the algorithmic subproblem becomes: find a near-minimal-
cost f such that ¥(f) < 7./g(s(z)). Even for moderate d, this becomes a
constrained optimization problem that interacts with systems considerations
(e.g. discrete kernel availability and hardware-dependent throughput).
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Multi-objective and constrained costs (latency, energy, memory).
We model cost as a single additive scalar. In deployment-oriented NAS,
however, one often optimizes performance subject to constraints, e.g. infer-
ence latency < L and peak memory < M, or one trades off multiple costs
(GPU-seconds during search, energy during training, and latency at infer-
ence). There are at least two natural extensions. The first is constrained
best-arm identification: restrict X to feasible arms (as estimated from s(z)
or measured) and run identification within that feasible set, acknowledging
that constraint violation probabilities must be controlled jointly with iden-
tification error. The second is Pareto-front identification: treat (., ;) as a
vector of objectives/costs (e.g. accuracy and latency) and aim to return an e-
approximate Pareto set. Multi-fidelity observations complicate this because
low-fidelity training affects u, but does not directly reveal deployment costs,
which may be deterministic functions of . In such settings, s(x) can serve
dual roles: as a predictor of proxy bias and as a proxy for feasibility; the
main open question is how to share information across these tasks without
invalidating the high-probability safety event used in elimination.

Continuous or extremely large search spaces. Our theory is stated
for finite X, which matches tabular benchmarks and the “sample-a-pool-
then-identify” protocol. In global NAS, X is effectively continuous and the
pool size N may itself be a decision variable. One direction is to treat pool
construction as an outer loop: sample candidates according to a proposal
distribution, apply CASH to allocate training budgets efficiently, and adapt
the proposal using the surviving set (a hybrid of best-arm identification
and bandit optimization). Another direction is to incorporate a paramet-
ric or kernel model over architectures and share statistical strength across
arms, which could reduce the Y, 0%/A2-type dependence. Doing so while
retaining robustness to misspecification is nontrivial: if we use a surrogate
to “borrow” information, then confidence bounds must include model error
terms, and the one-sided bias property must be preserved under aggregation.

)

Open problems suggested by the model. Several theoretical questions
remain. (i) Learning the envelope g(-) with minimal overhead: our cali-
bration step is heuristic, and the optimal exploration strategy to estimate
a valid upper envelope under budget constraints is unclear. (ii) Unknown
«: conservative misspecification can waste cost, but aggressive choices can
break safety; adaptive, high-probability estimation of o under one-sided bias
is open. (iii) Instance-dependent scheduling: the upper bound separates a
“bias-resolution” term and a “noise-resolution” term; designing schedules that
provably balance these terms without hand-tuned round parameters would
strengthen the practical story. (iv) Correlations: evaluations of different
architectures can share randomness (data order, augmentations, initializa-

22



tion) and thereby reduce effective noise; exploiting correlations without com-
promising the union-bound style guarantees is a promising but technically
delicate direction.

These limitations do not negate the central message: when low-fidelity
proxies are systematically pessimistic in a capacity-dependent way, compute
should be allocated to resolve bias where it matters. The extensions above
aim to bring that message closer to the full complexity of modern NAS
pipelines while maintaining the explicit safety guarantees that motivate our
approach.

9 Conclusion

We close by distilling what the preceding development establishes and by
clarifying how the resulting evaluation primitive can be used as a modular
component inside global NAS systems as they are plausibly engineered in
the 2026 regime.

The technical message is that multi-fidelity NAS is not merely a speedup
heuristic, but a setting in which the choice of training budget is information-
theoretically coupled to the correctness of selection. Under the one-sided
proxy model, low-fidelity measurements are not noisy estimates of u,; they
are systematically pessimistic lower proxies whose bias can vary substantially
across architectures. This observation forces a structural conclusion: there
are instances where any policy that commits to a single fidelity (even if it
repeats evaluations) must either pay near-maximal fidelity for essentially all
arms or fail to be (e, §)-correct. In other words, heterogeneous learning-curve
rates can turn “fair” fixed protocols into worst-case suboptimal compute al-
locations.

Conversely, when we allow fidelity to depend on an observable statistic
s(z) (and we only assume that s(x) indexes an upper envelope for the bias
magnitude), we can separate the cost of identification into two qualitatively
different requirements. One requirement is bias resolution: for a suboptimal
arm x, no amount of repetition at too small a fidelity can rule it out if its
proxy remains within O(A,) of the optimum due to admissible bias. The
other requirement is noise resolution: once bias is made negligible relative
to the gap, we still need the familiar 02/A2 sampling complexity to certify
elimination. CASH is designed precisely to address these two requirements
in the least committal way: it increases fidelity only until the bias bound
is below a round-dependent tolerance and allocates repetitions only until
the statistical radius is commensurate. The resulting upper bound, and its
matching lower bound up to logarithmic factors, indicate that the algorithm
is not merely consistent but essentially optimal under the stated abstraction.

From a practical perspective, we view the main contribution as a contract
for evaluation rather than a specific elimination schedule. The contract is:
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for any query (z, f), the system returns an observation Y (x, f) with known
cost ¢(z, f), whose expectation is a lower bound on u, with a one-sided bias
bounded by a known shape in f multiplied by an unknown but capacity-
indexed scale g(s(z)). The specific choice of s(x) is intentionally left open: it
may be parameter count, FLOPs, depth, width, token budget, an embedding
of the architecture graph, or any statistic for which one can plausibly upper
bound proxy pessimism. Once such a contract is accepted, we can plug it
into many higher-level decision rules while retaining a clean safety argument:
we only eliminate when a bias-aware upper confidence bound falls below a
competing lower bound, and we ensure simultaneous coverage by a standard
concentration-plus-union-bound event.

This suggests a design principle for 2026-era NAS pipelines: treat evalu-
ation as a first-class primitive with explicit uncertainty and bias accounting,
rather than as an opaque “train-and-score” call. In large-scale distributed set-
tings, this matters because evaluation is typically the dominant cost and the
primary failure mode. Systems already multiplex heterogeneous workloads
(different architectures, batch sizes, precision modes, and data pipelines).
Our model provides a way to make such heterogeneity algorithmically mean-
ingful: it says when it is legitimate to terminate training early, and when
early termination is informationally useless because bias has not been re-
solved. In particular, it clarifies that the relevant question is not whether an
early score correlates with the final score on average, but whether the early
score admits a wvalid one-sided error bar that is small enough to support
elimination.

We also emphasize what the theory does not require. It does not require
that low-fidelity ranking be good, nor that learning curves be well fit by a
parametric model, nor that we can predict u, accurately from s(z). The
only place where s(z) enters is through a conservative upper envelope on
the bias. This is compatible with deployment realities: it is often easier to
overestimate worst-case pessimism for certain architecture classes than it is
to build a calibrated global predictor of final accuracy. In this sense, the
approach aligns with robust optimization: we trade sharpness for validity,
and we let adaptivity recover efficiency by spending additional fidelity only
where conservative bounds would otherwise block elimination.

Finally, we interpret the results as a statement about modularity. Global
NAS systems increasingly combine (i) proposal mechanisms that generate
candidates (via evolutionary operators, LLM-guided mutation, diffusion over
graphs, or learned generators), (ii) surrogate models that predict perfor-
mance, and (iii) schedulers that allocate compute across candidates. The
present work primarily informs component (iii): it gives a correctness-preserving
scheduler for biased, noisy proxies, and it identifies the minimal information
that the scheduler needs from the rest of the system. If a generator pro-
poses a large pool and a surrogate provides a prior ranking, CASH can be
used to certify the top of that ranking under explicit budget constraints,
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rather than to replace the surrogate. Conversely, if one wants to integrate
surrogate predictions more aggressively, the burden is clear: any borrowed
information must be incorporated into confidence bounds without violating
the high-probability event that protects the optimal arm from elimination.

The broader takeaway is therefore simple and operational: when proxies
are systematically pessimistic in a way that depends on architecture capacity,
we must allocate compute to resolve bias where it matters, and we can do so
while preserving (g,0) identification guarantees. This provides a principled
foundation for the common empirical practice of training different candidates
for different durations, and it isolates the assumptions under which that
practice can be justified as more than a heuristic.
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