
The Proxy Manifold: Recipe-Invariant
Downstream Prediction from a Standardized Suite

of Losses and Probes

Liz Lemma Future Detective

January 17, 2026

Abstract

Scaling-law work such as FLP and FLP-M predicts downstream
performance by using pre-training loss as an intermediate variable,
exploiting the empirical stability of loss-to-performance mappings af-
ter emergence. However, modern (2026-era) training stacks routinely
change the recipe—token/parameter ratio, optimizer schedules, curric-
ula, context length, and data processing—so a single validation loss of-
ten ceases to be an invariant predictor across runs. We formalize cross-
recipe downstream prediction as a transfer problem from correlated
checkpoint logs and propose a standardized proxy suite: 10–20 cheap-
to-measure quantities combining domain perplexities (as in FLP-M)
with targeted capability probe NLLs (e.g., tool-call formatting, long-
context retrieval markers, math scratchpads). We provide algorithms
for (i) learning a recipe-invariant predictor from multi-recipe logs, (ii)
producing calibrated prediction intervals despite checkpoint autocorre-
lation, and (iii) flagging ’out-of-family’ recipes via conformal residual
tests. We prove upper bounds on cross-recipe prediction error under a
proxy-invariance assumption and give matching lower bounds showing
that scalar validation loss alone cannot be uniformly invariant. Ex-
periments (to be included) would validate predictive transfer across
recipe variations and demonstrate that the proxy suite improves early
decision-making and mixture/recipe search compared to loss-only base-
lines, while the released harness standardizes proxy measurement for
future scaling-law research.

Table of Contents

1. 1. Introduction and Motivation: why loss-only FLP is brittle under
recipe drift; goals (transfer, uncertainty, shift detection) and contribu-
tions.

2. 2. Background and Related Work: FLP/FLP-M; scaling laws; emer-
gence; data mixing; probing; conformal prediction and invariance prin-

1

ciples.

3. 3. Formal Problem Setup: recipes, checkpoints, correlated observa-
tions, proxy suite Π, tasks T , and success metrics (error + calibration
+ OOD detection).

4. 4. Proxy Suite Design (Specification): domain losses, probe NLL con-
struction, measurement protocols, normalization, and cost model; ab-
lations planned.

5. 5. Learning Recipe-Invariant Predictors: model classes (monotone
GAM / small monotone MLP / linear), invariance regularization, and
multi-task structure.

6. 6. Uncertainty and OOD Detection: block-conformal intervals for cor-
related checkpoints; conformal residual tests for ’out-of-family’ recipe
detection; guarantees.

7. 7. Theory: upper bounds under proxy invariance + drift; lower bounds
for scalar-loss-only predictors; (optional) proxy selection hardness and
approximations.

8. 8. Experimental Protocol (Planned/Optional but Strengthening): multi-
recipe small-scale runs; cross-recipe transfer evaluation; early stopping
decision value; comparison to FLP/FLP-M baselines.

9. 9. Limitations and Extensions: extending proxies to multimodal/tool
traces; interactions with data mixtures; failure modes and governance
implications.

10. 10. Artifact Release: proxy harness, reference datasets for probes,
evaluation scripts, recommended reporting standard.

2

1 Introduction and Motivation

Forecasting learning progress (FLP) seeks to infer downstream capabilities
from quantities that are cheap to measure during training. In its simplest
form, FLP predicts a benchmark metric from a scalar training or validation
loss recorded at a checkpoint. This scalar-loss paradigm is attractive because
it is universal, already present in most training logs, and strongly correlated
with many aggregate performance measures when the training procedure
is held fixed. However, our setting is explicitly multi-recipe: we consider
a family of training recipes r ∈ R that differ in optimizer and schedule,
token-to-parameter regime, curriculum ordering, context length, and similar
interventions. In this regime, scalar-loss FLP becomes brittle: the mapping
from a single loss number to a particular downstream task score can change
materially under moderate recipe drift, even when the overall loss trajectory
appears unchanged.

The source of brittleness is structural. A single loss aggregates heteroge-
neous error modes that are differently emphasized by different recipes. For
instance, shifting the data mixture or curriculum can preserve average loss
while reallocating modeling capacity between domains; modifying context
length can alter the difficulty distribution of next-token prediction without
commensurately shifting short-context validation perplexity; and changes
in optimization (e.g., momentum, clipping, warmup) can affect the time at
which certain capabilities become reliable, without producing a proportional
change in the global loss. In other words, scalar loss fails to identify which
aspects of competence have improved. Consequently, two recipes r1, r2 may
yield checkpoints with comparable scalar validation loss while exhibiting
systematically different performance on a task t that depends on a specific
latent factor (e.g., instruction-following format adherence, tool-call syntax,
retrieval marker usage). This phenomenon is not merely empirical; it is con-
sistent with an information-theoretic obstruction: if the scalar proxy does
not encode the latent factor relevant to t, then no predictor depending only
on that scalar can be uniformly accurate across recipes.

Our goal is therefore to replace loss-only FLP with a proxy-based predic-
tor that is both informative and robust across the family R. We assume that
for each training run i of recipe r and checkpoint s, we can compute a proxy
vector Zi,s ∈ RK that concatenates curated domain validation losses Ld and
targeted probe negative log-likelihoods Qj . The design choice is deliberate:
the domain losses partially decompose global perplexity into semantically
meaningful slices (e.g., code, math, dialogue), while the probes are crafted
to detect narrow but operationally important competencies (e.g., structured
tool-call formatting, presence of retrieval delimiters). Each coordinate is
cheap relative to full benchmark evaluation, yet together the coordinates
provide a representation in which recipe-induced variation is more likely to
act through Z rather than through an unobserved confounder.

3

We formalize this desideratum as an invariance hypothesis. Let Yi,s,t
denote downstream performance on task t ∈ T at checkpoint (i, s), noting
that such evaluations are typically sparse. Hypothesis H1 (proxy invariance)
posits that there exists a function f⋆ = (f⋆

t)t∈T such that for all recipes
r ∈ R,

E[Yt | Z = z,R = r] = f⋆
t (z),

with sub-Gaussian residual noise. The role of H1 is not to claim that recipes
are irrelevant, but that recipe dependence is mediated by the proxy vector:
once we condition on Z, the conditional expectation of task performance
is stable across recipes in-family. This is precisely the kind of assumption
under which cross-recipe transfer should be possible from logs, and it also
provides a falsifiable target: when H1 fails, we should be able to detect that
failure from atypical proxy distributions or residual patterns.

The requirements we impose on an FLP system in this multi-recipe set-
ting are threefold. First, transfer : given historical logs D = {(ri, i, s, Zi,s, Yi,s,·)},
we seek a predictor f̂ that produces accurate predictions for a new recipe
rnew using only the proxies Znew,s at selected checkpoints. Second, uncer-
tainty : because downstream evaluations are sparse and checkpoints within
a run are correlated, point predictions alone are insufficient; we require pre-
diction intervals with finite-sample coverage guarantees under appropriate
exchangeability assumptions at the run level. Third, shift detection: we re-
quire a statistically controlled “out-of-family” flag OOD(Z, rnew) that iden-
tifies when a new recipe violates the conditions under which the predictor
was calibrated, so that a user can fall back to direct evaluation or retraining
of the predictor.

A central technical complication is that training logs provide many check-
points per run, but these checkpoints are strongly dependent. Treating (i, s)
as i.i.d. samples leads to overly optimistic error bars and miscalibrated in-
tervals. We therefore treat runs (or blocks of checkpoints within runs) as
the primary exchangeable units, introducing an effective sample size Neff

governed by a checkpoint correlation time τ . This viewpoint aligns with
how recipe variation is instantiated in practice: independent seeds and hy-
perparameter instantiations produce approximately independent runs, while
within-run trajectories are smooth and highly correlated.

Within this framework, our contributions are as follows.

1. We formulate cross-recipe FLP as supervised prediction from proxy
vectors Z to downstream task performance Y , with explicit accounting
for correlated checkpoints and sparse labels. The formulation makes
clear what is observable (proxies at all checkpoints) and what is ex-
pensive (downstream tasks evaluated sparsely), and it identifies the
invariance condition required for transfer across recipes.

2. We propose a standardized proxy suite Π of moderate dimension (K ∈

4

[10, 20]) combining domain validation losses and probe NLLs, together
with a learning procedure that encourages recipe-invariant residual
structure when fitting f̂ . The intent is not to fit a separate model
per recipe, but to learn a pooled mapping that remains stable across
the in-family set.

3. We provide statistically valid uncertainty quantification via block-conformal
calibration, yielding prediction intervals [ℓt(Z), ut(Z)] with marginal
coverage guarantees under run-level exchangeability. The block struc-
ture is essential for calibration validity in the presence of within-run
dependence.

4. We incorporate an OOD mechanism based on both proxy-distribution
shift and residual atypicality, producing a principled “out-of-family” de-
cision rule designed to control false alarms while detecting meaningful
violations of H1.

5. We justify the necessity of moving beyond scalar loss by exhibiting
a lower bound: there exist recipe pairs for which a scalar validation
loss has identical distribution but downstream performance differs by a
nontrivial gap, implying that any scalar-loss-only predictor must incur
substantial worst-case error on at least one recipe.

The net effect is a shift in perspective: rather than treating loss as a
sufficient statistic for capability, we treat a small, standardized proxy vector
as the interface between training dynamics and downstream evaluation. Un-
der H1, this interface supports provable cross-recipe generalization and cal-
ibrated uncertainty; when H1 fails, it supports controlled detection of that
failure. This is the minimal structure we require to make FLP actionable
in the regime where recipes drift, scaling regimes change, and downstream
benchmarks are too expensive to run exhaustively at every checkpoint.

2 Background and Related Work

Forecasting learning progress (FLP) is the general problem of predicting
downstream performance from signals that are available during training,
typically as a function of training compute, dataset size, or intermediate
losses. Classical instances include learning-curve extrapolation, where one
fits parametric or semi-parametric forms to partial trajectories and predicts
the eventual value at larger compute. In the modern large-model regime,
FLP often takes the form of mapping a checkpoint summary (e.g., train-
ing loss, validation loss, or perplexity at a fixed evaluation set) to one or
more downstream metrics. A closely related line, sometimes termed FLP-M,
addresses multi-metric forecasting: we seek to predict a vector of down-
stream metrics jointly, either to exploit shared structure across tasks or to

5

provide a consistent early-stopping and model-selection signal across hetero-
geneous benchmarks. These settings motivate multi-output predictors, as
well as methods that share representations or impose structured regulariza-
tion across tasks. Our work can be viewed as a multi-recipe, multi-metric
extension in which the key question is not only within-recipe extrapolation,
but stability of the proxy-to-metric mapping under moderate changes to the
training procedure.

Scaling laws supply a complementary perspective. Empirical scaling laws
posit that certain losses (and sometimes benchmark metrics) follow regular
functional relationships with compute, parameters, and data. The canonical
results establish approximate power-law behavior for cross-entropy loss as a
function of compute and model size over wide ranges, and more recent work
refines these relations with compute-optimal tradeoffs between tokens and
parameters. Such laws are practically useful for budgeting and for extrapo-
lating average performance, but they are less directly suited to our setting
for two reasons. First, scaling laws are typically formulated for a fixed train-
ing distribution and protocol; changing optimizer details, curricula, context
length, or data mixture can shift both the constants and, in some cases,
the observed scaling exponents. Second, the quantity that is most robustly
power-law (the next-token loss) is precisely the scalar summary that we
argue is insufficiently identifying across recipes for particular downstream
tasks. Our approach may be interpreted as retaining the spirit of scaling—
leveraging cheap-to-measure signals to predict expensive evaluations—while
replacing the scalar loss with a structured proxy suite intended to be stable
under a family of recipe interventions.

A recurring empirical phenomenon in capability evaluation is so-called
emergence: certain benchmark scores remain near chance until a threshold
scale or training stage, after which they increase rapidly. Whether emer-
gence reflects a genuine phase transition or a smooth curve composed with a
sharp metric is debated; nevertheless, it creates a practical difficulty for FLP
systems based only on global loss. In particular, a small improvement in loss
may coincide with a large jump in a brittle downstream score (e.g., exact-
match tasks with strict formatting), and the location of this transition can
move with recipe changes (e.g., altered context length or curriculum order-
ing). As a result, the monotone relationship between loss and performance
that holds within a narrow training protocol may fail to transfer across pro-
tocols. This motivates proxies that more directly track the onset of the
relevant competence (for instance, probe NLLs for format adherence), and it
motivates predictor classes that can represent nonlinearity and threshold-like
behavior without overfitting to recipe-specific idiosyncrasies.

The effect of data mixing and curricula on downstream behavior is also
well documented. Training on mixtures can preserve aggregate perplex-
ity while reallocating capacity across domains; conversely, modest mixture
changes can produce large relative changes on specialized tasks even when

6

overall loss is similar. Curriculum order can matter even when the even-
tual data distribution is unchanged: early emphasis on certain domains may
accelerate the acquisition of skills that later generalize, while delaying oth-
ers. Moreover, adjustments to sequence length and packing can change the
effective difficulty distribution seen by the model (e.g., long-range dependen-
cies versus local token prediction) without a commensurate shift in short-
context validation perplexity. These observations suggest that the training
recipe acts as an environment that can change the conditional distribution of
downstream metrics given a coarse proxy. Our proxy suite design is aligned
with the standard remedy in distribution shift problems: rather than hope
that a single aggregate statistic is sufficient, we attempt to measure a small
set of orthogonal axes (domain losses and targeted probes) that make the
conditional expectation of downstream outcomes closer to invariant.

Probing provides the technical mechanism for introducing such axes. In
representation learning, probes are predictive models (often linear) trained
to extract attributes from hidden states; in our setting, we use the term
more broadly to include behavioral probes implemented as small, cheap eval-
uation sets that yield a negative log-likelihood for a narrowly defined pat-
tern (e.g., tool-call delimiters, JSON well-formedness cues, retrieval mark-
ers). The crucial property is cost: probes are orders of magnitude cheaper
than full benchmarks and can be computed at every checkpoint. Unlike
general-purpose perplexity, probe losses can be targeted to capabilities that
are known to be brittle under recipe changes. While any single probe is
narrow, a moderate collection can serve as a low-dimensional summary of
multiple latent competences, which is precisely what is required for stable
cross-recipe prediction.

Uncertainty quantification is equally central. Even if a point predic-
tor performs well on average, we require statistically meaningful intervals
that account for sparse labels and correlated checkpoints. Conformal predic-
tion offers a distribution-free framework for constructing prediction intervals
with finite-sample coverage under exchangeability. Standard split confor-
mal methods calibrate a base predictor using held-out residuals; conformal-
ized quantile regression and related variants allow heteroskedastic intervals.
However, naive application to checkpoint-level samples is invalid when check-
points within a run are dependent. The relevant adaptation is block or group
conformal prediction, in which exchangeability is assumed at the level of runs
(or blocks of consecutive checkpoints), and calibration is performed on aggre-
gated residuals. This aligns with our operational setting: independent runs
are the natural units of replication, while checkpoints are highly autocorre-
lated observations within each unit. In this sense, our interval construction
sits at the intersection of conformal prediction and time-series dependence
handling, with the simplifying feature that dependence is largely contained
within runs.

Finally, our emphasis on invariance connects to domain generalization

7

and causal prediction principles. A common theme in invariant risk mini-
mization and related approaches is that predictors that rely on spurious cor-
relations vary across environments, whereas predictors based on stable mech-
anisms exhibit approximately invariant conditional relationships. Translat-
ing to our setting, recipes play the role of environments, and Hypothesis H1
asserts that conditioning on our proxies yields an invariant conditional mean
across these environments. The practical implication is twofold: we can ex-
plicitly encourage invariance by penalizing recipe-dependent residual struc-
ture during training, and we can test for violations by monitoring residual
atypicality or proxy-distribution shift at inference time. Thus, rather than
treating recipe drift as an unmodeled nuisance, we frame it as a structured
shift against which we can regularize and, when necessary, raise an out-of-
family flag.

In summary, prior work provides (i) the empirical motivation that scalar
losses and scaling laws are informative but incomplete under intervention,
(ii) the methodological tools of probing to measure targeted competencies
cheaply, and (iii) the statistical machinery of conformal prediction and in-
variance principles to obtain calibrated uncertainty and controlled shift de-
tection. Our contribution is to assemble these elements into a unified multi-
recipe forecasting framework that is explicitly designed for correlated check-
points and sparse downstream labels.

3 Formal Problem Setup

We formalize the forecasting problem in terms of a family of training recipes
and a fixed collection of downstream tasks. A recipe r ∈ R specifies all
training-time choices that are held fixed within a run, including (non-exhaustively)
optimizer and schedule, token/parameter regime, data mixture and curricu-
lum ordering, context length and packing strategy, and any auxiliary losses.
For each recipe r we perform multiple independent training runs indexed
by i, differing only by sources of randomness and (optionally) small hyper-
parameter perturbations that we treat as part of the run index. During a
run we save checkpoints indexed by s (e.g., step, wall-clock, or token count).
We write Ci,s for the cumulative training compute (or tokens) consumed by
checkpoint s in run i; we do not assume that different recipes share identical
checkpoint schedules, but we assume Ci,s is observed.

At each checkpoint we compute a K-dimensional proxy vector Zi,s ∈ RK ,
derived from a standardized proxy suite Π. Concretely, Π specifies a set
of curated validation domains Πdom = {d} and a set of capability probes
Πprobe = {j}. The corresponding coordinates of Zi,s are

Zi,s =
[
{Ld(ckpt(i, s))}d∈Πdom

, {Qj(ckpt(i, s))}j∈Πprobe

]
,

where Ld(·) denotes validation loss/perplexity on domain d, and Qj(·) de-

8

notes the negative log-likelihood of a narrowly specified behavioral pattern
for probe j. We treat the proxy computation as cheap enough to perform at
essentially every checkpoint, in contrast to downstream evaluations.

Downstream evaluations are defined by a finite set of tasks/metrics T .
For each task t ∈ T , checkpoint (i, s) has an associated (possibly unobserved)
scalar performance Yi,s,t ∈ R. The value Yi,s,t may represent accuracy, exact
match, pass@k, or any other scalar metric. In our operational regime, the
tensor {Yi,s,t} is sparse: for many checkpoints we only observe proxies, while
we only evaluate a subset of (i, s, t) triples due to cost. We denote the
resulting log dataset by

D = {(ri, i, s, Zi,s, {Yi,s,t}t∈Ti,s)},

where Ti,s ⊆ T encodes which tasks were evaluated at checkpoint (i, s). At
inference time we are given a new recipe rnew and observe proxies Znew,s

at one or more checkpoints; our goal is to predict downstream performance
(and uncertainty) without executing the full task suite.

A central complication is dependence across checkpoints within the same
run. For fixed (r, i), the sequence {(Zi,s, Yi,s,·)}s is highly autocorrelated, and
treating checkpoints as i.i.d. samples leads to miscalibrated uncertainty and
overly optimistic error estimates. We therefore separate two levels of sam-
pling: runs are treated as the primary exchangeable units, while checkpoints
within a run are treated as dependent observations. We encode this depen-
dence by an effective correlation time (or block length) τ , which we use both
conceptually and algorithmically: statistics computed on checkpoint-level
residuals are aggregated into blocks of length τ to obtain an effective sam-
ple size Neff that scales with the number of independent runs rather than
the number of checkpoints. We will consistently enforce train/calibration
splits at the run level, so that no single run contributes to both fitting and
calibration.

Our modeling target is a multi-task predictor f = (ft)t∈T mapping proxy
vectors to downstream performance. We fix a hypothesis class F (e.g., linear
models, generalized additive models, or modest-capacity neural predictors)
and seek f̂ ∈ F fit on D. The formal invariance hypothesis underlying cross-
recipe transfer is that conditioning on Z removes recipe dependence in the
conditional mean:

(H1) E[Yt | Z = z,R = r] = f⋆
t (z) for all t ∈ T , r ∈ R.

Equivalently, there exists f⋆ ∈ F such that the residual Yt − f⋆
t (Z) has

mean zero in every recipe environment. When H1 holds only approximately,
we model deviations by bounded drift terms ∆t,r(z), which will manifest as
irreducible cross-recipe error and, operationally, as conditions under which
we may wish to flag rnew as out-of-family.

9

We define success through three coupled criteria: predictive accuracy, cal-
ibrated uncertainty, and controlled out-of-family detection. First, for point
prediction we measure per-task error on held-out runs and (when available)
across recipes. A canonical choice is mean squared error

MSEt(f̂) = E
[
(f̂t(Z)− Yt)

2
]
,

with expectations taken over checkpoints drawn from new runs of a recipe
of interest; we may also report mean absolute error or task-specific proper
scoring rules when Yt is itself a probability-like quantity. Because tasks
may have heterogeneous scales, we will consider normalized variants (e.g.,
z-scored per task) when aggregating across t.

Second, we require prediction intervals [ℓt(Z), ut(Z)] such that, for a
target miscoverage level α,

P
(
Yt ∈ [ℓt(Z), ut(Z)]

)
≥ 1− α,

where the probability is with respect to new runs drawn from the in-family
distribution. The salient constraint is that the coverage statement must
remain valid under within-run dependence, hence our use of run-wise (or
block-wise) conformal calibration rather than checkpoint-wise calibration.
Interval quality is further assessed by average width and by conditional di-
agnostics (e.g., coverage stratified by compute C or by proxy regimes).

Third, we require a binary out-of-family decision rule OOD(Z, rnew) in-
dicating whether rnew violates the learned proxy-to-metric relationship. We
treat this as a hypothesis testing problem with two error modes: false alarms
on in-family recipes and missed detections on genuinely shifted recipes. Op-
erationally, we will implement OOD tests using (i) proxy-distribution shift,
i.e., whether the observed Znew,s are atypical relative to calibration runs, and
(ii) residual atypicality, i.e., whether realized downstream evaluations (when
a small number are performed for auditing) produce residuals inconsistent
with the calibrated residual distribution. We report standard detection sum-
maries (e.g., false positive rate at a fixed true positive rate) while maintaining
an interpretable threshold tied to α and δ-level confidence parameters.

This setup isolates the design degrees of freedom that remain: the choice
of proxy suite Π (which determines K and the semantic axes encoded in Z),
the model class F and any invariance-promoting regularization used to fit f̂ ,
and the measurement protocol by which Z is computed consistently across
recipes and checkpoints. We turn next to the concrete specification of Π,
including domain and probe construction, normalization, and a cost model
suitable for routine checkpoint-level evaluation.

4 Proxy Suite Design (Specification)

We now specify the proxy suite Π that induces the checkpoint-level vec-
tor Z ∈ RK . The design goal is twofold: (i) to capture the principal axes

10

along which downstream behavior varies across training compute and across
recipes, and (ii) to ensure that proxy measurement is sufficiently standard-
ized that differences in Z reflect model state rather than evaluation artifacts.
Throughout we target K ∈ [10, 20] so that proxy evaluation remains routine
at essentially every checkpoint.

Domain validation losses. The first component of Π is a set of curated
validation domains Πdom = {d}. Each domain d is a fixed corpus slice (or
mixture) with a frozen tokenization and sequence construction rule. For a
checkpointed model θ, we define the domain proxy by teacher-forced cross-
entropy on that slice:

Ld(θ) =
1

|Sd|
∑
x∈Sd

(
− 1

|x|

|x|∑
u=1

log pθ(xu | x<u)
)
,

where Sd is the fixed evaluation set for domain d, and sequences are con-
structed with a deterministic packing rule (defined below). We treat Ld as
a generic negative log-likelihood proxy; whether one reports loss, bits-per-
byte, or perplexity is immaterial provided we fix a monotone transform. In
practice we choose domains to be semantically distinct and operationally rel-
evant (e.g., general web text, code, mathematics, instruction-style dialogs,
multilingual text), since a single aggregate loss can obscure meaningful trade-
offs. The suite is not intended to approximate the full pretraining mixture,
but rather to provide a low-dimensional coordinate system for cross-recipe
comparison.

To reduce variance and improve comparability across checkpoints, each
Sd is held constant over the entire study (no refresh), sized so that the
estimator variance of Ld is negligible compared to inter-checkpoint changes
at the correlation scale τ . We additionally stratify Sd by sequence length
buckets and report length-weighted averages, which prevents spurious drift
when a recipe changes context length but the model’s token-level competence
is similar.

Capability probes via NLL. The second component Πprobe = {j} con-
sists of narrowly specified probes designed to capture discrete behaviors that
domain losses alone often underidentify. A probe j is a distribution over
prompts x together with a target completion y (possibly structured), and its
score is the conditional NLL under teacher forcing:

Qj(θ) =
1

|Pj |
∑

(x,y)∈Pj

(
− 1

|y|

|y|∑
u=1

log pθ(yu | x, y<u)
)
.

By construction, Qj depends only on the model’s conditional distribution
and is independent of decoding heuristics. Probes can target, for example: (i)

11

adherence to tool-call or API schemas (well-formed JSON, function signature
arguments), (ii) instruction-following markers (e.g., refusal formats, delim-
iter usage), (iii) retrieval or citation markers (presence and correct placement
of [ref] tokens), and (iv) syntactic fidelity in code (balanced brackets, im-
port lines). We emphasize that probes are not downstream benchmarks; they
are short, cheap evaluations whose purpose is to detect capability emergence
or regressions that may not be visible in broad-domain losses.

To avoid trivial leakage, probe items are synthetically generated from
templates with held-out parameter seeds, and the entire probe set is fixed
prior to analyzing recipes. Each probe is also constructed to be robust to
superficial formatting: we either canonicalize whitespace and compare to-
ken sequences under the canonicalization, or we specify target strings in
a tokenizer-aligned manner. For probes with multiple acceptable outputs,
we compute a log

∑
exp likelihood over acceptable completions (or, opera-

tionally, the minimum NLL among a small finite set of canonical variants),
thereby reducing sensitivity to arbitrary stylistic choices.

Measurement protocol and standardization. Proxy comparability re-
quires that Ld and Qj be measured under a single evaluation harness. We
therefore fix: (i) tokenizer version and vocabulary, (ii) context window Weval

used for evaluation (truncating or segmenting longer sequences deterministi-
cally), (iii) packing strategy (e.g., pack to Weval without crossing document
boundaries), and (iv) numerical precision and attention masking conven-
tions. When a recipe trains with a different context length Wtrain, we still
evaluate at the fixed Weval to ensure that Z reflects learned conditional dis-
tributions rather than changes in evaluation length. We also fix dropout and
stochastic layers to evaluation mode. For reproducibility, we store the exact
evaluation manifests (file hashes, sampling seeds, and template seeds) and
log the software commit that produced each proxy vector.

Because checkpoints within a run are correlated, proxy measurement
noise should be small enough that observed variation in Zi,s is dominated
by genuine training progress rather than Monte Carlo error. We thus choose
evaluation set sizes so that the standard error of each coordinate is well below
the typical between-block change over τ steps. When this is not feasible
for a coordinate (e.g., expensive long-context probes), we explicitly log an
uncertainty estimate and treat that coordinate as noisy in later modeling.

Normalization and coordinate transformations. Raw losses across
domains and probes have heterogeneous scales and, in some cases, nonsta-
tionary variance across training compute. We therefore define a normal-
ization map ϕ : RK → RK applied before fitting predictors. The default is
per-coordinate affine normalization using statistics computed on the training

12

split at the run level:

Z̃k = ϕk(Zk) =
Zk − µk

σk
, (µk, σk) estimated on training runs only.

For heavy-tailed coordinates (often probes early in training), we optionally
use robust scale estimates (median and MAD) or a monotone transform
such as log(Zk) when Zk > 0 and multiplicative changes are more stable
than additive ones. We avoid checkpoint-wise normalization schemes that
could leak information across time within a run. If monotonicity constraints
are later imposed on select coordinates, we apply only monotone transforms
so that the ordering information is preserved.

Cost model. Let Td denote the number of evaluation tokens in domain
slice d and Tj the number of completion tokens in probe j. Proxy com-
putation at a checkpoint is essentially a teacher-forced forward pass over∑

d Td +
∑

j Tj tokens. Hence the marginal cost of proxies is proportional
to token throughput and scales linearly in K for fixed per-coordinate token
budgets:

cost(Π) ≈ cfw

(∑
d∈Πdom

Td +
∑

j∈Πprobe

Tj

)
,

where cfw is the per-token forward cost at the evaluation precision. We choose
Td, Tj so that cost(Π) is negligible relative to training cost at checkpoint
cadence (e.g., ≪ 1% of the compute between checkpoints). This constraint
effectively upper-bounds both the number of domains and the complexity of
probes, motivating short, template-based probes rather than full interactive
tasks.

Planned ablations. To validate that Π is neither overfit nor redundant,
we pre-specify ablations along five axes. (i) Scalar baseline: replace Z by
a single aggregate validation loss (or perplexity) to empirically instantiate
the failure mode of scalar proxies. (ii) Domain-only versus probe-only : re-
move one component and measure cross-recipe degradation, testing whether
probes capture complementary information. (iii) Suite size: vary K by sub-
sampling coordinates and measure the prediction–cost frontier. (iv) Normal-
ization sensitivity : compare affine, robust, and log-normalized variants of ϕ,
verifying that conclusions are not artifacts of scaling. (v) Protocol stress
tests: intentionally perturb evaluation settings (packing, Weval, precision)
to quantify how much proxy drift can be induced by measurement choices,
thereby bounding the degree of standardization required for stable transfer.
These ablations are evaluated at the run level to respect dependence, and
the results determine the minimal proxy suite that supports the subsequent
recipe-invariant learning procedure.

13

5 Learning Recipe-Invariant Predictors

We now describe how we learn a predictor f̂ ∈ F mapping proxies to down-
stream performance in a manner that transfers across recipes. For each task
t ∈ T , our target is a function ft : RK → R such that ft(Z) approximates
E[Yt | Z] and, under Hypothesis H1, this conditional expectation does not
depend on the recipe R. We work with normalized proxies Z̃ = ϕ(Z) as
defined previously, and we treat downstream labels as sparse: for many (i, s)
we observe Z̃i,s but only a subset of {Yi,s,t}t∈T .

Multi-task prediction with missing labels. Let I index the set of
checkpoint evaluations available for training (after any block aggregation
used to reduce within-run dependence). For each m ∈ I we have (Z̃m, Rm),
and for each task t we may or may not have an observed label Ym,t. We
introduce a mask Mm,t ∈ {0, 1} indicating whether Ym,t is observed. Our
fitting objective is therefore a masked empirical risk of the form

min
f∈F

∑
m∈I

∑
t∈T

Mm,t ℓ
(
ft(Z̃m), Ym,t

)
+ Ω(f) + λRinv(f),

where ℓ is typically squared loss for real-valued metrics (or a proper scor-
ing loss for log-odds-type targets), Ω is a standard capacity control term
(e.g., ridge weight decay or spline smoothness), and Rinv encourages recipe-
invariance of residual structure. The mask-based formulation allows us to
train a single multi-task model even when tasks are evaluated at different
cadences.

Invariance regularization across recipes. Under H1, for each t the
residual εm,t := Ym,t − ft(Z̃m) should have mean 0 conditional on Z̃m and
should not exhibit systematic recipe dependence. We operationalize this
as a penalty on recipe-wise residual means. Let ε̄r,t(f) denote the average
residual for task t on points from recipe r, computed on the training split:

ε̄r,t(f) :=

∑
m∈I 1{Rm = r}Mm,t

(
Ym,t − ft(Z̃m)

)∑
m∈I 1{Rm = r}Mm,t

.

We then define
Rinv(f) :=

∑
t∈T

Varr∈Rtrain

(
ε̄r,t(f)

)
,

where Rtrain is the set of recipes appearing in the training split and Var is
computed with recipe weights proportional to the number of labeled points
for that task. This penalty is minimal when residual means align across
recipes, which is a weak but empirically useful proxy for recipe-invariant con-
ditional expectations. One may strengthen the notion by penalizing recipe
dependence of richer residual summaries, e.g., by matching residual quantiles

14

across recipes or by fitting a recipe classifier on residuals and adversarially
minimizing its accuracy; we restrict attention to the mean-based penalty be-
cause it is stable in the sparse-label regime and interacts cleanly with convex
model classes.

We choose λ by cross-recipe validation: we hold out entire recipes (or,
when recipes are few, hold out entire runs within each recipe) and select λ
to minimize worst-case validation error over held-out environments. This
selection criterion aligns with our objective of controlling cross-recipe gener-
alization rather than average within-recipe fit.

Model classes. We consider three nested predictor families F , trading off
interpretability, monotonic structure, and flexibility.

(i) Linear models. The simplest choice is task-wise linear prediction

ft(z̃) = w⊤
t z̃ + bt,

fitted with ridge regularization Ω(f) =
∑

t ∥wt∥22. This model is attrac-
tive for two reasons: (a) it yields transparent feature attributions in the
proxy coordinates, and (b) it supports finite-sample bounds under standard
sub-Gaussian assumptions (cf. Thm. 1). In the multi-task setting we op-
tionally impose structured sharing across tasks, e.g., a group-lasso penalty∑K

k=1 ∥(wt,k)t∈T ∥2 to encourage a common subset of informative proxies.
Such sharing is beneficial when some tasks have few labels, since it borrows
statistical strength through feature selection rather than forcing identical
task functions.

(ii) Monotone generalized additive models (GAMs). Linear models can
underfit when proxy–metric relationships saturate or exhibit threshold ef-
fects. A GAM represents each task as

ft(z̃) = bt +

K∑
k=1

gt,k(z̃k),

where each gt,k is a univariate smooth function (e.g., cubic spline or piecewise-
linear basis) and Ω(f) penalizes curvature or total variation. Crucially,
GAMs admit coordinate-wise monotonicity constraints on selected proxies.
Since most proxy coordinates are losses or NLLs, it is often reasonable (in the
post-emergence regime) to require that decreasing a loss should not decrease
predicted downstream performance. Formally, for a designated monotone
set K↑ ⊆ [K] we enforce g′t,k(·) ≤ 0 (nonincreasing) for k ∈ K↑. In practice
we implement this by constraining the spline coefficients to yield nonpositive
finite differences on a fixed grid. We stress that monotonicity is a modeling
choice rather than a theorem: we enable it only for proxies whose measure-
ment protocol is stable and whose relationship to the task is empirically
monotone on held-out recipes.

15

(iii) Small monotone MLPs. When interactions between proxies are
essential (e.g., a task improves only when both code loss and tool-format
probe NLL cross certain thresholds), additive structure can be too restric-
tive. We therefore also consider a small neural predictor with a shared
trunk h : RK → Rm and task-specific heads ft(z̃) = a⊤t h(z̃) + bt. To
preserve monotonicity in selected coordinates, we use a constrained archi-
tecture: weights from monotone coordinates are parameterized to be non-
negative (via softplus reparameterization), activations are monotone (e.g.,
ReLU or softplus), and the overall sign is chosen so that lower losses map
to higher predicted scores (equivalently, we input −z̃k for loss-like coordi-
nates). This yields a coordinate-wise monotone function for the designated
subset while allowing unconstrained coordinates (e.g., context-length indica-
tors or compute) to enter freely. Compared to unconstrained MLPs, we find
that imposing even partial monotonicity materially reduces cross-recipe brit-
tleness, consistent with the hypothesis that many recipe changes primarily
affect the rate at which proxy losses decrease rather than the directionality
of their relationship to downstream competence.

Incorporating compute and checkpointing. Although our predictors
are defined as functions of Z alone under H1, in finite data it is often useful to
include a scalar compute proxy (e.g., logC) as an additional coordinate. This
allows the model class to represent residual learning dynamics not captured
by the proxy suite (for instance, systematic late-training improvements on a
task even after proxies plateau). When compute is included, we treat it as a
non-monotone coordinate by default, since different recipes can shift learning
speed; invariance regularization then encourages the predictor to rely on
compute only insofar as it provides recipe-stable information conditional on
the other proxies.

Practical diagnostics. After fitting f̂ , we compute recipe-wise residual
summaries on held-out runs and verify that (i) residual means are near zero
and exhibit low between-recipe variance, and (ii) large residuals are not
concentrated on a single recipe or proxy region. When these diagnostics
fail, we interpret it as evidence either that H1 is violated for the current
proxy suite Π or that the model class F is misspecified; in either case, the
subsequent uncertainty and OOD procedures are expected to activate, and
we treat the mapping as unreliable for extrapolation to new recipes.

Uncertainty quantification with correlated checkpoints. Our pre-
dictor f̂ yields a point estimate f̂t(z̃) for each t ∈ T , but for decision-making
we require calibrated uncertainty that remains valid when checkpoints within
a run are temporally correlated. We therefore adopt a split-conformal con-
struction in which the exchangeable units are entire runs (or, more finely,

16

nonoverlapping blocks of checkpoints whose length exceeds the correlation
time). Concretely, we partition the set of runs into disjoint training and
calibration sets, Jtr ∪ Jcal, fit f̂ on Jtr as in §5, and calibrate intervals us-
ing only Jcal. This run-wise split is essential: it prevents leakage through
highly correlated checkpoints and provides the exchangeability required by
the conformal validity argument.

Block aggregation and nonconformity scores. Fix a block length
τ ∈ N. For each calibration run i ∈ Jcal, we partition its checkpoints
into nonoverlapping blocks Bi,1, . . . , Bi,Bi , where each block contains τ con-
secutive checkpoints (except possibly the final remainder, which we drop
for simplicity). Within each block, we define a representative proxy Z̄i,b;
in practice we take either the proxy at the final checkpoint of the block
(to preserve a forward-looking interpretation) or the block average Z̄i,b :=

1
|Bi,b|

∑
s∈Bi,b

Z̃i,s, which reduces measurement noise. When a task label is
available at some checkpoint in the block, we analogously define a represen-
tative label Ȳi,b,t (e.g., the label at the final checkpoint in the block, or an
average if multiple evaluations occur within the block). We then compute
absolute-residual nonconformity scores

Ei,b,t :=
∣∣Ȳi,b,t − f̂t(Z̄i,b)

∣∣ for all observed (i, b, t).

When labels are sparse, many triples (i, b, t) are missing; we simply calibrate
each task t on the available block-level residuals for that task, and we record
the corresponding calibration sample size mt.

The role of τ is to ensure that {Ei,b,t}b behaves approximately as an i.i.d.
sequence within each run after aggregation. For theoretical statements it is
cleanest to treat each run as contributing at most one exchangeable score,
e.g.,

Si,t := max
1≤b≤Bi

Ei,b,t,

which yields simultaneous validity for all blocks within the run. In practice,
using all nonoverlapping blocks typically improves efficiency; we view this as
replacing the raw sample size by an effective sample size governed by τ , in
the spirit of the Neff abstraction used in our bounds.

Split-conformal intervals (marginal coverage). For each task t, let
{Si,t}i∈Jcal

denote the calibration scores (one per calibration run, using the
within-run maximum as above, and ignoring runs with no labels for task t).
Let mt be the number of available calibration runs for task t, and define the
conformal quantile

qt := Quantile1−α

(
{Si,t}i∈Jcal

)
= the ⌈(mt + 1)(1− α)⌉ -th smallest value.

17

We then report the symmetric prediction interval

[ℓt(z̃), ut(z̃)] :=
[
f̂t(z̃)− qt, f̂t(z̃) + qt

]
.

Under exchangeability of runs within the in-family distribution and the run-
wise split, the standard split-conformal argument applies with runs as the ex-
changeable units, yielding the marginal coverage guarantee stated in Thm. 3.
We emphasize that we do not require f̂ to be correct; conformal calibration
corrects whatever systematic miscalibration remains on the calibration runs,
provided the new run is drawn from the same in-family distribution.

When heteroskedasticity is pronounced (e.g., residual scale varies across
proxy regions), we optionally use a normalized score Ei,b,t/ŝt(Z̄i,b), where
ŝt is a learned scale model fitted on training data, and then multiply the
calibrated quantile by ŝt(z̃) at inference time. This is a standard variance-
stabilization step and preserves validity when the score is computed consis-
tently on calibration and test.

Multiple tasks and simultaneous statements. The above intervals are
marginally valid per task. If we require a family-wise statement over T (e.g.,
all task outcomes lie within their respective intervals with probability at least
1 − α), we may use a Bonferroni correction by calibrating with level α/|T |
for each task, or we may calibrate a single joint score such as

Sjoint
i := max

t∈T

Si,t

q̂
(0)
t

,

where q̂
(0)
t is a preliminary scale (e.g., the median of Si,t), and then inflate

all task-wise radii by the calibrated quantile of Sjoint
i . We use the joint

construction when a single conservative uncertainty budget is desired across
metrics.

Residual-based out-of-family detection. Intervals alone do not dis-
tinguish “hard but in-family” from “mapping failure due to recipe shift.”
We therefore add an OOD procedure that is explicitly tied to Hypothe-
sis H1. Suppose that for a new recipe rnew we can afford a small number
of downstream evaluations at selected checkpoints, yielding block-level pairs
(Z̄new,b, Ȳnew,b,t). We compute scores Enew,b,t = |Ȳnew,b,t − f̂t(Z̄new,b)| and an
aggregated run score Snew,t := maxbEnew,b,t. For each t, we form a conformal
p-value

pt :=
1 +

∑
i∈Jcal

1{Si,t ≥ Snew,t}
mt + 1

.

Under the in-family exchangeability assumption, pt is super-uniform, hence
thresholding pt ≤ γ controls the false-positive rate at level γ for each task.
To obtain a single binary flag, we may combine evidence across tasks by

18

pmin := mint∈Teval pt on the subset Teval of tasks actually evaluated for the
new run, and apply a Holm–Bonferroni correction (or, more simply, compare
pmin to γ/|Teval|). Intuitively, if H1 holds then residual behavior on the
new recipe should be statistically indistinguishable from calibration residual
behavior; repeated exceedances indicate that the mapping from proxies to
outcomes has drifted beyond what calibration witnessed.

Proxy-distribution shift tests without labels. When downstream la-
bels are unavailable (or too sparse for meaningful residual tests), we still
wish to detect gross departures in proxy space. We treat OOD detection as
a conformal membership test in the proxy distribution: define a nonconfor-
mity score A(z) that is large when z is atypical under calibration proxies,
for instance

A(z) := min
m∈Ical

∥z − Z̃m∥2 or A(z) := (z − µ̂)⊤Σ̂−1(z − µ̂),

where Ical indexes calibration blocks and (µ̂, Σ̂) are estimated on calibration
proxies. For a new run we compute A(Z̄new,b) across blocks and aggregate
via Anew := maxbA(Z̄new,b). We then compute a p-value by ranking Anew

among the analogous calibration run scores. Under exchangeability, this p-
value is again super-uniform, yielding a controlled false-positive OOD flag.
This test detects recipes that induce proxy vectors outside the calibration
manifold (e.g., different tokenization, radically different curricula, or context-
length regimes that alter probe behavior), even before we spend budget on
downstream benchmarks.

Interpretation and failure modes. If the proxy-shift test fires but resid-
ual tests cannot be run, we interpret the recipe as out-of-support in proxy
space and decline to extrapolate. If proxy-shift does not fire but residual
tests do, we interpret this as a direct violation of H1: the proxy suite may be
insufficient to capture recipe-dependent changes that matter for downstream
tasks (cf. the impossibility phenomenon formalized later for scalar proxies).
Finally, if neither fires, we treat the new recipe as in-family and rely on the
conformal intervals as our operational uncertainty quantification mechanism.

6 Theory: guarantees and limitations

Block-dependent observations and an effective sample size. We
formalize the dependence induced by temporally adjacent checkpoints by as-
suming that, within a run i, the sequence {(Zi,s, Yi,s,·)}s≥1 is τ -dependent
or at least strongly mixing with correlation time τ . After block aggrega-
tion at length τ , we obtain approximately independent block-level samples
{(Z̄i,b, Ȳi,b,·)}Bi

b=1 within each run. Let n denote the number of independent

19

runs and let B :=
∑n

i=1Bi be the number of blocks contributing labels. We
summarize the usable statistical information by an effective sample size Neff ,
which one may take as Neff := B in the idealized i.i.d. block model, or more
conservatively Neff :=

∑n
i=1min{Bi, 1} if we treat each run as contributing a

single exchangeable unit. All of our rates are stated in terms of Neff , thereby
separating temporal-correlation modeling from the predictor analysis.

Upper bounds under proxy invariance: linear special case. We
first consider the regime in which proxy invariance holds exactly and the
conditional mean is linear. Fix a task t ∈ T and assume

Yt = w⋆⊤
t Z + b⋆t + ϵt, E[ϵt | Z,R] = 0, ϵt is σ-sub-Gaussian,

with the same (w⋆
t , b

⋆
t) for all recipes r ∈ R. If we fit a pooled ridge estimator

f̂t(z) = ŵ⊤
t z + b̂t on block-aggregated training data (with run-wise splitting

as above), standard concentration for ridge regression yields a finite-sample
error bound of the form

E(Z,Y)∼rnew

[
(f̂t(Z)− Yt)

2
]
≤ c · σ

2K log(1/δ)

Neff
(1)

with probability at least 1 − δ, for a numerical constant c > 0 depending
on regularization and mild moment conditions on Z. A union bound over
t ∈ T converts (1) into a simultaneous statement for all tasks by replacing δ
with δ/|T |. In particular, to achieve mean-squared prediction error at most
ε2 (ignoring constants), it suffices that

Neff ≳
σ2K log(|T |/δ)

ε2
.

The salient point is that, under invariance, cross-recipe transfer is not an
additional difficulty beyond the usual K/Neff scaling: once Z is informative
and the mapping is shared, we can pool across recipes without bias.

Beyond linearity: complexity control and invariance regulariza-
tion. For a general predictor class F (e.g., multi-task MLPs, kernel meth-
ods, or monotone additive models), the same structure persists with the
parametric factor K replaced by a suitable complexity measure (Rademacher
complexity, covering numbers, or stability bounds for the chosen optimizer).
Concretely, let f̂ be an empirical risk minimizer over F on training runs, op-
tionally augmented with a recipe-invariance penalty that discourages recipe-
dependent mean residuals. Under exact proxy invariance (Hypothesis H1)
and standard uniform convergence assumptions, we obtain for each t a de-
composition

E
[
(f̂t(Z)−Yt)

2
]
≤ E

[
(f⋆

t (Z)− Yt)
2
]︸ ︷︷ ︸

irreducible noise

+ O(Comp(F)/Neff)︸ ︷︷ ︸
estimation

+ OptErr(f̂ ;F)︸ ︷︷ ︸
optimization/approximation

,

20

where Comp(F) is an appropriate complexity term. The invariance penalty
is not required for validity when H1 is true, but it improves robustness when
recipes are heterogeneous in marginal proxy distribution: it suppresses pre-
dictors that interpolate spurious recipe identifiers through Z and thereby
reduces the variance of cross-recipe extrapolation.

Bounded recipe drift and the bias–variance tradeoff. Exact invari-
ance is an idealization; we therefore quantify controlled violations. Assume
that for each recipe r and task t,

E[Yt | Z = z,R = r] = f⋆
t (z) + ∆t,r(z), sup

z
|∆t,r(z)| ≤ η.

Then any estimator f̂ with an in-family estimation error bound (e.g., (1) in
the linear case) obeys the bias–variance inequality

E
[
(f̂t(Z)− Yt)

2
]
≤ O

(
σ2Comp

Neff

)
+ O(η2),

where Comp = K log(1/δ) in the ridge setting. The term η2 is irreducible
from in-family data: it represents recipe-specific systematic deviation not
captured by Z. This decomposition clarifies the role of our OOD procedures.
Residual-based flags are, in effect, tests for whether η for rnew is small enough
that conformal calibration remains informative; proxy-shift flags are tests for
whether rnew lies outside the proxy support on which f⋆ was learned. In both
cases the theoretical message is the same: when drift is bounded, prediction
error degrades gracefully; when drift is unbounded, no method can guarantee
accuracy without additional labels.

Lower bound: scalar loss cannot be uniformly recipe-invariant.
We next formalize a limitation that motivates a multi-dimensional proxy
suite. Consider a latent decomposition Z = (U, V) where U controls average
validation loss and V controls a downstream capability (e.g., tool format-
ting), and assume the scalar proxy S is a function only of U (e.g., S = Lavg).
We construct two recipes r1, r2 such that U has the same distribution under
both recipes, hence S is identically distributed, but the distribution of V
differs so that E[Yt | R = r1] − E[Yt | R = r2] = ∆ for some ∆ > 0. Then
any predictor g(S) cannot distinguish r1 from r2 and must incur worst-case
absolute error at least ∆/2 on one of them:

max
{
Er1

[
|g(S)− Yt|

]
, Er2

[
|g(S)− Yt|

]}
≥ ∆/2.

This impossibility persists even with infinite data, because it is information-
theoretic: the scalar proxy discards a degree of freedom that recipes can
manipulate without changing loss. The practical consequence is that “valida-
tion loss only” early stopping or model selection cannot be uniformly reliable

21

across curricula or context/token regimes; targeted probes are required to
restore identifiability of the mapping.

(Optional) proxy suite selection: hardness and approximations.
Finally, we note that choosing which proxies to include is itself combinato-
rial. Given a library of m candidate proxies and a budget K, selecting the
subset that minimizes worst-case cross-recipe prediction error is NP-hard
even for linear predictors, by reduction from sparse subset selection or Set
Cover: recipes/tasks induce constraints that can be satisfied only if partic-
ular proxies are included, and deciding whether K proxies suffice encodes
the cover decision. Accordingly, we do not seek an optimal suite. Instead,
we either (i) fix a standardized suite Π informed by domain knowledge, or
(ii) replace the true objective with a submodular surrogate (e.g., mutual
information under a Gaussian model), in which case the greedy algorithm
achieves a (1− 1/e)-approximation under a cardinality constraint. This jus-
tifies the pragmatic stance that proxy design should be stable and auditable,
while learning and calibration handle the remaining statistical uncertainty.

Experimental protocol (planned; strengthening evidence). We out-
line a small-scale but multi-recipe experimental protocol intended to stress-
test Hypothesis H1 and the full PROXY-MANIFOLD pipeline (prediction,
interval calibration, and OOD flagging) under realistic logging constraints.
Our goal is not to maximize absolute task scores, but to measure cross-recipe
predictability of downstream behavior from cheap proxies, and to quantify
the decision value of such predictions for early stopping and evaluation allo-
cation.

Recipes and runs. We instantiate a finite family Rexp ⊂ R of recipes
that vary along axes known to induce nontrivial training dynamics: optimizer
family and momentum (AdamW vs. Adafactor), learning-rate schedule shape
(cosine vs. linear warmup/decay), token/parameter ratio, curriculum order
(domain mixing weights over time), context length regime (fixed vs. staged
increases), and (optionally) minor architectural knobs that do not obviously
change representational capacity (e.g., activation checkpointing or attention
implementation details). For each r ∈ Rexp we run nr independent seeds,
each producing a checkpoint trajectory {Zi,s, Yi,s,·}s with dense proxy logging
and sparse downstream evaluation. We choose the total number of training
runs n =

∑
r nr to be large enough that run-wise splits yield a nontrivial

calibration set; in particular, calibration is performed only on held-out runs
to preserve exchangeability at the run level.

22

Proxy logging and downstream evaluation schedule. At every check-
point s (or at a fixed cadence), we compute the proxy vector

Zi,s =
[
{Ld}d∈Πdom

, {Qj}j∈Πprobe

]
∈ RK ,

where Πdom are curated domain validation losses and Πprobe are targeted
probe NLLs. Downstream task evaluations Yi,s,t are expensive; we therefore
evaluate them on a sparse schedule designed to decouple the measurement
problem from the training problem. Concretely, for each run we evaluate
(i) a small fixed set of anchor checkpoints (early/mid/late), plus (ii) a small
number of randomly selected checkpoints, yielding sparse labels that are ap-
proximately uniform over training compute C. This schedule supports both
point-prediction training and calibrated intervals while reducing the risk that
our predictor learns an artifact of a deterministic evaluation cadence.

Cross-recipe transfer and held-out recipe tests. To test whether
learned mappings are genuinely recipe-invariant rather than interpolating
recipe identifiers, we conduct two complementary generalization evaluations.
First, we perform leave-recipe-out validation: we train f̂ on runs from Rtrain ⊂
Rexp and evaluate on a disjoint set of recipes Rtest, reporting prediction error
for each t ∈ T and each held-out recipe. Second, we test within-recipe gener-
alization by holding out runs (seeds) but not recipes. The gap between these
two regimes quantifies the extent to which recipe drift dominates ordinary
estimation error. We report per-task metrics (MSE, MAE, rank correlation
over checkpoints) and also decision-centric metrics (below). When intervals
[ℓt(Z), ut(Z)] are produced, we report empirical coverage and interval width,
both aggregated across tasks and stratified by recipe, to diagnose whether
miscoverage is concentrated in particular recipe families.

OOD flagging evaluation. We operationalize the out-of-family decision
OOD(Z, rnew) by constructing controlled “shift” recipes that violate H1 in
interpretable ways, e.g., curricula that intentionally suppress a capability
probed by some Qj , or data mixtures that induce distributional changes
in proxy coordinates not represented in Rtrain. We then measure (i) false-
positive rate on in-family held-out recipes, and (ii) detection power on these
shifted recipes. Because OOD can be defined via both proxy-shift tests and
residual patterns, we report both components and their conjunction/disjunction.
A practical target is to tune thresholds so that in-family false positives are
rare under run-wise exchangeability, while shifted recipes are flagged early
in training (small C).

Early stopping and evaluation allocation as decision problems. We
evaluate the usefulness of proxy-based prediction by treating checkpoint se-
lection as a decision problem. Fix a target task t. Given a run i with proxy

23

trajectory {Zi,s}s, define the predicted best checkpoint

ŝt = argmax
s∈S

f̂t(Zi,s),

and compare it to the oracle s⋆t = argmaxs Yi,s,t among evaluated check-
points. We report the regret

Regrett = Yi,s⋆t ,t − Yi,ŝt,t,

averaged across runs and stratified by recipe. In addition, we evaluate an
interval-aware policy that selects the earliest checkpoint s such that the pre-
dicted lower confidence bound exceeds a target threshold, thereby converting
calibrated intervals into a compute-saving rule. This yields a direct estimate
of compute saved (in terms of C or number of checkpoints evaluated) at fixed
expected task performance.

Baselines: FLP and FLP-M. We compare against two intentionally
constrained baselines that reflect common practice. FLP (“scalar loss pre-
dictor”) uses only a scalar Si,s such as average validation loss/perplexity (or
a small set of global losses aggregated into one number) and fits gt(S) to
predict Yt. FLP-M (“multi-loss predictor”) uses the vector of domain losses
{Ld}d∈Πdom

but excludes targeted probes {Qj}; it therefore tests whether
probes add value beyond domain coverage. All predictors are trained with
the same run-wise splitting and are calibrated with the same block-conformal
procedure (i.e., the difference is the feature set, not the interval method). We
additionally report a trivial baseline that predicts Yt from training compute
C alone, which quantifies how much of the signal is explained by time.

Ablations and stress tests. To isolate which parts of the proxy suite
matter, we ablate (i) probes only, (ii) domains only, and (iii) individual
proxy coordinates grouped by capability/domain. We also vary label spar-
sity (number of downstream evaluations per run) and the block length τ used
in calibration, to confirm that interval validity is robust to reasonable choices
of dependence modeling. Finally, we conduct a “bounded drift” sweep by con-
tinuously interpolating between two recipes (e.g., linearly mixing curricula
schedules) and plotting prediction error as a function of recipe distance; this
empirically probes whether degradation is graceful, as suggested by the bias
term induced by drift.

Limitations and extensions. We emphasize that Hypothesis H1 is a
modeling assumption rather than an identity, and the utility of PROXY-
MANIFOLD depends on how well the proxy suite Π controls the relevant
axes of variation induced by changing recipes. In particular, even when Π

24

is held fixed, changes to data mixture, curriculum ordering, tokenizer, con-
text window, or optimization may alter E[Yt | Z = z,R = r] in ways not
representable as bounded drift. Thus, our guarantees should be read condi-
tionally: when run-level exchangeability is plausible and when the mapping
from proxies to tasks is approximately stable across the recipe family, we can
obtain accurate predictions with calibrated uncertainty; when these condi-
tions fail, we expect OOD flags or miscoverage, and the correct response is
to enlarge Π, restrict R, or increase downstream labeling.

Proxy sufficiency and unobserved confounding. A core limitation
is that Z may be insufficient for Y across recipes: there may exist latent
factors U affected by recipe choices that influence downstream behavior but
are not captured by {Ld} and {Qj}. Formally, even if for each fixed recipe
r we have E[Yt | Z = z,R = r] = ft,r(z), the existence of a recipe-invariant
f⋆
t requires ft,r ≡ f⋆

t for all r in-family. If ft,r varies in directions that do
not induce detectable proxy shifts (cf. Thm 4), then residual-based OOD
tests may have low power. This is the principal reason we advocate (i) a
multi-coordinate suite Π that spans distinct capability axes, and (ii) explicit
reporting of miscoverage stratified by recipe family, since average coverage
can hide systematic failures concentrated on particular recipes.

Extensions to multimodal training. In multimodal settings (e.g., text–
image, text–audio, or video), the natural extension is to treat Z as a con-
catenation of modality-specific and cross-modal proxies. Concretely, we may
define

Z =
[
Ztext, Z img, Zaud, Zxmod],

where Z img includes curated image-domain losses (captioning, VQA-style
losses on fixed validation sets) and probe NLLs for visual grounding markers,
while Zxmod includes alignment probes (e.g., likelihood of correctly binding
entities across modalities under controlled synthetic tasks). Two technical
complications arise. First, proxy computation is no longer uniformly cheap:
some multimodal probes require expensive encoders/decoders or large input
resolutions, so the O(K) cost model becomes heterogeneous and can domi-
nate logging. Second, the definition of a “domain loss” Ld can be ambiguous
across modalities (e.g., likelihood vs. contrastive losses), and we must ensure
that the proxy coordinates remain comparable across recipes that change
the multimodal objective. A practical extension is therefore to standardize
Π in terms of fixed evaluation protocols (frozen preprocessing, fixed decod-
ing, fixed scoring) rather than in terms of the training objective, so that Z
remains an external measurement rather than an internal training artifact.

Extensions to tool-use and agentic traces. When models interact with
tools (retrieval, code execution, browsers), a checkpoint induces not only to-

25

ken likelihoods but also distributions over action traces, which we may denote
by A. A naive approach is to include in Π probe NLLs for tool-call syntax;
however, syntactic compliance is not sufficient for functional tool use. We
therefore consider trajectory-level proxies computed from a controlled envi-
ronment with fixed prompts and deterministic tool backends: success rates,
step counts, tool error incidence, and likelihood of reference actions under a
teacher policy. One can represent these as additional coordinates Qtool

j (e.g.,
negative log-likelihood of a canonical tool-call sequence, or a calibrated sur-
rogate loss for environment reward). The main limitation is dependence: A is
generated by closed-loop interaction, so checkpoint evaluations can have high
variance and strong within-run correlation, requiring larger block lengths τ
(or run-level aggregation) for valid intervals. Moreover, tool traces intro-
duce a new kind of recipe shift: changes in system prompts, tool schemas,
or decoding constraints can change E[Y | Z] without changing Z computed
on static text domains, so Π must include probes that are invariant to these
interface changes or explicitly include interface descriptors as covariates.

Interactions with data mixtures and curricula. Domain losses {Ld}
are themselves defined on curated datasets, which are typically proxies for
(and not identical to) the pretraining mixture. If recipes vary data mixtures,
then there are two distinct effects: (i) the marginal distribution of Z changes
(covariate shift), and (ii) the conditional mapping z 7→ E[Yt | Z = z] may
change (concept shift) because the same measured losses can correspond to
different internal representations depending on what was emphasized dur-
ing training. We view the bounded-drift model (Thm 2) as a first-order
approximation of such effects, but it can be violated when curricula induce
discrete phase changes (e.g., delayed emergence of in-context learning) or
when mixture changes create capability trade-offs not tracked by Π. A prin-
cipled extension is to augment Z with mixture descriptors m(r) (e.g., the
mixture weights over a fixed taxonomy, or summary statistics of the data
stream) and to learn ft(z,m) with a regularizer that penalizes sensitivity to
m within a trusted range. This does not eliminate drift, but it can convert
an unmodeled shift into a modeled covariate.

Failure modes of prediction and calibration. We highlight several
concrete failure modes. (i) Proxy gaming: if proxy datasets or probes are
leaked into training, or if a recipe overfits them, then Z can improve without
corresponding improvement in true downstream behavior, breaking H1 in a
way that may evade proxy-shift tests. (ii) Non-monotonic trajectories: for
some tasks, downstream performance can temporarily degrade even as most
losses improve; monotonicity constraints, if imposed, can then induce biased
predictions and overconfident intervals. (iii) Task-dependent heteroskedastic-
ity: the residual variance σ2 can depend on z (e.g., higher variance early in

26

training), in which case symmetric conformal intervals may be unnecessarily
wide late in training or too narrow early. A straightforward remedy is to
calibrate nonconformity scores that depend on Z (e.g., normalized residuals
using a learned scale model), while preserving run-wise exchangeability in
the calibration split.

Limitations of OOD flagging. Our OOD procedure is necessarily par-
tial: a proxy-distribution test detects shifts in Z, and a residual test detects
violations of the learned mapping f̂ on labeled checkpoints, but neither de-
tects all harmful shifts. In particular, if a new recipe changes downstream
behavior while keeping both the proxy distribution and the residuals on the
limited labeled set approximately unchanged, then any method based on D
and Π will fail to flag (an identifiability limitation analogous to Thm 4).
Accordingly, we treat OOD(Z, rnew) as a screening tool rather than a safety
certificate. A practical extension is to include an adaptive labeling rule:
when the proxy-shift p-value is small or when predicted intervals widen
abruptly, we trigger additional downstream evaluations to increase the power
of residual-based detection.

Governance implications and safe use. Because proxy-based predic-
tion can reduce benchmark evaluation, it creates an incentive to substitute
cheap proxies for expensive measurements. We regard such substitution as
inappropriate for deployment decisions: f̂ and its intervals are informative
for allocation (what to evaluate next, where to early-stop, which recipes to
prioritize), but they do not replace direct measurement of Y on the target
tasks. Moreover, widespread sharing of Π and probe datasets can induce
Goodhart effects, so any release should include guidance that probes are not
training targets and should be monitored for contamination. Finally, report-
ing should explicitly separate (a) predictive performance within the in-family
recipe set, (b) coverage diagnostics, and (c) OOD rates under specified shifts;
without such stratification, there is a risk that aggregate numbers obscure
systematic blind spots. In settings with high-stakes downstream impact,
we recommend coupling PROXY-MANIFOLD with mandatory periodic full
evaluations and with documentation of recipe changes, so that changes to
the operational environment are treated as potential OOD events rather than
silently absorbed by the predictor.

Artifact release: proxy harness, reference probes, evaluation scripts,
and reporting standard. To make PROXY-MANIFOLD operational rather
than purely conceptual, we release a complete artifact bundle whose pur-
pose is to render the proxy vector Z and the associated inference pipeline
(f̂ , [ℓt, ut], OOD) reproducible across organizations and across time. Con-
cretely, the bundle comprises: (i) a proxy harness that computes Zi,s from a

27

checkpoint, (ii) reference datasets defining the proxy suite Π (both curated
domains {Ld} and probes {Qj}), (iii) evaluation and calibration scripts im-
plementing training of f̂ , block-conformal interval construction, and OOD
tests, and (iv) a reporting standard specifying what must be disclosed for
proxy-based claims to be interpretable and comparable.

Proxy harness. The proxy harness is a deterministic evaluation layer
which takes as input a checkpoint θi,s, a proxy suite definition Π, and a
configuration specifying decoding/scoring conventions, and returns a serial-
ized proxy vector Zi,s ∈ RK . Our design goal is that Zi,s be an external
measurement rather than a byproduct of training, hence the harness fixes:
tokenization, prompt templates, truncation rules, batching, precision, and
reduction (mean NLL/perplexity). For each curated domain d ∈ Πdom, the
harness computes a validation loss Ld(θi,s) on a pinned dataset snapshot
with pinned preprocessing. For each probe j ∈ Πprobe, the harness computes
Qj(θi,s), typically as an NLL on a synthetic or semi-synthetic set with a fixed
format (e.g., tool-call syntax, retrieval markers, or structured outputs). We
include a reference implementation for both left-to-right likelihood models
and instruction-tuned chat models; in the latter case we standardize a “single-
turn scoring” convention so that Qj is well-defined even when the training
objective is not pure next-token prediction. The harness emits, in addition
to Zi,s, an evaluation manifest containing software versions, dataset hashes,
and an evaluation seed to support exact re-runs.

Reference datasets and probe definitions. We release the proxy suite
Π as a versioned object consisting of (a) a list of domains d with dataset
pointers and evaluation splits, and (b) a list of probes j with generation
code and scoring code. For the domains, we favor small, contamination-
resistant validation sets curated to span distinct axes (e.g., code, formal
math, conversational instruction following, multilingual text), and we pub-
lish exact sample IDs and cryptographic hashes to prevent silent drift. For
the probes, we release both the data (when static) and the generator (when
procedurally defined), together with a formal specification of what consti-
tutes a correct/target continuation. Since probes are especially vulnerable
to Goodhart effects, we separate each probe into a public component (tem-
plate family, scoring rule, intended capability axis) and an optional withheld
component (private instantiations used only for auditing), and we docu-
ment which results rely on which component. We further include lightweight
contamination checks: given a training corpus snapshot, one can compute
exact-match rates or approximate nearest-neighbor overlap against Π, and
the harness will warn if overlap exceeds a declared threshold.

28

Evaluation scripts: fitting, calibration, and OOD. We provide scripts
that reproduce the full pipeline from logs D to deployable predictors. Given a
dataset D = {(ri, i, s, Zi,s, Yi,s,·)}, the scripts enforce run-wise splits (train/calibration/test)
at the level of the index i to avoid leakage across correlated checkpoints.
They implement the fitting step for several baseline model classes F (ridge,
monotone GAMs, and shallow MLPs) and the invariance penalty described
in the algorithmic template. For uncertainty, the scripts implement block-
conformal calibration with user-specified block length τ , supporting both
checkpoint-level blocks and run-level aggregation; the output is [ℓt(Z), ut(Z)]
for each t ∈ T , together with empirical coverage diagnostics on held-out runs.
For OOD, we include two complementary tests: (i) a proxy-shift test based
on conformal p-values in Z-space (with options for learned embeddings or
whitening), and (ii) a residual-based test that triggers when the new run ex-
hibits an atypical frequency of interval violations on a small labeled subset.
All scripts write a single machine-readable “model card” artifact contain-
ing Π version, f̂ parameters, calibration quantiles qt, and the chosen OOD
thresholds, so that downstream consumers can apply the predictor without
re-fitting.

Reproducibility, versioning, and governance of changes. Because
the intended use is longitudinal (new recipes, new checkpoints), we treat
Π and the harness as versioned standards. Every release includes semantic
versioning, immutable dataset snapshots, and a compatibility table stat-
ing which harness versions can be compared without adjustment. When Π
changes (e.g., a domain is replaced due to contamination), we require a dep-
recation period in which both Π(v) and Π(v+1) are computed for a shared
window of runs, enabling an explicit mapping study of how predictions and
intervals shift. We also provide a “minimal compliance” mode, intended for
organizations unable to disclose full data, which permits reporting only Z,
interval diagnostics, and hashed identifiers, while still allowing external au-
ditors to verify that the proxy computation matches the standard.

Recommended reporting standard. To prevent proxy-based results
from being selectively presented, we specify a reporting template that ac-
companies any claim using PROXY-MANIFOLD. At minimum, we require:

• Proxy suite declaration: the exact Π version, including domain/probe
lists and any withheld components.

• Recipe-family scope: an explicit description of the in-family set
R used to train/calibrate f̂ , including which axes (optimizer, context
length, curriculum, tokenizer) were varied.

• Run accounting: the number of independent runs n, the checkpoint
sampling policy, and the effective sample size estimate Neff (including

29

the chosen τ).

• Predictor specification: the model class F , training objective (in-
cluding any invariance or monotonicity constraints), and hyperparam-
eter selection protocol.

• Interval diagnostics: empirical coverage and average interval width
for each t, reported both in aggregate and stratified by recipe (or recipe
clusters), together with miscoverage concentration statistics.

• OOD behavior: proxy-shift p-values and residual-test outcomes on
held-out recipe families or on declared shift scenarios, with false-positive/false-
negative estimates at the chosen thresholds.

• Downstream anchoring: the subset of checkpoints at which Yi,s,t
was directly measured for training/calibration, and the policy used to
select these checkpoints.

We view these items as the minimal information needed for a reader to assess
whether Hypothesis H1 is plausible for the stated scope and whether the
reported uncertainty is meaningful. Finally, we recommend that all headline
conclusions be accompanied by a “direct-eval” table on a small fixed set of
checkpoints, to ensure that proxy-based extrapolations remain tethered to
actual downstream measurements.

30

	Introduction and Motivation
	Background and Related Work
	Formal Problem Setup
	Proxy Suite Design (Specification)
	Learning Recipe-Invariant Predictors
	Theory: guarantees and limitations

