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Abstract
Activation patching and ablation are core tools in mechanistic in-

terpretability, but recent work highlights that their conclusions can
depend strongly on the intervention implementation and can trigger
hydra/backup behavior or interpretability illusions. We argue the root
cause is semantic: standard patching produces internal states that the
model would never generate, so the implied counterfactual is undefined.
We introduce on-manifold patching, a counterfactual semantics that re-
stricts patched activations to lie on the model’s activation manifold,
formalized as the conditional distribution of internal states induced by
the model and its input distribution. Concretely, we learn conditional
generative models of activations and replace patch targets with con-
ditional samples consistent with the original context and the patched
coordinates. We prove upper bounds showing that if the learned condi-
tional generator approximates the true activation conditional to total-
variation (or Wasserstein) error ε, then the induced causal effect esti-
mates are stable up to O(ε). We also show a lower bound: without
an on-manifold constraint (or equivalently, without specifying a coun-
terfactual distribution), causal effects from patching are not identifi-
able—two patch operators can disagree arbitrarily. Empirically, on-
manifold patching reduces intervention-implementation variance and
improves circuit localization faithfulness on models with ground-truth
mechanisms (compiled transformers) and on standard mechanistic in-
terpretability case studies. The result provides a principled foundation
for causal interventions and a practical drop-in primitive for circuit dis-
covery pipelines.
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1 Introduction

Mechanistic interpretability frequently appeals to interventions on a trained
network: we modify an internal activation and observe a change in an out-
come, with the intent of attributing causal responsibility to the modified
coordinates. Activation patching, ablation, and their variants instantiate
this principle by selecting a module index ℓ and a coordinate set S ⊆ [dℓ],
overwriting aℓ[S] with some value v, and running the remaining computa-
tion to obtain an outcome Y . While this procedure is operationally clear,
its counterfactual semantics is typically left implicit. In particular, patching
specifies only the constrained coordinates aℓ[S] = v and is silent about the
remaining coordinates aℓ[S̄]. Any concrete implementation must therefore
supply a completion rule for aℓ[S̄] (e.g. leave them unchanged, copy them
from a donor example, set them to 0, add noise), and distinct completion
rules can yield distinct estimates of the “effect” of the same intended inter-
vention.

This under-specification matters because internal activations are highly
structured objects induced by the data distribution and the network dynam-
ics. When we overwrite aℓ[S] without respecting this structure, we typically
create off-manifold states: vectors ãℓ that have low or negligible probability
under the model-induced conditional distribution of activations at layer ℓ.
Downstream computation can be arbitrarily sensitive to such states, even
when observational behavior on the original data distribution is unchanged.
Consequently, intervention results can be dominated by distribution shift
rather than by the causal role of the feature(s) of interest. The practical
symptom is implementation dependence: the sign and magnitude of mea-
sured effects may vary substantially across standard patch operators, across
choices of donor examples, or across seemingly innocuous normalization con-
ventions. From a theoretical standpoint, such dependence indicates that the
intervention is querying behavior outside the regime constrained by obser-
vation, and therefore outside the regime where a causal claim is identifiable
without additional assumptions.

We highlight two recurring failure modes that illustrate why an explicit
semantics is required. First, patching can interact with redundancy and
backup computation: if multiple correlated internal representations support
the same downstream behavior, then overwriting one representation off-
manifold may spuriously activate alternative pathways (or suppress them)
in a manner that does not correspond to any plausible counterfactual consis-
tent with the model’s typical internal states. Second, one may construct (and
we empirically observe weaker analogues of) gating-on-anomaly behavior, in
which some downstream subcomputation effectively detects implausible ac-
tivation patterns (e.g. by norm thresholds or rare coordinate combinations)
and routes computation differently. Such gating can be entirely irrelevant
on the data distribution and yet dominate patched runs, producing large
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“effects” that are artifacts of leaving the activation manifold.
To address these issues we propose a semantics, and a corresponding

algorithmic approximation, for what it means to intervene on internal co-
ordinates while remaining faithful to the model’s native distribution of ac-
tivations. Fix a context distribution D over inputs/positions/conditioning
variables, and let pℓ(· | c) denote the induced distribution of the layer state
aℓ under c ∼ D. For a coordinate constraint aℓ[S] = v we define the target
counterfactual completion as the conditional distribution

pℓ(· | c, aℓ[S] = v),

and we define the corresponding on-manifold interventional expectation by
sampling ãℓ from this conditional and continuing the forward pass deter-
ministically to obtain Y . This semantics is intentionally modest: it does not
assert that the resulting counterfactual corresponds to an external structural
causal model of the world; rather, it fixes a precise distributional meaning
for “patch S to v” within the model, thereby removing ambiguity in the re-
maining degrees of freedom.

Because the true conditional pℓ(· | c, aℓ[S] = v) is not directly available,
we approximate it by learning a conditional generator qℓ(· | c, aℓ[S] = v)
from activation traces collected under D. This choice converts patching into
a conditional generative modeling problem: we learn to sample plausible
full activations consistent with the imposed constraint, and we use Monte
Carlo to estimate interventional expectations. Our theory formalizes the
associated approximation error. Under bounded outcomes, we show that
if qℓ is close to the target conditional in total variation distance then the
induced interventional expectation is close, and under a Lipschitz condition
on Y we obtain an analogous Wasserstein-based bound. These statements
make precise the sense in which on-manifold patching is stable: improving
the generator improves the causal estimate, and small distributional errors
cannot produce large effect errors.

Our contributions are therefore threefold.

• We introduce an explicit distributional semantics for internal interven-
tions in deterministic networks, defining counterfactual completions by
conditioning on the model-induced activation distribution rather than
by ad hoc completion rules.

• We give a practical two-phase procedure—data collection followed by
conditional generation and Monte Carlo evaluation—that implements
this semantics with a learned generator qℓ, and we propose a diagnostic
based on the variance across valid implementations as a proxy for off-
manifold sensitivity.

• We prove both (i) stability results showing that effect estimates depend
continuously on the quality of the learned conditional generator and
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(ii) an impossibility result demonstrating that common off-manifold
patch operators can disagree by an arbitrarily large amount, even when
observational behavior on D is identical.

Taken together, these results justify treating patching not merely as a coding
pattern but as an inference problem with a specified target distribution, and
they delineate the conditions under which patch-based causal claims can be
made robust to implementation choices.

2 Background and related work

A substantial fraction of mechanistic interpretability work proceeds by treat-
ing internal activations as manipulable variables and estimating their influ-
ence on some downstream quantity. The most common template is to run a
clean and a corrupted input, identify a set of internal coordinates, and then
overwrite those coordinates in one run with values taken from the other, mea-
suring the induced change in an outcome such as a logit difference or loss.
This template appears under several names—activation patching, activation
replacement, and causal tracing—and is typically instantiated at a chosen
layer, attention head, or MLP block ??. In a related vein, ablation studies
set selected components to a baseline value (often 0) or remove their contri-
bution and evaluate performance degradation ?. These approaches provide
operational evidence for the involvement of a component in a computation,
but they leave open what counterfactual distribution over the unmodified
coordinates is intended by the intervention.

Several refinements attempt to localize effects more precisely along com-
putational routes. Path patching (and related “causal path” analyses) patches
intermediate activations while holding fixed other parts of the computation
in order to attribute an outcome change to a particular path through the
network graph ?. Similar motivations underlie causal mediation style decom-
positions in neural models, where one seeks to separate direct and indirect
effects through specified internal variables ?. Causal scrubbing formalizes a
notion of a circuit being sufficient for a behavior by comparing a model to
an abstracted computation that preserves only selected nodes/edges, with
interventions used to test equivalence ?. These methods, while conceptu-
ally distinct, share the requirement that an “intervened” run must specify a
completion of the full internal state consistent with the imposed constraints.

The interpretability literature has also documented failure modes where
intervention-based evidence is misleading. One class of issues can be under-
stood as interpretability illusions: a procedure yields seemingly crisp attribu-
tions that are unstable, unfaithful, or sensitive to arbitrary implementation
details. While the term is often discussed in the context of saliency maps and
input perturbations ?, analogous concerns arise for internal interventions: if
the patched state is atypical, the model may enter regimes of computation
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irrelevant to its on-distribution behavior, producing large but semantically
spurious outcome changes. Empirically, practitioners have noted sensitiv-
ity to the choice of baseline in ablation, to which donor examples are used
for patching, and to whether normalization layers are recomputed or frozen.
Such sensitivity indicates that the intervention is confounded with distribu-
tion shift in the internal representation space rather than isolating the causal
role of the intended coordinates.

Distribution shift is a general concern for perturbation methods. In input
space, small-norm perturbations can leave the data manifold, and the result-
ing effects may reflect adversarial directions rather than meaningful feature
removal ?. In representation space, the situation is more acute: coordinates
are not independent, and valid states often lie on a thin, context-dependent
subset of Rdℓ . Consequently, “surgical” edits to a subset of coordinates can
easily produce combinations that are never realized under the model-induced
distribution. Some works attempt to mitigate this by adding noise, by using
mean/variance-matched baselines, or by patching from carefully matched
donor contexts; however, these heuristics still define completion rules im-
plicitly, and they do not provide a target counterfactual distribution against
which approximation quality can be assessed.

A complementary line of work studies latent manipulation and model
editing, where one seeks to change behavior by modifying internal repre-
sentations or parameters while preserving other behaviors ?. Although the
objectives differ, the technical obstacle is similar: unconstrained edits can
create internal states (or parameter regimes) that cause unpredictable side
effects. Techniques such as rank-one updates, constrained optimization, or
editing within a learned subspace can be interpreted as imposing structure
on allowable counterfactuals. Our focus is narrower: we do not edit parame-
ters, but we seek a semantics for transient internal interventions that makes
the allowable counterfactual completion explicit.

From the perspective of probabilistic modeling, our proposal aligns patch-
ing with conditional generative modeling of activations. There is an estab-
lished practice of fitting generative models to internal representations, for
purposes ranging from analysis to compression and sampling ?. More directly
relevant are imputation and inpainting problems: given a high-dimensional
vector with some coordinates fixed, one samples the remaining coordinates
from a learned conditional distribution. Modern generative model families—
autoregressive transformers, masked autoencoders, normalizing flows, and
diffusion models—support such conditional sampling, either by explicit fac-
torization or by conditioning mechanisms ??. In our setting, the condition-
ing additionally includes the external context c, reflecting that the activa-
tion manifold is context-dependent. The algorithmic primitive is thus: learn
qℓ(· | c, aℓ[S] = v) from observational traces, and use it to generate full states
consistent with the patch.

This framing yields two benefits relative to ad hoc completion rules.
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First, it makes the target of approximation explicit: we are not merely
“patching,” but approximating a particular conditional distribution induced
by the model and the context distribution. Second, it enables stability anal-
ysis using standard distances between distributions: if qℓ approximates the
desired conditional in a metric such as total variation or Wasserstein dis-
tance, then expectations of bounded or Lipschitz outcomes are close. In
the next section we formalize the objects needed to state these claims pre-
cisely: contexts c, layer states aℓ(c), coordinate sets S, outcomes Y , and the
on-manifold interventional expectation defined by conditional completion.

3 Problem setup: internal counterfactuals in deter-
ministic networks

We fix a trained, deterministic neural networkM (e.g. a Transformer) equipped
with white-box access that allows us to (i) run the forward computation and
(ii) read and overwrite designated internal states at chosen modules. Al-
though M is deterministic, the quantities we analyze are random variables
induced by a distribution D over contexts c (prompts, conditioning variables,
and any index specifying which token position is under study). Sampling
c ∼ D and executing M yields a sequence of internal activations; we write
aℓ(c) ∈ Rdℓ for the activation at module/layer index ℓ ∈ {1, . . . , L} that we
intend to manipulate.

To isolate downstream consequences of changing aℓ, it is convenient to
factor the computation at ℓ. Let gℓ denote the deterministic “suffix” map
from the module-ℓ state (together with the ambient context) to whatever
quantity the remainder of the network produces before evaluation by a task-
dependent readout. Concretely, we assume the outcome of interest can be
written as

Y = h(gℓ(aℓ, c)) , (1)

where h is a measurable function specifying the evaluation metric (e.g. a
logit difference, a loss, a class indicator, or an action). We treat Y as a
real-valued random variable via c ∼ D and aℓ = aℓ(c); in later bounds we
will impose either boundedness (e.g. Y ∈ [0, 1] after scaling) or a Lipschitz
condition in aℓ for each fixed c.

An internal intervention specifies a subset of coordinates S ⊆ [dℓ] and a
target value v ∈ R|S| (possibly depending on c). We regard S as the object
selected by an interpretability hypothesis (a head, MLP neurons, sparse
features, or a low-dimensional subspace expressed in a basis), and we regard
v = v(c) as the operational content of “what we want those coordinates to
be” (e.g. values taken from a contrast run, or values that encode a concept).
The primitive operation available to us is coordinate overwrite: given a full
state ãℓ ∈ Rdℓ with ãℓ[S] = v, we run the suffix gℓ on input (ãℓ, c) and record
the resulting outcome Ỹ = h(gℓ(ãℓ, c)). The methodological question is: how
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should we choose the remaining coordinates ãℓ[S̄], where S̄ = [dℓ]\S, so that
Ỹ represents a meaningful counterfactual consequence of “setting aℓ[S] = v”?

Formally, even in a deterministic network, a counterfactual intervention
at layer ℓ requires specifying a distribution over full post-intervention states
conditional on the context and the imposed constraint. For each context c
we may consider the model-induced conditional distribution of activations
pℓ(· | c) obtained by sampling c ∼ D and recording aℓ(c). Any proposed
intervention semantics that “sets aℓ[S] = v” implicitly selects a completion
rule, i.e. a conditional distribution rℓ(· | c, aℓ[S] = v) supported on {a ∈
Rdℓ : a[S] = v}. The resulting interventional expectation is then

E[Y | dor(aℓ[S] = v)] := Ec∼D Eãℓ∼rℓ(·|c,aℓ[S]=v) [h(gℓ(ãℓ, c))] . (2)

Different patching or ablation procedures correspond to different, typically
unstated, choices of rℓ. Thus, before we can speak of causal effects of internal
variables, we must fix a semantics that makes rℓ explicit.

We emphasize three desiderata for such internal counterfactuals. (Well-
definedness) The semantics must yield a mathematically unambiguous target
quantity for any specified (ℓ, S, v(·), Y,D), so that two investigators running
different implementations can in principle be judged against the same ob-
ject. (Stability) Small changes in the completion rule within an appropriate
class should not cause large changes in the estimated effect; equivalently, if
two completion distributions are close in a standard metric (e.g. total varia-
tion or Wasserstein distance), then the induced expectations of Y should be
close, under mild regularity conditions on Y . (Estimability) The semantics
should admit approximation from observational traces produced by M on
contexts from D, without requiring oracle access to latent mechanisms be-
yond activations themselves. In particular, we seek an approach where the
only learned object is a conditional generator trained on samples (c, aℓ(c)),
and where Monte Carlo evaluation of interventions has controlled variance
under feasible computational budgets.

Finally, we define the effect we aim to estimate as a difference of two
interventional expectations corresponding to two patch specifications v and
v′ (e.g. “clean” versus “corrupted” feature values):

∆ := E[Y | dor(aℓ[S] = v)] − E
[
Y | dor(aℓ[S] = v′)

]
. (3)

The remainder of our development chooses a particular completion semantics
rℓ motivated by remaining on the model-induced activation manifold and
then shows how to approximate it by a learned conditional generator while
controlling the resulting error and variance.

4 On-manifold patching semantics

We now fix the completion rule by appealing to the distribution over acti-
vations that the model itself induces. For each layer ℓ and context c, the
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forward pass of M produces a deterministic vector aℓ(c) ∈ Rdℓ ; random-
ness enters only through c ∼ D. Hence, for each c we obtain a (typically
intractable) conditional distribution pℓ(· | c) over Rdℓ , representing the vari-
ability of aℓ across draws from D sharing the same conditioning information
c.1 We informally refer to the activation manifold at layer ℓ (relative to D)
as the subset of Rdℓ on which pℓ(· | c) concentrates for typical contexts; the
key point is not the topology of this set but that it is characterized by the
model-induced law itself.

Given a coordinate subset S ⊆ [dℓ] and a patch value v ∈ R|S|, we
want to define the counterfactual distribution of the entire state under the
constraint aℓ[S] = v while remaining “on-manifold.” The canonical object is
the constrained conditional

pℓ(· | c, aℓ[S] = v), (4)

i.e. a regular conditional distribution supported on the affine slice {a ∈ Rdℓ :
a[S] = v}. When pℓ(· | c) admits a density (or more generally when standard
disintegration hypotheses hold), (4) is well-defined as the conditional law of
aℓ given the event {aℓ[S] = v}. In continuous settings this event may have
probability zero; we interpret (4) as the version of the conditional arising
from disintegration with respect to the coordinate projection πS(a) = a[S],
equivalently as the family of conditional measures appearing in the factor-
ization

pℓ(da | c) = pℓ(da[S] | c) pℓ(da[S̄] | c, a[S]), (5)

and then evaluating at a[S] = v. This interpretation is the one that our
learned generator will approximate.

We define the on-manifold intervention doOM(aℓ[S] = v) by using (4) as
the completion rule. Concretely, for each c we sample a full post-intervention
state

ãℓ ∼ pℓ(· | c, aℓ[S] = v), so that ãℓ[S] = v a.s., (6)

and then run the deterministic suffix computation to obtain Ỹ = h(gℓ(ãℓ, c)).
The corresponding interventional expectation is

E[Y | doOM(aℓ[S] = v)] := Ec∼D Eãℓ∼pℓ(·|c,aℓ[S]=v) [h(gℓ(ãℓ, c))] . (7)

Thus the semantics is distributional: we intervene by imposing a coordi-
nate constraint and otherwise sampling as the model typically would, condi-
tional on that constraint. This is precisely what is violated by common off-
manifold operators (zeroing, adding large noise, mixing independent coordi-
nates), which generally produce states lying far outside the high-probability
region of pℓ(· | c).

1In implementations one chooses what information is included in c (e.g. full prompt
prefix, metadata, token index). The semantics below is defined relative to this choice.
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Two further remarks clarify why (4) is the natural completion. First,
among all completion distributions supported on the slice {a[S] = v}, the
constrained conditional is the least committal modification of the original
law in an information-theoretic sense: for fixed c, it is the I-projection of
pℓ(· | c) onto the constraint set. Formally, whenever the constraint admits
at least one distribution absolutely continuous with respect to pℓ(· | c), we
have

pℓ(· | c, a[S] = v) ∈ arg min
r: r(a[S]=v)=1

KL(r(·) ∥ pℓ(· | c)) , (8)

which expresses that we change only what is required to enforce a[S] =
v. Second, the choice preserves all correlations between a[S] and a[S̄] that
are present on the activation manifold, by sampling a[S̄] from the correct
conditional law rather than from an unconditional or heuristic substitute.

It is also helpful to relate doOM to standard causal formalisms. Consider
an SCM in which exogenous noise is the context c ∼ D and endogenous
variables include the internal states A1, . . . , AL together with the output Y .
Because the network is deterministic, one may write structural equations
Aℓ = Fℓ(Aℓ−1, c) and Y = H(AL, c) for suitable deterministic maps. In
such an SCM, a surgical intervention on a subset of coordinates of Aℓ is
not uniquely specified unless we also specify how the remaining coordinates
are generated after the intervention: replacing only part of a vector-valued
variable does not determine a complete structural equation. The on-manifold
intervention doOM(Aℓ[S] = v) may be viewed as defining a new structural
mechanism for the whole of Aℓ under intervention, namely

A
(int)
ℓ ∼ pℓ(· | c, Aℓ[S] = v), (9)

while leaving downstream mechanisms unchanged. Equivalently, doOM fixes
the marginal of Aℓ[S] at the desired value and uses the observational condi-
tional to supply a compatible draw for Aℓ[S̄], thereby avoiding counterfactual
queries about off-support combinations of internal variables. In this sense
doOM does not posit a causal graph among individual coordinates inside Aℓ;
rather, it treats Aℓ as a single endogenous variable and uses pℓ as an implicit,
distributional substitute for unknown intra-layer causal structure.

Finally, we emphasize that (7) is an ideal target rather than an opera-
tional primitive: pℓ(· | c, a[S] = v) is not directly accessible. The next section
therefore constructs a learned approximation qℓ(· | c, a[S] = v) from activa-
tion traces and uses it to implement doOM approximately, with quantitative
bounds controlling the induced error in effect estimates.
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5 5. Algorithm: learning conditional activation
generators; masked conditioning for arbitrary co-
ordinate subsets; performing on-manifold inter-
ventions efficiently; practical design choices (which
modules, which state types).

To operationalize the semantics above we require a procedure that, for a
given layer ℓ, context specification c, coordinate subset S ⊆ [dℓ], and patch
value v ∈ R|S|, can sample a full activation vector ãℓ ∈ Rdℓ distributed
approximately as the constrained conditional pℓ(· | c, aℓ[S] = v). Since pℓ is
available only implicitly through forward executions of M on contexts drawn
from D, we learn a conditional generator qℓ(· | c, aℓ[S] = v) from activation
traces and then use qℓ to implement approximate on-manifold interventions.

Data collection and conditioning. We first fix the instrumentation
granularity: a module index ℓ and a definition of the internal state aℓ(c)
to be patched (e.g. the residual stream at a specified token position, the
MLP output pre-residual, or the concatenation of per-head attention out-
puts). We then sample contexts c ∼ D and run M while logging the re-
sulting states aℓ(c). The exact content of c is a modeling choice: including
too little information produces a wide conditional distribution pℓ(· | c) and
makes constrained sampling difficult; including too much information (e.g.
the entire prompt and position index) improves conditional predictability
but may reduce effective sample size. In practice we treat c as whatever
metadata will be available at intervention time (prompt prefix, token index,
auxiliary conditioning variables), and we train qℓ to accept c as input.

Masked conditioning for arbitrary coordinate subsets. A central
requirement is arbitrary-subset conditioning : we want a single learned model
qℓ that can condition on any fixed subset of coordinates and generate the
rest. To this end we represent a constraint by a triple (m,xobs, c) where
m ∈ {0, 1}dℓ is a binary mask with mi = 1 indicating that coordinate i
is clamped, and xobs ∈ Rdℓ provides values on the clamped coordinates
(arbitrary elsewhere). For the intervention aℓ[S] = v we set m = 1S and
xobs[S] = v. The generator is trained to model the conditional law of aℓ given
(c,m, xobs), with the hard constraint implemented by construction: samples
ãℓ are post-processed (or parameterized) so that ãℓ[S] = v exactly.

There are several equivalent training formulations. A convenient choice
is masked conditional likelihood: we draw random masks m during training
(e.g. coordinate-wise Bernoulli with rate ρ, or structured masks correspond-
ing to blocks, heads, or learned subspaces), and maximize

Ec∼D Eaℓ∼pℓ(·|c) Em∼M

[
log qℓ

(
aℓ[m̄] | c,m, aℓ[m]

)]
, (10)
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where m̄ denotes the complement coordinates. This objective directly matches
the conditional completion rule we need at evaluation time: given (c, S, v),
we sample ãℓ[S̄] ∼ qℓ(· | c,m = 1S , x

obs[S] = v) and then set ãℓ[S] = v. Ar-
chitecturally, qℓ may be (i) an autoregressive model over coordinates (often
expensive for large dℓ), (ii) a conditional normalizing flow (exact likelihood,
moderate sampling cost), or (iii) a conditional diffusion/score model (high-
quality samples, but iterative sampling). We emphasize that our subsequent
use of qℓ is purely as a sampler; any family that supports conditioning on
(c,m, xobs) is admissible.

Efficient implementation of interventions. Given a trained qℓ, we im-
plement an approximate on-manifold intervention by a two-stage run. First
we execute the prefix of M up to module ℓ on context c to obtain any needed
intermediate values and the base activation aℓ(c) (the latter is optional if v is
supplied externally). Second we draw ãℓ ∼ qℓ(· | c, aℓ[S] = v) and overwrite
the internal state at module ℓ with ãℓ, then run the deterministic suffix com-
putation to obtain the outcome Y . For Monte Carlo estimation we repeat the
sampling of ãℓ for the same c while caching the prefix computation, thereby
reducing cost from O(K TM ) to O(Tprefix + K Tsuffix) per context, where
Tprefix and Tsuffix denote the costs of the corresponding segments. Batching
is straightforward: we may sample K completions in parallel from qℓ and
evaluate the suffix on a batch of patched states.

Patch specifications and practical design choices. The patch value
may be a fixed vector v, a function of c (e.g. v(c) produced by a secondary
run on a contrast context), or a stochastic mapping (e.g. sampling v from
an empirical distribution). Our implementation requires only that at evalua-
tion time we can produce the desired v and the corresponding mask m = 1S .
Choosing S is likewise flexible: S may be a small set of coordinates (inter-
preted as features), a learned subspace (implemented by changing basis and
masking in that basis), or a structured component (e.g. all dimensions of
a particular attention head output). Empirically, modules with moderately
sized states and clear functional roles (late residual streams at a token posi-
tion, MLP activations, head outputs) are often easier to model with qℓ than
extremely early layers or concatenations spanning many positions.

Finally, we note that training qℓ is an offline cost that can be amortized
across many interventions at the same ℓ. Once learned, the same generator
supports a family of interventions across different subsets S and values v,
enabling systematic effect estimation with controlled completion semantics
rather than ad hoc off-manifold replacements.
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6 6. Theory I (upper bounds): stability of esti-
mated effects under generator approximation er-
ror; bounds in TV and Wasserstein; when effect
function is Lipschitz/bounded; sample complex-
ity for mean effect estimation.

We now quantify how errors in the learned completion model propagate to
errors in estimated on-manifold effects. Fix a layer ℓ, coordinates S ⊆ [dℓ],
and a patch rule v (possibly depending on c). For each context c we define
the ideal on-manifold interventional mean

µv(c) := Eã∼pℓ(·|c,ã[S]=v(c))

[
Y (ã, c)

]
, µv := Ec∼D

[
µv(c)

]
, (11)

and the corresponding quantity induced by our learned generator

µ̃v(c) := Eã∼qℓ(·|c,ã[S]=v(c))

[
Y (ã, c)

]
, µ̃v := Ec∼D

[
µ̃v(c)

]
. (12)

The object of interest is typically a contrast ∆OM = µv − µv′ , estimated by
∆̂OM = ̂̃µv− ̂̃µv′ where ̂̃µv denotes a Monte Carlo approximation of µ̃v using
J contexts and K completions per context.

Stability under total variation error. Assume throughout this para-
graph that Y (ã, c) ∈ [0, 1] for all (ã, c), which covers normalized losses, ac-
curacies, and suitably scaled logit differences. For fixed c and constraint
ã[S] = v(c), the map ã 7→ Y (ã, c) is a bounded test function, hence its
expectation differs by at most the total variation distance between the cor-
responding constrained conditionals. Writing

εv(c) := TV(pℓ(· | c, ã[S] = v(c)), qℓ(· | c, ã[S] = v(c))) , (13)

we obtain the pointwise bound |µv(c)− µ̃v(c)| ≤ εv(c). Averaging over c ∼ D
yields

|µv − µ̃v| ≤ ε̄v where ε̄v := Ec∼D[εv(c)]. (14)

For a two-arm effect, the generator-induced bias is therefore additive:

|∆OM − (µ̃v − µ̃v′)| ≤ ε̄v + ε̄v′ . (15)

A useful corollary concerns intervention-implementation variance: if two
distinct generators qℓ and q′ℓ both satisfy ε̄v ≤ ε for the same intervention
specification, then |µ̃v− µ̃′v| ≤ 2ε, i.e. the estimated effect is stable across im-
plementation choices once both implementations are sufficiently on-manifold.
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Stability under Wasserstein error via Lipschitz outcomes. When
Y is not naturally bounded but is regular in aℓ, we can trade TV for W1.
Suppose that for each fixed c the function ã 7→ Y (ã, c) is L-Lipschitz in ℓ2,
meaning |Y (ã, c)−Y (ã′, c)| ≤ L∥ã− ã′∥2. Then by Kantorovich–Rubinstein
duality,

|µv(c)− µ̃v(c)| ≤ L ·W1(pℓ(· | c, ã[S] = v(c)), qℓ(· | c, ã[S] = v(c))) , (16)

and hence |µv − µ̃v| ≤ LEc[W1(·, ·)]. In deterministic networks one may
upper bound (or estimate) L by differentiating the suffix computation: if
Y (ã, c) = ψ(gℓ(ã, c)) with ψ Lipschitz and gℓ differentiable in ã, then L ≤
supã ∥∇ãY (ã, c)∥2. This yields a quantitative route to translating generator
quality (in transport distance) into effect-estimation guarantees.

Monte Carlo estimation error and sample complexity. We next
bound the deviation between ̂̃µv and µ̃v. For each sampled context cj ∼ D
we draw completions ã(k)ℓ ∼ qℓ(· | cj , ã[S] = v(cj)) independently and form

̂̃µv =
1

J

J∑
j=1

(
1

K

K∑
k=1

Y (ã
(k)
ℓ , cj)

)
. (17)

If Y ∈ [0, 1], a direct Hoeffding argument (applied either to the JK pooled
samples, or conditionally and then averaged) gives concentration of order
O((JK)−1/2) for ̂̃µv around µ̃v, and therefore the same rate for the difference
∆̂OM around (µ̃v − µ̃v′). A more informative decomposition uses the law of
total variance:

Var(̂̃µv) =
1

J
Varc∼D

(
µ̃v(c)

)
+

1

JK
Ec∼D

[
Varã∼qℓ(Y (ã, c) | c)

]
, (18)

which makes explicit the roles of J (covering context variability) and K
(reducing completion noise at fixed c). In practice this suggests selecting K
large enough to suppress the inner variance when qℓ is broad, while scaling
J to control across-context heterogeneity.

End-to-end upper bound. Combining generator approximation error
(TV or Wasserstein) with Monte Carlo concentration yields an additive end-
to-end guarantee of the form

|∆̂OM −∆OM| ≤ (generator bias) + (sampling error), (19)

where the bias term is controlled by ε̄v+ ε̄v′ in TV (or the analogous LE[W1]
term), and the sampling error is O((JK)−1/2) for bounded Y . This for-
malizes the basic promise of on-manifold patching: once we can learn con-
strained completions that are close to the true activation manifold, esti-
mated causal effects become both accurate (small bias) and stable (small
dependence on implementation), with the remaining uncertainty governed
by standard Monte Carlo sample complexity.
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Theory II: why off-manifold patching is not a semantics. We now
justify, by lower bounds and explicit constructions, the claim that stan-
dard patching/ablation operators do not admit uniform correctness guar-
antees, even when the underlying network is deterministic and even when
we have unlimited observational access on c ∼ D. The obstruction is non-
identifiability : observational behavior constrains the model only on the sup-
port of its induced activation distribution, whereas most patch operators
systematically query states that lie outside this support (or in regions of
vanishing density). Any purported “causal effect” thereby depends not on
the model as deployed, but on an arbitrary extension of its behavior to coun-
terfactual activation configurations.

Activation-level counterfactuals are underspecified off-manifold. Fix
a layer ℓ and coordinates S. A generic patch operator P specifies, for each
context c, a rule producing a full patched activation ãℓ = P(c) satisfying
ãℓ[S] = v(c). Crucially, P also implicitly specifies a distribution over the re-
maining coordinates [dℓ]\S; e.g. zero ablation sets them to their unmodified
values but changes only S, whereas cross-example patching copies a full state
from a different context. Absent an explicit conditional distribution (such as
pℓ(· | c, aℓ[S] = v(c))), there is no canonical choice: multiple distinct comple-
tions are consistent with the same observational traces, and the downstream
computation may behave arbitrarily differently on each completion.

Arbitrary disagreement between common patch operators. Theo-
rem 4 formalizes this intuition. We sketch the mechanism because it clarifies
what goes wrong. We construct a network with an internal off-manifold
detector D(aℓ, c) ∈ {0, 1} that is identically zero on all activations aℓ(c)
encountered under c ∼ D, yet equals one on a set of patched activations
produced by P1 and equals zero on those produced by P2. Downstream,
the model gates its computation on D: if D = 0 it implements the origi-
nal task (thereby matching observational behavior), while if D = 1 it adds
an arbitrarily large offset to the outcome-relevant computation (e.g. flips a
classification label or shifts a logit difference by C). Because D never fires
on-manifold, no amount of observational evaluation can reveal its existence;
nevertheless, a patch operator that lands off-manifold reliably triggers the
alternate branch. By choosing the magnitude of the gated effect, we can
force |∆P1−∆P2 | ≥ C for any prescribed C, and in particular make the sign
disagree.

Two aspects are worth emphasizing. First, the construction does not
require stochasticity, adversarial training, or pathological activations; it re-
quires only that the activation manifold (the support of pℓ(· | c)) is a strict
subset of Rdℓ , which is generically true in high dimension. Second, the dis-
agreement is not a quantitative instability that disappears with more sam-
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ples: it is a semantic instability caused by querying undefined counterfactual
regions. This motivates treating “intervention-implementation variance” not
merely as an experimental nuisance but as evidence that the intervention
itself is ill-posed.

Implications for faithfulness and circuit metrics. Many existing faith-
fulness metrics implicitly rely on an off-manifold operator: zeroing a sub-
space, replacing it with a mean activation, adding noise, or swapping in a
state from another example. Our impossibility result shows that such met-
rics cannot, in general, be interpreted as estimating a model-intrinsic causal
quantity; rather, they estimate the causal quantity of the pair (M,P), where
P supplies an arbitrary completion semantics. Consequently, comparisons
across papers (or even across implementations) can be confounded by differ-
ences in patch choice, normalization, hook location, or tensor shaping, each
of which changes the induced off-manifold distribution. A practical corollary
is that when two patch operators disagree, it is not meaningful to ask which
one is “more correct” without an external criterion specifying the intended
counterfactual.

Our on-manifold semantics resolves this by specifying the counterfactual
distribution explicitly as the constrained conditional pℓ(· | c, aℓ[S] = v), and
by approximating it with a learned qℓ. In this view, a faithfulness metric be-
comes well-defined only after we commit to the conditional distribution used
to complete the intervened coordinates; stability across reasonable choices
of qℓ is then an empirical diagnostic that we are indeed sampling near the
activation manifold.

Lower bounds for learning the manifold. Theorem 5 explains why
learning such completions is nontrivial. In the absence of structure, es-
timating pℓ(· | c) (or the constrained version) to small total variation error
requires sample size exponential in dℓ, by classical minimax lower bounds for
density estimation. Thus, there is no “free” universally correct on-manifold
patcher for arbitrary layers: success must come from exploitable regulari-
ties, such as low intrinsic dimension of activations, conditional factorization,
or parametric inductive bias in qℓ. This also clarifies why naive heuristics
(e.g. Gaussian matching of marginal moments) can appear plausible yet fail
catastrophically: matching low-order statistics does not control TV or W1 in
high dimension, and therefore does not control counterfactual expectations.

Takeaway for the experimental agenda. The theory therefore yields
two testable predictions. First, off-manifold patching should exhibit high
intervention-implementation variance and can disagree even in sign across
operators. Second, when we can learn qℓ well enough to remain on-manifold,
effect estimates should become both more stable and more aligned with
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ground-truth causal structure in settings where such ground truth is avail-
able. We now turn to such settings and quantify these predictions.

Experiments I (ground truth): compiled models with known cir-
cuits. We begin with settings in which the relevant causal structure is
specified externally, so that we can compare intervention estimates to a ref-
erence quantity not defined in terms of any patch operator. Concretely, we
use (i) compiled Transformers produced by TRACR (and related RASP-to-
Transformer compilers), where intermediate variables of the source program
provide a natural notion of “ground-truth mediators,” and (ii) InterpBench-
style synthetic tasks in which a small, human-auditable circuit is embedded
into an otherwise inert network. In both cases we know, by construction, a
set of internal coordinates/features (or linear subspaces) that are intended
to implement a particular computation, and we can define a ground-truth
interventional effect by intervening at the level of the source variable or the
embedded circuit rather than by choosing an activation completion rule.

Reference effects and circuit labels. For each task we specify an out-
come Y (typically a bounded logit difference or an indicator of correctness)
and a patch specification v(c) corresponding to a semantic change in an
intermediate variable. In TRACR models, we obtain v(c) by running the
compiled program on a contrast input (or by directly modifying a program
variable when the compiler exposes it), and we treat the compiler’s align-
ment map as providing a layer–subspace pair (ℓ, S) expected to encode that
variable. This yields a reference effect

∆ref = Ec∼D[Y | program-level intervention] − Ec∼D[Y | no intervention] ,

which is well-defined independently of any activation patching semantics.
Separately, for circuit recovery we define ground-truth labels G ⊆ [dℓ] (or
a ground-truth low-dimensional subspace) via the compiler’s construction
(TRACR) or via the planted circuit (InterpBench). These labels allow eval-
uation of how well an intervention method ranks features by causal impor-
tance.

Intervention methods compared. We compare on-manifold patching to
several commonly used off-manifold operators. Given a targeted coordinate
set S and patch value v(c), we consider: (a) zero/mean ablation (aℓ[S]← 0
or ← E[aℓ[S]]), (b) Gaussian noise matched to marginal moments of aℓ[S],
(c) cross-example patching (copying aℓ[S] from a different context c′), and
(d) swap-full-state variants that copy an entire activation vector at layer ℓ
(which often implicitly changes variables other than the intended one). For
on-manifold patching we train qℓ(· | c, aℓ[S] = v) from activation traces on
c ∼ D and sample ãℓ ∼ qℓ with the hard constraint ãℓ[S] = v enforced by
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construction. We then estimate ∆̂OM by Monte Carlo as in Algorithm OM-
Patch.

Agreement with ground truth and faithfulness to intended medi-
ators. We evaluate two notions of agreement. First, effect agreement : we
compare each operator’s estimated effect to ∆ref across a suite of interven-
tions (different variables, layers, and tasks), reporting absolute error and
sign agreement. Second, circuit agreement : for each method we score fea-
tures or subspaces by the magnitude of their estimated effect when patched
(holding the patch semantics fixed), and we report standard ranking met-
rics with respect to G (e.g. AUROC or average precision when G is a set;
subspace overlap when G is a span). The salient observation across com-
piled tasks is that on-manifold patching yields effect estimates that track
∆ref more closely than off-manifold baselines when the intervention is in-
tended to correspond to a semantic variable change. In particular, when
the intervention is localized to a compiler-identified subspace, off-manifold
operators frequently confound the intended change with distributional shift
in the remaining coordinates, while qℓ-based completions tend to preserve
the correlations necessary for the downstream computation to remain in the
regime observed under D.

Stress tests: intervention-implementation variance. To probe whether
a method defines a stable semantics rather than a fragile implementation,
we measure intervention-implementation variance by repeating each experi-
ment under variations that should be inessential: different hook points that
are algebraically equivalent (e.g. pre- vs post-residual-add where applicable),
different tensor reshaping conventions for the same subspace, and different
random seeds or architectures for qℓ (e.g. masked autoregressive Transformer
vs conditional normalizing flow) while keeping the training data and condi-
tioning information fixed. For each intervention we record the empirical
variance of the estimated effect across implementations. Off-manifold opera-
tors typically exhibit large dispersion under these variations, consistent with
the fact that each implementation induces a different off-manifold completion
of [dℓ] \ S. By contrast, when multiple qℓ instances achieve similar held-out
likelihood (or similar reconstruction error under masked coordinates), the
resulting ∆̂OM concentrates tightly, and disagreements between generators
serve as a diagnostic that the manifold approximation is inadequate at the
chosen (ℓ, S).

Negative controls and falsification checks. We include interventions
on coordinates known (by construction) to be irrelevant to Y in the planted-
circuit setting. A reasonable semantics should assign near-zero effect to these
negative controls, up to sampling error. Off-manifold operators can spuri-
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ously produce nontrivial effects on these controls due to distribution shift
triggering downstream nonlinearities, whereas on-manifold patching sub-
stantially suppresses such false positives when qℓ is well-trained. We also
report a constraint satisfaction check (exact equality on S) and a manifold
proximity check (e.g. comparing discriminator scores or held-out conditional
log-likelihood under qℓ), since these correlate with downstream stability.

Summary of what the ground-truth setting establishes. These ex-
periments do not claim that qℓ learns pℓ in full generality; rather, they show
that in settings where we can independently specify the intended counterfac-
tual and identify a small set of mediator coordinates, enforcing an explicit
conditional completion semantics improves both (i) agreement with external
ground truth and (ii) robustness across innocuous implementation choices.
This ground-truth evidence motivates applying the same methodology to
real pretrained models, where no program-level reference effect exists and
stability diagnostics become correspondingly more important.

Experiments II (real models): case studies without external ground
truth. We next evaluate on-manifold patching on pretrained language mod-
els where no program-level reference effect is available. Here our target is not
agreement with ∆ref but rather (i) semantic coherence of the induced coun-
terfactuals (the suffix computation remains in-distribution relative to D),
(ii) stability of estimated effects under innocuous implementation choices,
and (iii) diagnostics for redundancy or “backup” mechanisms that compli-
cate single-site causal attribution. In all case studies we fix a layer ℓ and
intervention set S (either an attention-head output subspace, an SAE latent
subset, or a hand-selected direction), define a patch value v(c) from a con-
trast construction, and estimate ∆̂OM with K generator samples per context
and J contexts from D, keeping Y bounded (logit differences clipped to [0, 1]
when required).

Indirect object identification (IOI): mediator-local interventions
and variance. In the IOI task we consider prompts of the form “A and
B went to the store. A gave a gift to ,” with Y the logit difference be-
tween the correct indirect object token and the distractor. We define a
contrast by swapping the roles of the two names while holding the rest of
the prompt fixed, and we set v(c) to the activation coordinates on S ob-
tained under the contrast context (so v(c) is a semantic patch value tied
to a well-defined alternative input). For S we study (a) the output sub-
space of previously identified IOI-relevant attention heads and (b) subsets
of SAE latents whose decoding directions align with name-referent features.
Off-manifold baselines (zero ablation, mean ablation, cross-example copy-
ing of aℓ[S]) often yield effects whose sign and magnitude depend strongly
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on whether the hook is placed pre- or post-residual-add and on the pre-
cise tensorization used to represent the head subspace. Under on-manifold
patching, we observe markedly reduced dispersion across these choices: if
two implementations produce generators qℓ with comparable held-out con-
ditional log-likelihood, then the corresponding ∆̂OM agree to within Monte
Carlo error. When they do not agree, this typically coincides with clear fail-
ures of the manifold diagnostics (poor conditional reconstruction of held-out
coordinates or elevated discriminator detectability), which we treat as evi-
dence that (ℓ, S) is too large or that the conditioning metadata is insufficient
(e.g. missing position information).

Induction: patching heads versus directions under controlled dis-
tribution shift. We also study induction behavior on synthetic repetition
prompts sampled from a distribution D that controls sequence length and
token entropy, with Y measuring the probability mass assigned to the re-
peated token at the induction position. We intervene on (i) induction-head
outputs and (ii) known “induction directions” in the residual stream ob-
tained by linear probes trained on whether a token is part of a repeated
bigram. The salient phenomenon is that off-manifold operators can artifi-
cially suppress induction by pushing the residual stream into regions where
downstream MLPs saturate, yielding large apparent effects even when the
patched coordinates are not uniquely responsible for the behavior. By con-
trast, on-manifold completions preserve the co-activation structure between
the patched head output and the surrounding residual coordinates (e.g. po-
sitional and frequency features), so the induced counterfactual more closely
resembles “induction with a modified mediator” rather than “induction un-
der distributional corruption.” As a further stress test we vary D (different
alphabet sizes and repetition rates) while keeping the generator trained on
the original D; the resulting degradation in stability aligns with the theoret-
ical requirement that qℓ approximate the relevant conditional distribution.
Empirically, effect estimates become less stable precisely when manifold di-
agnostics indicate covariate shift (e.g. sharp drops in conditional likelihood).

Refusal-direction interventions: isolating safety behavior from cor-
ruption. For refusal we use instruction-following models and define D over
benign and harmful instruction prompts with a fixed template. We take Y
to be a bounded refusal score (either a classifier probability or a logit dif-
ference between refusal and compliance tokens). We consider a patch set
S corresponding to a “refusal direction” (a low-dimensional subspace in the
residual stream) and define v(c) by replacing the projection onto this sub-
space with that of a contrasting prompt class (harmful ↔ benign), holding
the orthogonal complement to be sampled by qℓ. A recurring failure mode
of off-manifold ablations is to elicit incoherent outputs (degenerate repeti-
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tion, sudden topic shifts) that inflate refusal scores for reasons unrelated to
the intended safety mechanism. On-manifold patching substantially reduces
these artifacts: completions ãℓ sampled from qℓ(· | c, aℓ[S] = v(c)) tend to
preserve fluency and instruction adherence, allowing Y to more directly re-
flect changes in refusal-relevant features rather than generic corruption. We
emphasize that this does not certify any particular normative interpretation;
it only provides a more stable counterfactual semantics at the internal-state
level.

Hydra and backup indicators: diagnosing redundancy via condi-
tional heterogeneity. Real models often exhibit redundancy: multiple
distinct internal pathways can sustain the same behavior. We operationalize
“hydra” effects by measuring conditional heterogeneity of outcomes under
the same patch constraint. Concretely, for fixed (c, ℓ, S, v) we examine the
distribution of Y (ãℓ, c) over ãℓ ∼ qℓ(· | c, aℓ[S] = v), not only its mean. Large
conditional variance (beyond Monte Carlo noise) indicates that the patched
mediator does not uniquely determine the downstream behavior, consistent
with backups that can be toggled by different completions of [dℓ] \ S. We
also compare single-site interventions to joint interventions on unions S1∪S2;
superadditivity or sign reversals in ∆̂OM across these choices serve as fur-
ther evidence of interacting redundant pathways rather than a single sparse
circuit.

Computational overhead and practical regimes. Training qℓ is the
dominant additional cost relative to standard patching. In our implemen-
tations we amortize data collection by logging aℓ for multiple ℓ in the same
forward pass and train moderate-capacity conditional generators (masked
autoregressive models or small Transformers) on N activation samples. At
evaluation time the overhead is essentially multiplicative in K: we require
JK suffix runs plus generator sampling, but we cache prefix computations
and batch the K samples per context so that wall-clock time is typically
bounded by a small constant factor over running JK standard forward
passes. In practice we select K by monitoring stabilization of ∆̂OM and
of the implementation-variance diagnostic; when these plateau, additional
sampling yields diminishing returns.

7 Discussion and extensions

Our central claim is not that on-manifold patching is the unique “correct”
counterfactual semantics, but that it is a semantics sufficiently explicit to ad-
mit (i) approximation guarantees and (ii) meaningful diagnostics when those
guarantees are violated. This viewpoint suggests a family of extensions in
which we treat standard mechanistic-interpretability procedures as pipelines
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that query counterfactuals, and we replace their implicit, underspecified patch
operators by the explicit doOM operator induced by pℓ(· | c, aℓ[S] = v) (ap-
proximated by a learned qℓ). We highlight three directions: integration into
circuit-discovery methods, implications for feature-based “nodes” (e.g. SAE
latents), and limitations and outlook.

Using on-manifold patching within ACDC and causal scrubbing.
Procedures such as ACDC and causal scrubbing repeatedly evaluate whether
an internal subcomputation is causally necessary (or sufficient) for an ob-
served behavior by performing targeted interventions and measuring changes
in an outcome Y . Abstractly, these algorithms require an operator that (a)
clamps a chosen set of internal variables and (b) “fills in” the remaining
variables in a way that is intended to preserve everything not explicitly in-
tervened upon. Off-manifold patching implements (a) but leaves (b) ambigu-
ous, which is precisely the failure mode captured by Theorem 4. On-manifold
patching proposes a principled replacement: when ACDC considers severing
or restoring an edge corresponding to coordinates S, we estimate the relevant
effect by

µ̂OM(v) = Ec∼D Eãℓ∼qℓ(·|c,aℓ[S]=v(c))

[
Y (ãℓ, c)

]
,

and compare it to the analogous estimate for a baseline value v′(c). The algo-
rithmic change is minimal—one replaces “overwrite and run suffix” by “over-
write, resample the complement from qℓ, and run suffix”—but the semantics
become stable to implementation details insofar as the different implemen-
tations learn generators with similar conditional fit. In practice, one can
plug OM-Patch into ACDC as a drop-in oracle for edge scoring, while using
the held-out conditional likelihood (or any calibrated manifold diagnostic)
to decide whether the score is trustworthy at a given (ℓ, S).

Counterfactual trace generation for scrubbing. Causal scrubbing
and related “program replacement” methods often require not only scalar
effects but entire counterfactual traces: one wishes to replace a subtrace
by one computed under an alternative input, while keeping the remain-
der of the trace “as it would have been” under that replacement. On-
manifold patching provides a way to generate such traces without appealing
to unidentifiable off-manifold behavior. Concretely, if a scrubbed program
prescribes a value v(c) for a set of coordinates S at module ℓ, we can sample
ãℓ ∼ qℓ(· | c, aℓ[S] = v(c)), continue the model deterministically, and (if
desired) log subsequent activations for further downstream scrubbing steps.
This yields a coherent notion of a counterfactual run consistent with the
model-induced activation statistics on D, at least to the extent that the se-
quential application of generators remains accurate. The natural technical
question here is compositionality: if we intervene at multiple layers, errors
in successive generators can accumulate. A conservative practice is to treat
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each additional intervention as increasing approximation risk and to validate
with increasingly strict diagnostics as the number of intervention sites grows.

Implications for SDL and SAE-based “nodes.” Many contemporary
circuit analyses define nodes not as individual neurons but as learned features
(SAE latents, sparse directions, or subspaces) and then patch those nodes
to test causal relevance. Our framework clarifies what it means to intervene
on such objects: if S indexes SAE latents, then a patch aℓ[S] = v is best
interpreted as a constraint on those latents, while the remaining degrees of
freedom (including correlated latents and residual components) should be re-
sampled from the conditional distribution induced by the model on D. This
matters because SAE features are generally not statistically independent;
forcing a subset to atypical values while leaving the rest fixed can create
implausible combinations that downstream components may respond to in
arbitrary ways. By training qℓ to condition on subsets of latents, we can (i)
test whether a feature is causally implicated in Y under a semantics that
respects its typical co-activation structure, and (ii) quantify redundancy by
examining the conditional distribution of Y under the same latent constraint
(our “hydra” diagnostic). More broadly, this suggests a refinement of struc-
ture discovery for dictionaries: a set of latents is a robust mechanistic unit
only if clamping them yields low conditional heterogeneity in downstream
behavior.

Limitations: manifold model error and distribution shift. The pri-
mary limitation is that the quality of the counterfactual depends on how well
qℓ approximates the relevant conditional distribution. Theorems 1–3 turn
this into an explicit error term, but they do not remove the practical burden
of training and validating qℓ. Two failure modes are especially important.
First, model error : even on the training distribution, qℓ may be misspecified,
underpowered, or inadequately conditioned (e.g. missing position, attention
mask, or other metadata), yielding samples that satisfy aℓ[S] = v but drift
off the true manifold elsewhere. Second, distribution shift : if we train qℓ on
contexts from D and then evaluate interventions on a different distribution
D′, the relevant conditional pℓ(· | c, aℓ[S] = v) may change substantially,
invalidating both stability and semantic-coherence claims. In both cases,
we recommend treating manifold diagnostics as first-class outputs: if con-
ditional likelihood, reconstruction accuracy, or detectability degrades, then
the intervention result should be reported as unreliable rather than over-
interpreted.

Outlook (2026): agentic tool-use and multimodal states. We ex-
pect the on-manifold perspective to become more valuable as models become
more agentic and more multimodal. In tool-using systems, the “context” c
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includes not only a prompt prefix but also external observations, tool out-
puts, and long-horizon state (memory buffers, scratchpads, or action histo-
ries). Interventions then naturally target policy-relevant internal variables
(e.g. action-selection subspaces) while requiring on-manifold completion of
the remaining state so as not to induce spurious failures unrelated to the
intended mechanism. This likely necessitates sequential or stateful gener-
ators that model pℓ(aℓ,t | ct, aℓ,t[S] = vt) across time steps, rather than a
single-step conditional at a fixed token position. For multimodal models,
interventions at the interface between modalities (vision encoder outputs,
cross-attention keys/values, audio embeddings) similarly demand conditional
completion that preserves cross-modal consistency. We view these as natural
extensions of the same semantic commitment: counterfactual internal states
should be sampled from a distribution the model itself assigns non-negligible
probability under the relevant operating regime.

Reproducibility and artifacts. Because our proposal replaces an un-
derspecified intervention operator by an explicit conditional distribution,
the primary reproducibility burden shifts from “how exactly did we patch?”
to “what conditional distribution did we learn, and how well does it fit?”
We therefore treat artifacts for (i) learning qℓ and (ii) evaluating ∆̂OM as
first-class research outputs. Concretely, we release (a) code for OM-Patch
end-to-end, (b) activation datasets for the layers/tasks reported in the pa-
per where licensing permits, (c) trained conditional generators (including
multiple seeds/architectures for stability checks), and (d) benchmark proto-
cols that specify D, intervention sites (ℓ, S), patch-value functions v(·), and
outcome metrics Y .

Our codebase is organized as a single reproducible pipeline with two
explicit phases matching Algorithm OM-Patch: trace collection and coun-
terfactual evaluation. Trace collection scripts take as input a model iden-
tifier, a dataset sampler for c ∼ D, and a list of intervention sites; they
then run M once per context and log the corresponding activations aℓ(c)
together with all conditioning variables required to define pℓ(· | c) in prac-
tice (token indices, attention masks, position encodings, modality tags, and
any task-specific metadata). Evaluation scripts never re-log activations:
they load a trained qℓ, apply coordinate constraints aℓ[S] = v(c), sample
ãℓ ∼ qℓ(· | c, aℓ[S] = v(c)), and run the deterministic suffix to obtain Y .
This separation makes it easy to rerun the same evaluation against alter-
native generator families (or alternative seeds) without conflating generator
error with trace-collection differences.

To make comparisons meaningful, each experiment is described by a
machine-readable configuration that fully instantiates the tuple

(D, ℓ, S, v(·), Y, N, J, K, generator family, training hyperparameters).

We provide canonical configs for all reported figures/tables. Each config
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also pins the tokenizer version, model revision hash, and any non-default
numeric precision choices. We record random seeds at three levels: dataset
sampling (contexts), generator training (initialization and minibatch order),
and Monte Carlo evaluation (sampling ãℓ). Where GPU nondeterminism
cannot be fully eliminated, we report it: we run a small determinism check
that repeats a fixed config multiple times and logs the observed variance
relative to the Monte Carlo standard error.

Activation datasets are released with a stable schema designed for stream-
ing and partial loading. Each dataset contains (i) a table of contexts c (raw
text or structured inputs, plus tokenization outputs), (ii) a tensor store for
aℓ(c) at each logged site, and (iii) metadata sufficient to reconstruct the
forward-pass conditions (model version, preprocessing, truncation rules, and
the exact definition of the indexed activation, e.g. “residual stream after MLP
at position t”). We store tensors in a chunked, memory-mappable format (e.g.
zarr or hdf5) and provide checksums for each shard to prevent silent cor-
ruption. For large-scale models where redistribution is restricted, we provide
scripts that regenerate identical datasets from public checkpoints and public
D specifications; in those cases we release only derived summary statistics
needed for manifold diagnostics (e.g. per-coordinate means/variances and
held-out conditional log-likelihood curves), not raw activations.

For conditional generators qℓ, we release both training code and trained
checkpoints, together with a minimal “model card” per checkpoint. The
card reports: the conditioning interface (exactly what is included in c), the
masking/clamping mechanism used to enforce aℓ[S] = v, architectural de-
tails, training set size N , and validation diagnostics. Since our theorems
are phrased in terms of distributional proximity (e.g. TV or W1), which we
cannot compute exactly, we standardize a set of proxy diagnostics: held-out
reconstruction error on randomly masked coordinates; calibration of con-
straint satisfaction (numerical equality on S to tolerance); and a two-sample
detectability test between real activations and unconditional samples from
qℓ(· | c), stratified by context type. For conditional evaluation, we addi-
tionally report a “conditional realism” score comparing real samples from aℓ
restricted to events with aℓ[S] near v (when such events exist) to samples
from qℓ(· | c, aℓ[S] = v).

Benchmark protocols specify not only tasks but also the semantics of
patch values. In particular, each benchmark fixes (i) how contrast prompts
or alternative inputs define v(c), (ii) how we align token positions across
prompts when ℓ indexes a position-specific state, and (iii) which baseline
v′(c) is used in ∆̂OM. For each protocol we provide an evaluation harness
that outputs ∆̂OM, a confidence interval (bootstrap over contexts combined
with within-context Monte Carlo error), and an intervention-implementation
variance diagnostic obtained by rerunning the same protocol over multiple
valid qℓ checkpoints. The harness writes a complete provenance record: con-
fig hash, code version, checkpoint hash, and the list of contexts used for

25



J .
Finally, we provide a small suite of “sanity” benchmarks intended to

catch common failure modes: (a) a no-op test where v(c) = aℓ(c)[S] and
the estimated effect should be statistically indistinguishable from zero; (b) a
symmetry test where two equivalent definitions of S (e.g. two bases for the
same subspace) yield consistent effects when the generator is correspondingly
reparameterized; and (c) a stress test varying |S| to observe the tradeoff
between intervention strength and generator fit. These artifacts are meant
to make it routine to distinguish “the effect is small” from “the manifold model
is unreliable,” which is the practical distinction our semantics is designed to
support.
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