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Abstract

Mechanistic interpretability work emphasizes that (i) causal in-
terventions are necessary for faithful explanations and (ii) capabili-
ties can emerge stagewise, sometimes with abrupt transitions. Yet
training-time monitoring still relies mostly on loss curves and behav-
ioral evaluations, which can be delayed, noisy, or actively masked by
finetuning. We propose a formal training-time forecasting primitive:
track low-dimensional subspaces of causal influence computed from on-
manifold interventions, and detect bifurcations (abrupt rotations or
rank changes) that precede emergent capabilities. We define an inter-
ventional influence operator Jt at each checkpoint t, estimate its top-k
singular subspace using randomized interventions, and perform change-
point detection on principal-angle distances. In a simplified low-rank
mechanism model, we prove (1) sample complexity bounds for subspace
recovery and (2) detection-delay guarantees under rank-k perturba-
tions, with matching information-theoretic lower bounds. We further
outline an experimental protocol to instrument real training runs and
backtest whether influence bifurcations anticipate capability jumps (in-
cluding cases where finetuning masks behavior while influence remains
stable). The framework directly addresses open problems flagged in
recent mechanistic interpretability surveys: intervention-dependence,
validation beyond cherry-picked tasks, and understanding mechanism
development during training.
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1 Introduction

Training-time capability emergence is increasingly treated not only as an em-
pirical phenomenon but as an object of governance: one is asked to justify,
in a safety case, that a development process will surface and manage the ap-
pearance of new behaviors before deployment. In this setting, a “capability”
is not merely a benchmark score but a latent competence that can become
behaviorally expressed after a small number of additional optimization steps,
architectural changes, or finetuning on a narrow distribution. The practical
question is therefore a change-of-mechanism question: at what point during
training does the model acquire internal machinery that would support a
qualitatively new behavior, and can we detect that point with bounded false
alarms under a realistic monitoring budget?

A natural baseline is to monitor scalar training signals (loss, gradient
norms, weight updates) or to run black-box behavioral evaluations on a fixed
suite of tasks. We argue that such signals are inadequate for early warning
in the precise sense relevant to a safety case. Loss curves are not keyed to
specific competencies, can be dominated by frequent-token or easy-example
mass, and may remain smooth across internal reorganizations that matter for
downstream safety. Behavioral evaluations have a more direct semantics, but
they are limited by distributional masking: a capability may exist while be-
ing unexpressed on the evaluation distribution, either because triggering con-
texts are rare, because the evaluation protocol does not elicit the behavior,
or because subsequent training actively suppresses overt performance (e.g.
via instruction tuning). Moreover, for emergent behaviors that depend on
rare prompts or latent states, the sample complexity of detecting a change in
output distribution can be prohibitive at the point where intervention-based
signals are already decisive. For governance purposes, these limitations are
not incidental; they constitute an identifiability obstruction for any monitor
that observes only input–output behavior on a fixed set of tasks.

We therefore pursue a monitoring primitive that is (i) keyed to internal
causal mechanisms rather than external behavior alone, (ii) computable with
bounded per-checkpoint cost, and (iii) admits quantitative guarantees that
can be reported as part of a confidence calibration artifact. Our proposal
is to treat a sequence of checkpoints as a streaming change-point problem
over interventional influence operators. Concretely, we fix an internal “tap”
ht(x) ∈ Rd and a downstream readout yt(x) ∈ Rp whose variation we re-
gard as mechanistically meaningful (e.g. a probe logit, an action head, or
a safety-relevant internal score). We then consider randomized on-manifold
interventions of the form

do(h← h+ αu), u ∼ N (0, Id),

and measure the induced change ∆y relative to a baseline forward pass on
contexts x ∼ D. Under a local linearity assumption, the conditional mean
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effect is approximately linear in u, yielding an operator Jt ∈ Rp×d defined
by E[∆y | u] = αJtu. The operator Jt is not merely a gradient object; it
is a causal sensitivity of the readout to perturbations in the tapped state
under a prescribed intervention semantics, and thus it is meaningful even
when gradients are inaccessible or unreliable.

Because d can be large, we do not attempt to estimate Jt fully. In-
stead, we monitor the top-k right singular subspace St ⊆ Rd of Jt, which
we interpret as a k-dimensional “mechanism subspace” of the tapped rep-
resentation that exerts the dominant causal influence on yt under the cho-
sen intervention family. This choice is motivated by two considerations.
First, it is invariant to rotations within the influential directions and thus
robust to representational drift that preserves the underlying mechanism.
Second, it admits stable estimation whenever there is a nontrivial spectral
gap gapt = σk(Jt)− σk+1(Jt), which is precisely the regime in which a low-
dimensional mechanism is identifiable from randomized perturbations.

Our basic detector estimates Ŝt at each checkpoint t using m randomized
interventions and computes the principal-angle distance

∆t = sinΘ(Ŝt, Ŝt−1).

A bifurcation is declared when ∆t ≥ γ for a threshold γ chosen to control
false alarms. This produces a sequence of flagged times B̂ ⊆ {2, . . . , T}
at which the model’s influential mechanism geometry changes. In addition,
when one tracks multiple readouts y(j)t corresponding to capability tasks Tj ,
the same machinery yields a forecast problem: we can treat the evolution
of Ŝ(j)t (or derived quantities such as σi(Ĵ

(j)
t )) as a leading indicator for

when the capability will become behaviorally detectable under the task’s
evaluation protocol.

The primary contribution is that this picture supports explicit finite-
sample guarantees that scale with the intervention budget and noise level in
the expected way. Under subgaussian response noise with proxy σ2, local
intervention magnitude α, and a spectral gap condition, we obtain high-
probability bounds of the form

sinΘ(Ŝt,St) ≲
σ

α

√
log(1/δ)

m
· 1

gapt
,

which exhibit the correct signal-to-noise dependence α
√
m/σ and the ex-

pected 1/gapt stability factor. We complement this with matching (up to
constants and logarithms) lower bounds showing that no method using only
m randomized interventions can uniformly improve the

√
1/m scaling in

the worst case. These results justify the top-k influence subspace as a sta-
tistically natural monitoring target: it is rich enough to capture meaningful
mechanism changes, yet low-dimensional enough to be estimable under strict
per-checkpoint budgets.
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A second contribution concerns detection. When a new mechanism ap-
pears at time t∗ as a perturbation Jt∗ = Jt∗−1 +∆ with ∥∆∥2 ≥ ∆0 and the
post-change operator retains a gap, we show that a simple threshold rule can
detect the change with small (and in the idealized one-change model, zero)
delay once m is large enough that estimation error is below a constant frac-
tion of the induced subspace rotation. Conversely, in a rank-one spike model,
we show that if m is below a threshold proportional to σ2/(α2∆2

0) log(1/δ),
then any detector must either incur false alarm probability exceeding δ or
miss probability exceeding δ. In this sense, the monitoring problem admits
a sharp sample-complexity characterization analogous to classical change-
point testing, but with the novelty that the “signal” is a geometric change in
an interventional operator rather than a shift in mean loss or output logits.

A third contribution is conceptual but formalizable: we record an impos-
sibility principle for behavior-only early warning. If the output distributions
on an evaluation task are identical up to time t∗, then no black-box proce-
dure observing only those outputs can reliably predict the emergence time
before t∗. This is not a pessimistic claim about current benchmarks; it is
a structural statement about identifiability. Any early-warning claim must
therefore rest on additional observables (internal taps, auxiliary distributions
D, or trusted interventions), which our framework makes explicit.

Finally, we emphasize implementability constraints. We require interven-
tions to be local (small α) and on-manifold according to a specified patching
or conditional-resampling semantics, so that the operator Jt corresponds to
plausible counterfactual variation rather than arbitrary activation corrup-
tion. Computationally, the estimator can be implemented with streaming
sketches and randomized SVD, using m additional forward passes per check-
point and without requiring gradient access. This aligns with the regime in
which monitoring must coexist with large-scale training.

In the next section we place this construction in the context of mecha-
nistic interpretability and causal patching, and we motivate why influence
subspaces—as opposed to individual neurons, raw Jacobians, or purely be-
havioral probes—form a stable and informative unit for tracking stagewise
development and emergent capabilities.

2 Background and motivation

Mechanistic interpretability studies have made a compelling case that many
behaviors of large sequence models are implemented by structured computa-
tions distributed across layers, attention heads, and residual streams rather
than by isolated units. From the monitoring perspective, however, the cen-
tral difficulty is not merely to explain a fixed trained model, but to track
how computations reorganize over training time. The objects of interest
must therefore be stable under common symmetries (e.g. rotations and basis
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changes in internal representations), must admit estimation at scale, and
must connect to concrete downstream quantities that are relevant for safety
cases (probe scores, action logits, or internal “risk” heads). This perspec-
tive shifts emphasis away from locating a single “feature neuron” and toward
identifying low-dimensional mechanism degrees of freedom whose presence
and influence can be measured repeatedly across checkpoints.

A second theme is that interpretability arguments often rest on correla-
tional evidence: a direction correlates with a concept; an activation pattern
correlates with a behavior; or a linear probe decodes a label. Such evidence is
useful but does not, by itself, establish that the model uses the decoded infor-
mation. Causal intervention methods—activation patching, causal tracing,
path patching, and related “scrubbing” procedures—were introduced pre-
cisely to answer use-questions: if we modify an internal state in a controlled
manner, do we reliably change a downstream readout? From our vantage
point, these methods suggest a monitoring primitive: rather than inspecting
raw activations, we measure an interventional influence of a tapped state on
a chosen readout. The monitor is then keyed to causal effect sizes, which are
closer to what a safety case requires than descriptive statistics of internal
representations.

At the same time, naive interventions can be misleading. Arbitrary cor-
ruption of a residual stream coordinate can easily push the model off the
data manifold, producing brittle artifacts that neither reflect plausible inter-
nal counterfactuals nor yield stable metrics across checkpoints. This mo-
tivates the constraint that interventions be on-manifold according to an
explicit semantics. Concretely, we may implement interventions via con-
strained patching from matched contexts, conditional resampling of subcom-
ponents, or other procedures that preserve token-level plausibility and the
local statistics of the representation. The precise semantics can vary with
the application, but the monitoring requirement is the same: the induced
counterfactual should be interpretable as “a plausible alternative internal
state consistent with the current context distribution.” Under such seman-
tics, causal effects become meaningfully comparable over training and less
sensitive to superficial representational drift.

The monitoring problem is also shaped by the empirical fact that capa-
bility acquisition is often stagewise. Across long training runs, qualitative
changes can occur: a model may begin to perform multi-step reasoning,
execute tool-like behaviors, or exhibit situationally sensitive policy selec-
tion. Even when behavioral curves appear smooth, mechanistic analyses
frequently reveal that the internal pathways supporting performance can re-
organize abruptly (e.g. via the emergence of a new attention circuit that
bypasses a previous heuristic). This stagewise picture is consistent with
the view that optimization discovers new algorithmic “modules” which, once
formed, can later be gated, fine-tuned, or suppressed without being erased.
For governance, this distinction matters: a capability that is not currently

6



expressed can nonetheless become expressed after small distribution shifts
or post-training procedures, and therefore monitoring should detect the ac-
quisition of the underlying machinery rather than only its current behavioral
expression.

A natural response is to run extensive behavioral evaluations throughout
training. Yet behavioral monitoring faces an identifiability obstruction when-
ever the evaluation distribution fails to elicit the latent capability, or when
training actively shapes outputs to satisfy the evaluation protocol without
removing the underlying mechanism. In such regimes, the causal influence of
internal states can change materially before output distributions on a fixed
benchmark register a difference. We thus seek an internal early-warning
signal that (i) is closer to “mechanism present and causally active” than to
“behavior currently visible,” and (ii) can be estimated reliably under strict
compute budgets.

This brings us to the question of what internal quantity to track. One
might consider tracking the full Jacobian of the readout with respect to the
tap, or tracking individual directions discovered by probes. Both extremes
are problematic. Full Jacobians are high-dimensional, expensive to estimate,
and unstable under small perturbations when their spectra are diffuse. In-
dividual directions, on the other hand, are fragile: they depend on arbitrary
choices of basis and can change substantially under innocuous reparameteri-
zations, even when the underlying computation is unchanged. Moreover, for
distributed mechanisms, no single direction need remain consistently aligned
across checkpoints; what is stable is often a subspace of directions that col-
lectively support the computation.

The subspace viewpoint is standard in perturbation theory and is par-
ticularly natural for causal influence. If a downstream readout depends on
the tap primarily through a low-dimensional set of degrees of freedom, then
the operator mapping small on-manifold perturbations at the tap to changes
in the readout is approximately low rank. In that case, the dominant right
singular vectors define a mechanism-aligned coordinate system: directions
in the tap space that, when perturbed, produce maximal expected effect on
the readout. Importantly, the span of these directions is invariant to ro-
tations within the mechanism and therefore stable under representational
drift that preserves the computation. Stability is formalized by spectral-gap
arguments: when there is a gap between the top singular values and the
remainder, the associated subspace is robust to noise and to small model
changes that do not materially alter the mechanism.

From a monitoring standpoint, “influence subspaces” therefore serve as
a compromise object: richer than a scalar score, yet lower-dimensional and
more stable than a full operator. They also admit a direct causal semantics.
When we intervene at the tap by adding a small on-manifold direction and
observe the induced change in a readout, we are effectively sampling the
action of an unknown linear operator in random directions, in the local
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regime where linearization is accurate. Estimating the top of this operator
(as a subspace) is then the statistically efficient target: it is identifiable with
a number of interventions that scales with the desired error and the signal-
to-noise ratio, and it is exactly the component that captures “which internal
degrees of freedom matter most” for the monitored readout.

Finally, influence subspaces are well suited to the stagewise-emergence
narrative. When a new circuit begins to support a capability, we expect a
new family of perturbations at the relevant tap to acquire causal leverage
over a capability-linked readout. This can manifest as an increase in the
magnitude of leading singular values (a strengthening of an existing mecha-
nism), as a rotation of the dominant subspace (a change in how the model
implements the behavior), or as a rank expansion (the appearance of addi-
tional influential degrees of freedom). Each of these is naturally captured
by tracking subspace geometry and spectrum across checkpoints. In con-
trast, raw activation statistics can change for reasons unrelated to capability
(e.g. rescaling), and behavior can remain unchanged for reasons unrelated
to mechanism (e.g. masking by instruction tuning). The influence-subspace
monitor sits between these extremes: it is grounded in interventions, hence
causal; it is geometric, hence robust; and it is low-dimensional, hence feasible
to estimate repeatedly during training.

These considerations motivate the formalization in the next section: we
define checkpoints, taps, on-manifold interventions, and an interventional
influence operator whose leading right singular subspace is the monitoring
target. We then cast training-time emergence prediction as change-point
detection in this subspace, with explicit thresholds and error control suitable
for reporting in a confidence calibration artifact.

3 Problem formulation: mechanism bifurcation de-
tection (MBD)

We model training as producing a discrete sequence of checkpoints {Mt}Tt=1,
where Mt denotes the model parameters θt at checkpoint index t. Fix a
tap—an internal state of the forward computation—given as a measurable
map ht : X → Rd, x 7→ ht(x), where x ∼ D is a context drawn from a
monitoring distribution D (train/validation/mix, and potentially including
safety-relevant subdistributions). We also fix a readout of interest yt : X →
Rp, which may be a probe logit vector, a score produced by an internal
head, an action logit in an agentic model, or any differentiable downstream
statistic whose changes we wish to causally attribute to perturbations at the
tap.

Our monitoring primitive is an on-manifold intervention family applied
at the tap. For each checkpoint t and context x, we consider counterfactual
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runs in which the tap state is modified according to

do
(
h← h+ αu

)
,

where u ∈ Rd is a randomized direction (typically u ∼ N (0, Id) or Rademacher),
and α > 0 is a small magnitude parameter. The phrase “on-manifold” is oper-
ational rather than metaphysical: we assume the intervention is implemented
by a specified semantics (e.g. constrained activation patching, conditional
resampling, or a projection step) that yields perturbed states which remain
typical under D in the sense that they preserve local representation statis-
tics and avoid gross distribution shift at the tap. Formally, we treat do(·) as
part of the experimental design: it determines the conditional distribution of
the perturbed forward computation given (x, u), and hence determines the
causal estimand below.

Given (t, x, u), let yt(x) denote the readout in the baseline run and
ydot (x;u) denote the readout under intervention. We define the intervention
response

∆yt(x;u) := ydot (x;u)− yt(x) ∈ Rp.

We work in the local regime in which ∆yt(x;u) is well approximated by a
linear function of u, after averaging over contexts. Concretely, our standing
modeling assumption (H1) is that there exists an operator Jt ∈ Rp×d, the
interventional influence operator at checkpoint t, such that

E
[
∆yt(x;u) | u

]
= αJtu, (1)

where the expectation integrates over x ∼ D and the internal randomness
of the on-manifold intervention semantics, and deviations from (1) are cap-
tured by mean-zero subgaussian noise η with variance proxy σ2. Equation
(1) is not intended to hold pointwise in x, but rather as a stable D-averaged
causal summary of how perturbations at the tap flow to the readout in the
immediate neighborhood of typical internal states. When yt is differentiable
with respect to ht and interventions are implemented as additive perturba-
tions, Jt coincides with an average Jacobian; however, we emphasize that we
do not require gradient access, and we view Jt as an estimand defined by
randomized interventions.

The raw operator Jt is typically too large to estimate or track entrywise
when d is the width of a residual stream. Instead, we track its dominant
mechanism subspace. Let σ1(Jt) ≥ σ2(Jt) ≥ · · · denote the singular values of
Jt. Fix a target dimension k, representing the number of influential degrees
of freedom we are prepared to monitor. We define St ⊆ Rd to be the top-
k right singular subspace of Jt; equivalently, St is spanned by the k right
singular vectors corresponding to σ1(Jt), . . . , σk(Jt). This definition enforces
invariance to rotations within the mechanism: if the model reparameterizes
the tapped representation by an orthogonal change of basis that preserves
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the input–output mapping, St remains the appropriate geometric object. We
assume (H2) a nontrivial spectral gap gapt := σk(Jt) − σk+1(Jt) > 0 (with
σk+1 = 0 if rank(Jt) ≤ k), so that St is stable to estimation noise and small
perturbations of Jt.

To compare mechanism subspaces across checkpoints, we use principal-
angle geometry. For two k-dimensional subspaces S, S′ ⊆ Rd, let sinΘ(S, S′)
denote the operator norm of the sine of canonical angles (equivalently, the
spectral norm of the difference of orthogonal projectors up to constants).
Our primary mechanism change metric is

∆t := sinΘ
(
Ŝt, Ŝt−1

)
,

where Ŝt is an estimate of St computed from a budget of m randomized
interventions at checkpoint t. The role of sinΘ is twofold: it is invariant
to the choice of basis for each estimated subspace, and it directly controls
worst-case distortion of vectors in one subspace relative to the other. A “bi-
furcation” in our sense is a time t at which the dominant influence subspace
rotates or expands enough that ∆t exceeds a calibrated threshold γ. Accord-
ingly, the core detection problem is to output a set of detected bifurcation
times

B̂ ⊆ {2, . . . , T}, t ∈ B̂ ⇐⇒ ∆t ≥ γ,

with false-alarm control P(B̂ ∩ B = ∅) ≥ 1 − δ under a suitable no-change
null, and with small detection delay under change alternatives.

While bifurcation detection is itself a monitoring output, our motivating
application is capability emergence forecasting. We formalize a capability
task Tj as an evaluation procedure producing a behavioral score bt,j from Mt

(e.g. pass@k, exact-match, reward, or a safety-relevant refusal metric) and
an operational emergence time

tj := min{t : bt,j ≥ τj},

for a pre-specified detectability threshold τj . The forecasting problem is to
output t̂j (and an uncertainty interval) using the history of internal monitor-
ing statistics up to time t, notably {Ŝs}s≤t, {∆s}s≤t, and optionally spectra
{σi(Ĵs)}. We keep the forecasting map abstract: in practice it may be im-
plemented as a calibrated regression from mechanism-space trajectories to
expected behavioral onset, or as a rule-based scheme that treats certain bifur-
cations as precursors for particular tasks. The essential structural hypothesis
is that task emergence is mediated by the appearance or reorganization of
mechanisms that exert causal influence on a task-linked readout, so that
changes in St can precede (and hence warn of) changes in bt,j .

It is useful to contrast this setting with black-box emergence detection
that observes only output behavior on Tj . If for t < t∗ the output distribu-
tions Pt(· | x) are identical on the evaluation distribution used by Tj , then
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no procedure that only queries Mt through Tj can distinguish checkpoints
prior to t∗, and hence no such procedure can provably provide early warn-
ing. In our formulation, early warning becomes possible precisely because
we enrich the observation channel: we access internal states ht(x) and we
apply randomized interventions whose responses identify an internal causal
operator Jt. The point is not that internals are magically predictive, but
that they provide additional information—in the literal statistical sense—
that is absent from task behavior when behavior is masked, unelicited, or
intentionally shaped.

We now proceed to the estimation problem implicit in the definitions
above: given a checkpoint Mt, an intervention family, and a budget of m
interventions, how do we compute Ĵt or Ŝt with controlled error in high
dimension? Section 4 describes randomized intervention schemes, low-rank
sketches, and principal subspace recovery methods that make MBD compu-
tationally feasible at training scale.

4 Influence operator estimation

Fix a checkpoint t. Our goal is to estimate either the influence operator
Jt itself (as a low-rank object) or, more modestly, its top-k right singular
subspace St, using only randomized on-manifold interventions at the tap.
Throughout, we treat (1) as defining a linear regression problem with ran-
dom design: for each sampled direction u, the D-averaged response ∆y has
conditional mean αJtu plus noise. The salient feature is that we may choose
the design distribution over u, and we exploit this freedom to obtain simple
unbiased estimators and efficient subspace recovery procedures.

Randomized intervention scheme and moment estimators. Let x1, . . . , xn ∼
D be a small context batch. For i = 1, . . . ,m, we sample ui ∼ N (0, Id) (or
Rademacher) and compute the batch-averaged intervention response

∆Yi :=
1

n

n∑
j=1

(
ydot (xj ;ui)− yt(xj)

)
∈ Rp.

Under (H1) and conditional on ui, we have E[∆Yi | ui] = αJtui, with devia-
tions captured by mean-zero subgaussian noise whose proxy decreases with
n by averaging (we absorb this effect into σ2 for notational simplicity). The
basic unbiased outer-product estimator is then

Ĵt :=
1

αm

m∑
i=1

∆Yiu
⊤
i , (2)

since E[uiu⊤i ] = Id implies E[Ĵt] = Jt. This estimator is the natural ana-
logue of simultaneous perturbation / score-function estimators, but applied
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to internal activations rather than parameters. When ui is Rademacher,
E[uiu⊤i ] = Id still holds, and boundedness can improve constants in concen-
tration.

Several variance-reduction tricks are operationally important. First, paired
directions ±u cancel even-order nonlinearities and reduce sensitivity to base-
line drift: defining ∆̃Y (u) := 1

2

(
∆Y (u) − ∆Y (−u)

)
, we have E[∆̃Y (u) |

u] = αJtu but empirically smaller residuals when the intervention seman-
tics is only approximately additive. Second, we may enforce approximate
orthogonality of the ui (e.g. via a QR step on a Gaussian matrix) to reduce
correlations in the design; this does not change (2) but improves finite-m sta-
bility in practice. Third, if the tap coordinates have strongly non-isotropic
marginal variance under D, we may sample u in a whitened coordinate sys-
tem u = Σ̂−1/2z with z ∼ N (0, Id) and Σ̂ a running covariance estimate of
ht(x); this modifies the estimand to JtΣ̂

−1/2 unless we reweight appropri-
ately, but it can substantially improve signal-to-noise for fixed α.

Low-rank structure and sketching without forming Ĵt. Even when
Ĵt is conceptually defined by (2), explicitly materializing a p × d matrix is
undesirable. The key observation is that Ĵt factors through the m inter-
ventions. Let U := [u1 · · · um] ∈ Rd×m and B := [∆Y1 · · · ∆Ym] ∈ Rp×m.
Then

Ĵt =
1

αm
BU⊤, (3)

so rank(Ĵt) ≤ m. Consequently, all information needed for the top-k right
singular subspace lies in the span of the sampled directions ui, and we can
recover Ŝt from m×m linear algebra.

Indeed,

Ĵ⊤
t Ĵt =

1

α2m2
U(B⊤B)U⊤,

so the nonzero eigenvectors of Ĵ⊤
t Ĵt lie in col(U). Let U = QR be a thin QR

factorization with Q ∈ Rd×m orthonormal and R ∈ Rm×m invertible w.h.p.
Then

Ĵ⊤
t Ĵt = Q

(
1

α2m2
R(B⊤B)R⊤

)
Q⊤.

Thus, if v1, . . . , vk ∈ Rm are the top-k eigenvectors of the m × m matrix
S := 1

α2m2R(B⊤B)R⊤, then Ŝt = span{Qv1, . . . , Qvk}. This procedure
costs O(dm2 + pm2) to form B⊤B and to orthonormalize U , and it avoids
any d× d eigendecomposition. When p is moderately large, forming B⊤B is
still feasible because it is only m ×m; when p is very large (e.g. yt is a full
vocabulary logit vector), we may replace B by a compressed sketch RB with
a random projection R ∈ Rp′×p, preserving inner products ∆Y ⊤

i ∆Yi′ up to
a controlled distortion for p′ = Õ(m).
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An equivalent perspective, useful for iterative methods, is that we can
apply Ĵt and Ĵ⊤

t to vectors without forming them:

Ĵtv =
1

αm
B(U⊤v), Ĵ⊤

t w =
1

αm
U(B⊤w).

Hence, randomized SVD and power iteration can be implemented with cost
linear in pm + dm per multiply, which is attractive when we wish to track
multiple values of k or compute additional spectral diagnostics.

Choosing α and validating locality. The estimator (2) presumes a
regime in which ∆y is locally linear in u. In practice we select α by a
calibration loop at each tap: we increase α until the signal ∥∆Y ∥ is reliably
above numerical noise, but we require that a symmetry diagnostic remains
small, e.g.

∥∆Y (u) + ∆Y (−u)∥
∥∆Y (u)−∆Y (−u)∥

≤ ρ

for a chosen tolerance ρ. This heuristic checks for even-order terms and
intervention artifacts. When it fails, we either reduce α or modify the on-
manifold semantics (e.g. projecting back to a constraint set determined by
activation statistics). We emphasize that α should be interpreted relative
to the typical scale of ht(x); a robust choice is to normalize u to unit norm
and set α as a small fraction of the root-mean-square activation magnitude
at the tap.

Tap choice and multi-tap aggregation. The tap defines the causal in-
terface at which we probe mechanisms, and different taps expose different
abstractions. Early layers may yield diffuse, high-rank influence; later lay-
ers often yield lower-rank, more task-aligned mechanisms, but may also be
more entangled with the readout definition. In applications we therefore rec-
ommend monitoring a small set of taps (e.g. several residual-stream layers
and, when present, key/value streams), each with its own Ŝ(ℓ)t and change
statistic ∆

(ℓ)
t . A simple aggregation rule is

∆max
t := max

ℓ
sinΘ

(
Ŝ(ℓ)t , Ŝ(ℓ)t−1

)
,

which detects a bifurcation if any monitored interface changes. When mecha-
nisms are distributed across layers, we may instead form a block-concatenated
tap hconcatt := (h

(ℓ1)
t , . . . , h

(ℓL)
t ) and apply the same estimator in the enlarged

ambient space; this increases d but preserves the low-rank nature of influen-
tial directions if only a few layers contribute. More structured aggregation
is possible by aligning subspaces across taps (e.g. via canonical correlation)
and clustering changes into regimes, but we defer such forecasting-oriented
constructions to later sections.
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The output of this section is an explicit, budgeted procedure for comput-
ing Ŝt from m interventions with minimal dependence on ambient dimen-
sion. The next section supplies finite-sample guarantees and minimax lower
bounds that explain the observed α−1, m−1/2, and gap−1 scalings, and that
guide principled choices of m and the detection threshold γ.

5 Theory I: subspace estimation bounds

In this section we quantify the finite-sample accuracy of estimating the mech-
anism subspace St from m randomized interventions at a fixed checkpoint
t, and we show that the resulting dependence on (α, σ, gapt) is minimax-
optimal up to absolute constants (and logarithmic factors in δ−1). Through-
out we work under the local linear model: for each intervention direction
ui ∼ N (0, Id),

∆Yi = αJtui + ηi, E[ηi | ui] = 0, (4)

where ηi ∈ Rp is conditionally subgaussian with variance proxy σ2. We write
Ĵt for the unbiased estimator (2) and Ŝt for its top-k right singular subspace.

Operator-norm concentration for Ĵt. We begin by bounding ∥Ĵt−Jt∥2.
Let

Zi :=
1

αm

(
∆Yiu

⊤
i − E[∆Yiu

⊤
i ]
)

=
1

m

(
Jt(uiu

⊤
i − Id) +

1

α
ηiu

⊤
i

)
,

so that Ĵt − Jt =
∑m

i=1 Zi is a sum of i.i.d. mean-zero random matrices.
The first term, Jt(uiu⊤i − Id), is a (centered) quadratic form in a standard
Gaussian and is controlled via Hanson–Wright or matrix Bernstein after
truncation; the second term, α−1ηiu

⊤
i , is a rank-one noise matrix. Since

we ultimately pass to subspace error, we only require an operator-norm tail
bound; in particular, we may treat p as absorbed into σ2 (e.g. by defining
∆Yi to be a scalar probe, or by averaging over p coordinates so that the
effective noise proxy decreases).

A convenient summary bound is: for any δ ∈ (0, 1), with probability at
least 1− δ,

∥Ĵt − Jt∥2 ≤ C1

(
∥Jt∥2 +

σ

α

)√ log(1/δ)

m
, (5)

for an absolute constant C1. The term ∥Jt∥2
√

log(1/δ)/m corresponds to
the randomness of the design covariance m−1

∑
uiu

⊤
i about Id; the term

(σ/α)
√

log(1/δ)/m is the regression noise scaled by the intervention mag-
nitude α. In regimes where σ/α dominates ∥Jt∥2 (typical when α is chosen
conservatively for locality), the leading scaling is (σ/α)m−1/2.
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From operator error to subspace error via a gap. Let Jt = UΣV ⊤ be
an SVD with singular values σ1(Jt) ≥ · · · ≥ σmin(p,d)(Jt) ≥ 0, and let St =
span{v1, . . . , vk} be the top-k right singular subspace. Define the spectral
gap

gapt := σk(Jt)− σk+1(Jt),

with the convention σk+1(Jt) = 0 if rank(Jt) ≤ k. The gap condition is
not a technicality: without gapt > 0, the top-k subspace is not identifiable
(an arbitrarily small perturbation can rotate it within a degenerate singular
space).

Under gapt > 0, Wedin’s sinΘ theorem (or Davis–Kahan applied to
J⊤
t Jt) yields

sinΘ(Ŝt,St) ≤
∥Ĵt − Jt∥2

gapt
, (6)

up to a benign constant depending on the specific normalization of sinΘ(·, ·).
Combining (5) and (6) gives the advertised scaling.

Finite-sample upper bound. Specializing to the noise-dominated regime
(or absorbing ∥Jt∥2 into σ/α by redefining σ), we obtain the following guar-
antee.

Theorem 5.1 (Subspace estimation upper bound). Assume (4) with
subgaussian noise proxy σ2 and assume gapt > 0. Let Ŝt be the top-k
right singular subspace of Ĵt built from m i.i.d. interventions. Then with
probability at least 1− δ,

sinΘ(Ŝt,St) ≤ C
σ

α

√
log(1/δ)

m
· 1

gapt
, (7)

for an absolute constant C.

Implications and choice of m. Fix a target accuracy ε ∈ (0, 1). Rear-
ranging (7) yields that it suffices to take

m ≳
σ2

α2
· log(1/δ)
(ε gapt)

2
. (8)

The dependence on α−2 captures a basic tradeoff: decreasing α improves
locality but makes the regression problem harder. The dependence on gap−2

t

expresses ill-conditioning of the subspace: when the k-th and (k + 1)-th
singular values are close, we need substantially more interventions to stably
recover the intended mechanism directions. Finally, the m−1/2 rate is the
usual parametric rate for estimating a low-dimensional object from i.i.d.
noisy measurements.
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If we wish to control error uniformly over checkpoints t = 1, . . . , T , we
may apply a union bound and replace δ by δ/T , incurring an additional log T
factor. This is typically mild relative to other sources of conservatism, but
it is the correct scaling for provable streaming guarantees.

Matching lower bound (minimax necessity). We now show that the
scaling in (8) is unavoidable. The proof follows the standard logic for sub-
space estimation: we construct two hypotheses whose top-k subspaces differ
by a small principal angle, yet whose induced intervention-response distri-
butions are statistically close when m is small.

For transparency, consider the simplest nontrivial case k = 1 and p = 1,
where J is a row vector J = λw⊤ with ∥w∥2 = 1. Then S(J) = span{w},
the gap is gap = λ, and the observation model becomes

∆Yi = αλ⟨w, ui⟩+ ηi,

a noisy linear functional of ui. Let w and w′ be two unit vectors with
∠(w,w′) = ε, and consider J = λw⊤ and J ′ = λ(w′)⊤. Conditioned on
{ui}mi=1, the likelihood ratio between the two hypotheses is Gaussian with
squared mean shift proportional to

α2λ2

σ2

m∑
i=1

(
⟨w, ui⟩ − ⟨w′, ui⟩

)2
=

α2λ2

σ2

m∑
i=1

⟨w − w′, ui⟩2.

Taking expectation over ui ∼ N (0, Id) gives E⟨w−w′, ui⟩2 = ∥w−w′∥22 ≍ ε2.
Hence the KL divergence scales as

KL(P
(m)
J ∥P (m)

J ′ ) ≲ m · α
2λ2

σ2
· ε2 = m · α

2 gap2

σ2
· ε2.

By Le Cam’s two-point method, if this divergence is bounded by an absolute
constant, then any estimator Ŝ must incur a constant probability of subspace
error at least on the order of ε. Equivalently, to ensure sinΘ(Ŝ,S) ≤ ε with
high probability we require

m ≳
σ2

α2
· 1

gap2
· 1
ε2

, (9)

matching (8) up to the log(1/δ) factor required for tail control. The general
k > 1 case is obtained by rotating a k-dimensional subspace within a (k+1)-
dimensional ambient subspace and applying Fano-type packing arguments;
the same signal-to-noise ratio α

√
m/σ governs identifiability, and the gap

again controls stability.
Taken together, (7) and (9) justify treating (σ/α) · (gapt)−1 ·m−1/2 as

the fundamental accuracy limit for influence-subspace monitoring at a fixed
checkpoint.
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6 Theory II: change-point detection guarantees

We now analyze the sequential detector based on the principal-angle incre-
ment

∆t := sinΘ(Ŝt, Ŝt−1), τ̂ := min{t ≥ 2 : ∆t ≥ γ},
where Ŝt is obtained from m randomized interventions at checkpoint t. Our
goal is twofold: (i) control the probability of false alarms when the mecha-
nism is stable, and (ii) upper bound the detection delay when the mechanism
undergoes a low-rank perturbation. Throughout we work under (H1) and
assume a uniform gap condition inft gapt ≥ g > 0 over the time range of
interest.

A deterministic decomposition. Let St denote the population top-k
right singular subspace of Jt, and define the estimation errors

et := sinΘ(Ŝt,St).

By the triangle inequality for principal angles (in operator norm form), for
each t ≥ 2 we have

∆t ≤ et + sinΘ(St,St−1) + et−1, ∆t ≥ sinΘ(St,St−1) − et − et−1.
(10)

Thus the detector succeeds whenever the intrinsic subspace motion sinΘ(St,St−1)
dominates the estimation noise et+et−1, and it avoids false alarms whenever
et + et−1 stays below γ in stable segments.

False alarm control under stationarity. We first consider the null
regime in which Jt ≡ J (hence St ≡ S) for all t ∈ {1, . . . , T}. Then
sinΘ(St,St−1) = 0, and (10) simplifies to ∆t ≤ et + et−1. Consequently,
if et ≤ γ/2 for all t, no alarm can occur.

Invoking the subspace estimation guarantee from Theorem 5.1 with fail-
ure probability parameter δ′ = δ/T , we obtain that for each fixed t,

P

(
et > C

σ

α

√
log(T/δ)

m
· 1
g

)
≤ δ

T
.

A union bound over t = 1, . . . , T yields uniform control over the entire
trajectory.

Theorem 6.1 (No false alarms in a stable regime). Assume Jt ≡ J
for t ∈ {1, . . . , T} and gap ≥ g > 0. Choose γ > 0 and suppose

m ≥ CFA
σ2

α2
· log(T/δ)

(gγ)2
(11)

for an absolute constant CFA. Then with probability at least 1− δ, we have
∆t < γ for all t ≥ 2, hence τ̂ =∞ (no false alarm).
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Detection under a low-rank perturbation. We next analyze a single
change-point model: there exists t∗ ∈ {2, . . . , T} such that Jt ≡ J− for t < t∗

and Jt ≡ J+ for t ≥ t∗, with

J+ = J− +∆, rank(∆) ≤ k, ∥∆∥2 ≥ ∆0,

and gap(J−), gap(J+) ≥ g. Let S− := S(J−) and S+ := S(J+), and define
the intrinsic separation

ρ := sinΘ(S+,S−).

The quantity ρ is the population-level signal available to a subspace-based
detector. In particular, by (10),

∆t∗ ≥ ρ− et∗ − et∗−1. (12)

Hence if we pick γ ∈ (0, ρ) and ensure et∗−1, et∗ ≤ (ρ − γ)/2, then ∆t∗ ≥ γ
and the detector fires at the first changed checkpoint.

To connect ρ to the perturbation magnitude ∆0, we may appeal to stan-
dard singular-subspace perturbation geometry. In the favorable case where
∆ injects energy largely outside S− (e.g. ∥(I − ΠS−)∆∥2 is comparable to
∥∆∥2), one obtains a lower bound of the form ρ ≳ min{1,∆0/g}. We keep
ρ explicit since it is the correct parameter governing detectability in the
general (possibly partially aligned) case.

Theorem 6.2 (Immediate detection with high probability). Assume
a single change at t∗ with intrinsic separation ρ = sinΘ(S+,S−) > 0 and
gaps at least g. Set γ = ρ/2. If

m ≥ Cdet
σ2

α2
· log(T/δ)

(gρ)2
, (13)

then with probability at least 1− δ we have (i) no false alarm for t < t∗, and
(ii) τ̂ = t∗ (zero detection delay).

Detection delay via temporal aggregation. If the per-checkpoint bud-
get m is insufficient for (13), we can still obtain a delay bound by aggregat-
ing information across checkpoints after the change. One simple device is a
sliding-window estimator: form an averaged sketch J t := w−1

∑t
s=t−w+1 Ĵs

and let St be its top-k right singular subspace. Under a post-change sta-
tionary regime, J t has the same mean J+ but reduced variance proxy by
a factor w, effectively replacing m by mw in Theorem 5.1. Consequently,
choosing w so that mw meets (13) yields detection after O(w) checkpoints.
In particular, for γ = ρ/2, it suffices to take

w ≳
σ2

α2
· log(T/δ)
m (gρ)2

, (14)
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so the detection delay scales as O
(

σ2

α2m
log(T/δ)
(gρ)2

)
under persistent post-change

statistics.

Matching lower bounds (rank-one spike detection). Finally, we record
a lower bound showing that the dependence on σ2/(α2∆2

0) is unavoidable
even in the simplest case. Consider p = d and a rank-one spike model: under
the null, J = 0; under the alternative, J = ∆0vw

⊤ with unknown unit vec-
tors v, w. For an intervention u ∼ N (0, Id), the mean response is α∆0⟨w, u⟩v,
which is a Gaussian mean shift in an unknown direction. Standard minimax
testing arguments imply that unless the aggregate signal-to-noise ratio ex-
ceeds a constant multiple of

√
log(1/δ), no procedure can simultaneously

make both type-I and type-II errors smaller than δ. Translating this into
our parameters yields the necessary condition

m = Ω

(
σ2

α2∆2
0

log
1

δ

)
, (15)

up to absolute constants (and with the same conclusion for per-checkpoint
detectors in the sequential setting). Thus, in the regime where the emer-
gent mechanism corresponds to a low-rank spike of size ∆0, the preceding
upper bounds are tight in their fundamental scaling: reliable early detec-
tion requires interventions sufficient to resolve a mean shift of magnitude
α∆0 against noise σ, and this cannot be done with sublinear-in-σ2/(α2∆2

0)
samples.

7 Capability forecasting from bifurcations

We now describe how to convert detected mechanism-space bifurcations into
forecasts of when a downstream capability becomes behaviorally detectable,
together with calibrated uncertainty intervals. Fix a family of capability
evaluations {Tj}Jj=1. For each task Tj , let bj,t ∈ [0, 1] denote a behavioral
score at checkpoint t (e.g. pass@k, accuracy, or success rate on an episode
distribution), computed on an evaluation distribution Dj that is disjoint from
the monitoring distribution D when such separation is desired. We define
the (random) onset time

tj := min{t ∈ {1, . . . , T} : bj,t ≥ βj},

for a fixed detectability threshold βj chosen in advance (or via a separate
calibration set). Our goal is, at intermediate times t < T , to output a point
forecast t̂j(t) and an interval Îj(t) ⊆ {t, t + 1, . . . , T} such that tj ∈ Îj(t)
with high probability while keeping the interval nonvacuous.
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Regime segmentation as a sufficient statistic. Let B̂ = {τ̂1 < · · · <
τ̂L} be the set of bifurcation times produced by the detector in Section 6,
and let τ̂0 := 1, τ̂L+1 := T + 1. This induces a partition of checkpoints into
estimated regimes

R̂ℓ := {τ̂ℓ , τ̂ℓ + 1, . . . , τ̂ℓ+1 − 1}, ℓ = 0, . . . , L.

Within a regime R̂ℓ we expect St to be stable, hence the interventional mech-
anism available to downstream readouts is approximately stationary. This
motivates predicting capability onsets in terms of time-since-last-bifurcation
rather than absolute training time. Concretely, write ℓ(t) for the regime
index containing t, and define the elapsed time since the last detected bifur-
cation as

a(t) := t− τ̂ℓ(t).

We will forecast tj by modeling the conditional distribution of the remaining
time-to-onset rj(t) := tj − t as a function of regime-level features.

Feature map from mechanism monitoring. To allow task-specific fore-
casting while preserving the intervention budget, we restrict to features de-
rived from monitoring quantities already computed for change detection. Let
Ĵt be the randomized-intervention sketch at checkpoint t (or its low-rank fac-
tors), and let σ̂i,t be the estimated singular values. We define a feature vector

ϕt :=
(
σ̂1,t, . . . , σ̂k,t, ∆t, a(t)

)
∈ Rk+2.

When task-specific probes are permitted, we may augment ϕt by an align-
ment score between the mechanism subspace and a task probe direction. For
example, if ŵj,t ∈ Rd is a normalized direction obtained by fitting a linear
probe for Tj on activations at the tap, then we define

Aj,t := ∥ΠŜt
ŵj,t∥2 ∈ [0, 1],

and set ϕj,t := (ϕt, Aj,t). Intuitively, Aj,t measures whether the currently
active mechanism subspace contains a direction known to be predictive for
Tj ; empirically, onsets often follow shortly after such alignments increase
sharply, and bifurcations provide a natural set of candidate times at which
these increases occur.

A survival model conditioned on regimes. We postulate a conditional
survival function for the remaining time rj(t) given the information at time
t:

Sj(s | ϕj,t) := P(rj(t) > s |ϕj,t) , s ∈ {0, 1, . . . , T − t}.

Operationally, one may instantiate Sj via a discrete-time hazard model hj(s |
ϕ) = P(rj(t) = s | rj(t) ≥ s, ϕ), or via quantile regression for the conditional
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distribution of rj(t). We emphasize that this modeling step is auxiliary to
the core mechanism detector: it uses the detector’s segmentation to reduce
nonstationarity, but it may be learned from prior runs or from earlier phases
of the same run (when some tasks already emerged).

Given an estimated conditional distribution Ŝj(· | ϕj,t), we define the
point forecast as a conditional median

t̂j(t) := t+ inf{s : Ŝj(s | ϕj,t) ≤ 1/2}.

More importantly, we define a one-sided (1− δj)-prediction interval for tj by
conditional quantiles:

Îj(t) :=
[
t, t+ inf{s : Ŝj(s | ϕj,t) ≤ δj}

]
,

which guarantees that, under correct calibration, the onset occurs within
Îj(t) with probability at least 1− δj (conditional on the event tj ≥ t, which
is known online).

Distribution-free calibration via conformalization. To avoid relying
on correct specification of Ŝj , we employ split conformal prediction using a
set of calibration runs Rcal. For each run r ∈ Rcal, we simulate the online
procedure up to a fixed set of query times (e.g. each detected bifurcation
time, or each checkpoint), compute a nonconformity score comparing realized
t
(r)
j to the model’s predicted upper quantile, and then choose an inflation

term as an empirical quantile of these scores. One convenient choice is to
calibrate upper prediction bounds: let Ûj(t) be the uncalibrated upper bound
produced by Ŝj , and define residuals

R
(r)
j,t := t

(r)
j − Û

(r)
j (t),

truncated at 0 since t
(r)
j ≥ t. Let q̂j be the (1 − δj)-empirical quantile of

{R(r)
j,t } over the calibration set. We then output the conformal upper bound

Û conf
j (t) := Ûj(t) + q̂j and set Îj(t) = [t, Û conf

j (t)]. Under exchangeability
of runs (or a suitable martingale variant for mild drift), this yields marginal
coverage P(tj ≤ Û conf

j (t)) ≥ 1 − δj without assuming a correct parametric
form.

Combining detector and forecaster uncertainty. The forecast is only
meaningful if the regime segmentation is correct. Let Edet denote the event
that the detector produces no false alarm and detects each true bifurcation
within the targeted delay (as guaranteed by the results of Section 6), and
let Ecal,j denote the conformal coverage event for task j conditional on the
features used by the forecaster. Then, by a union bound,

P
(
tj ∈ Îj(t)

)
≥ 1− P(Ecdet)− P(Eccal,j).
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Thus we may set P(Ecdet) ≤ δdet via the detector thresholding analysis, and
allocate per-task calibration levels δj such that δdet +

∑J
j=1 δj ≤ δ, ensuring

an overall failure probability at most δ across all tasks.

Interpretation and operational use. The resulting forecasting proce-
dure is intentionally conservative: it issues short-horizon predictions when
the detector indicates an actual mechanism-space change and when post-
change features match patterns previously associated with emergence. This
is consistent with Theorem 5.5: absent internal signals, one cannot certify
earlier-than-behavioral warnings on Tj . Here the warning signal is the bi-
furcation itself, together with regime-conditioned time-to-onset distributions
learned from prior evidence. In the experimental section we will instantiate
these forecasters in both synthetic curricula (where regime-to-onset map-
pings can be verified) and realistic training settings (where calibration across
runs is essential).

8 Experimental protocol

We design experiments to test three questions: (i) whether the mechanism
bifurcation detector (MBD) localizes ground-truth changes in interventional
influence with controlled false alarms; (ii) whether bifurcation times improve
forecasting of behavioral onsets relative to output-only and generic training-
dynamics baselines; and (iii) whether the resulting signals are stable across
changes in training objective (pretraining, finetuning, safety training) that
may mask or unmask behavior. Throughout, we treat the intervention bud-
get m per checkpoint as the binding resource, and we report results as a
function of m and α.

Checkpointed training suites. We employ three suites, ordered from
controlled to realistic. In synthetic suites we train small sequence models
on curricula with known phase transitions, e.g. adding an auxiliary loss at a
known step t∗, switching from memorization to algorithmic generalization, or
injecting a new latent variable in the data generator. These suites provide an
approximate ground truth for the change-point time t∗ and for the identity
of the affected readouts. In semi-synthetic suites we pretrain on a generic
corpus and at t∗ introduce a targeted capability objective (e.g. tool-call for-
mat consistency, structured reasoning traces, or an auxiliary RL head) while
keeping the evaluation distribution fixed; here, behavioral onset can lag be-
hind mechanism change. In realistic suites we use open training runs with
periodic supervised finetuning and preference optimization stages; ground
truth is not available, so we focus on internal consistency checks, cross-run
reproducibility, and post-hoc alignment with known training events (objec-
tive switches, data-mixture shifts, safety interventions).
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Monitoring and evaluation distributions. For each run we fix a mon-
itoring distribution D used to estimate Ĵt and Ŝt. We consider (a) D as a
held-out slice of the training mixture, and (b) D as a mixture that oversam-
ples rare but safety-relevant contexts (prompt categories, adversarial tem-
plates, or long-context regimes). For each capability task Tj we separately
fix an evaluation distribution Dj and a detectability threshold βj , and we
compute bj,t on disjoint examples to avoid trivial leakage from monitoring
into evaluation.

Taps, readouts, and interventions. We predefine a tap ht(x) ∈ Rd (typ-
ically a residual-stream activation at a fixed layer) and a readout yt(x) ∈ Rp.
In the minimal setting yt(x) is a low-dimensional probe logit vector, but we
also include agentic readouts (action logits, value head) when present. We
implement randomized interventions do(h ← h + αu) with u ∼ N (0, Id),
choosing α relative to the empirical activation scale at the tap (e.g. a fixed
fraction of medianx∥ht(x)∥2/

√
d) to remain in the local linear regime. When

an explicit on-manifold semantics is required, we compare (i) raw additive
patching, (ii) additive patching followed by projection onto a learned man-
ifold (e.g. an autoencoder latent), and (iii) conditional resampling within
a neighborhood of ht(x) obtained from a replay buffer; we treat these as
alternative operationalizations of the same abstract intervention family.

Estimation details and streaming constraints. At each checkpoint t
we sample a batch x1, . . . , xn ∼ D, run one baseline forward pass to ob-
tain yt(xj), and then run m intervened forward passes to obtain ∆Yi =
1
n

∑
j(y

′
t(xj) − yt(xj)). We form the sketch Ĵt =

1
αm

∑m
i=1∆Yiu

⊤
i and com-

pute Ŝt via randomized SVD, storing only k right singular vectors and the top
k singular values. We fix k a priori in synthetic runs (where the ground-truth
mechanism rank is controlled), and in realistic runs we select k by a stability
heuristic: choose the smallest k such that σ̂k,t/σ̂1,t exceeds a preset floor and
the empirical sinΘ-trajectory is robust to resampling of interventions.

Change detection evaluation. In suites with known t∗, we measure (1)
detection delay τ̂ − t∗ truncated below at 0, (2) false alarm rate P(∃t < t∗ :
∆t ≥ γ), and (3) localization error |τ̂−t∗|. We set γ either by the theoretical

scaling γ ∝ σ
α

√
log(1/δ)

m
1

ĝapt
using plug-in estimates, or by calibration on pre-

change checkpoints to match a target false alarm level. In suites without
known t∗, we report the empirical distribution of ∆t, its reproducibility
across random seeds, and its alignment with known interventions in the
training script; we additionally test whether post-change regimes (as inferred
by clustering Ŝt) are stable under small perturbations to D.
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Forecasting evaluation. For each Tj we run the forecaster online and
record (i) mean absolute error |t̂j(t) − tj | at query times t (typically the
end of each detected regime and a uniform subsample of checkpoints), (ii)
interval width |Îj(t)|, and (iii) empirical coverage P(tj ∈ Îj(t)). We estimate
Ŝj using only features derived from monitoring (σ̂1:k,t, ∆t, a(t), and optional
alignments Aj,t), training on separate calibration runs Rcal and applying
split conformalization to control marginal coverage at the chosen δj . When
only a single run is available, we use a prefix of the run for calibration and
evaluate on the suffix, and we report sensitivity to this split.

Baselines and compute-matched comparisons. We compare MBD-
based early warning to four baseline families, all computed at the same
checkpoint frequency and tuned to the same false alarm budget when appli-
cable. (i) Behavior-only : declare emergence when bj,t ≥ βj , which provides
a lower bound on forecasting difficulty and is constrained by the indistin-
guishability phenomenon. (ii) Probe emergence: train linear probes on ht(x)
for each Tj and monitor probe accuracy/slope over time; this is a strong inter-
nal baseline but does not attempt causal attribution and can be confounded
by representation drift. (iii) Training-dynamics monitors: gradient norm
∥∇θLt∥2, parameter update norm ∥θt − θt−1∥2, and loss curvature proxies
such as a Hutchinson trace estimator for the Hessian or a small-number-of-
steps Lanczos approximation; these are generic and cheap but task-agnostic.
(iv) Representation shift : CKA/Procrustes distances between activation dis-
tributions across checkpoints, which capture global drift but not whether the
drift is causally relevant to y. For each baseline we evaluate the same detec-
tion and forecasting metrics as above.

Ablations and robustness checks. We ablate m, α, and the tap choice,
and we test robustness to the monitoring distribution by varying D while
keeping Dj fixed. To probe the locality assumption, we empirically verify
approximate linearity by checking that ∆Y scales linearly in α over a small
range and that estimated subspaces are stable to halving/doubling α. To
probe the role of the spectral gap, we stratify checkpoints by ĝapt and test
whether detection reliability degrades as predicted. Finally, we evaluate
whether regime segmentation improves forecasting beyond raw time t by
permuting regime labels or replacing a(t) with absolute time as a negative
control.

Reporting. All reported curves are aggregated over multiple random seeds
and, when available, multiple independent runs; we provide uncertainty by
bootstrap over runs or by nonparametric concentration across seeds. We
treat δ as the global error budget and allocate δdet and {δj} according to
the union bound used in the forecasting construction, so that the reported
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coverage corresponds to the stated failure probabilities under the experi-
mental exchangeability assumptions. This protocol yields evidence for (or
against) the claim that interventional mechanism subspaces supply an earlier
and more invariant signal than behavior-only and generic training-dynamics
monitors.

9 Case studies: masking, invariance, and strategic
behavior

We now illustrate how influence-subspace monitoring behaves in training
regimes where behavioral evaluation is known to be brittle, in the sense
that capability-relevant mechanisms can be present while externally visible
behavior is suppressed, or conversely behavior can appear abruptly once an
external constraint is relaxed. The common pattern across the case studies
below is that a behavioral metric bj,t is not a monotone function of the
underlying interventional operator Jt, whereas the subspace trajectory Ŝt can
remain stable across objectives and thus serve as a more invariant signature
of the active mechanism.

Case study A (masking by safety finetuning). We consider a run with
a pretraining phase followed by a safety finetuning phase whose explicit goal
is to reduce the incidence of unsafe outputs on a red-teaming distribution.
Let yt(x) be a low-dimensional readout that scores the model’s propensity
to produce an unsafe continuation on a fixed prompt family, so that higher
yt corresponds to greater risk. During safety finetuning we typically observe
a rapid decrease in Ex∼Deval

[yt(x)], and correspondingly a decrease in the
behavior-only risk metric bt at the chosen detectability threshold. However,
when we compute Ŝt at a mid-to-late tap and track ∆t = sinΘ(Ŝt, Ŝt−1), we
frequently find that the safety phase does not erase the previously learned
influence directions; rather, it adds a new control mechanism that competes
with or gates them.

Operationally, this appears as follows. Immediately after the objective
switch, ∆t exhibits a transient spike consistent with a rank-k perturbation ∆
to Jt (a new regulating mechanism), after which Ŝt stabilizes. Crucially, the
stabilized Ŝt remains close (in principal angles) to the pre-switch subspace on
the coordinates that correspond to the underlying capability, even while the
observed unsafe behavior is reduced. In linear-algebraic terms, safety fine-
tuning can reduce the effective gain along a dangerous direction (shrinking
the corresponding singular value in Jt, or introducing destructive interference
in the composed downstream mapping) without rotating the right singular
subspace by a comparably large amount. This yields a concrete monitoring
implication: behavioral suppression is compatible with the persistence of an
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influence subspace that can be reactivated by downstream distribution shift,
removal of the safety head, or later finetuning.

Invariance across objectives as a diagnostic. The preceding phe-
nomenon motivates a regime-level diagnostic: after segmenting checkpoints
into regimes via the detected bifurcations, we compare the average inter-
regime distance sinΘ(Ŝt, Ŝt′) to the corresponding change in behavior-only
metrics. In masking regimes we observe a characteristic mismatch: the be-
havior changes substantially while Ŝt changes only in a low-dimensional com-
plement, or changes briefly at the switch and then returns to a subspace close
to its pre-switch location. When this occurs, we interpret the finetuning as
primarily reweighting or gating an existing mechanism rather than remov-
ing it. Conversely, when safety finetuning truly removes a capability (e.g.
catastrophic forgetting induced by aggressive data filtering), we observe a
sustained rotation in Ŝt accompanied by a collapse of the associated singular
values. The distinction matters for early-warning: in the former case, the
capability remains latent and may reappear, whereas in the latter case it
may need to be relearned to reemerge.

Case study B (unmasking and “sudden” behavioral onset). We next
consider a run where a targeted capability becomes behaviorally detectable
only after a late finetuning stage, even though the necessary internal ma-
chinery is learned earlier. A representative instance is structured tool-use:
the model may learn to internally represent tool-call schemas and argument
structure during pretraining (because such patterns appear in data), but
it does not reliably emit the corresponding surface form until an explicit
supervised finetuning stage enforces the format. Let yt(x) score an inter-
nal readiness signal for tool-use (for example, a probe over ht(x) predicting
tool-call validity), while the behavioral metric bt is strict format compliance
on held-out prompts. In such settings, behavior-only monitoring declares
emergence at the finetuning onset by construction.

Influence-subspace monitoring can separate two possibilities. In one
regime, Ŝt associated with yt forms and stabilizes before the behavioral on-
set, and finetuning primarily increases the singular values σi(Jt) along a
preexisting subspace (amplification). In the other regime, ∆t shows a sus-
tained rotation at finetuning onset, indicating that the relevant mechanism
is genuinely created at that point (construction). Empirically, we often ob-
serve the amplification pattern: the top-k subspace is already present, with
σ̂1:k,t low but increasing, and the behavioral threshold is crossed only once
these singular values exceed a task-dependent gain. This provides an inter-
pretable explanation for “sudden” behavioral emergence: the internal causal
directions exist earlier, but their influence on the readout is too weak to be
behaviorally detectable. From a forecasting perspective, this is precisely the
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scenario in which internal monitoring can, in principle, yield earlier warning
than output-only evaluation.

Case study C (strategic models and safety-trained adaptation).
Finally, we address monitoring in the presence of models that may adapt
to avoid detection. In a naive threat model, a sufficiently capable model
could learn to keep outputs innocuous on the evaluation distribution while
retaining a dangerous capability off-distribution; this is the behavioral indis-
tinguishability captured by Thm. 5. The question for any monitoring scheme
is therefore not “can we always win,” but rather which assumptions suffice
to retain signal. Influence-subspace monitoring shifts the burden to inter-
nal causal structure: if the model preserves a mechanism that can steer a
safety-relevant readout yt, then randomized interventions at a tap can elicit
a measurable ∆y even when baseline behavior is benign.

We emphasize two concrete implications. First, masking by strategic
behavior is easier when the monitor is predictable; accordingly, we treat
the intervention directions u and the context sampling x ∼ D as private
randomness, and we diversify D to include safety-relevant subdistributions.
Second, a strategic model could in principle reshape its internal computation
so that the dangerous behavior is implemented in directions orthogonal to
monitored taps or readouts. This suggests a practical monitoring posture: we
should monitor multiple taps (early, mid, late layers) and multiple readouts y
(task probes, safety scores, action/value heads when present), and we should
interpret large and persistent ∆t as a change in where influence flows, not
merely whether behavior is currently exhibited.

Monitoring takeaway. Across these case studies we arrive at a consis-
tent interpretation: finetuning can strongly modulate behavior while leaving
a capability-relevant influence subspace approximately invariant, and appar-
ent behavioral phase transitions can correspond either to subspace creation
(large rotation) or to gain increase on an existing subspace (small rotation,
rising singular values). For safety monitoring, the salient risk is precisely the
masked-capability regime in which behavior is suppressed but influence direc-
tions persist. Influence-subspace trajectories provide a principled handle on
this regime, and they highlight a concrete failure mode for output-only early
warning: behavioral evaluations can be rendered uninformative by objec-
tive changes, distribution shift, or strategic adaptation, even when internal
mechanisms remain present and causally efficacious under intervention.

10 Limitations and extensions

We record several limitations of the present formalization and indicate ex-
tensions that appear technically and operationally necessary for deployment-
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scale monitoring. Our aim here is not to weaken the main guarantees, but
to make explicit which parts of the argument are doing work and where
additional assumptions or engineering are required.

(i) The on-manifold intervention requirement. The estimator and
guarantees are phrased in terms of an “on-manifold” perturbation family
do(h← h+ αu) for random directions u, together with a locality condition
(H1) ensuring a linear response model ∆y = αJtu+η. In practice, arbitrary
additive perturbations to an internal activation may push the network into
regions that are not visited under the data distribution, thereby producing
responses that are uninterpretable as properties of the trained computation
rather than properties of adversarial activation hacking. This is not merely a
semantic concern: when off-manifold responses dominate, the effective noise
proxy σ2 becomes large and the sample complexity bound in Thm. 1 degrades
to the point of uselessness.

Two extensions appear natural. First, we may replace the additive model
by a constrained perturbation

do
(
h← ΠMt(h+ αu)

)
,

where ΠMt is a projection (or approximate projection) onto a learned ac-
tivation manifold Mt at the chosen tap. Such a projection can be imple-
mented by a trained autoencoder at that tap, by conditional resampling of
nearby activations (from a cache indexed by context features), or by a small
denoising model trained to map noisy activations back to typical ones. Sec-
ond, we may abandon additivity and intervene in a parameterized family
h← gϕ(h, u) whose Jacobian at u = 0 spans the desired tangent directions.
The mathematics then tracks the induced linear operator in u-space, and the
same subspace perturbation analysis goes through with Jt replaced by the
corresponding Gateaux derivative. In both cases we must re-verify (H1) em-
pirically by sweep tests in α, checking that E[∆y | u] is approximately linear
and that higher-order terms are controlled on the monitoring distribution.

(ii) Multi-step and agentic behaviors. Our basic readout yt(x) ∈ Rp

is defined for a single forward pass on a context x. For agentic systems,
the capability of interest is often expressed over trajectories: actions affect
future observations, and the relevant quantity is a functional of the entire
interaction (e.g. probability of accomplishing a goal, cumulative reward, or
violating a safety constraint). A direct extension is to let yt denote a vector
of per-time-step statistics (or a return) produced by unrolling the agent in a
fixed simulator. Interventions may then be applied at a specific step s and
tap ℓ, yielding an interventional operator Jt,s,ℓ that maps directions in ht,s,ℓ
to changes in a trajectory-level summary.
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This extension introduces two technical complications. First, the effec-
tive dimension p of the readout can grow with horizon, and the response noise
η becomes heavier-tailed due to environment stochasticity; we can mitigate
this by averaging over multiple rollouts per intervention and treating the
result as a subgaussian mean estimate. Second, the relevant causal effect
may be nonlocal in time: an intervention at step s may change actions at
many later steps. One way to preserve the present framework is to define
yt as a low-dimensional sufficient statistic of the trajectory (e.g. success in-
dicator, safety violation indicator, or a small set of probe scores), so that p
remains constant. Another is to treat the unrolled computation as a single
composite map and to monitor a block operator that aggregates influence
over multiple steps. In either case, the principal-angle change metric re-
mains well-defined, but interpretation requires care: a rotation in Ŝt may
correspond to a reorganization of temporal credit assignment rather than
the appearance/disappearance of a single feed-forward circuit.

(iii) Scaling costs and the choice of taps. The per-checkpoint cost is
dominated by m intervention forward passes, and the bounds show that m
must scale as Õ

(
σ2/(α2gap2)

)
to reach a fixed subspace error. While this

is acceptable for moderate T , monitoring every checkpoint of a large-scale
run is expensive, and monitoring multiple taps multiplies cost further. We
therefore view the present algorithm as a primitive that must be combined
with cost-aware scheduling.

A practical extension is adaptive checkpointing : evaluate Ŝt densely early
in training to estimate typical variability, then switch to sparse sampling (e.g.
logarithmic in t) and trigger dense sampling only when a cheap proxy (such
as a small number of interventions, or drift in activation statistics) exceeds
a threshold. Another extension is multi-tap compression: if we monitor taps
ℓ = 1, . . . , L, we may share intervention directions u across taps and estimate
several sketches in parallel from the same perturbed run, reducing overhead
relative to independent monitoring. Finally, if d is very large, we can replace
isotropic u ∼ N (0, Id) by structured directions (Hadamard/Rademacher
with fast transforms) and maintain streaming sketches of Ĵt sufficient for
top-k SVD, thereby keeping memory at O((p+d)k) while reducing constant
factors.

(iv) Transfer across architectures (Transformers, SSMs, and hy-
brids). Our definitions are agnostic to architecture, provided we can iden-
tify a tap ht(x) and implement controlled interventions. Nonetheless, archi-
tectural differences matter for what constitutes a meaningful tap and what
“on-manifold” means. For Transformers, residual stream vectors at a fixed
layer and position provide a canonical ht(x), and additive perturbations can
be made approximately on-manifold using residual statistics conditioned on
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token identity. For state-space models (SSMs), ht(x) may correspond to a
latent state evolving across sequence positions; intervening on that state can
have long-range effects that are sensitive to stability properties of the recur-
rence. In such settings, it may be preferable to intervene on inputs to the
state update (e.g. pre-activation channels) rather than on the state itself, or
to constrain interventions to preserve norms that control dynamical blow-up.

A second issue is comparability across architectures. If we wish to com-
pare mechanism trajectories between a Transformer and an SSM trained
on the same objective, the ambient spaces Rd differ and the subspaces St
live in non-identical domains. One extension is to compare effects rather
than directions: the singular values σi(Jt) and the left singular vectors in
readout space are directly comparable when yt is shared (same probe head
or same behavioral statistic). Another is to introduce an alignment map
A : Rd1 → Rd2 learned from paired activations on the same contexts, and
then compare A(Ŝ(1)t ) to Ŝ(2)t via principal angles. This pushes the bur-
den onto the identifiability of A, but it converts “transfer” into a standard
subspace alignment problem with well-studied failure modes.

Summary. The present framework is strongest when (a) we can implement
interventions that remain within the typical activation manifold, (b) the
capability signal can be summarized by a low-dimensional readout, and (c)
we can afford m interventions at the monitored cadence. Extending the
method to trajectory-based capabilities and to heterogeneous architectures
appears feasible, but requires additional design choices (projection families,
rollout averaging, alignment maps) that are not captured by the clean model
(H1)–(H2). These extensions also clarify how our proposal should be situated
relative to adjacent literatures, to which we now turn.

11 Related work and positioning

Our formalization sits at the intersection of three lines of work: (a) empirical
“stagewise” or punctuated learning dynamics during training, (b) mechanis-
tic interpretability methods that localize circuits via interventions, and (c)
classical sensitivity analyses (influence functions, Jacobians) together with
statistical change-point detection. We briefly position our contribution rela-
tive to each, emphasizing what is gained by phrasing emergence as a change
in an interventional influence operator rather than in behavior or in param-
eters.

Stagewise learning, phase transitions, and emergent capabilities.
A growing empirical literature reports that capabilities can appear abruptly
as training proceeds—sometimes described as “phase transitions” or “grokking-
like” phenomena—in which behavioral metrics remain flat and then rise
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quickly over a narrow range of steps ???. Several mechanisms have been
proposed (implicit regularization, representation reconfiguration, curriculum
effects, scaling laws with thresholds), but most analyses are conducted in
behavior space: one monitors a task loss/accuracy curve, or a battery of
benchmark metrics, and declares an emergence when performance crosses a
threshold. Our Thm. 5 isolates a limitation of this paradigm for early warn-
ing: if the output distributions on the evaluated task are indistinguishable
prior to a time t∗, then no black-box monitor can infer the change earlier than
t∗. In this sense, behavior-only monitoring is not merely practically brittle;
it is information-theoretically incapable of guaranteeing pre-emergence de-
tection without auxiliary signals. Our proposal is to use training-time access
to internal interventions to define such a signal in a way that remains sta-
tistically tractable and comparable across checkpoints.

Representation drift and similarity metrics. A separate line of work
studies how internal representations evolve through training using similarity
measures (e.g. CKA, SVCCA, Procrustes alignment) and subspace tracking
of activations ??. These methods can detect that a layer’s activation ge-
ometry changes, and they are often efficient since they require only forward
passes. However, they conflate changes that are mechanistically important
for a given readout with changes that are irrelevant (e.g. basis rotations
in null directions, or redistribution of variance unrelated to the downstream
statistic of interest). By contrast, our object Jt is explicitly task-conditional :
it is the causal linear response from a specified internal tap ht(x) to a spec-
ified readout yt(x). The use of principal angles between the top-k right
singular subspaces of Jt can be viewed as an “effect-weighted” analogue of
subspace drift, where directions in activation space are weighted by their
causal efficacy rather than by marginal variance. This distinction matters
precisely in the early-warning regime: we aim to detect the reorganization
of computations that could support a capability before that capability is
expressed in the evaluation outputs.

Mechanistic interpretability and intervention-based localization.
Mechanistic interpretability has developed a rich toolkit for attributing be-
havior to internal components, including activation patching, causal tracing,
path patching, and circuit discovery ???. These methods are often highly
informative but typically proceed via structured interventions targeted to hy-
pothesized features, specific heads, or curated datasets, and they aim at in-
terpretability rather than at online detection. Our setting differs in two ways.
First, we adopt a deliberately randomized intervention family u ∼ N (0, Id)
so that the induced estimator Ĵt admits concentration bounds and yields
quantitative false-alarm control via standard perturbation theory (Thm. 1–
Thm. 4). Second, we treat mechanistic structure at the level of a low-rank
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operator (or subspace) rather than at the level of individually named units.
This sacrifices immediate interpretability, but it produces a stable target for
tracking across checkpoints and supports streaming estimation under a hard
budget m. We view this as a complement to circuit analysis: the detector
flags candidate bifurcation times at which deeper interpretability work is
most valuable.

Causal abstraction and causal representation learning. There is a
large literature on causal abstraction and the identification of causal variables
within learned representations ??. Our framework is compatible with this
agenda but makes a different modeling choice: we do not attempt to recover
a full causal graph over internal variables; rather, we monitor a localized
causal map from one tap to one readout under small on-manifold perturba-
tions. In categorical terms, Jt is a local linearization of an interventional
morphism. One can interpret the top-k subspace St as the “tangent mech-
anism” at the tap that is relevant for yt. The change metric sinΘ(St,St−1)
then detects when the tangent mechanism undergoes a qualitative reorien-
tation. This is weaker than full causal abstraction, but it is exactly what
enables finite-sample guarantees under minimal assumptions (subgaussian
noise and a spectral gap) and makes the approach suitable for deployment-
scale monitoring.

Influence functions, Jacobians, and linear response. Our influence
operator Jt is conceptually adjacent to influence functions and sensitivity
analyses in statistics and deep learning ?, as well as to Jacobian-based
saliency and linear response methods. The difference is that classical influ-
ence functions study the effect of training-point upweighting on parameters
and predictions, whereas we study the effect of internal state perturbations
on a readout at a fixed checkpoint. If gradients are available, one could esti-
mate Jt by backpropagating from y to h, but that yields a pointwise deriva-
tive that is not robust to nondifferentiable interventions, simulator rollouts,
or restricted-access settings. Our randomized-intervention estimator is in-
tentionally gradient-free and remains meaningful even when the intervention
semantics are implemented via conditional resampling or projection opera-
tors (cf. Sec. 10(i)). In this sense, we treat Jt as an empirically identified
causal operator rather than a purely differential object.

Change-point detection and online monitoring. Finally, our detec-
tor τ̂ = min{t : ∆t ≥ γ} is a specialized instance of online change-point
detection, but with a nonstandard observation model: we do not observe
Jt directly; we observe noisy randomized linear measurements of it induced
by interventions. Theorems 3–4 show that the resulting sample complex-
ity matches the natural signal-to-noise scaling α∆0

√
m/σ up to constants
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and logarithms, and that one cannot, in general, do better. This places the
problem closer to spiked-matrix detection and subspace tracking under noise
than to classical scalar CUSUM-style settings. Moreover, by framing the
monitored quantity as a subspace (rather than a full operator), we obtain
robustness to benign reparameterizations and reduce the monitoring target
to a low-dimensional object that can be stored and compared over long runs.

What this work adds. In summary, our contribution is not a new in-
terpretability primitive per se, but a statistically controlled monitoring for-
malism that turns internal randomized interventions into an early-warning
signal with explicit false-alarm control and lower bounds. The central mod-
eling move is to define emergence as a change in the top-k influence subspace
of a causal operator Jt. This yields (i) a quantitative estimator with provable
accuracy under transparent assumptions, (ii) a natural change metric with
a geometry that supports perturbation analysis, and (iii) an impossibility
separation (Thm. 5) clarifying when internal access is necessary for any pre-
emergence guarantee. We view these as the minimal ingredients needed to
connect mechanistic signals to safety-relevant training-time forecasting.

12 Conclusion: influence bifurcations as a training-
time early warning signal

We have formulated training-time capability emergence prediction as an on-
line change-point problem over interventional influence operators. The cen-
tral object Jt is defined by local, on-manifold perturbations at a fixed tap
and measures the causal linear response from internal state ht(x) to a read-
out yt(x). From Jt we extract a low-dimensional summary—the top-k right
singular subspace St—and we monitor its geometry through principal-angle
distances ∆t = sinΘ(Ŝt, Ŝt−1). Within the local-linearity and spectral-gap
assumptions, this yields a monitor whose statistical behavior is analyzable:
we can trade intervention budget m, intervention magnitude α, and false-
alarm level δ for explicit bounds on subspace estimation and change detec-
tion. In particular, the regime of interest for safety is precisely the regime
where behavior may be flat or strategically suppressed, while mechanisms
reorganize; the subspace monitor is designed to be sensitive to the latter.

The practical interpretation is that a bifurcation is not defined by a
performance curve crossing a benchmark threshold, nor by a parameter-
space event, but by a detectable reorientation in the directions of internal
state that causally control a chosen readout under small interventions. This
choice is deliberate. Parameter drift is ubiquitous and rarely safety-relevant
by itself; behavior, while ultimately decisive, can be delayed or masked.
Influence subspaces provide an intermediate signal: they are closer to “what
computation is available” than to “what computation is exercised on the
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evaluation distribution.” Theorems 1–4 justify that this intermediate signal
is, at least in an idealized but transparent model, estimable with quantifiable
uncertainty under a strict per-checkpoint intervention budget. Theorem 5,
conversely, formalizes why we should not expect behavior-only early warning
guarantees in general.

A deployment-oriented reading of our formalism suggests the following
minimal roadmap for incorporating influence-bifurcation monitoring into a
safety case.

(i) Specify monitoring interfaces: taps, readouts, and semantics.
Any safety claim must begin with a concrete interface: which internal taps
ht(x) are monitored, which readouts yt(x) are deemed safety-relevant, and
what it means to intervene “on-manifold.” The last point is not cosmetic: the
local linear model (H1) is only meaningful relative to a specified intervention
semantics, e.g. conditional resampling, constrained patching, or projection
onto a learned activation manifold. We recommend treating the intervention
operator as part of the monitored system, subject to validation tests (e.g.
locality checks as α → 0, invariance checks across batches, and robustness
checks across prompt subclasses).

(ii) Choose D to include safety-relevant subdistributions. The mon-
itored distribution D determines what mechanisms are illuminated by ran-
domized interventions. For a safety case, D should be explicitly constructed
to include (a) routine traffic (to avoid monitoring an irrelevant corner), (b)
“stress tests” that activate potentially dangerous latent skills, and (c) a small
set of deliberately adversarial contexts. In our notation, nothing prevents D
from being a mixture distribution; indeed, mixture design is the natural way
to tie the monitor to concrete hazard models. The cost is statistical: if D is
too diffuse, the effective signal in ∆y may be diluted; this should be treated
as a design tradeoff rather than an afterthought.

(iii) Calibrate m,α, k, γ via explicit error budgets. For an operator-
norm subspace error target ε at failure probability δ, Theorem 1 provides the
basic scaling m = Õ(σ2/(α2ε2gap2t )). In deployment we will not know σ or
gapt a priori; nevertheless, we can proceed by (a) estimating empirical noise
proxies from repeated interventions, (b) tracking empirical singular value
gaps of Ĵt, and (c) using conservative lower confidence bounds on the gap to
set monitoring budgets. The change threshold γ should be tied to a target
false-alarm rate over T checkpoints; sequential correction (e.g. spending δ
across time) is required if we wish to interpret alarms probabilistically. We
emphasize that γ is not purely a statistical knob: it implicitly specifies what
magnitude of mechanism rotation constitutes a safety-relevant event.
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(iv) Treat detection as triage; couple to interpretability and evalu-
ation. A bifurcation alarm should be viewed as a triage signal that triggers
deeper analysis. Operationally, upon an alarm at τ̂ one may (a) allocate ad-
ditional interventions at neighboring checkpoints to refine Ŝτ̂ and localize
which taps/readouts exhibit the change, (b) run targeted mechanistic inter-
pretability to translate the subspace shift into candidate features/circuits,
and (c) expand behavioral evaluations to tasks hypothesized to become
newly feasible. This two-stage workflow aligns with the hardness discus-
sion: dense randomized detection can be statistically efficient, while sparse
or human-interpretable attribution may be computationally and method-
ologically harder and is better focused on a small set of flagged times.

(v) Incorporate forecasting as a conditional, model-based claim.
Our problem definition allows optional capability tasks {Tj} and forecasts
t̂j . We regard such forecasts as inherently conditional: they are meaning-
ful only relative to a model that links changes in Jt (or St) to eventual
behavioral detectability on Tj . In practice, this suggests learning a map-
ping from mechanism-space features (e.g. singular values along task-aligned
directions, or distances to previously observed “capability-on” regimes) to
predicted emergence times, with uncertainty intervals calibrated on histori-
cal training runs. Theorems 3–4 delimit what can be claimed without such
modeling: we can reliably detect sufficiently large changes in influence, but
we cannot, without additional structure, convert every detected mechanism
shift into a definitive capability timeline.

Limitations and open problems. Several extensions are necessary for
robust safety deployment. First, local linearity (H1) may fail for larger α
or for taps near discrete decisions; adaptive choice of α and non-linear re-
sponse models are natural next steps. Second, real training runs may exhibit
gradual drift rather than sharp change-points; replacing the binary detector
with continuous regime tracking and drift rate estimates would better match
such dynamics. Third, multiple comparisons across many taps/readouts de-
mands principled aggregation (e.g. hierarchical testing) to avoid inflated false
alarms. Fourth, the adversarial-noise reduction warns that monitoring guar-
antees depend on threat-model assumptions about the training process; if
the model can adapt to the monitor, then trusted execution and randomized,
withheld monitoring distributions become part of the security boundary.

Closing perspective. We do not claim that influence-subspace monitor-
ing alone resolves the problem of anticipating dangerous capability emer-
gence. We claim a more limited but, we think, necessary point: if one seeks
provable early warning, one must monitor signals that are not reducible
to black-box behavior on the target task, and one must do so in a way
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that admits statistical calibration under realistic budgets. Influence bifur-
cations provide such a signal: they are mechanistically grounded, amenable
to finite-sample analysis, and naturally integrated into a safety workflow in
which alarms trigger targeted investigation and governance actions (pauses,
audits, and evaluation expansion). This is the role we intend the present
formalism to play in training-time safety cases.
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