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Abstract

Sparse autoencoders (SAEs) are a leading decomposition tool in
mechanistic interpretability, yet a central limitation is reconstruction
error: swapping true activations for SAE reconstructions often de-
grades downstream model performance, and the residual is commonly
treated as uninterpretable “dark matter.” Building on the observation
(highlighted in recent interpretability reviews) that SAE residuals are
structured and partially predictable from the original activations, we
formalize a two-level sparse generative model in which activations de-
compose into (i) primary sparse features captured by an SAE dictio-
nary and (ii) secondary sparse components that appear as systematic
residuals. We prove that, under standard incoherence and sparsity as-
sumptions, the residual induced by an approximately-correct first dic-
tionary is itself sparse in a second dictionary, with an explicit bound on
the effective residual noise in terms of the first-stage estimation error.
This yields a principled hierarchical learning objective: train SAE-1 on
activations, then train SAE-2 on residuals (optionally conditioned on
SAE-1 codes) with an MDL-style penalty to prevent degenerate mem-
orization. We provide sample-complexity upper bounds for recovering
the residual dictionary (up to permutation/sign), and an irreducible-
error lower bound showing when any fixed-size single-stage SAE must
incur residual energy. Finally, we outline an experimental protocol on
open LLMs (pretraining vs chat/safety data) demonstrating improved
faithfulness under activation replacement and more stable downstream
interventions (e.g., steering with fewer side effects), reframing SAE
residuals as recoverable mechanistic structure rather than noise.
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1 Introduction

Sparse autoencoders (SAEs) have become a standard tool for interpreting
internal activations of large neural networks: one learns a dictionary of fea-
tures and an encoder that maps each activation vector to a sparse code,
so that the decoded reconstruction approximates the original activation.
In this paradigm, interpretability is commonly operationalized as sparsity
and semantic coherence of the learned features, while fidelity is proxied by
reconstruction error. Yet in many downstream uses—activation patching,
causal interventions, and mechanistic attribution—the relevant quantity is
not merely squared error in activation space, but faithfulness: replacing the
model’s true activation by its reconstruction should preserve the model’s
behavior. Empirically, we often observe that models tolerate certain recon-
struction errors while being brittle to others, and that faithfulness can vary
markedly across input distributions even when reconstruction metrics are
held constant. This suggests that a single-stage SAE can be bottlenecked
not only by optimization and capacity, but by a mismatch between what the
dictionary can represent sparsely and what the model activation distribution
actually contains.

We propose to treat the error of a first-stage SAE not as unstructured
noise, but as a potential source of additional structure. Concretely, given an
activation a € R? and a trained stage-1 dictionary D with code z, we define
the residual

r = a—Dz.

A common implicit assumption is that once an SAE is trained to a target
reconstruction loss, the residual is essentially irreducible: either noise, or a
diffuse signal whose representation would require dense codes. Our starting
point is the contrary hypothesis: in regimes relevant to neural-network acti-
vations, a substantial portion of the residual may be sparsely representable
in a second dictionary that is not redundant with the first. This is plausible
whenever activations arise from multiple additive factors of variation with
different sparsity patterns, scales, or statistical dependence on the input dis-
tribution. If stage-1 allocates its limited sparsity budget to the dominant
factors, then the remaining components may be small in ¢ yet structured
and semantically meaningful—precisely the components that can dispropor-
tionately affect faithfulness when omitted or distorted.

This perspective leads to a simple but consequential design: train an SAE
on the original activations, freeze it, compute residuals, and train a second
sparse model on those residuals. The resulting hierarchical reconstruction
G = Dz+ Fy can be strictly better than merely enlarging the first dictionary
or relaxing sparsity, because it allocates representational capacity along a
new axis: it allows a separate sparsity budget for what stage-1 failed to
capture. Moreover, by constraining the second stage to see only the residual



(or the residual together with a summary of the first-stage code), we enforce
a meaningful separation of roles between stages, which is difficult to obtain
in a monolithic overparameterized SAE.

Our technical contribution is to formalize when and why this procedure
should work. We introduce a two-level sparse generative model in which acti-
vations decompose additively into a k-sparse component in a dictionary D*,
an s-sparse component in a second dictionary E*, and noise. Under standard
incoherence and random-support assumptions, we show that an approximate
first-stage recovery implies that the residual remains a sparse signal in E*
up to an effective noise term controlled by the first-stage estimation error.
This yields a reduction from residual learning to classical sparse dictionary
learning, with explicit sample-complexity and recovery guarantees for the
residual dictionary. Complementarily, we give a lower-bound perspective: if
the second component lies outside what any single-stage (mq, k) model can
represent within its span and sparsity budget, then a nontrivial reconstruc-
tion floor is unavoidable, and a second stage is the correct way to allocate
additional capacity.

A second conceptual contribution is to connect this hierarchy to descrip-
tion length. A frequent failure mode of increasing dictionary size in a single
stage is that, absent strong regularization, the model can trade sparsity
for idiosyncratic features that partially memorize the training distribution.
Even when explicit #1 penalties are used, comparing models across sizes and
sparsity levels is subtle: reducing error by adding latents is not necessarily
a gain if the resulting representation is longer or less stable. We therefore
incorporate an MDL-style penalty on the supports and amplitudes of the
codes, and we analyze a regime in which the hierarchical model achieves a
Pareto improvement: it can reduce reconstruction error while also reducing
expected code length relative to any single-stage model achieving compara-
ble reconstruction, because a small residual dictionary can be reused across
many examples instead of expanding m; toward an implicit “one-latent-per-
example” limit.

We instantiate these ideas in two practical architectures. First, Hierar-
chical Residual SAEs (HR-SAEs) implement the two-stage training pipeline
described above, producing a decomposition of activations into primary fea-
tures and residual features. Second, we consider Conditional Residual vari-
ants (CR-SAEs) in which the residual encoder is permitted to condition on
the stage-1 code, while still being trained to reconstruct only the residual.
This allows the second stage to represent patterns that are predictable from
the first-stage features without collapsing the hierarchy into a single dense
representation.

Finally, we emphasize the interpretability motivation: our goal is not
merely lower ||a — @||3, but higher faithfulness under activation replacement
across distribution shifts (e.g. pretraining-like data versus chat-formatted or
safety-adversarial prompts). The hierarchical view offers a concrete hypoth-



esis for why faithfulness can degrade under shift: the residual component
can change in prevalence or semantics, and a first-stage SAE trained on one
distribution may systematically discard precisely the components that mat-
ter on another. By learning residual structure explicitly and by quantifying
the cost of representation via MDL, we obtain a framework in which recon-
struction, compression, and faithfulness can be studied jointly rather than
as ad hoc trade-offs.

2 Background and Related Work

Sparse coding and dictionary learning. Our setting is closest to the
classical sparse coding / sparse dictionary learning (SDL) literature, in which
one posits that observations admit a representation a ~ Dz with a dictionary
D and a sparse code z obtained by solving a penalized least-squares prob-
lem ?7. A large body of work studies identifiability and recovery of D under
incoherence and random-support assumptions, typically via alternating min-
imization between (approximate) sparse coding and dictionary updates ?7.
While these results are not directly stated for modern neural-network SAEs,
they provide an organizing principle: when activations are generated by (ap-
proximately) sparse latent factors and the learned dictionary is sufficiently
incoherent, sparse coding is both statistically meaningful and algorithmically
tractable in regimes that exclude worst-case hardness.

Sparse autoencoders as amortized sparse coding. Sparse autoen-
coders may be viewed as an amortized variant of sparse coding: rather
than solving an optimization problem for each activation, one trains an en-
coder network Enc(a) to predict a sparse code whose decoder reconstruc-
tion @ = D Enc(a) achieves low reconstruction loss with an explicit sparsity
penalty (e.g. ¢1) or implicit sparsity constraints ?7. In the interpretability
setting, D is commonly taken overcomplete (m > d) and the encoder is
trained jointly with D. This joint training introduces additional degrees of
freedom beyond the classical “optimize z for fixed D” picture; nevertheless,
the underlying tension remains the same: the representation is useful only
to the extent that a small-support code captures the directions of activation
space that matter for downstream computation.

Reconstruction loss versus downstream faithfulness. A recurring
empirical observation in mechanistic interpretability is that low |a — a||3
does not uniquely determine the effect of replacing a by a inside the forward
pass. This is unsurprising from the perspective of representation theory: the
model M defines a task-dependent seminorm on activations via its down-
stream Jacobian and nonlinearities, and squared error in the ambient ¢



metric is only a proxy. Related concerns appear in work on model edit-
ing and activation patching, where small perturbations in certain subspaces
can have disproportionate causal effects. Within the SAE paradigm, this
motivates distinguishing “good” reconstruction error (orthogonal to sensitive
directions) from “bad” error (aligned with directions used by the network),
and it suggests that residual structure should be evaluated not only geomet-
rically but functionally.

Residual structure and “error” features. Several lines of work effec-
tively introduce explicit representations of what a first model fails to capture.
In circuit analysis, one often treats the residual stream as a sum of inter-
pretable components plus a remainder term and studies when that remain-
der carries meaningful signal. In SAE deployments, practitioners sometimes
attach explicit “error” nodes or reserve capacity to represent reconstruction
failures, especially when analyzing interventions that require faithful replace-
ment rather than merely approximate denoising. Our approach fits into this
theme, but we insist on a structural hypothesis: the residual is not merely a
nuisance term to be carried along, but can itself be sparse in an additional
dictionary that is not redundant with the first. This is closely related to hi-
erarchical sparse coding models in signal processing, including two-layer or
multi-layer dictionary learning, where one models a as a sum of components
with different sparsity patterns and possibly different coherence structure
?7?7. The key distinction in our context is methodological: we use a first-
stage SAE as a data-dependent projector that induces residuals, and then
we learn a second sparse model on those residuals rather than enforcing a
joint multilayer factorization from scratch.

Dataset dependence and distribution shift. It is well known that SDL
and SAEs learn dictionaries that reflect the training distribution: the induced
activation distribution changes across domains, prompting formats, and fine-
tuning regimes, so the learned sparse factors need not be invariant. For
neural networks, this distribution dependence is often the central practical
concern: features learned on pretraining-like corpora can behave differently
on chat-formatted data or safety-adversarial prompts. Work on feature sta-
bility, cross-dataset transfer, and “universal” representations can be viewed
as attempts to control this dependence, either by training on mixtures of
domains, by enforcing invariances, or by explicitly conditioning the repre-
sentation on metadata describing the domain. In this landscape, a residual
decomposition provides a specific hypothesis for how shift manifests: stage-1
may preferentially allocate its limited sparsity budget to the dominant fac-
tors on the source distribution, leaving a structured but underrepresented
component that becomes salient under shift. A second-stage residual model
is then a natural mechanism for capturing such changes without forcing a



single stage to compromise between heterogeneous regimes.

Meta-SAEs and model selection across capacities. Recent practice
also includes training families of SAEs across widths, sparsity penalties,
and architectural choices, and then selecting among them using downstream
metrics (including faithfulness-style evaluations) rather than reconstruction
alone. One may view this as a form of meta-model selection: the SAE is
not an end in itself but an instrument for analysis, and its hyperparame-
ters should be chosen to optimize the instrument’s utility. Our contribu-
tion complements this perspective by proposing a structured enlargement
of the model class—hierarchical residual dictionaries—that separates “pri-
mary” and “secondary” factors, and by pairing it with a code-length notion
that allows comparisons across different latent budgets.

MDL, sparsity penalties, and compression. Finally, our use of an
MDL-style objective draws on a classical equivalence: for suitable priors (e.g.
Laplace or spike-and-slab), penalized least squares with an ¢; or support-size
term corresponds to a maximum a posteriori estimator, and the negative
log prior can be interpreted as a codelength ??. In sparse coding, MDL
perspectives have been used to justify sparsity penalties, to select dictionary
sizes, and to compare representations on a common “bits” scale rather than
raw loss. In our setting, this matters because increasing dictionary size or
relaxing sparsity can always reduce reconstruction error, but not necessarily
in a way that yields a shorter or more stable representation. An explicit
description-length term makes precise the intuition that a representation
which achieves marginally lower /5 error by using many idiosyncratic latents
may be worse than one that reuses a small set of residual features across
examples. This lens is particularly natural for hierarchical models, where
the second stage can be interpreted as allocating additional bits specifically
to the portion of the activation not already explained by the first stage.

3 Problem Setup and Metrics

We fix a pretrained network M and a choice of layer or module at which we
record activations. For an input x drawn from an input distribution D, we

write
a(z) € RY

for the corresponding activation vector (or a flattened tensor). We consider
multiple activation-inducing input distributions, denoted Dpye, Denat, Dsafety s
and we write A(D) for the induced distribution of a(x) when x ~ D. Our
training data are i.i.d. samples {a;}}_; from a chosen A(Diyain), with evalua-
tion potentially performed on the other domains to probe distribution shift.



Stagewise reconstructions and residuals. A stage-1 sparse represen-
tation consists of a dictionary (decoder) D € R with unit-norm columns
and an encoder Enc; producing a code

z := Enci(a) € R™, typically with ||z||o < k (approximately).
The stage-1 reconstruction is a(*) := Dz, and we define the residual vector
ro=a—a% = a—Dz.

Given 7, a stage-2 residual representation consists of a dictionary E € R4*™2
(again with unit-norm columns) and an encoder Ency producing

y = Ency(r) € R™2, typically with ||y|lo < s (approximately),

or in a conditional variant y := Enca(r, z). The hierarchical reconstruction
is then
a = Dz—+ FEy.

The point of the hierarchy is not merely to decrease ||a —al|3, but to allocate
representational budget to the “unexplained” portion of a in a controlled
manner.

Reconstruction metrics. We measure geometric fit by the mean squared
reconstruction loss

R . ~ 1 — X
Liec(a,a) = Ha—aHg, Rrec = EZHai_aiH%-
i=1

To separate “what stage-1 leaves behind” from “what stage-2 captures,” we
also track residual energy and explained-residual fractions:

Dres = E||r||3 p _ Elr—Ey3
res - 9 unex T 9
Ella]3 ' El|r|/3

with empirical analogues obtained by averaging over samples. When punexp
is small at fixed code length, we interpret the residual as possessing reusable
structure rather than behaving as idiosyncratic noise.

Insertion faithfulness. Reconstruction loss in #5 is an imperfect proxy for
the effect of replacing activations inside M. We therefore define an insertion
(or activation replacement) evaluation. Let Lys(z) be the task loss of M
on input x (e.g. cross-entropy with respect to the model’s own next-token
targets or an external label). Let Ljs(x;a) denote the loss when, at the
chosen site, we overwrite the true activation a(z) by a supplied vector a



while keeping all weights fixed. For a reconstruction map 7'(a) := a, we
define the faithfulness degradation

Faith(T; D) = Eup [EM(x;T(a(x))) _cM(:c)],

and we often report its empirical estimate on each Dpre, Dehats Dsafety- In
settings where Ly is not directly available, one may equivalently use a di-
vergence on logits or probabilities. The essential requirement is that Faith
penalizes reconstruction error aligned with directions causally used down-
stream.

Residual structure metrics. To quantify whether stage separation is
non-degenerate, we report (i) code sparsities ||z||p and ||y||o (or their ¢; sur-
rogates), (ii) cross-coherence

(D, E) = HZH;‘X ‘(Dlv Ej> )
as a diagnostic for whether stage-2 is merely duplicating stage-1 directions,
and (iii) a migration score measuring how much of the stage-2 reconstruction
lies in span(D), e.g.

]EHHspan(D) (Ey) ||%

Mig := ,
E|Eyll3

where Il ., (p) denotes orthogonal projection. Low Mig is not logically nec-
essary for performance, but it provides evidence that the residual dictionary
represents additional directions.

What it means to “explain residuals.” Fixing a trained stage-1 pair
(D, Ency), we say that residuals are (e, s)-explainable by a residual dictionary
E if for a fresh draw a ~ A(D), letting r = a — DEncy(a), there exists a
code y with ||y|lo < s such that

Ellr — Byl < €.

Operationally, we approximate the existential quantifier by an encoder Encs
trained to achieve this bound. The point is to separate residual energy (how
large ||r||2 is) from residual compressibility (how well r can be represented
by a small-support y drawn from a shared dictionary).

MDL-style objectives and code length. To compare models across
different latent budgets, we introduce an explicit description-length proxy.
For a code u € R with support S = supp(u), we use a schematic penalty

of the form
MDL(u) ~ |S|logm + Zlog(um),

J
-
JjeS



interpretable as (i) bits to specify indices and (ii) bits to specify quantized
amplitudes at scale 7 > 0. Our training objective for the hierarchical model
is then the empirical risk

RN
5y 1 2 o= DBl Ml hell + B(MDL(=)+MDL(y) ).

subject to unit-norm constraints on dictionary columns. We use MDL not as
a claim about optimal coding, but as a common scale on which we can state:
(a) stage-2 is beneficial only if it reduces reconstruction and/or improves
faithfulness without paying an excessive increase in description length, and
(b) “explaining residuals” means achieving low Punexp at controlled expected
MDL(y).

4 A Two-Level Generative Model for Structured
Residuals

We formalize the hypothesis that the residuals left by a first-stage sparse
representation are not arbitrary noise, but possess reusable structure that
can itself be sparsely represented. Concretely, we posit that activations admit
a two-level additive decomposition

a = D'z + E*y + &, (1)

where D* € R and E* € R*™2 are dictionaries with unit-norm columns,
z € R™ is k-sparse, y € R™2 is s-sparse, and £ is a mean-zero noise term.
The intended interpretation is that D*z captures a “primary” set of features
(those that a single-stage SAE of size m; is most likely to learn under an
MDL /sparsity bias), while E*y captures a secondary set of features that are
systematically present but underrepresented by the first-stage model class.

Sparsity and support model. We assume ||z]|o < k and ||y|lo < s, typi-
cally with random supports. A standard choice, sufficient for identifiability
arguments, is that supp(z) and supp(y) are drawn independently from (ap-
proximately) uniform subsets of sizes k and s, respectively, and that condi-
tional on the supports the nonzero coefficients are independent, symmetric,
and subgaussian. Independence of supports is not a metaphysical claim; it
is a modeling device ensuring that the two components are not adversarially
entangled and that moment-based recovery arguments apply. In empirical
settings we expect correlations, but we use the independent-support regime
as an anchor point for what recovery should look like when residual structure
is genuinely reusable across samples.

10



Incoherence and cross-incoherence. To rule out degenerate represen-
tations, we impose mutual incoherence within each dictionary and limited
alignment across dictionaries. Writing D} for the ith column, the basic con-
trol parameters are

w(D¥) = max [(Di, Dy)|,  p(E") := max|[(Ef, )|,  p(D",E") =
7] 7]

We require these coherences to be small enough relative to £ and s that
sparse codes are identifiable (e.g. k& < 1/pu(D*) and s < 1/u(E*), with a
further constraint involving p(D*, E*)). Intuitively, incoherence ensures that
no atom is easily substituted for a combination of other atoms at the target
sparsity, while cross-incoherence ensures that the “secondary” atoms are not
merely copies of “primary” atoms.

Identifiability up to permutation and sign. Even in the noiseless set-
ting £ = 0, the pair (D*, z) is only identifiable up to column permutations
and sign flips. Accordingly, whenever we compare learned dictionaries to
ground truth we allow multiplication by a permutation/sign matrix P. This
is the only non-identifiability we permit in the ideal regime; in particular,
our coherence assumptions are intended to preclude continuous families of
equivalent sparse decompositions.

Why the residual is expected to be structured. The hierarchy in
is motivated by the observation that a first-stage model constrained to
k-sparse codes and size m; need not allocate capacity to all directions that
matter for downstream computation. Even when |[a — Dz||2 is small on
average, the remaining error may concentrate on a low-dimensional set of
directions that occur intermittently. In this regime, the residual behaves
neither as isotropic noise nor as example-wise idiosyncrasy: it is compress-
ible by a shared dictionary. The role of E*y is precisely to capture such
intermittently active, yet reusable, residual directions.

Connection to stagewise training. Suppose a first-stage estimator out-
puts (D,%) approximating (D*,z) (up to P). Then the residual used for
stage two satisfies R

r=a—D% = E*y + &,

where the effective noise £ combines the base noise & with first-stage mis-
specification. The point of the generative model is not that é is small in an
absolute sense, but that the signal component of r remains sparse in a fixed
dictionary E* across samples. This is the mathematical expression of “struc-
tured residuals™ there exists a second sparse model class in which residuals
are more predictable than generic noise.

11

max (D}, E7)|.
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Plausibility for transformer activations. For large language models,
the assumption of approximate linear superposition of features is empirically
supported by the success of sparse autoencoders and related linear dictionary
models on residual-stream-like representations. In such settings, D* can be
read as capturing high-frequency, broadly useful features (often those whose
activation patterns are stable across Dpc-like data), while E* can encode
lower-frequency or more context-dependent features that are nevertheless
shared across many examples (e.g. discourse-structure phenomena, tool-use
formatting, refusal/safety motifs, or rare syntactic constructions). Under
distribution shift (e.g. from Dpre t0 Dehat O Dgafety ), it is plausible that the
mass of y (or its support) changes while the set of residual atoms remains
largely stable, making residual modeling a natural way to reuse capacity
across domains.

Scope and limitations. We emphasize what does not claim. We do
not assert that there are exactly two additive components, that coeflicients
are truly independent, or that £ captures all nonlinearity. Rather, we use the
two-level model as the minimal extension of single-dictionary sparsity that (i)
explains why residual modeling should succeed when residuals are compress-
ible, and (ii) yields concrete identifiability and sample-complexity predictions
under standard incoherence and random-support assumptions. When these
assumptions fail (e.g. strongly correlated supports, highly coherent features,
or dense components that are not sparse in any fixed dictionary), we should
expect feature migration between stages or diminished returns from stage
two. The purpose of the model is therefore conditional: it delineates an
interpretable regime in which residual dictionaries are learnable and worth
learning, and it clarifies what empirical diagnostics (coherence, migration,
residual explainability) are relevant to detect departures from that regime.

5 Algorithms: HR-SAE and CR-SAE

We consider a stagewise procedure that produces a hierarchical reconstruc-
tion of each activation vector a € R? of the form

@ = Dz + Ey, (2)

where D € R ig a first-stage dictionary and E € R¥™™2 is a residual
dictionary trained on the stage-1 reconstruction error. The training objective
is the empirical reconstruction loss augmented with sparsity and description-
length control. We emphasize that the architectural details (linear dictionary
learning versus a neural sparse autoencoder with a learned encoder) are
orthogonal to the stagewise principle; we describe the algorithms in a form
compatible with both.

12



HR-SAE (hierarchical residual sparse autoencoder). HR-SAE pro-
ceeds in two phases. In phase 1 we learn a sparse representation of a using
a standard SAE objective

n
. 1
min — E
D,Enc; N 4
=1

subject to column normalization || D;||2 = 1. In phase 2 we freeze (D, Ency),
form residuals

2
a; — Dz; ) + )\1||ZZ||1 + 5MDL(Z¢), Zi = Encl(ai), (3)

ri = a; — Dz, (4)

and learn a second sparse model on {r;}:

RS 2
min n;‘m—Ew , + 2elwill + BMDL(:), g = Encs(r), (5)
1=
again with ||Ej|l2 = 1. The resulting hierarchical reconstruction is a; =
Dz; + Ey;.

The principal design choice in HR-SAE is that Encs receives only resid-
ual information (possibly after a fixed normalization), thereby imposing a
form of stage separation: the second stage cannot directly “re-explain” the
primary component unless it is present in the residual. In practice we often
additionally regularize cross-alignment between the learned dictionaries (e.g.
by penalizing large p(D, E)) to discourage the trivial solution in which E
duplicates columns of D and absorbs a share of the first-stage signal.

CR-SAE (conditional residual modeling). The conditional variant
modifies the second stage by allowing the residual encoder to depend on
the stage-1 code:

yi = Enca(r;, ), (6)

or, equivalently, by parameterizing Encs via a gating/predictor network g
that maps z; to per-latent thresholds, gains, or priors used when encoding
r;. The motivation is that residual structure may be predictable given which
primary features are active (or given their amplitudes), even if the residual
itself is small in norm. Conditioning allows the second stage to represent
such “explained residual variability” without forcing F to grow large or y to
become dense. Importantly, conditioning need not alter the decoder F; one
can view CR-SAE as learning a conditional sparse coding distribution over
y given z while keeping the residual dictionary shared across samples.

To preserve interpretability, we restrict conditioning to influence only the
second-stage code selection mechanism, not the residual computation . In
particular, we avoid feeding a; directly into the residual encoder in CR-SAE;
otherwise, the second stage could bypass the intended decomposition and
act as an unrestricted second autoencoder.

13



MDL regularization and approximate sparsity. We use the term
“MDL” as a convenient umbrella for code-length control. Concretely, MDL(z)
and MDL(y) may be instantiated as (i) a support-size penalty proportional to
llz|lo or ||y|lo (implemented via hard top-k/top-s selection, or a differentiable
approximation), plus (ii) an amplitude cost corresponding to quantization
or a heavy-tailed prior (e.g. a log(1l + |2;|/7) term). The role of g is to
ensure that improvements in squared error are not obtained by encoding id-
iosyncratic detail with high-support codes; this is particularly important in
stage 2, where the residual may contain a mixture of structured signal and
unstructured noise.

Implementation knobs. The principal hyperparameters are (mq,ms),
sparsity budgets (k,s) (or their continuous surrogates via A1, A2), and the
MDL weight 5. Beyond these, we have found the following to be structurally
meaningful: (i) whether Enc; and Ency enforce exact sparsity (e.g. top-k)
or approximate sparsity (e.g. ¢1), (ii) residual normalization (e.g. scaling
r; to equalize variance across dimensions), which affects the effective noise
level seen by stage 2, and (iii) dictionary orthogonalization or coherence
penalties, which can reduce feature duplication across stages. A further
knob is whether to perform an optional joint fine-tuning pass on (D, E) after
stagewise training. When joint fine-tuning is used, we include an explicit
penalty discouraging “feature migration” (for example, discouraging changes
in D that increase residual energy explainable by FE) so that the learned
decomposition remains stable.

Stagewise invariants. The stagewise construction yields two useful in-
variants that we exploit both in analysis and in debugging. First, with
stage 1 fixed, the optimal stage 2 loss is never worse than the stage 1 loss,
since the second stage can choose y; = 0 for all 4, implying

EH?yI}}Z Iri — Byills < Y [Irills. (7)
) (3 i 1

Thus any observed increase in reconstruction error after adding stage 2 is at-
tributable to optimization pathologies or to interactions introduced by joint
training, rather than to the model class itself. Second, MDL penalties pro-
vide a safeguard against a degenerate regime in which stage 2 memorizes the
residuals by using large supports or unstable amplitudes; empirically, mon-
itoring El||y|lo and a proxy for MDL(y) is often a sharper diagnostic than
monitoring squared error alone. These invariants are the algorithmic coun-
terpart of the theoretical claim developed next: if stage 1 is approximately
correct, then the residual behaves as a noisy sparse signal in a reusable dic-
tionary, and stage 2 should be able to exploit this structure without paying
excessive description length.
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6 Theory I: Residual Sparsity Under an Approxi-
mate First Dictionary

We formalize the sense in which the stagewise residual
r = a—D?

inherits a sparse generative structure whenever the first stage is approxi-
mately correct. Throughout this section we assume the two-level model

a = D2 + E'y + &, (8)

where [|z]|o < k, |lyl]lo < s, the supports are drawn independently, and ¢ is
mean-zero subgaussian with parameter o2. We further assume an alignment
matrix P (permutation/sign) such that the first-stage dictionary estimate
satisfies
N * = T
|D=D*Pl, y<e [F=P2fy<m,

where the second bound should be interpreted as holding in expectation or
with high probability, depending on the encoder/sparse coding method.

Residual decomposition and effective noise. A direct algebraic ma-
nipulation shows that r decomposes into the desired residual component
E*y plus an “effective noise” term absorbing both base noise and first-stage
misspecification:
r=a—D?
=D'24+ Ey+¢— D72
— E*y + £+ (D*P — D)2+ D*(PZ - z). (9)

:;E

Thus the residual is itself generated by a sparse model in dictionary E*,
up to the effective noise €. The latter contains (i) the original stochastic
noise &, (ii) a dictionary drift term (D*P — ﬁ)’zf, and (iii) a code error term
D*(Pz — z).

Norm control for £. From @ we obtain deterministic bounds of the form

Illz < llellz + elZllz + 1D 252 | P2 — 22 (10)

Squaring and taking expectations (using (u + v + w)? < 3(u? + v? + w?))
yields

E[€l3 < 3ElE3 + 3 ElZI3 + 3IID* 3,2 EIPZ - =[5 (11)
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In the canonical sparse regime (bounded moments for nonzeros and |[|z]|o <
k), one typically has E||Z]|3 = O(k) and E||PZ — z||3 = O(n?), so may
be summarized as an effective variance inflation

E[¢13 < El€I3 + O(®k) + O | D*|[3.,2).

This is the quantitative sense in which “good” stage-1 estimation implies that
the stage-2 problem is a standard sparse coding instance with additional
noise whose scale is controlled by (e, 7).

When is the residual support recoverable? Let S := supp(y) denote
the residual support. To reason about recoverability we use the standard
mutual coherence p(E*) := max;.; [(E}, E7)| and consider the correlations

(Er,r)y=yi+ Y (B E})ye+ (E]8). (12)
eS\{j}

The middle term is the usual sparse-coding interference bounded by u(E*)(s—
1)||%ls, while the last term is controlled by ||[E*T€||so. Since 1E7 ]2 =1,

1E*TE]|oc meX|<E]*75>I < €l (13)

and under additional distributional assumptions on £ (and on the stage-1
error terms) one can further upgrade to high-probability bounds scaling
like /log meo.

A sufficient condition for exact support recovery by simple correlation
thresholding (and, a fortiori, by OMP under comparable conditions) is that
the nonzero coefficients dominate both interference and effective noise. For
instance, if

min [y;| > PE) (s = Dllylloo + 2[1E* Elloo, (14)

then the set of indices with the largest s magnitudes in E* ' equals S. When
combined with —, condition ([14]) makes explicit the tradeoff: larger
first-stage error (larger € or 1) increases ||[E*'€||ls and thereby shrinks the
regime in which residual supports are identifiable.

Interpretation for HR-SAE/CR-SAE. Equation @D is the key struc-
tural claim needed for the stage-2 analysis: conditional on an approximately
correct first stage, the residual is a noisy sparse signal in E*. The only ways
in which the stagewise construction can fail to expose this structure are (i)
e and 7 are too large (so & dominates), or (ii) the residual coefficients are
themselves too small relative to coherence/interference. The MDL pressure
in stage 2 addresses a complementary failure mode: even when does
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not hold pointwise, aggregated learning of a reusable E remains possible
provided we prevent the encoder from encoding idiosyncratic noise via large
supports. In the next section we treat the residuals {r;} as samples from @
and state recovery and sample complexity guarantees for learning E* from
these noisy sparse observations.

7 Theory II: Recovery and Sample Complexity for
the Residual Dictionary

We now treat the residuals as observations from a noisy sparse dictionary
model and state conditions under which a second-stage learner recovers the
residual dictionary E* (up to permutation/sign). Concretely, for each acti-
vation sample we form

v = a;— D Zis

and, by the residual representation established previously, we may regard
= B + & willo <s, (15)

where fl is an effective noise term whose second moment is controlled by the
stage-1 errors. The stage-2 goal is to learn a dictionary E such that E is
close to E*@ for some permutation/sign matrix @, and to infer sparse codes
y; with small support and small reconstruction error.

Identifiability regime. We work in a standard incoherent random-support
setting. Let pu(E*) := maxy-, |[(E}, Ey)|. Assume:

1. Incoherence/sparsity: s < ¢o/u(E*) for a sufficiently small constant
CQ.

2. Random supports: supp(y;) is drawn uniformly among s-subsets (or
i.i.d. Bernoulli with expected size s), independently across i.

3. Coefficient regularity: conditional on its support, the nonzeros of
yi are independent, mean-zero, subgaussian, and satisfy E[y;;] € [v, 7]
on-support.

4. Noise control: & is mean-zero (or has been centered) and satisfies
E||& 13 < 0% with o2; small enough relative to the target accuracy.

Under these conditions, the model falls within the scope of classical
dictionary learning analyses: the sparse component is identifiable up to per-
mutation/sign, and alternating minimization (sparse coding then dictionary

update) is locally contractive when initialized within a constant-radius neigh-
borhood of E*.
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A representative recovery guarantee. To make the dependence on
residual noise explicit, we state a typical theorem in the style of alternating-
minimization results (the precise constants depend on the sparse coding sub-
routine and coefficient distribution).

Theorem 7.1 (Residual dictionary recovery, informal). Assume and
the identifiability regime above. There exists an alternating-minimization
procedure that, given n residual samples and an initialization E©) satisfying
HE(O) — E*Q||r < 1 for some permutation/sign @, returns E such that

|E~E*Q'||p < 6

for some permutation/sign Q', with probability at least 1 —exp(—(log ms)),
provided

~(mo s logd
n > O<252g> and agff < 962 (16)

How stage-1 errors enter. Theorem reduces the stage-2 learning
problem to a requirement on ol = E||€]|3. Combining with the earlier
control of E||€]|3 yields a sufficient condition of the schematic form
E|lg]3 + O(*E[Zl5) + O*ID*|52) < 07

Thus, for fixed target accuracy J, the stage-2 sample size must scale as in
, and the stage-1 misspecification must be sufficiently small that it does
not inflate the residual noise beyond the accuracy scale. Conversely, for fixed
stage-1 quality (fixed €,7), the smallest attainable ¢ is lower bounded by the
induced oeg; in that sense, the second stage cannot exceed the fidelity of the
residual signal it is given.

Initialization and practical SAE training. Theorem is stated with
a basin-of-attraction assumption. In practice, neural SAE training does not
literally implement alternating minimization, but it often behaves like a
smooth surrogate: the encoder approximates sparse coding and gradient
updates approximate dictionary refinement. To connect practice to theory,
one may (i) use a spectral or clustering-based initializer for E from residual
correlations, or (ii) rely on overparameterization and mild regularization to
land in a favorable region. Our claims here are therefore best read as iden-
tifiability and sample-size guidance: once the residuals obey with small
oeft, the second stage is a well-posed sparse learning problem rather than an
unconstrained memorization task.

Stability across datasets and checkpoints. A useful corollary of resid-
ual identifiability is dictionary stability when the residual mechanism is
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shared. Suppose two activation-inducing distributions (e.g. Dpre and Depat)
produce residuals of the form

r =By 4 0 e (1,2},

with the same E* but potentially different code distributions for y(*) (dif-
ferent marginal on supports or amplitudes), and with effective noise levels
bounded by a common agﬂ. Training stage-2 dictionaries E) and E® on
the two residual datasets with sample sizes satisfying yields

HgnHE(l)_E(Q)QHF < ||E(1)_E*Q1”F+||E*Q1_E*Q2||F+”E*Q2_E(2)HF

for appropriate permutation/sign matrices, with high probability. The same
reasoning applies across nearby model checkpoints when the residual di-
rections E* persist: learned residual features should align up to permuta-
tion/sign, and lack of alignment can be interpreted as evidence that the
residual component itself has changed (rather than merely the first-stage
decomposition).

In summary, once the residuals lie in the identifiable sparse regime, the
second stage inherits standard recovery guarantees with sample complexity
scaling like 5(m25 log d/6?%), and the resulting residual dictionary is expected
to be stable across datasets and checkpoints that share the same underlying
residual structure.

8 Theory III: Lower Bounds and the Necessity of
Hierarchy

We now formalize two complementary senses in which a single-stage sparse
model is intrinsically limited under the two-level generative process. The
first is an irreducible reconstruction floor arising from misspecification: if a
k-sparse model of size m; is effectively dedicated to the D*z component,
then the additive residual component E*y cannot be removed beyond its
projection onto the representable subspace. The second is an MDL/code-
length lower bound: even when a single-stage model is permitted to expand,
matching the accuracy of a hierarchical representation typically forces either
(i) a much larger dictionary (approaching “one-latent-per-pattern”), or (ii) a
larger effective support size, both of which increase description length.

A misspecification floor for single-stage (m1, k) representations. Fix
any encoder—decoder pair (¢,1) where ¢ : R? — R™ obeys ||¢(a)|lo < k al-
most surely and ¢ (z) = Dz for some D € R¥™ with unit-norm columns
(we allow D to be arbitrary, not necessarily equal to D*). Denote the orthog-
onal projector onto span(lA?) by Il 5, and write @ = u + v + § with u := D*z
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and v := E*y. Then for any reconstruction @ = ¥ (¢(a)) € span(D) we have
the deterministic inequality

la—al} > [I(I -Tp)(u+0)|3 — 2(( ~Lp)(u+wv),€&). (17)
Taking expectations and using E¢ = 0 (and independence from (z,y)) yields
Ella —al3 > E|(I —p)(u+v)|3: (18)

In the regime motivating our construction, D is chosen so that span(D) well-
approximates span(D*) while having insufficient capacity to additionally ap-
proximate span(FE*). A convenient abstraction is to assume that, for all v in
the support of E*y, the projection error satisfies ||(I —Il5)v|2 > (1—eg)|[v|l2
for some eg € [0,1). If moreover E(u,v) = 0 (as in the generative model
with independent mean-zero coefficients and incoherent dictionaries), then

expanding gives

Ela—al; > E|(I - Tp)ul + (1—ep)*Eljv]3. (19)

Thus, even if the first term is made negligible by learning D close to D,
the residual energy E|E*y||3 remains as a floor up to the representability
factor (1 — eg)?. This is precisely the regime where the second stage is
not merely helpful but necessary: it provides additional representational
directions outside span(D).

Why “increase m;” is not a free substitute. One might attempt
to lower eg in by enlarging m, so that span(ﬁ) approximates both
span(D*) and span(E*). However, for fixed sparsity budget &, this trades one
obstruction for another: representing a = u + v with a single k-sparse code
requires that the sparse supports corresponding to u and v be jointly express-
ible within k£ nonzeros. In particular, under generic position/incoherence
assumptions, representing u typically consumes (k) degrees of freedom al-
ready; adding an independent s-sparse component forces either increased
sparsity (roughly k£ 4 s nonzeros) or increased approximation error. The hi-
erarchical model avoids this collision by allocating distinct sparsity budgets
(k, s) to distinct subproblems (first reconstruct w, then reconstruct v from
residuals).

An MDL lower bound: support counting and description length.
We now make the “not a free substitute” statement quantitative in an MDL
language. Consider a family of residual codes y with random supports of size
s over mg atoms; the number of possible supports is (”;2) A single-stage
code z € R™ with ||z[lo < k can realize at most (";!) distinct support pat-
terns. If we demand that distinct residual supports induce (with nontrivial
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probability) distinguishable reconstructions—a mild nondegeneracy condi-
tion when coefficients are continuous and the dictionary is incoherent—then
any single-stage scheme that “covers” the residual variability must satisfy the

combinatorial constraint
my ma
> 20
< k ) ~ ( s )7 ( )

which in the sparse regime implies (up to logarithmic factors) klogm; 2
slogmg. This is already a code-length statement: the standard MDL proxy
for a k-sparse code has a leading term proportional to log (T;?) ~ klog(m,/k),
corresponding to encoding its support. In a hierarchical representation, we
encode the stage-1 support and the residual support separately, yielding a

total leading term approximately

log (”]zl) + log (”:2> ~ klog(mi/k) + slog(ma/s),  (21)

with amplitude quantization terms added similarly per nonzero. In contrast,
forcing a single-stage model to capture both components either increases k
(raising the first term) or increases m; until holds, which raises logmq
and hence the support-encoding cost. The hierarchical construction therefore
admits a Pareto regime: for fixed m; (chosen to capture D*) and moderate
my with s < k, we simultaneously decrease reconstruction error (by fitting
E*y explicitly) and decrease description length relative to any single-stage
alternative that achieves comparable error.

Interpretation for practice. The lower bounds above justify the archi-
tectural separation enforced by residual learning: if E*y carries nontrivial
energy outside the span learned by the stage-1 model, then any single-stage
(m1, k) solution faces either an irreducible error floor or an MDL penalty
increase implied by . The hierarchy is therefore not an aesthetic choice
but the minimal mechanism that (i) removes residual energy and (ii) does
so with reusable structure rather than per-example memorization.

9 Results (Expected) and Ablations (Planned)

Residual dictionary interpretability. Our primary qualitative expec-
tation is that the stage-2 dictionary E (trained on residuals r = a — D3)
yields latents whose semantics are more specific and less entangled than
(i) the highest-error latents in an equivalently sized single-stage SAE and
(ii) “SAE-+error-node” baselines that append extra latents to absorb recon-
struction error without an explicit residual interface. Concretely, we ex-
pect many FE-atoms to align with directions that are systematically underfit
by stage-1 due to sparsity collisions, including (a) rare but high-magnitude
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activation bursts, (b) high-frequency “formatting” or delimiter structure in
chat-formatted inputs, and (c) safety-relevant concepts that are distribution-
ally shifted between Do and Dgatety. We will operationalize interpretability
via (1) top-activating examples and n-gram/metadata enrichment, (2) clus-
terability of latents by co-activation graphs (e.g. modularity on the latent
correlation network), and (3) stability of the learned atoms across random
seeds, quantified by nearest-neighbor matching in cosine similarity (up to
sign/permutation) for both D and E. Our expected pattern is that E ex-
hibits higher cross-seed stability than an “error-node” augmentation of a
single SAE at comparable reconstruction error, because residual training
enforces reuse across samples rather than per-example absorption.

Faithfulness gains versus compute and parameter count. We an-
ticipate that hierarchical reconstructions ¢ = Dz + Ey improve faithfulness
metrics Faith(D, E) relative to single-stage baselines at matched decoder pa-
rameter count O(d(m1 +ma2)), particularly under activation replacement on
out-of-distribution inputs (notably Depat and Dgafety When trained primarily
on Dpye). The core expected phenomenon is that adding mg residual atoms
yields a larger reduction in downstream loss under replacement than allo-
cating the same additional parameters to increasing m1, because the former
targets the misspecification component while the latter tends to dilute the
stage-1 basis and increases feature competition under fixed k. We will report
faithfulness as (i) relative change in downstream loss (or logit KL) when re-
placing activations by reconstructions, and (ii) layerwise sensitivity curves
as we vary replacement probability. We will also plot compute—faithfulness
Pareto frontiers by varying training steps and dictionary sizes, with the ex-
pected ordering

HR-SAE > single SAE of matched params > single SAE of matched my

on held-out mixtures, where “>~" denotes uniformly better tradeoffs in (re-
placement loss increase, MDL proxy).

Dataset dependence and cross-mixture generalization. We plan a
controlled analysis over mixtures of Dpre, Dehat, Dsatety both for training and
evaluation. Our expectation is asymmetric generalization: (i) D trained on
Dypyre remains largely reusable across mixtures (capturing high-variance “core”
features), whereas (ii) E is more sensitive to the training mixture and pref-
erentially captures distribution-specific residual structure. We will quantify
this by training (D, E) on each mixture and measuring (a) reconstruction er-
ror and MDL on each evaluation distribution, (b) faithfulness under replace-
ment on each evaluation distribution, and (c) residual predictability: the
fraction of residual variance explained by E on held-out data, i.e. R?(r, Ey).
A key expected diagnostic is that R? for residuals transfers poorly when E
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is trained on a narrow distribution, even if [|a — @||3 remains similar; this gap
signals that residual structure is not purely noise but distribution-dependent
signal.

Intervention robustness and causal tests. We will evaluate robustness
of latent interventions by comparing three procedures: (1) direct latent ab-
lation in stage-1 (z; <— 0), (2) direct latent ablation in stage-2 (y, < 0), and
(3) matched perturbations in single-stage baselines. We expect interventions
on E-latents to exhibit more localized downstream effects (smaller collateral
changes in unrelated logits) when F is trained on residuals with a sparsity
constraint s < d, reflecting reduced entanglement. We will additionally test
compositionality by activating multiple E-latents and checking approximate
additivity of induced changes in downstream loss or logits. A planned neg-
ative control is to intervene on randomly rotated latent bases with identical
reconstruction error; we expect intervention effects to be less stable under
rotations for non-hierarchical baselines.

Planned ablations. We will ablate: (i) residual interface versus no inter-
face (training stage-2 on a rather than r), (ii) conditional residual prediction
(CR-SAE: y = Enc2(r, z)) versus unconditional (y = Enc2(r)), (iii) MDL
penalty strength § and the separation of Aj, Ae, (iv) joint fine-tuning of
(D, E) versus freezing D after stage-1, and (v) migration controls (penalties
discouraging F from re-learning directions already in span(D), measured
via p(D, E) and subspace overlap). Our expectation is that (i) the residual
interface is necessary for interpretability of F at fixed mo, (ii) CR-SAE im-
proves faithfulness on chat /safety distributions by allowing E' to specialize to
residual modes conditioned on coarse stage-1 context, and (iii) overly small
8 yields degenerate high-support residual codes that improve |ja — a3 but
harm faithfulness and stability.

Negative results and failure modes. We anticipate several regimes
where hierarchy does not help. First, when E||E*y||3 is negligible relative
to noise, stage-2 learns near-random atoms and yields no faithfulness im-
provement beyond variance reduction. Second, if stage-1 is substantially
misspecified (large €), then residuals contain structured leakage from D*z
and stage-2 may “steal” features, reducing interpretability and increasing
w(D, E). Third, under severe distribution shift, £ may overfit idiosyncratic
residual patterns (especially with weak MDL), producing a low reconstruc-
tion error but poor replacement faithfulness. We will treat these as first-class
outcomes by reporting (a) subspace overlap and cross-coherence diagnostics,
(b) seed instability, and (c) gaps between reconstruction metrics and faith-
fulness metrics, which we take as evidence that the learned codes are not
aligned with the model’s causal features.
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10 Discussion

The hierarchical residual construction is motivated by a simple observation
about mechanistic interpretability practice: one seldom needs a single glob-
ally optimal coordinate system for activations, but rather a coordinate sys-
tem that (i) captures the highest-leverage, repeatedly reused structure and
(ii) exposes the remaining structure in a form that is still reusable, compress-
ible, and intervention-friendly. The two-stage interface a ~ Dz + Ey makes
this separation explicit. In particular, the residual channel r := a — D7 is
not treated as an unstructured error term but as a second object of study,
with its own sparsity budget, dictionary, and (crucially) its own inductive
bias for reuse across samples.

A direct implication for mechanistic interpretability pipelines is that fea-
ture discovery can be organized into tiers rather than a single monolithic
SAE training run. In the tiered view, stage-1 latents serve as a coarse but
stable basis for the “core” activation geometry, while stage-2 latents serve
as a refinement basis that targets systematic misspecification modes. This
suggests a workflow in which we first fit a conservative, stable D under a
stringent code-length constraint, and only then allocate additional capacity
to E on the residuals. Conceptually, this resembles building an atlas: D
provides a global chart capturing dominant directions, and E adds local co-
ordinates for directions that are rare, distribution-specific, or suppressed by
feature competition under fixed k.

For downstream analyses that rely on interventions, the separation is also
methodological. If we intervene on z-coordinates, we are perturbing direc-
tions that the first-stage encoder/decoder deem globally salient; if we inter-
vene on y-coordinates, we are perturbing structure that is salient conditional
on the first stage having already explained what it can. This conditionality
is useful even when F is learned unconditionally from residuals, because the
residual itself depends on the stage-1 explanation. In practice, this allows a
more disciplined interpretation of intervention results: changes attributable
to E-latents are, by construction, changes that cannot be cheaply represented
in the stage-1 code, and therefore are less likely to be artifacts of arbitrary
basis choice within span(D).

The monitoring and control perspective is similar. Many proposed safety
monitors are implicitly single-stage: they attempt to compress or classify
activations directly. A residualized representation offers an alternative de-
composition of the monitoring problem into (i) monitoring the stable, high-
coverage representation z for broad behaviors and (ii) monitoring the resid-
ual code y for “edge” behaviors that are systematically underexplained by
D. Since residual structure is expected to be more sensitive to distribu-
tion shift, it is a plausible locus for detecting changes between Dy, and
deployment-time mixtures. In settings where one seeks to control behavior
by constraining internal states, the hierarchy also suggests a way to trade
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off fidelity and constraint strength: one may enforce strict constraints on
y (e.g., sparsity, amplitude caps, or outright suppression of certain atoms)
while leaving z largely unconstrained, thereby targeting fine-grained modes
without broadly disrupting computation.

At the same time, the framework clarifies limits. First, the residual inter-
face does not eliminate identifiability issues; it relocates them. The learned
E is only meaningful insofar as (a) stage-1 errors are small enough that r
is well-approximated by E*y rather than leakage of D*z, and (b) the resid-
ual dictionary satisfies its own incoherence/ sparsity conditions. When ¢ is
nontrivial, the term (D*P — D)z can dominate £, and the second stage may
preferentially model the leaked component. In that regime, ¥ ceases to be
a refinement dictionary and becomes a compensator for stage-1 misspecifi-
cation, which undermines the intended interpretation. Diagnostics such as
wu(D, E) and subspace overlap therefore are not ancillary; they are necessary
to justify a hierarchical reading of the learned atoms.

Second, the residual channel does not resolve the fundamental tension
between reconstruction and faithfulness. Replacement faithfulness concerns
whether a preserves the causal role of a in the network, which can fail even at
low |la — @||3 when small perturbations occur in high-sensitivity directions.
Hierarchical training may improve this by allocating capacity to system-
atically missed directions, but it cannot guarantee faithfulness without an
explicit objective that references the downstream computation. This sug-
gests that the most principled use of the hierarchy is as a representation on
top of which one can layer faithfulness-sensitive selection or regularization,
rather than as a standalone solution.

Geometrically, the hierarchy is a constrained approximation to nonlinear
activation structure using linear pieces. Even if the true activation distribu-
tion concentrates near a curved manifold, a single global dictionary with a
fixed sparsity budget must represent curvature as a collection of competing
linear directions. Residualization can be interpreted as an iterative lineariza-
tion: stage-1 captures a dominant subspace/union-of-subspaces structure,
and stage-2 captures directions corresponding to the remaining curvature,
higher-order interactions, or context-dependent deviations. This viewpoint
motivates conditional residual models (CR-SAEs): allowing y to depend on
z is a minimal way to encode nonlinearity, since z functions as a coarse state
variable that selects which residual modes are relevant. In other words, con-
ditioning is a proxy for a mixture-of-linear models in which z indexes the
mixture component, and E provides the component-wise correction.

Finally, the discussion points toward generalizations. One can iterate
the construction to multiple residual stages, or replace the linear residual
dictionary by a structured family (e.g., grouped atoms, low-rank blocks, or
convolutional structure) to better match known symmetries in activations.
One can also couple the hierarchy to explicit code-length accounting, treating
MDL(z,y) as a first-class quantity rather than a proxy regularizer. The
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central claim we take forward is modest: when activations decompose into
reusable components at different scales of frequency and rarity, enforcing that
decomposition via an explicit residual interface is a principled way to improve
both interpretability and operational usefulness, while making failure modes
visible through coherence, stability, and faithfulness diagnostics.

11 Conclusion and Open Problems

We formalized and studied a hierarchical residual interface for activation de-
composition in which a first sparse dictionary captures a reusable “core” com-
ponent and a second sparse dictionary captures structure that remains sys-
tematic after subtracting the first explanation. The central technical point
is that, under a two-level sparse generative model and sufficiently accurate
first-stage recovery, the residual inherits a sparse structure in an indepen-
dent residual dictionary up to an effective noise term whose magnitude can
be controlled by first-stage estimation errors. This permits a second stage
with standard sparse dictionary learning guarantees, and it yields a princi-
pled regime in which a two-stage model reduces reconstruction error below
the misspecification floor of a single-stage (m, k) model while also improving
code-length tradeoffs under an MDL-style penalty. Empirically, the resulting
HR-SAE/CR-SAE constructions are meant to be usable as modular compo-
nents in interpretability pipelines: record activations, fit D, residualize, fit
F, and then analyze and intervene on z- and y-coordinates separately.

The broader goal suggested by this work is to move from “feature lists”
toward mechanism-level decompositions: representations whose components
are not only sparse and reusable, but also stable under reasonable changes
in data distribution and informative under interventions. The residual hier-
archy is one step in this direction because it makes the failure modes legible:
if the second stage is forced to explain leaked first-stage structure, then co-
herence and subspace-overlap diagnostics should detect that the purported
refinement basis has become a compensator. In other words, the hierarchy
supplies explicit interfaces at which we can test whether we are compressing
genuine reusable structure or merely allocating capacity to error correction.

We close with open problems that, in our view, delimit the next technical
steps.

Residual hierarchies beyond two stages. The two-stage construction
is the simplest nontrivial instance of an iterative residualization scheme. A
natural extension is a multi-stage model
a~DW 1) L p@),2) L . 4 D(T)Z(T), r.— g — Z D(T)Z(T)7
<t

with stage-wise sparsity budgets and code-length accounting. The main the-
oretical questions are (i) whether error accumulation across stages can be
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controlled so that later residuals remain sparse in new dictionaries rather
than devolving into modeling earlier leakage, and (ii) whether one can ob-
tain sample-complexity bounds that scale reasonably in T" without requiring
exponentially stringent coherence conditions. On the algorithmic side, one
wants training procedures that prevent “feature migration” (the same direc-
tion appearing in multiple stages) while still allowing later stages to represent
genuine refinements. This calls for explicit regularizers coupling stages (e.g.,
penalties on M(D(t), D(T)) for 7 < t) and for stability diagnostics that can be
monitored online.

Interaction with faithfulness objectives. Our formal analysis concerns
reconstruction and description length, while mechanistic utility depends on
faithfulness under interventions (e.g., activation replacement). A concrete
open problem is to characterize when minimizing ||a — a||3 plus MDL is suf-
ficient to control downstream loss increase, and when it is not. This likely
requires sensitivity bounds for the downstream computation (local Lipschitz
constants or Jacobian spectra) and a way to weight reconstruction errors by
causal importance. A promising direction is to incorporate an explicit faith-
fulness term into training (possibly at a small number of probe layers) and
to understand whether hierarchical capacity allocation reduces the number
of faithfulness-sensitive directions that must be tracked.

On-manifold patching and residualization. Recent “on-manifold” in-
terventions aim to restrict patched activations to lie on (or near) the acti-
vation manifold, thereby reducing unnatural states. The residual hierarchy
suggests a decomposition of this constraint: one may demand that Dz lie on
a high-coverage manifold chart while allowing E'y to parameterize deviations
within a controlled family. The open question is whether one can formal-
ize an “on-manifold” notion in terms of code constraints (support patterns,
amplitude priors, or conditional models) and prove that residual patching
in (z,y)-space yields smaller distributional shift than patching in a-space.
Technically, this seems to require connecting sparse generative assumptions
to manifold curvature and to the geometry of conditional residual distribu-
tions.

Cross-layer and cross-module features. A single-layer decomposition
is not, by itself, a mechanism decomposition, since mechanisms typically span
multiple layers and modules. One needs notions of feature correspondence
across layers (or time steps) and tests for whether a latent in one layer
predicts, explains, or causally mediates computation in another. The residual
viewpoint offers a concrete handle: one can ask whether residual latents y
at layer ¢ become core latents z at layer ¢ + 1, or whether the hierarchy
aligns across layers after accounting for known linear maps (e.g., attention
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output projections). An open problem is to define and estimate cross-layer
“transport” maps between latent spaces that respect sparsity and preserve
intervention semantics, and to determine identifiability conditions for such
maps under distribution shift.

Conditioning as minimal nonlinearity. Conditional residual models
(CR-SAEs) treat y as dependent on z, which is a minimal route to repre-
senting mixtures of linear structures. A theoretical gap is to characterize
when conditioning is necessary (e.g., when E* itself varies with a discrete
or continuous context variable) and to bound the additional sample com-
plexity induced by conditioning. One expects a tradeoff: conditioning can
improve representation efficiency but can also reduce identifiability by ex-
panding the effective model class. Establishing regimes where conditioning
yields provable gains without sacrificing interpretability remains open.

MDL as an operational quantity. We used MDL-style penalties as a
conceptual and practical tool to prevent degenerate memorization solutions.
A more complete treatment would (i) specify a concrete coding scheme for
supports and amplitudes, (ii) relate the resulting description length to gener-
alization across distributions Dpre, Dehat, Dsatety, and (iii) test whether MDL
improvements predict faithfulness or monitoring performance. The open
problem is to make “code length” not merely a regularizer but a measurable
artifact with predictive value for downstream interpretability tasks.

Taken together, these problems point toward a program in which residual
hierarchies are not an endpoint but an organizing principle: expose struc-
ture stage by stage, attach explicit diagnostics to each interface, and couple
reconstruction with objectives that reflect causal use in the network. The
residual interface is attractive precisely because it is simple enough to ana-
lyze and to instrument, yet expressive enough to capture repeated structure
beyond what a single sparse code can represent at fixed budget.

12 12. Conclusion and Open Problems: toward
mechanism-level decompositions; residual hier-
archies beyond two stages; interaction with on-
manifold patching and cross-layer features.

We regard the hierarchical residual decomposition as an interface specifica-
tion rather than merely an estimator: it imposes an explicit contract be-
tween stages (“Stage 1 explains what it can with a sparse reusable code;
Stage 2 is permitted to spend capacity only on what remains”) and thereby
makes several otherwise latent ambiguities testable. In particular, it becomes
meaningful to ask whether a learned refinement dictionary is expressing a
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genuinely new set of sparse directions, or whether it is functioning as an
error-corrector for systematic defects of the first stage. This distinction is
central if one aims for mechanism-level decompositions, where latent coor-
dinates should support stable interpretation and predictable interventions.
The present guarantees only address reconstruction and (via MDL) a coarse
notion of compressibility; the open questions below concern the additional
structure required to turn a good compressor into a good mechanistic coor-
dinate system.

Beyond two stages: controlling accumulation and preventing de-
generacy. An obvious extension is a T-stage residual cascade with dictio-
naries DM ... D) and residuals

r = o= DO, 20 < k.

Even under a multi-level generative model a = Zthl D®* (M 4 ¢ the dif-
ficulty is that estimation errors compound: the effective noise injected into
r®) depends on all earlier dictionary and code errors. A concrete theoret-
ical problem is to prove a stage-wise analogue of Theorem 1 with an error
recursion of the form

) = DU L E0 - gIEO)2 < 62 4+ 3 Eir,,

T<t

where each Err; scales in a controlled way with | D(™ — D(™*|| and moments
of 2(7). One would like conditions under which > __, Err, remains bounded
for moderate t, rather than forcing coherence assumptions that become ex-
ponentially stringent in 7.

On the algorithmic side, multi-stage models create new degeneracies that
are absent in the two-stage case: “feature migration” (the same direction
reappearing across stages) and “stage collapse” (later stages learning to undo
or renormalize earlier reconstructions). A principled open problem is to de-
fine constraints or penalties that enforce a meaningful factorization without
sacrificing fit. Candidates include explicit cross-stage incoherence control
(penalizing (D™, D(M)), orthogonality-on-average constraints under the
activation distribution, or MDL budgets that are allocated per stage (so
that late stages cannot cheaply encode what earlier stages failed to encode).
A satisfactory theory would relate such regularizers to identifiability and to
empirical stability of learned latents.

Mechanism-level decompositions: stability and intervention se-

mantics. A mechanistic representation should be stable under benign dis-
tribution shift and should support interventions with predictable effects.
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This suggests metrics beyond reconstruction, for instance: (i) support stabil-
ity of z and y under changes from Dpre t0 Depat, (ii) invariance of latent-to-
downstream influence, and (iii) agreement of latent correspondences across
training runs up to permutation/sign. An open theoretical direction is
to connect these desiderata to properties of the generative model (sup-
port randomness, separation, conditional independence) and to properties
of the underlying network (local linearity of the mapping from activations
to loss). Concretely, one would like conditions ensuring that the mapping
a — (z(a),y(a)) is not only sparse but also locally Lipschitz on the data
manifold, which would rule out encoders that are compressive yet fragile.

On-manifold patching: residual coordinates as a controllable devi-
ation family. When one replaces an activation a by a reconstruction a,
one risks producing off-manifold states even if ||a — al|2 is small. The residual
hierarchy suggests a decomposition of this risk: the stage-1 component Dz
may be viewed as a coarse chart of typical activations, while the residual
component Fy parameterizes a restricted family of deviations. A concrete
open problem is to formalize an “on-manifold” constraint in terms of code
distributions. For example, if (z,y) are modeled by a prior (or conditional
prior) p(z)p(y | z), then one can ask for bounds of the form

TV(L(a),L(a)) < f(EL(a,a), KL(L(z,y) [ p(2)p(y | 2))) ,

where £ denotes law under the data distribution. Establishing such bounds
would connect reconstruction and code regularity to distributional shift un-
der patching. It would also motivate training objectives that explicitly fit
the empirical code distribution (e.g., via a tractable conditional model for y
given z) so that patched codes can be sampled from a learned on-manifold
surrogate rather than chosen adversarially.

Cross-layer and cross-module structure: transport maps between
latent spaces. Single-layer decompositions are insufficient if mechanisms
are distributed across layers. The residual framework introduces a natu-
ral family of questions about correspondence: if (zy,y¢) decompose layer-¢
activations, when does zyy1 depend sparsely on z; (core-to-core propaga-
tion), and when do residual latents become core latents at the next layer
(refinements becoming canonical)? One formal approach is to posit a sparse
transport model
241 = Tz + Upyy,

with Ty, Up structured (e.g., sparse, block-sparse, or low-rank), and to study
identifiability of (7y, Uy) jointly with dictionaries across layers. The open
problem is to define transport estimation procedures that are invariant to
the permutation/sign symmetries within each layer while remaining sensitive
to genuine mechanistic alignment.
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A related challenge is robustness under distribution shift: correspon-
dences learned on Dpe may fail on Dy, if new circuits activate. The hi-
erarchy suggests a diagnostic: if the mapping from early-layer core latents
to later-layer residual latents grows in magnitude under shift, then the de-
composition is witnessing new computation not captured by the pretraining-
aligned core. Formalizing such diagnostics requires connecting changes in
latent usage statistics to changes in downstream behavior, ideally with guar-
antees that are not artifacts of encoder nonuniqueness.

Summary. The residual hierarchy offers a concrete scaffold for separating
reusable structure from structured remainder, but the main conceptual work
remains: to turn this scaffold into a representation that is stable, cross-layer
coherent, and safe to intervene upon. Advancing the theory will likely require
importing tools from sparse recovery with model mismatch, representation
alignment under symmetries, and distribution-shift control via generative
modeling of codes.
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