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Abstract

Recent theory unified expressivity, universality, and distribution-
free generalization of message passing neural networks (MPNNs) on
attributed graphs by introducing a computation-tree optimal-transport
pseudometric that makes the graphon-signal domain compact and ex-
actly matches the geometry induced by normalized-sum aggregation.
However, the dominant aggregation in practice is mean aggregation
(degree-normalized neighborhood averaging). We develop a new hier-
archy of attributed computation objects—mean iterated degree mea-
sures (mean-IDMs)—and define a balanced optimal transport distance
between their distributions (mean-DIDMs). The resulting mean-DIDM
mover distance yields a compact metric identification of a natural class
of attributed graphon-signals with degrees bounded away from zero.
We prove (1) Lipschitz continuity of all mean-aggregation MPNNs with
respect to this distance, (2) a quantitative separation theorem showing
that agreement of all bounded-Lipschitz mean-MPNNs implies small
mean-DIDM distance, and (3) a Stone–Weierstrass universality theo-
rem: mean-aggregation MPNNs uniformly approximate any continu-
ous functional on the compact domain. Compactness and Lipschitzness
further yield distribution-free generalization bounds based on covering
numbers, without parameter-count assumptions. For finite graphs, we
give a polynomial-time algorithm to compute the proposed distance via
a recursion of balanced optimal transport problems and show empiri-
cally that it tracks output perturbations of mean-aggregation GNNs,
improving stability calibration relative to the prior unbalanced-OT
metric tailored to normalized-sum aggregation.
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1 Introduction and motivation

Mean aggregation is the prevailing design choice in contemporary message
passing neural networks: the neighborhood term is formed as an empiri-
cal average (or, more generally, a normalized attention-weighted average) of
neighbor features, and then combined with the current node feature through
a Lipschitz update. From a modeling standpoint, this choice enforces scale
invariance with respect to the number of neighbors and, in the dense graphon
regime, matches the natural normalization in which W (x, ·)/ degW (x) be-
comes a probability kernel. From a statistical standpoint, mean aggregation
behaves as a Monte Carlo estimator of a conditional expectation, so its sta-
bility is governed by concentration of averages rather than by potentially
unbounded degree-dependent sums. These considerations motivate treat-
ing the normalized neighbor distribution as the fundamental object that a
depth-t layer can access.

This perspective suggests that the appropriate notion of similarity be-
tween two attributed graphon-signals (W, f) and (V, g) should be aligned
with (i) the recursion induced by mean aggregation and (ii) the topology
in which empirical averages are continuous functionals. A metric that is
instead aligned with normalized-sum aggregation, i.e., one that transports
non-normalized neighborhood mass and therefore distinguishes changes in
total neighborhood mass, can be misaligned with mean-aggregation invari-
ances: two nodes with identical neighbor feature distributions but different
degrees may be far in a mass-sensitive geometry, even though a mean ag-
gregator only perceives the normalized distribution. Conversely, when the
learning architecture discards mass information by normalization, a mass-
sensitive metric may enforce regularity properties that are irrelevant for the
hypothesis class and may fail to provide sharp converses (separation) for that
class. The present work therefore adopts a balanced formulation through-
out, in which each neighborhood is represented by a probability measure
and each transport problem is a Wasserstein–1 distance between probability
measures.

Formally, we work in the compact attribute domain Bd
r and impose a

degree-floor degW (x) ≥ α a.e. to ensure that the normalizationW (x, ·)/degW (x)
is well-defined and uniformly controlled. We then define a hierarchy of mean-
computation iterated degree measures (mean-IDMs) by setting H0 = Bd

r and
Ht+1 = Ht×P(Ht), and by recursively attaching to each point x ∈ [0, 1] both
its current state and the law of its neighbors in the previous state space. Con-
cretely, at depth t the normalized neighbor measure νmean

(W,f),t(x) ∈ P(Ht) is
the pushforward of the probability measure (W (x, ·)/ degW (x))λ under the
state map γmean

(W,f),t, and γmean
(W,f),t+1(x) stores the pair

(
γmean
(W,f),t(x), ν

mean
(W,f),t(x)

)
.

The depth-L distributional summary of the entire graphon-signal is then the
mean-DIDM Γmean

(W,f),L = (γmean
(W,f),L)#λ ∈ P(HL).

To compare two graphon-signals we endow each Ht with a recursively-
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defined product metric dmean
IDM,t in which the measure component is compared

by Wasserstein–1 with ground metric dmean
IDM,t−1. The resulting mean-DIDM

mover distance is

δmean
L ((W, f), (V, g)) :=W1

(
Γmean
(W,f),L, Γ

mean
(V,g),L ; d

mean
IDM,L

)
.

This definition is engineered so that each layer of the hierarchy precisely
mirrors the information accessible to a mean-aggregation message passing
layer: the only operation on neighborhoods is the formation of an expectation
under a probability measure, and the Wasserstein–1 geometry is the largest
metric under which all bounded Lipschitz test functions are continuous and
satisfy a sharp integral inequality.

Our first set of results establishes that the mean-IDM hierarchy provides
a compact and well-behaved domain. Since Bd

r is compact and P(K) is
compact whenever K is compact (in the weak∗ topology, metrized by W1 on
compact ground spaces), an induction shows that each HL is compact, and
consequently P(HL) is compact as well. It follows that, after metric identifi-
cation (W, f) ∼ (V, g) whenever δmean

L ((W, f), (V, g)) = 0, the quotient space
equipped with δmean

L is compact. This compactness is not merely topological
bookkeeping: it underlies both universality (via approximation theorems on
compact spaces) and distribution-free generalization (via covering numbers).

Our second set of results links the metric to the hypothesis class. Any
depth-L mean-aggregation MPNN with Lipschitz updates factors through
the mean-IDM states: there exist continuous maps ht : Ht → Rdt such that
h(t)(x) = ht(γ

mean
(W,f),t(x)) a.e., and the graph-level output depends on (W, f)

only through the mean-DIDM Γmean
(W,f),L. Moreover, the resulting functionals

are Lipschitz with respect to δmean
L , with constants depending only on the

network Lipschitz bounds. Complementing this, we prove a quantitative
separation statement: if two mean-DIDMs cannot be distinguished by any
bounded-Lipschitz mean-MPNN readout (within a prescribed class), then
their Wasserstein–1 distance must be small. Together with compactness,
this yields universality: scalar mean-MPNN features are dense in C(HL),
and mean-DIDM readouts are dense in C(P(HL)), so continuous graphon-
signal functionals can be approximated uniformly.

Finally, the metric is algorithmically meaningful on finite graphs in the
dense regime. For attributed graphs with normalized degrees bounded be-
low by α, the induced step graphon-signals inherit the same structure, and
δmean
L can be computed exactly by a dynamic program that alternates be-

tween (i) computing Wasserstein–1 distances between normalized neighbor
distributions using the previous-layer ground costs and (ii) updating a node-
to-node cost matrix. The recursion performs balanced optimal transport at
each depth and a final balanced transport between uniform node measures,
yielding a polynomial-time exact algorithm for fixed L. This computational
tractability, together with the compactness–Lipschitz–separation framework

5



above, positions δmean
L as an aggregation-aligned geometry for both theory

and practice.

2 Related work

Distances and invariants inspired by the Weisfeiler–Leman (WL) refinement
have long served as a bridge between combinatorial graph comparison and
message passing architectures. On the algorithmic side, WL-based kernels
and distances compare graphs by iteratively updating node labels (or fea-
tures) and then aggregating these labels into multiset statistics; see, e.g.,
the survey perspective in the kernel literature and the connections to 1-WL
expressivity of MPNNs. A parallel line of work replaces the purely discrete
multiset comparison by an optimal-transport (OT) discrepancy between col-
lections of node features produced by WL-like refinements. In particular,
Chen et al. propose to couple WL-type iterations with Wasserstein/earth-
mover computations so that graphs are compared by transporting refined
node representations across graphs, thereby obtaining OT-based graph met-
rics or kernels that are more sensitive than simple histogram distances and
that can interpolate between feature-based and structure-based similarity
notions ??. Our construction is in the same general spirit—we also com-
pare distributions of refined node states by Wasserstein–1—but differs in
the object being transported and in the normalization choices: we transport
probability measures that represent normalized neighborhood information
at each depth, rather than transporting unnormalized neighborhood mass.

Tree Mover’s Distance (TMD) of Chuang and Jegelka ? is particularly
close in methodology to the present work. TMD builds a hierarchy of rooted
neighborhood trees (or tree-like summaries) and defines a graph distance
by solving a sequence of OT problems that compare these rooted struc-
tures, ultimately coupling root distributions across graphs. The distance
is computable by dynamic programming over layers, and its recursive form
mirrors the hierarchical nature of message passing. Conceptually, our mean-
IDM/mean-DIDM hierarchy plays a similar role: depth-t node states consist
of a current representation together with a measure describing the depth-
(t − 1) neighborhood. The main distinction is that TMD is designed to be
broadly aligned with WL-style multiset comparison, whereas we design the
recursion to match mean aggregation specifically: the neighborhood object is
a probability measure, and the transport problems are balanced. This choice
leads to a geometry in which all bounded-Lipschitz test functionals (hence
all Lipschitz mean-aggregation layers) are continuous with sharp integral
bounds.

Our setting and the compactness arguments rely on the dense limit for-
malism of graphons. The theory of graph limits developed by Lovász and
collaborators ? provides the measure-theoretic language in which large dense
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graphs are represented by symmetric measurable kernels up to measure-
preserving relabelings. The extension from graphs to graphon-signals (or
graphons with node attributes) has been studied in graph signal processing
and learning, including constructions of graphon neural networks and the
analysis of stability properties in the limit ??. In these works, the limiting
object typically serves to formalize convergence and to justify architectures
that operate consistently across graph sizes. Our contribution is complemen-
tary: we use the graphon-signal model to define a compact metric domain on
which mean-aggregation MPNNs induce Lipschitz functionals and for which
converses (separation) can be proved.

The expressivity of graph neural networks in the graphon regime has
also received increasing attention. Böker et al. investigate fine-grained ex-
pressivity phenomena for MPNNs on graphons, clarifying what information
can be recovered from local aggregation in the dense limit and how this
relates to classical WL refinements and to notions of indistinguishability un-
der measure-preserving transformations ?. These results motivate treating
the graphon formalism not merely as an asymptotic convenience but as a
genuine hypothesis space on which one can pose approximation and iden-
tifiability questions. Our mean-DIDM mover distance can be viewed as an
“aggregation-aligned” metricization of this space: it is tailored so that the
induced topology is sufficiently strong to support universal approximation
arguments, yet sufficiently weak to quotient out invariances that mean ag-
gregation cannot detect.

Finally, the closest conceptual precursor to our metric is the OT-based
geometry introduced for normalized-sum aggregation, where neighborhood
information is represented by a degree-weighted measure and transport is
allowed to account for changes in total mass (or equivalently, the cost penal-
izes discrepancies in degree/total weight). Such a formulation is natural for
sum-based architectures, since sums are sensitive to neighborhood mass and
degree scaling. However, when the learning architecture normalizes by de-
gree and thus discards mass information, a mass-sensitive metric can become
misaligned: it may separate objects that are indistinguishable to the hypoth-
esis class and may complicate separation statements that are meant to be
tight for mean aggregation. The present work therefore makes a deliberate
shift to a balanced-OT formulation at every level of the hierarchy. We view
this as a general design principle: the metric used to control stability and
generalization should reflect the invariances and the continuity properties of
the aggregation operator implemented by the network.

3 Preliminaries

We work in the dense graph limit setting. A (simple) graphon is a symmet-
ric measurable map W : [0, 1]2 → [0, 1], interpreted as the limiting adjacency
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kernel of a sequence of dense graphs. We augment W with bounded node
attributes by a measurable signal f : [0, 1] → Bd

r , where Bd
r ⊂ Rd is the

closed Euclidean ball of radius r. We refer to a pair (W, f) as a graphon-
signal. As usual, graphons are only identifiable up to measure-preserving
relabelings of [0, 1]; consequently, any notion of distance or equivalence be-
tween graphon-signals must ultimately be compatible with pushforwards by
measure-preserving bijections.

Finite attributed graphs embed into this framework via step functions.
Concretely, given an n-node graph G with adjacency matrix A ∈ {0, 1}n×n
and attributes f1, . . . , fn ∈ Bd

r , we partition [0, 1] into intervals I1, . . . , In of
length 1/n, set f(x) = fi for x ∈ Ii, and define W (x, y) = Aij for (x, y) ∈
Ii × Ij . This representation turns node-wise aggregations and uniform node
averages into integrals with respect to Lebesgue measure λ on [0, 1], and
it makes explicit the sense in which our constructions for graphon-signals
induce corresponding constructions for finite graphs.

A central technical ingredient is the weak∗ topology on spaces of proba-
bility measures. If K is a compact metric space, we write P(K) for its Borel
probability measures. A sequence µn ∈ P(K) converges weakly to µ ∈ P(K)
if ∫

K
φdµn →

∫
K
φdµ for all φ ∈ C(K).

On compact K, weak convergence is equivalent to weak∗ convergence un-
der the duality C(K)∗ ≃ M(K), and P(K) is compact in this topology
(Prokhorov; tightness is automatic on compact sets). We will repeatedly
apply this compactness when building iterated state spaces that include
probability-measure components.

To metrize these measure spaces we use the Wasserstein–1 distance. For
µ, ν ∈ P(K) and ground metric d on K, define

W1(µ, ν; d) := inf
π∈Π(µ,ν)

∫
K×K

d(x, y) dπ(x, y),

where Π(µ, ν) is the set of couplings of µ and ν. When K is compact,
W1(·, ·; d) is finite, and by Kantorovich–Rubinstein duality it admits the
dual characterization

W1(µ, ν; d) = sup
∥φ∥Lip≤1

∣∣∣ ∫
K
φdµ−

∫
K
φdν

∣∣∣.
In particular, on compact metric spaces the topology induced by W1 coin-
cides with the weak∗ topology on P(K). This will allow us to control changes
in neighborhood distributions by testing against Lipschitz functions, which
is exactly the continuity notion that appears in mean aggregation.

We consider message passing architectures whose aggregation is normal-
ized by degree (mean aggregation). For a graphon-signal (W, f), the graphon
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degree function is degW (x) :=
∫ 1
0 W (x, y) dy. A depth-L mean-aggregation

MPNN forms features h(t)(x) by combining the current feature at x with
the average feature of its neighbors, i.e., an expectation under the normal-
ized kernel W (x, ·)/ degW (x). The graph-level output is then obtained by
a readout applied to the global average

∫ 1
0 h(L)(x) dx. The only property

we require of the update and readout maps is Lipschitz continuity, since our
goal is to connect stability and generalization to Lipschitz control under a
suitably chosen metric.

Normalization by degW (x) forces a nondegeneracy condition. We there-
fore impose a degree-floor assumption: there exists α ∈ (0, 1] such that
degW (x) ≥ α for λ-a.e. x on the main domain. This serves three purposes.
First, it makes the normalized neighbor kernel W (x, ·)/degW (x) well-defined
almost everywhere, hence the corresponding neighbor distributions are gen-
uine probability measures. Second, it prevents instabilities coming from
dividing by a vanishing degree: without a lower bound, arbitrarily small
perturbations of W near points of low degree can induce large changes in
the normalized neighborhood law, obstructing continuity statements for both
the network and the metric we will define. Third, it aligns the continuous and
discrete settings: for an n-node graph, the analogous condition is a uniform
lower bound on normalized degrees, deg(v)/n ≥ α, which excludes isolated
or near-isolated nodes in the dense regime. We will treat isolated nodes sep-
arately (by conventions or by restricting to the nonisolated subgraph), but
for the core constructions and compactness arguments it is technically and
conceptually cleaner to work under the degree floor.

These preliminaries set the stage for the hierarchical objects in the next
section: we will encode the depth-t mean-aggregation information at each
point x by a state consisting of a current representation together with the
pushforward of the normalized neighbor measure, and we will compare the in-
duced distributions of such states across graphon-signals using Wasserstein–1
at every level.

4 Mean-IDMs and Mean-DIDMs

We now formalize the hierarchical objects that encode the information prop-
agated by mean aggregation. We begin with the compact state spaces

H0 := Bd
r , Ht+1 := Ht × P(Ht) (t ≥ 0),

where P(Ht) denotes the Borel probability measures on Ht equipped with its
Borel σ–algebra. For a graphon-signal (W, f) ∈ WLdr,α, we define the mean
neighborhood measure at depth t by

νmean
(W,f),t(x) :=

(
γmean
(W,f),t

)
#

( W (x, ·)
degW (x)

λ
)
∈ P(Ht),
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and we define the corresponding mean-IDM state map γmean
(W,f),t : [0, 1] → Ht

recursively by

γmean
(W,f),0(x) := f(x), γmean

(W,f),t+1(x) :=
(
γmean
(W,f),t(x), ν

mean
(W,f),t(x)

)
.

Finally, the mean-DIDM at depth L is the pushforward of Lebesgue measure,

Γmean
(W,f),L :=

(
γmean
(W,f),L

)
#
λ ∈ P(HL).

Intuitively, γmean
(W,f),t(x) packages (i) the depth-t representation at x and (ii)

the law of the depth-(t−1) representations in its neighborhood, where “neigh-
borhood” is sampled according to the normalized kernel W (x, ·)/ degW (x);
Γmean
(W,f),L is the distribution of these depth-L states across x ∼ λ.

We record measurability, which is needed both to define the pushforwards
and to later apply continuity arguments on spaces of measures.

Measurability. Let P(Ht) be endowed with its Borel σ–algebra induced
by the weak∗ topology. Then each map γmean

(W,f),t : [0, 1] → Ht is measurable,
and each x 7→ νmean

(W,f),t(x) ∈ P(Ht) is measurable. The proof is by induction
on t. The base case t = 0 is immediate since f is measurable. Assuming
γt := γmean

(W,f),t is measurable, it suffices to show that x 7→ (γt)#
( W (x,·)
degW (x)λ

)
is measurable as a map into P(Ht). By standard characterizations of the
weak∗ Borel structure, it is enough to check measurability of

x 7−→
∫
Ht

φ(z) dνmean
(W,f),t(x)(z) =

∫ 1

0
φ
(
γt(y)

) W (x, y)

degW (x)
dy

for every φ ∈ C(Ht). The integrand (x, y) 7→ φ(γt(y))W (x, y) is measurable
on [0, 1]2, hence by Fubini the map x 7→

∫
φ(γt(y))W (x, y) dy is measurable;

dividing by degW (x) preserves measurability on the full-measure set where
degW (x) > 0. Since degW (x) ≥ α a.e. in WLdr,α, this yields measurability of
νmean
(W,f),t a.e., and thus of γt+1(x) = (γt(x), νt(x)) as a map into the product

space Ht+1.

Factorization of mean aggregation. The mean neighborhood measure
is designed so that mean message passing depends only on γmean

(W,f),t. Con-
cretely, define h0 : H0 → Rd0 by h0 := ϕ(0). Given ht : Ht → Rdt , define
ht+1 : Ht+1 → Rdt+1 by

ht+1(z, µ) := ϕ(t+1)
(
ht(z),

∫
Ht

ht(z
′) dµ(z′)

)
, (z, µ) ∈ Ht × P(Ht).

Then for λ-a.e. x and all t ≤ L we have the identity

h(t)(x) = ht
(
γmean
(W,f),t(x)

)
.

10



Indeed, by construction of νmean
(W,f),t−1(x) we have∫

Ht−1

ht−1(z
′) dνmean

(W,f),t−1(x)(z
′) =

∫ 1

0
ht−1

(
γmean
(W,f),t−1(y)

) W (x, y)

degW (x)
dy = E

[
h(t−1)(Y )

]
,

so the update rule matches the recursion for ht ◦ γt. This factorization will
be the basis for our Lipschitz and universality statements once metrics on
Ht and P(Ht) are fixed.

Isolated nodes and domain restriction. In the graphon setting we
work primarily under the degree-floor hypothesis degW (x) ≥ α > 0 a.e., so
the normalization W (x, ·)/ degW (x) and the probability measures νmean

(W,f),t(x)
are well-defined almost everywhere. If one wishes to treat general graphons
without this assumption, the natural first step is to restrict the construction
to the full-measure set DW := {x : degW (x) > 0} (and correspondingly to
the induced probability space (DW , λ(·)/λ(DW ))); one may then define γt
and ΓL on this restricted domain. In the finite-graph case, isolated vertices
can be handled analogously by either removing them before forming the step
graphon, or by introducing a convention (e.g. assigning an isolated node a
degenerate neighbor law such as a Dirac mass at itself or at a distinguished
dummy state). We will keep the degree floor for the main development and
return to such conventions only when discussing algorithmic details.

Metrics on the mean-IDM state spaces. To compare mean-IDM states
across different graphon-signals, we endow each Ht with a canonical metric
that mirrors the recursive structure Ht+1 = Ht × P(Ht). We set

dmean
IDM,0(z, z

′) := ∥z − z′∥2, z, z′ ∈ H0 = Bd
r .

Assuming dmean
IDM,t has been defined on Ht, we define for (z, µ), (z′, µ′) ∈ Ht+1

dmean
IDM,t+1

(
(z, µ), (z′, µ′)

)
:= dmean

IDM,t(z, z
′) + W1

(
µ, µ′; dmean

IDM,t

)
, (1)

i.e. we take the ℓ1 product metric between the base component z ∈ Ht and
the neighborhood-law component µ ∈ P(Ht), where the latter is compared
using Wasserstein–1 with ground metric dmean

IDM,t.
It is straightforward to verify that (1) defines a genuine metric on Ht+1:

nonnegativity and symmetry are immediate; if dmean
IDM,t+1((z, µ), (z

′, µ′)) = 0,
then both dmean

IDM,t(z, z
′) = 0 and W1(µ, µ

′; dmean
IDM,t) = 0, hence z = z′ and

µ = µ′; the triangle inequality follows by applying the triangle inequality
separately to the two summands.

Wasserstein–1 on spaces of measures. Let (K, d) be a compact metric
space. For µ, ν ∈ P(K) we write Π(µ, ν) for the set of couplings on K ×K
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with marginals µ and ν, and we define the balanced Wasserstein–1 distance

W1(µ, ν; d) := inf
π∈Π(µ,ν)

∫
K×K

d(x, y) dπ(x, y).

Since K is compact, d is bounded and the infimum is finite. Moreover, by
Kantorovich–Rubinstein duality we have

W1(µ, ν; d) = sup
{∫

K
φd(µ− ν) : φ ∈ Lip1(K, d)

}
, (2)

where Lip1(K, d) denotes the set of real-valued 1–Lipschitz functions on K.
In particular, W1(·, ·; d) is a metric on P(K).

We apply this with K = Ht and d = dmean
IDM,t, thereby obtaining a metric

space
(
P(Ht),W1(·, ·; dmean

IDM,t)
)

for every t. We emphasize that we always
work with probability measures (as ensured by the degree normalization), so
no unbalanced or reservoir construction is needed.

Metrization of weak∗ convergence. We endow P(Ht) with the weak∗

topology (equivalently, the topology of weak convergence of probability mea-
sures). On compact metric spaces, Wasserstein–1 induces exactly this topol-
ogy. Concretely, for µn, µ ∈ P(Ht) we have

W1

(
µn, µ; d

mean
IDM,t

)
→ 0 ⇐⇒

∫
Ht

φdµn →
∫
Ht

φdµ for all φ ∈ C(Ht).

One direction is immediate from (2): if W1(µn, µ) → 0 then the integrals
converge for all Lipschitz φ, hence for all continuous φ by uniform approx-
imation of continuous functions by Lipschitz functions on compact metric
spaces. Conversely, weak∗ convergence on a compact space implies tightness
automatically, and the collection of 1–Lipschitz test functions is uniformly
bounded and equicontinuous; a standard compactness argument (or known
theorems on Wasserstein metrics on compact spaces) yields W1(µn, µ) → 0.
Thus, the Borel σ–algebra induced by W1(·, ·; dmean

IDM,t) agrees with the weak∗

Borel structure used in the measurability discussion above.

The mean-DIDM mover distance on graphon-signals. With dmean
IDM,L

fixed on HL, we equip P(HL) with the metric W1(·, ·; dmean
IDM,L) and define, for

(W, f), (V, g) ∈ WLdr,α,

δmean
L

(
(W, f), (V, g)

)
:=W1

(
Γmean
(W,f),L, Γ

mean
(V,g),L ; d

mean
IDM,L

)
.

By construction δmean
L is a pseudometric on WLdr,α: symmetry and the trian-

gle inequality are inherited from W1, and δmean
L ((W, f), (V, g)) = 0 holds pre-

cisely when the depth-Lmean-DIDMs coincide as measures onHL. In partic-
ular, δmean

L is insensitive to modifications of (W, f) on λ–null sets. Moreover,

12



if σ : [0, 1] → [0, 1] is measure-preserving and we form the usual relabeling
(W σ, fσ), then Γmean

(Wσ ,fσ),L = Γmean
(W,f),L and hence δmean

L ((W, f), (W σ, fσ)) = 0.
We therefore pass to the metric identification (W, f) ∼ (V, g) iff δmean

L ((W, f), (V, g)) =
0, and we view δmean

L as a bona fide metric on the quotient WLdr,α/∼.

Compactness of the mean-IDM hierarchy. We first record that the
recursive state spaces Ht and their associated measure spaces are compact
for every fixed depth. The proof is an induction that mirrors the construction
of the metric (1).

Proposition 4.1. For every t ∈ N, the metric space
(
Ht, d

mean
IDM,t

)
is compact.

Consequently,
(
P(Ht),W1(·, ·; dmean

IDM,t)
)

is compact as well.

Proof. For t = 0 we have H0 = Bd
r , which is compact in the Euclidean

metric, hence also compact under dmean
IDM,0 = ∥ · ∥2.

Assume inductively that
(
Ht, d

mean
IDM,t

)
is compact. Since Ht is compact,

every probability measure on Ht has finite first moment and the weak∗ topol-
ogy on P(Ht) is metrized byW1(·, ·; dmean

IDM,t) (equivalently, W1 induces exactly
the topology of weak convergence on P(Ht)). By Prokhorov compactness (or,
on compact metric spaces, the direct sequential compactness of probability
measures under weak convergence), it follows that P(Ht) is compact in the
weak∗ topology, hence also compact in the metric W1(·, ·; dmean

IDM,t).
Finally, Ht+1 = Ht ×P(Ht) is compact as a product of compact spaces,

and the metric dmean
IDM,t+1 is a compatible product metric (indeed an ℓ1 sum

of the two component metrics). Thus Ht+1 is compact. The conclusion for
P(Ht+1) is obtained by repeating the preceding argument with Ht+1 in place
of Ht.

In particular, for our fixed depth L we may regardHL and P(HL) as com-
pact metric spaces, and all Wasserstein distances appearing in the definition
of δmean

L are finite and attain their infima.

Compactness of the mean-metric domain. We next explain why the
metric identification space

(
WLdr,α/ ∼, δmean

L

)
is compact. The key point

is that δmean
L is obtained by pushing each graphon-signal forward to the

compact space P(HL) and then measuring a Wasserstein distance there.
Concretely, define the depth-L mean-DIDM map

ΘL : WLdr,α → P(HL), ΘL(W, f) := Γmean
(W,f),L.

By definition,

δmean
L

(
(W, f), (V, g)

)
=W1

(
ΘL(W, f),ΘL(V, g); d

mean
IDM,L

)
.

13



Thus ΘL is constant on ∼-equivalence classes and induces an injective map
ΘL on the quotient. Moreover, the preceding display shows that ΘL is an iso-
metric embedding of

(
WLdr,α/∼, δmean

L

)
into

(
P(HL),W1(·, ·; dmean

IDM,L)
)
. Con-

sequently, to prove compactness of the quotient it suffices to show that the
image ΘL(WLdr,α/∼) = ΘL(WLdr,α) is compact in P(HL).

To this end we endow WLdr,α with any of the standard compact topologies
on graphon-signals, e.g. the “decorated cut metric” obtained by combining
the cut metric on graphons with an L1-type term for the signal and taking
the infimum over measure-preserving relabelings. It is a known compactness
theorem (extending Lovász–Szegedy compactness for graphons to compact
mark spaces) that the ambient space of such bounded graphon-signals mod-
ulo relabelings is compact in this topology. The degree-floor constraint is
closed under this topology: if Wn → W in cut metric, then degWn

→ degW
in L1([0, 1]), hence any a.e. lower bound degWn

≥ α passes to the limit and
yields degW ≥ α a.e. Therefore WLdr,α is compact in the chosen topology.

It remains to note that ΘL is continuous on WLdr,α. The proof again
proceeds by induction on the depth. At depth 0, Θ0(W, f) = f#λ ∈ P(Bd

r ),
and for any coupling obtained by pairing the same x ∈ [0, 1] we have the
bound

W1

(
(fn)#λ, f#λ; ∥ · ∥2

)
≤

∫ 1

0
∥fn(x)− f(x)∥2 dx,

so convergence of the signal in L1 implies convergence of Θ0 in W1. For
the inductive step, write γn,t := γmean

(Wn,fn),t
and γt := γmean

(W,f),t. The recursion
defining γt+1 combines the pointwise state γt(x) with the neighbor law

νt(x) = (γt)#

( W (x, ·)
degW (x)

λ
)
.

Under cut-metric convergence Wn →W and the degree floor degWn
, degW ≥

α, the normalized kernels Wn(x, ·)/degWn
(x) converge in L1 for a.e. x, uni-

formly in the sense needed to control integrals against bounded test func-
tions. Combining this with the inductive hypothesis that γn,t is close to γt in
the mean-IDM metric yields that νn,t(x) is close to νt(x) in W1(·, ·; dmean

IDM,t)
for most x, and hence that γn,t+1(x) is close to γt+1(x) in dmean

IDM,t+1. Pushing
forward by λ then gives W1(ΘL(Wn, fn),ΘL(W, f)) → 0, i.e. continuity of
ΘL.

Since WLdr,α is compact and ΘL is continuous into the compact met-
ric space P(HL), the image ΘL(WLdr,α) is compact. As noted above, ΘL

identifies WLdr,α/ ∼ isometrically with this compact image, and therefore(
WLdr,α/∼, δmean

L

)
is compact.

Lipschitz continuity of mean-aggregation MPNNs. We next verify
that mean-aggregation MPNNs depend on a graphon-signal only through the

14



depth-Lmean-IDM/DIDM representation, and that the resulting functionals
are Lipschitz with respect to the metrics dmean

IDM,t and δmean
L .

The key observation is that the update rule uses the normalized neighbor
law W (x, ·)/degW (x) only through expectations. Hence, once we have lifted
each point x ∈ [0, 1] to its mean-IDM state γmean

(W,f),t(x) ∈ Ht, the next-layer
feature is obtained by applying a deterministic continuous map to the pair
consisting of the current state and its neighborhood measure component.
Concretely, define maps ht : Ht → Rdt recursively by

h0(z) := ϕ(0)(z), z ∈ H0 = Bd
r ,

and, for t ≥ 0 and (τ, µ) ∈ Ht+1 = Ht × P(Ht),

ht+1(τ, µ) := ϕ(t+1)
(
ht(τ),

∫
Ht

ht(ξ) dµ(ξ)
)
.

By construction of γmean
(W,f),t+1(x) = (γmean

(W,f),t(x), ν
mean
(W,f),t(x)) and the definition

of νmean
(W,f),t(x) as a pushforward of W (x, ·)/ degW (x), we have, for a.e. x,∫

Ht

ht(ξ) dν
mean
(W,f),t(x)(ξ) =

∫ 1

0
ht
(
γmean
(W,f),t(y)

) W (x, y)

degW (x)
dy = EY∼W (x,·)/degW (x)

[
ht(γ

mean
(W,f),t(Y ))

]
.

An induction on t therefore yields the factorization

h(t)(x) = ht
(
γmean
(W,f),t(x)

)
for a.e. x ∈ [0, 1].

At the graph level, if we set F : P(HL) → Rm by

F (µ) := ψ
(∫

HL

hL(τ) dµ(τ)
)
,

then the MPNN output satisfies H = F (Γmean
(W,f),L). In particular, any mean-

aggregation MPNN induces a continuous functional on P(HL), and is invari-
ant under measure-preserving relabelings because Γmean

(W,f),L is.
We now prove a Lipschitz bound in the mean-IDM metric. Let Lip(ϕ(t))

and Lip(ψ) denote Lipschitz constants with respect to the Euclidean norms
on their domains. We claim that each ht is Lipschitz on Ht and that one
may choose constants Ct satisfying a simple recursion. For t = 0, h0 = ϕ(0)

and hence

∥h0(z)− h0(z
′)∥2 ≤ Lip(ϕ(0)) ∥z − z′∥2 = Lip(ϕ(0)) dmean

IDM,0(z, z
′).

Assume inductively that ∥ht(τ)−ht(τ ′)∥2 ≤ Ct d
mean
IDM,t(τ, τ

′) for all τ, τ ′ ∈ Ht.
For (τ, µ), (τ ′, ν) ∈ Ht+1, we estimate using Lipschitzness of ϕ(t+1) and the
triangle inequality,

∥ht+1(τ, µ)− ht+1(τ
′, ν)∥2

≤ Lip(ϕ(t+1))
(
∥ht(τ)− ht(τ

′)∥2 +
∥∥∥∫ ht dµ−

∫
ht dν

∥∥∥
2

)
.
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The first term is controlled by the inductive hypothesis. For the second
term, we apply the Kantorovich–Rubinstein bound componentwise: each
coordinate of ht is Ct-Lipschitz on (Ht, d

mean
IDM,t), hence∥∥∥∫ ht dµ−

∫
ht dν

∥∥∥
2
≤ CtW1

(
µ, ν; dmean

IDM,t

)
.

Combining and recalling that dmean
IDM,t+1 is the ℓ1-sum of dmean

IDM,t and the cor-
responding W1 term, we obtain

∥ht+1(τ, µ)−ht+1(τ
′, ν)∥2 ≤ Ct+1 d

mean
IDM,t+1

(
(τ, µ), (τ ′, ν)

)
, Ct+1 := Lip(ϕ(t+1))Ct.

Thus hL is CL-Lipschitz on HL, with CL = Lip(ϕ(0))
∏L
t=1 Lip(ϕ

(t)).
Finally, we bound the graph-level readout. For µ, ν ∈ P(HL),

∥F (µ)−F (ν)∥2 ≤ Lip(ψ)
∥∥∥∫ hL dµ−

∫
hL dν

∥∥∥
2
≤ Lip(ψ)CLW1

(
µ, ν; dmean

IDM,L

)
.

Applying this with µ = Γmean
(W,f),L and ν = Γmean

(V,g),L yields

∥H(W, f)−H(V, g)∥2 ≤ Lip(ψ)CL δ
mean
L

(
(W, f), (V, g)

)
,

which is the desired Lipschitz continuity of mean-aggregation MPNNs with
respect to the mean-DIDM mover distance.

Separation and fine-grained expressivity. We now record the con-
verse direction to the Lipschitz bound: bounded-Lipschitz mean-aggregation
MPNNs are rich enough to distinguish distinct mean-IDM/DIDM objects,
and, quantitatively, if all such MPNNs fail to distinguish two inputs then
the mean-DIDM mover distance must be small.

For each depth t ≤ L, let At denote the collection of scalar functions
u : Ht → R that can be realized as a single coordinate of ht for some choice
of Lipschitz update maps {ϕ(s)}s≤t (allowing arbitrary widths, and allowing
the coordinate projection at the output of ht). By construction, At ⊂ C(Ht),
since each ht is continuous. Moreover, At is stable under linear combinations:
if u, v ∈ At and a, b ∈ R then au + bv ∈ At by running the two networks
in parallel (concatenating channels) and applying a linear post-combination
in the final coordinate selection. Likewise, by increasing width and choosing
the final coordinate as a product gate, we may realize pointwise products
up to arbitrary uniform accuracy; equivalently, the uniform closure At is a
subalgebra of C(Ht).

We claim that At separates points ofHt for every t ≤ L. The case t = 0 is
immediate: H0 = Bd

r is a compact subset of Rd, and coordinate projections
(hence affine functionals) separate points, so A0 separates points. For the
inductive step, fix t ≥ 0 and consider two distinct states (τ, µ) ̸= (τ ′, ν) in
Ht+1 = Ht×P(Ht). If τ ̸= τ ′, then by the inductive hypothesis there exists
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u ∈ At with u(τ) ̸= u(τ ′), and composing with the projection (τ, µ) 7→ τ
yields a separator on Ht+1. If instead τ = τ ′ but µ ̸= ν, then by the Riesz
representation theorem there exists some v ∈ C(Ht) such that

∫
v dµ ̸=∫

v dν. Since At is an algebra separating points, Stone–Weierstrass implies
At = C(Ht), and hence we may take v ∈ At (or approximate the chosen v
uniformly). Finally, the map

(τ, µ) 7−→
∫
Ht

v(ξ) dµ(ξ)

is exactly a mean-aggregation functional on the measure component, and can
be implemented at depth t+1 by selecting the second argument of ϕ(t+1) (up
to an arbitrarily small uniform error if v is only approximated by elements
of At). This yields separation on Ht+1.

Turning to DIDMs, define the class of scalar functionals on P(HL)

BL :=
{
µ 7→

∫
HL

u(τ) dµ(τ) : u ∈ AL

}
⊂ C(P(HL)).

As above, BL is a subalgebra of C(P(HL)) containing constants. If µ ̸= ν
in P(HL), then there exists u ∈ C(HL) with

∫
u dµ ̸=

∫
u dν, and since

AL = C(HL) we may approximate u uniformly by elements of AL, implying
that BL separates points of P(HL). Stone–Weierstrass then yields BL =
C(P(HL)).

This qualitative separation can be upgraded to a quantitative converse
in the Wasserstein metric. Fix ε > 0. Consider the set Lip1(HL) of 1-
Lipschitz functions on (HL, d

mean
IDM,L) that are normalized, say by u(τ0) = 0

at a fixed basepoint τ0 ∈ HL. By compactness of HL, Lip1(HL) is compact
in (C(HL), ∥ · ∥∞) (Arzelà–Ascoli), hence admits a finite η-net {uk}Kk=1. By
Kantorovich–Rubinstein duality,

W1(µ, ν; d
mean
IDM,L) = sup

u∈Lip1(HL)

∫
HL

u d(µ− ν).

Approximating the supremum by the finite net and then approximating each
uk uniformly by a realizable mean-MPNN feature (with Lipschitz constant
bounded by some a priori C after rescaling) shows that there exist C > 0
and δ > 0 such that: if for every depth-L mean-MPNN (ϕ, ψ) with overall
Lipschitz bound Cϕ,ψ ≤ C we have∥∥ψ( ∫ hL dµ)− ψ

( ∫
hL dν

)∥∥
2
≤ δ,

then necessarily W1(µ, ν; d
mean
IDM,L) ≤ ε. Equivalently, failure of closeness in

δmean
L is witnessed by some bounded-Lipschitz mean-MPNN readout. Apply-

ing this with µ = Γmean
(W,f),L and ν = Γmean

(V,g),L yields the asserted fine-grained
expressivity statement at the level of graphon-signals.
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Universal approximation. We next record the corresponding universal-
ity statement: mean-aggregation MPNNs are dense among continuous func-
tionals on the mean-IDM state space and, after readout, among continuous
functionals on the mean-DIDM space.

For each t ≤ L, recall the class At ⊂ C(Ht) of scalar features realizable
(as a coordinate) by some depth-t mean-MPNN up to that layer. From
the closure properties already noted (stability under linear combinations by
parallelization, and stability under pointwise multiplication up to uniform
approximation by increasing width and using standard approximation of
products on compact sets), the uniform closure At is a subalgebra of C(Ht)
containing constants. Since At separates points of Ht, Stone–Weierstrass
yields

At = C(Ht) for every t ≤ L.

In particular, for any continuous target F ∈ C(HL,R) and any ε > 0,
there exists a realizable scalar feature u ∈ AL such that ∥u − F∥∞ ≤ ε.
Vector-valued approximation follows coordinatewise: for F ∈ C(HL,Rm) we
approximate each coordinate with an element of AL and concatenate the
resulting channels.

Passing from IDMs to DIDMs, define

BL :=
{
µ 7→

∫
HL

u(τ) dµ(τ) : u ∈ AL

}
⊂ C(P(HL),R).

Again, BL is a subalgebra containing constants, and it separates points of
P(HL): if µ ̸= ν, choose u ∈ C(HL) with

∫
u dµ ̸=

∫
u dν and approximate

u uniformly by elements of AL. Therefore Stone–Weierstrass gives

BL = C(P(HL),R).

Equivalently, for any continuous functional Φ ∈ C(P(HL),R) and any ε >
0, we may find a depth-L mean-MPNN feature map hL and a continuous
readout ψ (implemented, e.g., by an MLP on the compact range of

∫
hL dµ)

such that
sup

µ∈P(HL)

∣∣∣ψ(∫
hL dµ

)
− Φ(µ)

∣∣∣ ≤ ε.

Thus mean-MPNNs are universal approximators of continuous functionals
on P(HL) when we allow arbitrary widths and unrestricted continuous read-
outs. (When one additionally requires global Lipschitz bounds on (ϕ, ψ),
one obtains a restricted approximation statement relevant to the quantita-
tive separation and generalization results, but the basic density statement is
as above.)

We now transfer universality from P(HL) back to graphon-signals. Con-
sider the continuous embedding

Θ : WLdr,α → P(HL), Θ(W, f) := Γmean
(W,f),L.
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By construction of δmean
L , if δmean

L ((W, f), (V, g)) = 0 then Θ(W, f) = Θ(V, g),
so Θ descends to an injective map on the metric identification space. Let

XL := Θ(WLdr,α) ⊂ P(HL),

which is compact as a continuous image of a compact domain. Every contin-
uous functional F on (WLdr,α/∼, δmean

L ) corresponds uniquely to a continuous
functional F̃ ∈ C(XL) via F = F̃ ◦Θ. Since BL = C(P(HL)), its restriction
is dense in C(XL). Hence for every ε > 0 there exists a depth-L mean-MPNN
(with some choice of widths and parameters) such that

sup
(W,f)∈WLd

r,α

∣∣∣MPNN(W, f)− F (W, f)
∣∣∣ ≤ ε,

where MPNN(W, f) denotes the induced graph-level output ψ(
∫ 1
0 h(L)(x) dx)

and we implicitly identify F with its ∼-invariant representative.
Finally, the same approximation statement applies to finite attributed

graphs in the dense regime via the standard step-function embedding. Given
an n-node attributed graph (G, f), we form the induced step graphon-signal
(WG, fG) by partitioning [0, 1] into n equal intervals and taking WG and
fG constant on the corresponding blocks. This embedding is compatible
with the mean-IDM recursion and preserves the mean-DIDM representation,
so restricting the above universal family of mean-MPNNs on WLdr,α to the
embedded class of step graphons yields uniform approximation of any δmean

L -
continuous functional on that subclass. In particular, for graph sequences
converging in δmean

L to a graphon-signal limit, the same approximants provide
asymptotically accurate predictors along the sequence.

Distribution-free generalization. We now record the corresponding distribution-
free generalization statement for learning over our compact metric domains.
Throughout, we consider a generic supervised setting in which inputs take
values in a compact metric space (X , d) and labels lie in some measur-
able space Y , with data distributed according to an arbitrary (unknown)
probability law D on X × Y. Given a predictor F : X → Rm and a loss
ℓ : Rm × Y → [0, 1], we write the population and empirical risks as

R(F ) := E(X,Y )∼D
[
ℓ(F (X), Y )

]
, R̂n(F ) :=

1

n

n∑
i=1

ℓ(F (Xi), Yi),

for i.i.d. samples (Xi, Yi)
n
i=1 ∼ D.

Fix constants LF , Lℓ > 0 and consider a hypothesis class H consisting
of predictors F : X → Rm that are LF -Lipschitz with respect to d and the
Euclidean norm, and a loss ℓ that is Lℓ-Lipschitz in its first argument, i.e.,

∥F (x)− F (x′)∥2 ≤ LF d(x, x
′), |ℓ(z, y)− ℓ(z′, y)| ≤ Lℓ ∥z − z′∥2,
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for all x, x′ ∈ X , y ∈ Y, and z, z′ ∈ Rm. Let κ(ε) := N(ε,X , d) denote the
ε-covering number of (X , d).

A standard covering-number argument (discretize X by an ε-net, apply
Hoeffding’s inequality at net points, union bound over κ(ε) points, and then
extend from net points to all x by Lipschitzness) yields the following uniform
bound: for every ε > 0 and p ∈ (0, 1), with probability at least 1− p,

sup
F∈H

∣∣R(F )− R̂n(F )
∣∣ ≤ 2LℓLF ε +

√
log

(
2κ(ε)

)
+ log(1/p)

2n
.

In particular, since X is compact we have κ(ε) < ∞ for every ε > 0, and
by choosing ε = ε(n) → 0 sufficiently slowly we obtain supF∈H |R(F ) −
R̂n(F )| → 0 as n → ∞ without any dependence on parameter counts or
architectural widths; the only hypothesis-class control is through global Lip-
schitz constants and the metric entropy of the input domain.

We apply this template to two choices of X . First, take X = P(HL)
equipped with W1(·, ·; dmean

IDM,L). By compactness of HL, the space P(HL) is
compact under W1, hence admits finite coverings at every scale. Second, take
X = (WLdr,α/∼, δmean

L ), which is compact by our earlier result. In both cases,
Theorem 4 places any depth-L mean-aggregation MPNN with prescribed
Lipschitz constants into a globally Lipschitz hypothesis class: there exists
LF = Cϕ,ψ such that the induced graph-level predictor

(W, f) 7−→ ψ
(∫ 1

0
h(L)(x) dx

)
is LF -Lipschitz with respect to δmean

L , and likewise the induced functional
µ 7→ ψ(

∫
hL dµ) is LF -Lipschitz with respect to W1 on P(HL). Conse-

quently, any uniformly Lipschitz-bounded family of such networks enjoys
distribution-free uniform convergence at a rate governed by κ(ε) of the cor-
responding compact metric domain.

We emphasize that the preceding bound is only as sharp as the available
control of metric entropy. While compactness guarantees finiteness of κ(ε),
obtaining explicit rates in terms of (d, r, L, α) is delicate because the natu-
ral state spaces Ht involve iterated probability-measure components. Even
for P(K) with K ⊂ RD and Wasserstein-1, quantitative entropy bounds
are nontrivial and depend sensitively on geometric regularity (e.g. doubling
dimension) of K and on whether one restricts to measures with additional
structure. In our setting, one may derive crude upper bounds by approxi-
mating an arbitrary µ ∈ P(HL) by finitely supported measures on an ε-net
of HL and quantizing weights; such bounds are sufficient for consistency but
typically yield poor dependence on ε and may scale unfavorably with depth
due to the recursive construction of HL. Any substantial tightening would
require additional assumptions (for instance, regularity or low-complexity

20



structure in (W, f), or restricting attention to subsets of P(HL) with con-
trolled effective dimension), and we leave a precise analysis of the metric
entropy of (WLdr,α/∼, δmean

L ) and of its embedding into P(HL) as an open
direction.

Computation on finite graphs. We next record an explicit dynamic
program for computing δmean

L between two finite attributed graphs, under the
same mean-normalization that appears in the graphon definition. Let (G, f)
and (H,g) be undirected graphs with node sets [n] and [m], respectively, and
node attributes fi,gj ∈ Bd

r . We assume a normalized degree lower bound
in the dense regime, namely degG(i)/n ≥ α for all (or all but a negligible
fraction of) i ∈ [n] and degH(j)/m ≥ α for all j ∈ [m]. As usual, we view
each finite graph as inducing a step graphon-signal (WG, fG) by partitioning
[0, 1] into n (resp. m) equal intervals and setting WG to be constant on each
rectangle according to adjacency, and fG to be constant on each interval
according to fi. With this convention, δmean

L ((G, f), (H,g)) is defined as
δmean
L ((WG, fG), (WH , fH)).

The main observation is that the recursive product metric dmean
IDM,t and the

Wasserstein evaluations in the mean-IDM definition translate into a recursion
over node pairs. Concretely, we compute a sequence of cost matrices Dt ∈
Rn×m+ , where Dt[i, j] represents the depth-t mean-IDM distance between
node i in G and node j in H (for the corresponding step graphons). The
base level is the attribute metric,

D0[i, j] := ∥fi − gj∥2.

For the inductive step, we form for each node i ∈ [n] the normalized neighbor
distribution pi ∈ P([n]) given by

pi(u) :=

{
1

degG(i) if u ∈ NG(i),

0 otherwise,

and similarly qj ∈ P([m]) for each j ∈ [m]. Since the mean construction uses
probability measures (rather than sub-probabilities), we solve balanced opti-
mal transport problems between pi and qj with ground costs inherited from
the previous layer. Writing Π(pi, qj) for the set of couplings with marginals
pi and qj , define

OTt[i, j] := min
π∈Π(pi,qj)

∑
u∈[n]

∑
v∈[m]

π(u, v)Dt−1[u, v].

We then update

Dt[i, j] := Dt−1[i, j] + OTt[i, j], t = 1, . . . , L.
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Finally, the graph-level distance is obtained by transporting uniform mass
across node sets using DL as the ground cost:

δmean
L ((G, f), (H,g)) := min

π∈Π(Unifn,Unifm)

∑
i∈[n]

∑
j∈[m]

π(i, j)DL[i, j].

Correctness follows by an induction that mirrors the graphon definitions.
At depth t = 0, D0[i, j] agrees with the H0 = Bd

r ground metric. As-
suming Dt−1[u, v] = dmean

IDM,t−1(γ
mean
(G,f),t−1(u), γ

mean
(H,g),t−1(v)), the measures pi

and qj are precisely the discrete versions of the normalized neighbor laws
W (x, ·)/degW (x), and the optimal value OTt[i, j] is exactly the Wasserstein–
1 term

W1

(
νmean
(G,f),t−1(i), ν

mean
(H,g),t−1(j) ; d

mean
IDM,t−1

)
computed on the discrete supports, with ground costs given by Dt−1. Adding
Dt−1[i, j] implements the product metric on Ht = Ht−1 × P(Ht−1). The
final transport between Unifn and Unifm computes the Wasserstein distance
between the pushforward empirical measures of the depth-L node states, i.e.
the finite-graph analogue of W1(Γ

mean
(W,f),L,Γ

mean
(V,g),L).

We also note a minor convention for isolated nodes. Under the degree-
floor assumption such nodes do not appear, but if one wishes to extend the
definition one may set pi to be δi (a self-loop measure) or introduce a dedi-
cated dummy symbol absorbing the mass; either choice yields a well-defined
recursion and preserves the interpretation as a mean-normalized neighbor-
hood law.

For complexity, let N := max{n,m}. Each layer t requires solving nm =
O(N2) balanced OT instances, each on supports of size at most N with
ground costs given by a submatrix of Dt−1. Using a standard exact solver
for discrete Wasserstein–1 (equivalently, a min-cost flow formulation on a
bipartite network), one may solve each instance in O(N3 logN) time in the
worst case, yielding total time

O
(
LN2 ·N3 logN

)
= O(LN5 logN),

and O(N2) memory to store the matrices Dt (plus solver overhead). This
bound is conservative but suffices to show polynomial-time exact computabil-
ity for fixed depth L.

From a practical standpoint, the exact min-cost flow step is the com-
putational bottleneck. A natural acceleration is to replace each exact OT
call by an entropic-regularized approximation (Sinkhorn) or a multiscale OT
routine, reducing per-instance cost substantially at the expense of an addi-
tive error that must be propagated through the t = 1, . . . , L recursion. Since
such an approximation analysis is orthogonal to the structural results above
and depends on stability properties of the recursion, we leave it as future
work.
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Experiments. Although our results are structural and do not rely on em-
pirical validation, a small set of experiments would clarify how the metric
δmean
L behaves on finite graphs and how tightly it tracks perturbations of

mean-aggregation GNNs in practice. Throughout, we recommend using the
exact dynamic program above when feasible (moderate N and small L), and
otherwise using an entropic-regularized approximation with a fixed regular-
ization parameter and reporting the induced approximation bias separately.

A first experiment is a direct stability–correlation test aligned with the
Lipschitz theorem. Fix a depth-L mean-aggregation MPNN M = (ϕ, ψ)
(either randomly initialized with prescribed operator norms or trained on a
downstream task), and consider a family of perturbed graphs {(G(k), f (k))}k
generated from a base instance (G, f) by controlled perturbations. For
each pair (k, ℓ), compute the output discrepancy ∆k,ℓ := ∥M(G(k), f (k)) −
M(G(ℓ), f (ℓ))∥2 and the metric value δk,ℓ := δmean

L ((G(k), f (k)), (G(ℓ), f (ℓ))).
We then evaluate (i) rank correlations (Spearman/Kendall) between ∆k,ℓ

and δk,ℓ over a large sample of pairs, and (ii) the empirical Lipschitz slope
Ĉ := maxk,ℓ: δk,ℓ>0∆k,ℓ/δk,ℓ together with robust summaries such as the 0.95-
quantile of the same ratio. This makes the theorem operational: small δmean

L

should systematically coincide with small output changes, and Ĉ provides a
data-dependent calibration of the bound.

For perturbation models, we recommend three regimes. (1) Attribute
noise: add bounded noise fi 7→ fi+ ξi with ∥ξi∥2 ≤ η (followed by projection
to Bd

r if needed), which should yield an approximately linear response in
δmean
0 and propagate to δmean

L . (2) Edge rewiring at fixed degree: perform
random edge swaps that preserve degrees; since neighborhood measures are
degree-normalized, this probes sensitivity to changes in the composition of
neighborhoods rather than to degree drift. (3) Mild sparsification: delete
each edge independently with probability ρ and condition on maintaining the
degree-floor on most nodes (or explicitly prune nodes violating deg(v)/|V | ≥
α). This tests how the metric and the GNN outputs respond when the dense
assumption is only approximately met.

A second experiment is a comparison against alternative distances that
target different aggregation conventions. The most direct baseline is the
(unbalanced) DIDM distance δDIDM

L from the normalized-sum setting, where
neighbor measures are sub-probabilities with total mass proportional to de-
gree; empirically, we expect δDIDM

L to be more sensitive to global degree
scaling, whereas δmean

L should be comparatively invariant to degree blow-ups
that do not change neighbor frequencies. Additional baselines include 1-WL-
type distances (e.g. comparing color histograms across iterations), as well
as transport-based graph distances such as TMD (Tree Mover’s Distance)
when available. For each baseline, we recommend repeating the stability–
correlation evaluation with the same MPNN outputs, and additionally test-
ing k-NN retrieval/classification where graphs are embedded only through
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pairwise distances (no learned encoder) to determine whether δmean
L yields a

competitive geometry for task-relevant similarity.
A third experiment focuses on degree-variation calibration. Since δmean

L

is defined with normalized neighbor laws, it is natural to test families of
graphs that have identical conditional neighbor distributions but varying
degrees (e.g. blow-up constructions, or duplicating each node into s twins
with identical adjacency proportions and identical attributes). In this set-
ting, mean-aggregation MPNNs are expected to behave stably, and δmean

L

should remain small, while distances that encode degree mass (including
unbalanced OT constructions) may grow with s. Conversely, if one per-
turbs degrees without changing edge densities uniformly (introducing hubs
or heavy-tailed degree patterns), one can measure whether δmean

L remains
predictive of mean-MPNN output changes and where it begins to fail as the
degree-floor is violated.

Finally, we recommend reporting computational behavior. For exact
computation, record wall-clock times as a function of N and L, and ver-
ify the expected scaling dominated by the O(N2) OT calls per layer. For
approximate OT (Sinkhorn), report the stability of the resulting approxi-
mate δmean

L under changes in the entropic regularization and the number of
iterations, and quantify how approximation error affects the empirical slope
Ĉ. These measurements would complement the theoretical polynomial-time
claim by clarifying the practical operating range and motivating approxi-
mation schemes without conflating them with the definition of the metric
itself.

Discussion and limitations. A central structural assumption throughout
is the degree floor degW (x) ≥ α a.e. (and its finite-graph analogue). Concep-
tually, this condition ensures that the normalized neighbor lawW (x, ·)/degW (x)
is well-defined and does not exhibit arbitrarily large sensitivity under small
perturbations of W near points where the degree is nearly zero. Technically,
it is what allows us to treat the mean-aggregation operator as a uniformly
Lipschitz map on the metric domain: the normalization by degW (x) is uni-
formly bounded by 1/α, and the neighbor measures are genuine probabil-
ity measures with controlled dependence on the underlying graphon-signal.
Without such a floor, even for bounded W ∈ [0, 1], the map (W, f) 7→
νmean
(W,f),t(x) can become discontinuous on sets where degW (x) is small, and

the Wasserstein couplings that underlie dmean
IDM,t can be forced to pay arbitrar-

ily large costs after normalization. In the finite setting, this is the familiar
phenomenon that mean aggregation on nodes of tiny degree can behave er-
ratically under a single-edge change; any metric intended to upper bound
such changes must either incorporate the degree explicitly or exclude the
low-degree regime.

There are several principled ways to weaken or remove the degree-floor
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assumption, but each alters either the architecture class or the metric defini-
tion. A direct modification is truncated normalization: replace degW (x) by
max{degW (x), α} in the definition of the neighbor law, producing a family
of α-regularized mean-IDMs. This preserves the probabilistic interpreta-
tion when degW (x) ≥ α and gracefully transitions to a damped operator
otherwise. A second option, closer to common practice in GNN design, is
teleportation (or damping): for some τ ∈ (0, 1) define a modified neighbor
measure

ν̃t(x) := (1− τ) (γt)#

(
W (x,·)
degW (x) λ

)
+ τ (γt)#λ,

with the convention that the first term is omitted when degW (x) = 0. This
makes the aggregator total-mass preserving and uniformly defined without
assuming any degree floor, at the cost of injecting a global baseline mes-
sage. One may also teleport to a self-loop by mixing with δγt(x), aligning
more closely with residual/self-loop GNNs. In each case, the corresponding
metric must be redefined by replacing νmean

(W,f),t(x) with the chosen regular-
ized neighbor law; the compactness and Lipschitz proofs then proceed with
constants depending on τ rather than on α. What remains nontrivial is
to re-establish point-separation results in the modified model, since telepor-
tation reduces sensitivity to fine-grained neighborhood structure and may
introduce additional identifications.

A related limitation is that our development is tailored to scalar edge
weights W (x, y) ∈ [0, 1] and node attributes in Bd

r . Many applications in-
volve edge features, temporal marks, or signed and directed interactions. The
mean-IDM construction extends to these settings by enlarging the neighbor-
hood state to include edge information before taking the pushforward: for
instance, if an edge feature map e : [0, 1]2 → E is given for a compact metric
feature space E, one can replace the neighbor pushforward by the law of
(γt(Y ), e(x, Y )) under the normalized neighbor sampling distribution. This
leads to a modified recursion with Ht+1 = Ht×P(Ht×E) (or another suit-
able product space), and the same Wasserstein-based metric construction
applies on compact domains. The main trade-off is computational: the OT
subproblems now live on an enlarged support and the cost matrix incorpo-
rates both node-state and edge-feature discrepancies.

Multi-relational or heterogeneous graphs can be handled similarly by
allowing a collection of graphons {W (a)}a∈A (one per relation type) and
defining either (i) a separate neighbor measure per relation, yielding Ht+1 =
Ht×

∏
a∈A P(Ht), or (ii) a single mixture law over (a, Y ) with mixing weights

determined by relation-specific degrees. Both choices correspond to standard
architectural conventions (relation-wise message passing versus pooled mes-
sage passing). Our arguments adapt provided A is finite and each relation
satisfies an appropriate degree control (either per-relation or in aggregate).
The universality and separation statements then depend on the richness of
admissible updates across relations, and the metric inherits an additional
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product structure over A.
Finally, the sparse regime remains open in a substantive way. When

graphs are sparse (e.g. average degree O(1) or o(N)), the graphon formalism
is no longer the natural limit object, degrees typically vanish under dense
normalization, and mean aggregation becomes dominated by local sampling
effects rather than by stable empirical neighborhood measures. One ex-
pects that an appropriate theory should be phrased in terms of local weak
limits (graphings) or graphex processes, and that the correct notion of dis-
tance should compare rooted neighborhood distributions rather than global
transport over [0, 1]. From the metric perspective, one can attempt to com-
bine unbalanced optimal transport (to accommodate degree variability and
mass deficit) with local neighborhood kernels, but the correct alignment with
mean-aggregation GNNs is not yet clear. Establishing compactness, conti-
nuity of the IDM/DIDM map, and a polynomial-time exact computation
procedure in this sparse setting appears to require new ideas beyond the
present Wasserstein-over-probability-measures construction.
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