Low-Rank Multi-Source Data-Mixing Laws for
LLM Pretraining: Identifiable Scaling with O(r K)
Converged Runs

Liz Lemma Future Detective

January 17, 2026

Abstract

FLP and FLP-M show that downstream task performance can be
predicted efficiently by (i) fitting compute-to-loss scaling laws on fully
converged sampling models and (ii) mapping validation loss to per-
formance using intermediate checkpoints. However, FLP-M is only
demonstrated for binary mixtures (general text + code), while 2026-
era pretraining routinely mixes many sources (web subsets, code, math,
synthetic tool traces, multilingual corpora, multimodal transcripts).
Naively generalizing to K sources leads to a combinatorial mixture
space and an intractable number of converged runs. We propose a
many-source mixing law that makes this regime statistically and com-
putationally tractable: domain-specific validation losses obey a log-
linear model whose source-by-domain sensitivity matrix is low-rank,
capturing a small number of latent capability factors that mediate
transfer and overlap between sources. We give (i) an experiment design
for selecting sparse compute allocations that ensures identifiability, (ii)
a nuclear-norm regularized estimator with finite-sample uniform pre-
diction guarantees over the simplex of mixtures, and (iii) matching
minimax lower bounds showing that Q(rK) converged runs are neces-
sary (for constant D). Finally, we demonstrate how the resulting loss
predictor composes with FLP-M’s loss-to-performance stage to forecast
and optimize downstream performance over mixture ratios, substan-
tially reducing required converged sweeps compared to pairwise/binary
baselines. Empirical evaluation on 3-6 sources validates the low-rank
hypothesis and shows improved prediction and mixture optimization,
while simulations illustrate scaling to K~20.

Table of Contents

1. 1. Introduction: why many-source mixtures break binary FLP-M,;
desiderata (identifiable, sample-efficient, optimization-ready); summary
of contributions and guarantees.

[\)

10.

11.

. 2. Background and source context: recap FLP/FLP-M two-stage idea;
why loss is a stable intermediate; why average loss fails under mixtures;
what changes in K-source setting.

tasks; evaluation metrics (uniform loss error; downstream error via Lip-
schitz composition).

4. Model class (Low-Rank Mixing Laws): log-linear scaling with low-
rank coefficient matrix; optional extensions (total-compute term, piece-
wise phases); discussion of interpretability (latent capability factors).

5. Experiment design for identifiability: sparse allocation families;
conditioning of design matrix in log-space; practical recipe for choosing
runs under compute constraints; robustness to near-zero allocations.

6. Estimation algorithm: nuclear-norm regularized multi-response re-
gression; cross-validation for rank/regularization; numerical stability
and constraints (monotonicity in compute).

7. Theory I (Upper bounds): estimation error in Frobenius/operator
norms; uniform-in-mixture prediction bound over simplex; dependence
on r,K,D,n,o,design conditioning.

8. Theory II (Lower bounds): minimax sample complexity; impossibil-
ity without low-rank (or other structure); matching the upper bounds
up to logs and constant factors.

9. Composition to downstream prediction + mixture optimization:
error propagation bound through any Lipschitz loss—performance map
(including FLP-M stage-2 NN); optimization formulations and when
they are convex/tractable; practical algorithms (projected search / BO
on simplex).

10. Experiments (recommended): 3-6 sources real training; ablations
on rank, design, noise; comparison to pairwise/binary laws; mixture
optimization case studies; scaling simulations to K=10-20.

11. Discussion and limitations: misspecification, nonstationary data,
overlap and contamination, extending to continual pretraining and
post-training pipelines; reproducibility artifacts (design + fitting code).

3. Problem formulation: define multi-source compute allocation, converged-
run oracle, domain-loss targets; specify prediction and mixture-optimization

1 Introduction

Modern pretraining pipelines rarely rely on a single homogeneous corpus.
Instead, we allocate a fixed compute budget across a collection of hetero-
geneous sources—web text, code, mathematics, synthetic data, multilingual
corpora, or curated instruction traces—and we seek a mixture that performs
well on a family of downstream domains. The operational question is there-
fore not whether to include a given source, but how to distribute compute
across many sources under a simplex constraint. When the number of sources
is small, one may attempt to resolve this question by direct search or by fit-
ting a low-dimensional response surface; however, as the number of sources
grows, both approaches deteriorate. Direct search becomes combinatorial,
while unrestricted response-surface fitting incurs a parameter blowup and
demands an infeasible number of fully-converged pretraining runs.

Two-stage procedures in the spirit of FLP/FLP-M address the cost of
repeated full pretraining by learning an intermediate predictor from pre-
training signals and then composing it with a (cheaper) map from those
signals to downstream performance. In the binary setting (two sources), this
approach can be implemented by sampling a modest number of mixtures,
measuring a stable intermediate quantity (typically a converged validation
loss), and regressing performance on that intermediate. Yet the binary in-
tuition does not directly extend to the many-source case. First, the space of
mixtures is now (K — 1)-dimensional, so “probing along a line” between two
endpoints no longer explores the relevant directions. Second, naive scalar
summaries such as average validation loss can fail to discriminate mixtures:
two allocations may have the same average loss while exhibiting sharply dif-
ferent losses on the specific domains that matter downstream. Third, the
downstream model used in stage 2 may be well-behaved only on a restricted
region of intermediate signals, and the many-source mixture simplex makes
it difficult to ensure that the training runs populate that region without an
explicit design.

We therefore require a principled generalization that (i) remains identi-
fiable with a small number of converged runs, (ii) yields accurate prediction
uniformly over the simplex of allocations, and (iii) produces a predictor that
is amenable to subsequent optimization over mixtures. A minimal model-
ing choice is to view the converged log-loss on each validation domain as
a function of the log-compute allocation vector, since compute allocation is
multiplicative and empirical scaling laws are typically linear in log-variables.
If one were to fit an unconstrained linear model separately for each domain,
one would estimate a D x K coefficient matrix without additional structure.
This is statistically expensive: absent further assumptions, the number of
degrees of freedom scales as DK, and any method must essentially pay for
each coordinate. Moreover, even if we only care about a small subset of
domains, the induced coefficient vectors can vary in a correlated manner,

suggesting that treating domains independently is wasteful.

Our central structural hypothesis is that the domain-by-source effects are
low-dimensional: there exist only r latent factors that explain how source
allocations translate into improvements across all domains simultaneously.
Concretely, we posit that the D x K coefficient matrix governing log-loss
responses has rank at most r < min{D, K'}. This assumption is both an
inductive bias and an empirical regularity: many domains improve together
when we allocate more compute to certain sources (e.g., code and formal
math), while other domains share sensitivities to different sources (e.g., mul-
tilingual and low-resource text). Low rank captures such shared structure
while permitting domain-specific intercepts and heterogeneous slopes.

We design our approach around the following desiderata.

o [dentifiability under expensive supervision. Each fully-converged train-
ing run is treated as an oracle call producing a D-dimensional vector
of domain log-losses. Since such calls are costly, we must be able to
recover the mixing law from a number of runs far smaller than K times
the number of domains.

o Sample efficiency with uniform guarantees. We require prediction error
bounds that hold uniformly over all feasible allocations, not merely on
the finite set of probed mixtures. Uniform control is necessary for
mixture optimization, where the optimizer will seek maxima at points
not previously queried.

e Optimization readiness. The fitted model should yield a smooth (ide-
ally convex after a change of variables) surrogate objective over the
simplex. At minimum, it must allow reliable gradient-based or pro-
jected methods, and it should make explicit any monotonicity con-
straints (more compute to a source should not worsen loss, within the
modeled regime).

Our contributions align with these requirements. First, we formalize a
mixing law in which each domain log-loss is affine in the log-allocation vector
and the coefficient matrix is low rank. This directly generalizes the binary
mixture view to K sources while preserving an interpretable linear struc-
ture in log-space. Second, we give an experiment design that uses sparse
mixtures: each run assigns substantial compute to a small subset of sources
while keeping the rest at a floor level, thereby producing a design matrix
that is sufficiently diverse for low-rank recovery without requiring dense ex-
ploration of the entire simplex. The sparsity level is chosen to scale with the
latent rank r, reflecting the effective dimension of the model rather than the
ambient dimension K.

Third, we provide a polynomial-time estimator based on nuclear-norm
regularized least squares. This estimator is the natural convex relaxation

for low-rank matrix regression: it shares statistical guarantees with rank-
constrained formulations while avoiding nonconvex optimization over fac-
tored parameters. The resulting predictor has a simple closed form: pre-
dicted log-losses are affine in log C, hence predicted losses are positive after
exponentiation. This form is important for optimization, since it makes the
dependence on allocations explicit and differentiable (away from any imposed
floors on C,).

Fourth, we establish finite-sample guarantees. Under standard sub-Gaussian
noise assumptions and a restricted strong convexity condition on the designed
log-allocations, we bound the estimation error of the coefficient matrix and
translate it into a uniform prediction bound over the entire simplex (with a
small compute floor to control log C'). The dependence of the run complex-
ity on D reflects a key advantage of the setting: each converged run returns
D losses, so increasing the number of measured domains effectively provides
parallel supervision. We complement the upper bound with a minimax lower
bound showing that, even with adaptivity, one cannot in general beat the
scaling in rK/(De?) (up to logarithmic factors) when D is constant. Thus
the proposed procedure is information-theoretically near-optimal within the
stated model class.

Finally, we connect loss prediction to downstream performance predic-
tion. Stage 2 in FLP-M can be viewed abstractly as a map from the vector
of domain log-losses to a scalar performance metric (or a vector of metrics).
When this map is Lipschitz on the relevant region of loss space—as is the case
for linear predictors and for small neural networks with bounded weights on
bounded inputs—uniform loss-prediction error transfers directly to uniform
performance-prediction error. This composition principle justifies treating
converged loss as the stable intermediate signal: the stage-1 predictor can
be trained with a small number of expensive runs, while stage 2 can be fit
with cheaper labels and then safely composed with stage 1.

In addition to prediction, we are ultimately interested in choosing an
allocation. The low-rank log-linear model yields an optimization-ready sur-
rogate: optimizing a downstream objective over the simplex can be carried
out by projected methods, and in special cases (e.g., concave objectives in
the negative log-losses) the problem becomes convex after transforming vari-
ables to log-allocations. When the downstream map is unrestricted, global
optimization can be computationally hard; our framework isolates this dif-
ficulty from the estimation problem by providing accurate and efficiently
evaluable predictions, so that mixture search can proceed empirically with
clear statistical guarantees on the underlying response model.

In summary, we provide a mathematically explicit route from binary
mixture heuristics to a many-source regime: we replace scalar summaries
by a vector of domain losses, impose low-rank structure to avoid combina-
torial sample complexity, design sparse mixture experiments to satisfy the
needed conditioning, and obtain uniform prediction guarantees suitable for

subsequent mixture optimization and downstream composition. The result
is a sample-efficient, optimization-compatible generalization of FLP-M that
scales with the intrinsic latent dimension rather than the number of sources.

2 Background and source context

Two-stage mixture selection procedures arise from a pragmatic constraint: a
single fully-converged pretraining run can be orders of magnitude more ex-
pensive than any auxiliary measurement performed during or after training.
The FLP paradigm exploits this asymmetry by introducing an intermedi-
ate quantity that is (i) inexpensive to measure for a trained model and (ii)
predictive of downstream performance. One then spends a small number
of expensive runs to learn how the intermediate quantity varies with the
mixture, and a larger number of cheap labels to learn how downstream per-
formance varies with the intermediate quantity. The resulting composite
predictor can be optimized over mixtures without requiring an exhaustive
search over fully-converged runs.

In the binary mixture setting, the intermediate quantity is often taken
to be a validation loss measured on a fixed held-out distribution. Let us
write C' € Ri for the compute allocated to each of two sources under a fixed
budget, and let L(C) denote a converged validation loss for a particular ref-
erence domain. The stage-1 task is to fit an empirical relation C' +— L(C)
from a modest number of mixtures (often sampled along the line segment
joining the two extreme allocations), while stage 2 fits a function h such
that downstream performance is approximated by h(L). This decomposi-
tion is attractive precisely because stage 2 can be trained using substantially
cheaper supervision: for example, one may label many intermediate check-
points, many prompt suites, or many downstream tasks, while only rarely
paying the cost of full pretraining. The essential idea is to avoid repeatedly
paying for the same expensive signal (the dependency of the converged model
on mixture) when one merely wishes to reweight the downstream objective.

The principal reason that validation loss is a natural intermediate is
stability. First, converged losses tend to be low-variance compared to down-
stream metrics that depend on finicky evaluation pipelines, decoding choices,
or task-specific idiosyncrasies. Second, loss is dense in the sense that a single
trained model yields many loss evaluations across domains essentially for free
once one has fixed the evaluation suites. Third, loss is connected to training
dynamics: at least within a pretraining regime and architecture class, de-
creases in relevant domain losses tend to correlate with improvements in a
wide range of downstream measures. In particular, if we model downstream
performance as a Lipschitz (or otherwise regular) function of a vector of do-
main losses, then small uniform errors in the loss predictor translate directly
into small errors in performance prediction. This is the sense in which loss

can serve as an information-bearing sufficient statistic for mixture selection,
while downstream metrics are treated as a readout from that statistic.

The FLP-M variant emphasizes this point by allowing the intermediate to
be multi-dimensional. Rather than compressing the model state into a single
scalar loss, we track a vector of losses across multiple validation domains.
This is not merely a refinement: it addresses a concrete failure mode of
scalar summaries. If a mixture trades off performance across domains, then
the average loss can hide meaningful variation. To make this precise, suppose
we evaluate losses on D domains and consider two allocations C' and C’. It
may happen that

1 & 1 &
~ !
D dg_l log Lq(C) ~ D d§—1 log La(C"),

while log L(C) and log L(C") differ substantially coordinatewise. Any down-
stream objective that effectively reweights domains—either explicitly, as in
a mixture of tasks, or implicitly, as in a complex evaluation suite—will dis-
tinguish between C' and C’ even though the average loss does not. Thus a
scalar intermediate can be non-identifiable with respect to the decisions we
actually care about: different allocations can map to the same scalar, yet
yield different downstream performance. The vector of domain losses is a
minimal remedy, as it preserves the degrees of freedom needed to represent
such tradeoffs.

Even when a scalar summary is not exactly constant across mixtures, it
can still be statistically inefficient. If the true relationship between down-
stream performance and domain losses is approximately linear in a small
number of directions in R, then collapsing R” to R discards information
that could have reduced variance in stage-2 fitting. Conversely, keeping D
losses allows stage 2 to discover which domains matter and how they interact,
while stage 1 supplies a predictor that can be queried at arbitrary mixtures.
In this sense FLP-M is better viewed as a representation-learning step: we
choose a representation of the trained model (domain losses) that is cheap,
stable, and sufficiently expressive for downstream prediction.

The many-source setting changes the geometry of the problem in a more
fundamental way. With two sources, the feasible set of allocations is one-
dimensional, and a small number of probes along the mixture line can cover
the relevant range. With K sources, the feasible set is a (K —1)-dimensional
simplex, and the naive extension of line probing becomes meaningless: sam-
pling along a few edges explores only a negligible portion of the simplex
volume, and it fails to excite most directions in the mixture space. More-
over, simple gridding is infeasible: even a coarse discretization at resolution
K=1" Consequently, the stage-1 step must be reformulated
as an experiment design problem in high dimension, where each expensive
run provides a vector response and we must choose allocations to make the

m scales as m

resulting regression well-posed.

A second change is that the relevant inputs are multiplicative. Compute
allocation is naturally constrained by a budget, and the effect of scaling a
source by a constant factor is empirically closer to additive in log-space than
in raw compute. This motivates modeling the response as a function of the
log-allocation vector. In the binary case, this viewpoint is often implicit:
one draws mixtures by varying a ratio and then fits a smooth curve. In the
K-source case, the log map offers a uniform coordinate system in which the
simplex constraint becomes a structured subset and linear models become
interpretable as elasticities of loss with respect to compute. The transforma-
tion also clarifies the need for a compute floor: without bounding Cj away
from zero, log C} is unbounded below and no uniform control is possible.

A third change concerns the role of domain structure. The stage-1 map-
ping from allocations to the vector of domain losses can be viewed as a
D-output regression problem with K inputs. If we fit each domain indepen-
dently, we must estimate DK slope parameters plus intercepts. In the regime
where K is large and oracle calls are expensive, this is not tenable. Yet do-
main losses are not arbitrary: empirical experience suggests that domains
share sensitivities to sources, as when several domains all benefit from addi-
tional code data or when multilingual domains exhibit correlated responses
to multilingual corpora. This motivates a structural prior that couples do-
mains and reduces effective dimension. The low-rank hypothesis used later
is one such coupling: it asserts that the D x K matrix of source effects lies
near a low-dimensional subspace, so that observing losses on many domains
in each run provides a form of multi-task supervision.

Finally, optimization considerations impose additional constraints on what
constitutes a useful intermediate model. Since the ultimate goal is to recom-
mend an allocation, we require that the stage-1 predictor be evaluable and
optimizable over the simplex. A black-box regressor fitted only on observed
mixtures may interpolate poorly off-support, and it may admit pathological
behavior that misleads an optimizer. By contrast, models that are affine in
log-allocations yield smooth objectives and transparent monotonicity prop-
erties (e.g., more compute to a source should not systematically worsen loss
within the modeled regime). In the many-source case, this is not a cosmetic
preference: the optimizer will necessarily explore mixtures that were never
run, and thus the stage-1 model must come with uniform error control on a
continuous domain, not merely pointwise fit on a finite training set.

In summary, the two-stage idea remains the correct cost decomposition
in the K-source regime, but each of its components must be strengthened.
Stage 1 must handle high-dimensional inputs and exploit shared structure
across domains; stage 2 must consume a vector of intermediate signals rather
than a single average; and the composition must support reliable optimiza-
tion over a simplex. These requirements lead naturally to (i) modeling
log-losses as structured functions of log-allocations, (ii) designing sparse,

information-rich mixtures for the expensive runs, and (iii) fitting a predictor
whose error can be controlled uniformly so that downstream composition
and mixture optimization are statistically meaningful.

3 Problem formulation

We consider K pretraining data sources (e.g., web, code, math, synthetic,
multilingual) under a fixed total compute budget Ciot > 0. A multi-source
compute allocation is a vector C' = (C4,...,Ck) € Rf satisfying the budget

constraint
K
ch = Ctot-
k=1

The feasible set is the simplex

K
A(Crot) = {c eRK: Y 0= ctot}.
k=1

Because our predictors will be expressed in log-allocation coordinates, we
must control behavior near the boundary of the simplex. Concretely, we
assume either an explicit compute floor Cp > Cpin > 0 for all k& (imple-
mented by reserving KCl,i, compute and distributing the remainder), or an
equivalent soft flooring mechanism; in either case we work with a bounded
log-allocation map

z(C) = log(C) € RE,

where log(+) is applied elementwise and is understood to include the chosen
floor in practice. This boundedness is not a modeling convenience but a
prerequisite for uniform control: without a lower bound on Cj, one has
infoea (i) Th(C) = —00 and no estimator can attain a finite worst-case
error over A(Clot).

We fix D validation domains, indexed by d € [D], and interpret a do-
main as a held-out distribution together with a well-defined token-level loss
evaluation. For each allocation C' € A(Ciot) we write Lg(C) > 0 for the
fully-converged loss on domain d attained by pretraining under allocation
C until the relevant notion of convergence (fixed token budget, compute
budget, or an agreed stopping rule). We collect these into the vector

L(C) = (L1(C),...,Lp(C)) e RY, log L(C) = (log L1 (C),...,log Lp(C)) € RP.

The key operational asymmetry that motivates our setting is that, for a
given trained model, evaluating Ly (C') across many d is comparatively cheap,
whereas obtaining the model itself at convergence for a new allocation C' is
expensive. Hence each converged run yields a dense D-dimensional response
at the price of a single oracle call.

We formalize this via a converged-run oracle O. On input an allocation
C € A(Ciot), the oracle executes one converged pretraining run under C' and
returns noisy log-loss measurements

OC) = yeR”, y =logL(C) + ¢,

where ¢ € RP captures run-to-run randomness (initialization, data order,
nondeterminism, etc.) and measurement noise. We do not require a specific
distributional form at this point; later guarantees will assume independent
sub-Gaussian coordinates conditional on C. The algorithm is permitted to
choose allocations adaptively based on past observations, although our main
designs will be non-adaptive.

The stage-1 task is: given at most n oracle calls, fit a predictor that
maps allocations to all D domain losses. Formally, after choosing allocations
cWce A(Clot) and observing

y = O(C(i)) eRP, ieln]
we output a function
L:A(C) = RY, O L(C),

intended to approximate L(C) for all feasible allocations, not merely those
sampled. Since mixture selection will require optimizing over a continuum
of allocations, the relevant quality criterion is a uniform error bound rather
than a pointwise or average-case fit on the design points. We therefore
evaluate stage-1 prediction by the worst-case log-loss error

Ex(L) = sup H log L(C) — logL(C)HOO.
CeA(Chot)

Working in log-loss is natural for two reasons. First, it aligns with empirical

scaling behaviors in which multiplicative improvements in loss correspond

more closely to additive changes in log-loss. Second, it avoids an undesirable

dependence on the absolute scale of Ly(C) across domains: a uniform bound

in log L is invariant to constant rescalings of the loss units.

In some applications we may care about a weighted or structured no-
tion of error across domains (for example, emphasizing particular domains
or grouping them). Our baseline criterion is coordinatewise control as above;
any alternative that is Lipschitz with respect to || - ||oo (or || - [|2 on bounded
sets) will transfer from the same type of analysis. The emphasis on unifor-
mity also clarifies why experiment design matters: even if n is large enough
to interpolate the observed points, a poor choice of allocations may leave
entire regions of A(Cot) effectively unconstrained, allowing arbitrarily bad
extrapolation.

10

The stage-1 predictor is a means to an end: recommending an allocation
that performs well on downstream evaluations. To model this, we introduce
an abstract loss-to-performance map

g:RD—>R,

which takes a vector of log-domain-losses and returns a scalar performance
metric to be maximized (accuracy, reward, a composite benchmark score, or
the negative of a cost). For any allocation C' we define the true and predicted
downstream objectives

P(C) = g(log L(C)), P(C) = g(log L(C)).

The stage-2 fitting problem (learning ¢ from cheap supervision) is deliber-
ately separated from stage 1 and treated as exogenous here: we assume g is
given, either from prior knowledge or from an auxiliary training procedure
that does not consume converged runs. Our concern is how stage-1 error
propagates through the composition g o log L.

To that end, we evaluate downstream prediction by

Ep(L) = .)|P(C)—P(C)}.

A sufficient regularity condition ensuring that small loss-prediction error
implies small downstream error is Lipschitz continuity of g on the relevant
range. Specifically, if g is Lg-Lipschitz with respect to ||-||2 on a set containing
{log L(C) : C € A(Ciot)}, then

Ep(L) < Ly- sup ||logL(C) —1log L(O)||, < LyVD - Ex(L).
CEA(C@Ot)

Thus, uniform control in stage 1 is a direct enabler of end-to-end uniform
control after composition. In particular, the multi-domain intermediate is
not an aesthetic choice: it is the object to which we will apply a stable map
g, and the above inequality makes explicit how prediction fidelity at the
intermediate level governs fidelity at the downstream level.

Finally, we formalize the mixture-optimization task. Given a stage-1
predictor L and a loss-to-performance map g, we recommend an allocation

C e P(C) = log L(C)).
arg | mex | (C) = arg Celzl(acxm)g(og L(C))

Equivalently, one may define C by minimizing a downstream loss or a weighted
combination of predicted domain losses; the distinction is not material for
the formulation. What is material is that C is chosen by optimizing a model-
based objective over a high-dimensional simplex. Consequently, we will seek
stage-1 predictors that are not only accurate but also well-behaved under

11

optimization: they should be defined on the full simplex, respect positivity
of losses, and (when appropriate) admit monotonicity constraints express-
ing that increasing compute on a source should not systematically degrade
predicted loss in the regime under study.

Summarizing, our inputs are (K, D, Cot), access to O for at most n calls,
and (for mixture recommendation) a map g. Our outputs are a predictor L
and optionally an allocation C. The primary performance target is a pre-
scribed uniform accuracy level £ (E) < & with probability at least 1—4, and
the secondary target is small downstream error Ep(L) and near-optimality
of the recommended mixture with respect to P. The remaining question
is which model class for C' — log L(C') permits such guarantees with n far
smaller than what would be required to fit D independent high-dimensional
regressions; we address this by imposing shared structure across domains in
the next section.

4 Model class: low-rank mixing laws

We now specify the structural assumption that makes stage-1 prediction fea-
sible with substantially fewer than KD effective degrees of freedom. The
guiding principle is that, while each validation domain d may respond differ-
ently to shifts in the pretraining mixture, these responses are not arbitrary:
domains share latent “capability” directions, and each data source contributes
to these directions with a source-specific profile. Mathematically, this leads
to a log-linear model whose domain-by-source coefficient matrix is low rank.

4.1 Log-linear mixing in log-allocation coordinates

For an allocation C' € A(Ciot), we posit that the converged validation loss
on domain d satisfies

log Lg(C) = ag+0,x(C)+eq, x(C)=1log(C) € RE, (1)

where a4 € R is a domain intercept, 8; € RX is a vector of source sensitivities
for domain d, and e4 captures the residual that remains after fitting the
parametric trend. As described in the problem formulation, x(C') is bounded
by enforcing Cy > Cpin (or a soft floor), and € = (e1,...,ep) is treated as
conditionally mean-zero with sub-Gaussian coordinates.

The interpretation of is an elasticity model. Formally, in the noiseless
limit, the partial derivative

0
L Py 5 —
dlog Cy 0g La(C) Ou

is constant: increasing compute on source k by a multiplicative factor «
decreases log Lq by 84 1 log a (and thus scales L4 by a factor af4k). In regimes

12

where loss behaves approximately as a power law in effective data/compute,
this is the natural local approximation.

Because we impose a fixed total compute constraint, there is an equiva-
lent parameterization in terms of mixture proportions. Writing py, = Ci/Ciot
so that p € A(1) and log Cy, = log py, + log Ciot, we may rewrite

log La(C) = (ag+1ogCror - 17604) + 6] logp + 4.

[
_,ad

Thus, at fixed Ciot, modeling in log C or in log p differs only by an intercept
shift. We use log C' to keep notation aligned with settings where Ciot may
vary, but the identifiability of slopes is driven by variation in proportions.

4.2 Low-rank shared structure across domains

The decisive structural assumption is that the matrix of coefficients

o)
O = |:|eRPK
2

has rank at most r < min{D, K}. Equivalently, there exist factors U &€
RP*" and V' € R™X such that

0 = UV, and hence log L(C) = a4+ U(Vz(C)) +¢, (2)

with @ = (a1,...,ap). In this form, the map z(C) — Vz(C) € R" com-
putes 7 latent “capability coordinates” induced by the allocation; the domain-
specific map u (-) (row uj of U) then converts these coordinates into a
log-loss prediction for domain d.

This low-rank hypothesis is not merely a convenience for analysis; it
encodes the claim that domains co-vary under mixture shifts. Concretely, if
one domain benefits from increasing code relative to web, we expect other
programming-adjacent domains to move in a correlated way. The rank bound
asserts that such correlated movements are generated by a small number of
latent directions, rather than requiring a distinct source-sensitivity vector 0y
for each domain.

We emphasize that is mot an identifiability statement about the fac-
tors themselves: the decomposition © = UV is non-unique since (UQ)(Q~1V) =
UV for any invertible Q € R"™". Our estimation target is the product O,
which is identifiable from linear measurements under suitable design con-
ditions; interpretability of U and V requires additional conventions (e.g.,
orthogonality, nonnegativity, sparsity, or a rotation chosen post hoc). The
nuclear-norm approach adopted later treats © as the primitive object and
avoids committing to a particular factorization during estimation.

13

4.3 Monotonicity and sign structure (optional)

In many pretraining regimes it is reasonable to impose that additional com-
pute on any single source should not worsen loss on any domain, at least
locally and after controlling for other effects. In the log-linear model this
corresponds to

Oar < 0 for all d € [D], k € [K]. (3)

We treat as optional: it can be violated if sources are heterogeneous and
interact (e.g., adding a low-quality source could degrade performance if it
displaces higher-quality data under a hard budget), or if the model is asked
to extrapolate beyond the regime where the fitted linear trend is valid. Nev-
ertheless, when monotonicity is believed to hold approximately, it can be
incorporated as a convex constraint in the nuclear-norm regression without
altering the basic sample-complexity scaling, and it can substantially stabi-
lize mixture optimization by preventing spurious “anti-learning” directions.

A weaker and often more realistic structure is that monotonicity holds
only after projecting onto latent factors, i.e., that V' has mixed signs but the
composite © satisfies on average across relevant domains. Our theory
does not require either variant, but our estimator can accommodate coordi-
natewise constraints when desired.

4.4 Extensions: total-compute scaling and enriched feature
maps

The preceding discussion fixes Ctot and models only how mizing affects out-
comes. In practice one may also wish to compare different total compute
budgets. A minimal extension adds a separate total-compute term,

log Lq(C) = aq+ bglog Cior + 9; logp + 4, p = C/Ciot. (4)

If empirical evidence suggests that all domains share a common compute-
scaling exponent, one may further restrict by = b; if not, the vector b € RP
introduces only D additional parameters and does not change the essential
burden relative to estimating ©. The analysis in later sections extends to
by augmenting the design matrix with an additional column log Ct; and
treating (b, ©) as a concatenated coefficient matrix, with low-rank structure
applied only to the © block.

A different extension concerns phase changes in scaling. Empirically,
loss curves can exhibit regime shifts (e.g., data-limited to compute-limited)
or varying marginal returns as compute increases. Within our framework,
such behavior can be captured by replacing the linear map z(C) — ©z(C)
with a piecewise-linear or basis-expanded model that remains low rank after
feature expansion. For example, fix knots 7,1 < 732 < --- in log-compute

14

and define hinge features

¢r,i(C) = (log Cr — Thj) .,

then model

K K
log Ly(C) = aq+ Z Oa.1 log C, + Z Z Yd k. ¢k,j(0) + €4,
=1 =1 j

with a low-rank assumption on the enlarged coefficient array (6,v) when
reshaped appropriately. This increases the effective feature dimension from
K to K(14J), and correspondingly increases the number of runs needed for
uniform prediction, but it preserves the core mechanism: shared structure
across domains is exploited through low rank rather than fitting each domain
independently. We will keep the base model as our principal object,
noting that these enrichments are available when the linear approximation
is insufficient.

4.5 Interpretability via latent capability factors

Although our estimation target is O, the low-rank hypothesis implicitly
posits a small set of latent factors. When we choose a particular factoriza-
tion (e.g., via a truncated SVD of @)), each row of V' can be read as a source
profile describing how that latent factor is synthesized from log-compute
across sources, and each row of U becomes a domain loading describing
which factors matter for that domain. In favorable cases these factors align
with semantically meaningful axes (e.g., “code reasoning,”
malism,” “multilinguality”), and the model gives a compact account of why
domains move together under mixture reallocation.

We stress, however, that such interpretations require care: (i) the factors
are only identified up to rotations unless we impose additional structure; (ii)
the meaning of a factor can drift with the chosen feature map and compute
floor; and (iii) the model is descriptive at the level of losses and does not,
by itself, establish causality about data composition. For our purposes the
central benefit of the low-rank view is operational: it reduces the statistical
burden of learning C' + log L(C) uniformly over a simplex. Having fixed
the model class, we next address the design question: how to choose a small
number of allocations so that the induced log-space design matrix is suffi-
ciently informative to recover © and to support uniform prediction over all
feasible mixtures.

mathematical for-

5 Experiment design for identifiability

The statistical burden in stage 1 is governed less by the optimization method
than by the informativeness of the queried allocations. Writing the responses

15

in matrix form,
Y = 1a' + X0 +E, (5)

we see that all estimators of © (convex or not) ultimately rely on the geome-
try of the design matrix X whose ith row is z(C®)T = log(C™)T. Accord-
ingly, our design goal is to choose allocations {C(i)}?zl C A(Ciot) so that
X satisfies a restricted invertibility property on low-rank directions, while
remaining practical under pretraining constraints (e.g. hard floors, limited
ability to realize extreme mixtures, and numerical stability of log-features).

5.1 Design objectives and the role of log-space

Two features distinguish our setting from standard linear regression. First,
we do not observe scalar labels but D domain losses per run; this is favor-
able, because each oracle call yields D independent (or weakly dependent)
measurements and thus effectively multiplies sample size by D in concentra-
tion bounds. Second, the covariates x(C) = log C' are restricted to a curved
manifold induced by the simplex constraint), Cj = Cior. The latter im-
plies that “orthogonal” designs in Euclidean space are not directly available,
and that naive grids over the simplex can produce highly collinear columns
once mapped through log(-).

A useful guiding principle is that the identifiability of © is driven by rel-
ative shifts among sources. In particular, allocations that are nearly uniform
in C' tend to cluster in log-space (small variation in each log Cy), leading to
small effective signal-to-noise for ©. Conversely, designs that explore a range
of proportions (including moderately imbalanced mixtures) create larger
variation in log C and can substantially improve conditioning—subject to
not pushing any C} so close to zero that the model becomes numerically or
semantically unstable.

5.2 Sparse allocation families

We advocate a family of sparse allocations, in which each run concentrates
most compute on a small support of sources while holding all other sources
at a fixed floor. Concretely, fix a floor Cpi, > 0 (or an equivalent soft floor
used only inside the log map), and choose an integer sparsity level s < K.
For each run ¢:

1. Sample a support set S© c [K] with |S®| = s (e.g. uniformly with-
out replacement, or via weighted sampling to emphasize important
sources).

2. Allocate a residual budget Cres := Ciot — (K — 8)Chin over S®) by
drawing proportions p(? € A(1) from a well-spread distribution (e.g.

16

Dirichlet(al) with a € [0.5, 5]), and set

oY = |
g Chmin k¢ SO

{Cmin + CYres p](;) ke S(Z)7

The resulting log-features have two desirable properties. First, within the
active support, log C} varies meaningfully across runs, enabling estimation
of source sensitivities. Second, outside the support, features are pinned
at log Cpin, which reduces variance contributed by rarely used sources and
makes each run “target” a small subset of coordinates.

The choice s ~ O(r) is natural: since the coefficient matrix has rank r,
each response direction lies in an r-dimensional latent subspace, so it is plau-
sible that O(r) active coordinates per run suffice to excite these directions
while keeping designs diverse across runs. More conservative choices such
as s & O(rlog K) can improve coverage and conditioning at the cost of less
extreme allocations.

Sparse designs also admit a practical interpretation: in many training
pipelines, it is easier (and safer) to create mixtures that emphasize a few
sources than to finely tune small fractions across dozens of sources. The
floor Chyin represents the engineering requirement that every source either
be absent or appear at a minimum viable sampling rate, avoiding degenerate
data loader behavior and preventing log C, from diverging.

5.3 Conditioning and restricted strong convexity in log-space

To obtain uniform prediction guarantees from nuclear-norm regression, we
require that X not annihilate low-rank directions in ©. A convenient suffi-
cient condition is a restricted strong convexity (RSC) inequality of the form

1
—|IXMT|% > k[|M||% for all M € RP*E with rank(M) < 2r, (6)
n

for some k > 0 depending on the design distribution and the boundedness
of z(C). At an intuitive level, (6] asserts that distinct low-rank coefficient
matrices induce distinct mean responses on the queried allocations.

Sparse randomized designs promote @ for two reasons. First, random
supports diversify which coordinates of x(C') vary across runs, reducing
the chance that any column (source) is nearly constant across the design.
Second, drawing proportions from a Dirichlet distribution yields continu-
ous variability within each support, making the conditional covariance of
log C' on that support non-degenerate. Although the rows of X are not
isotropic sub-Gaussian vectors (because of the simplex constraint and the
log transform), one can still obtain RSC-type statements by bounding the
row norms ||z(C®)|ls (via Ciin) and by ensuring that the empirical Gram

17

matrix (1/n)X T X has no extremely small eigenvalues on the span of coor-
dinates that are activated with nontrivial probability.

There is one subtlety specific to log-space: if Chp, is excessively small,
then log Chi, is very negative, and columns corresponding to “inactive”
sources contribute large-magnitude constants to xz(C'). This does not, by
itself, prevent identifiability (constants can be absorbed into intercept-like
terms), but it can degrade numerical conditioning by inflating ||z(C)||2 and
thus the effective noise scale in the regression. Two standard remedies are:
(i) choose Chp to reflect a realistic minimum sampling rate rather than an
arbitrarily tiny number; and/or (ii) center the log-features across runs by
replacing X with X (I — %11T) (or, equivalently, include an explicit col-
umn for), log Cj and treat it separately), thereby removing large common
offsets. Either approach preserves the estimand © up to a harmless repa-
rameterization of intercept terms and typically improves the conditioning of
the optimization problem.

5.4 A practical recipe for choosing runs

We summarize an implementation-oriented recipe that we have found to
align with the preceding principles.

1. Select a floor. Choose Cn so that each source at the floor con-
tributes a non-negligible number of samples per epoch (or per training
window), and ensure Ciot > (K — 8)Cipin-

2. Pick a sparsity level. Set s € {r,2r,4r} as a starting point; in-
crease s if certain sources must co-occur for data pipeline reasons, or
if preliminary designs yield unstable estimates.

3. Ensure coverage. Generate supports so that each source appears in
at least m runs (e.g. m 2 clog K), either by rejection sampling or by
deterministic balancing (block designs).

4. Diversify proportions. Within each support, draw p from Dirichlet(a1)
with a near 1 for broad coverage; use smaller « to create more imbal-
anced mixtures if the model remains valid in that regime.

5. Check conditioning. After forming X, compute simple diagnostics
such as column variances, pairwise correlations, and the smallest sin-
gular value of a centered/normalized version of X. If diagnostics are
poor, resample supports/proportions.

6. Freeze the design (non-adaptive). In the regime where converged
runs are expensive, we prefer committing to a non-adaptive randomized
design that meets conditioning criteria; adaptivity can be layered on
later if additional runs become available.

18

This recipe is intentionally conservative: its purpose is to ensure that the
subsequent estimator is not asked to extrapolate far beyond the convex hull
of observed log-allocations, which is precisely the failure mode that leads to
unstable mixture recommendations.

5.5 Robustness to near-zero allocations

The low-rank log-linear model is only as credible as the regime in which it
is fit. Allocations with C} extremely close to zero pose three distinct issues:
(i) log C) becomes large in magnitude, creating high leverage points; (ii) the
semantics of “including” a source at vanishing rate can differ from excluding
it (tokenization artifacts, curriculum schedules, and mixing implementation
details); and (iii) the marginal effect of adding a tiny amount of a source
may be nonlinear, contradicting constant elasticity.

For these reasons, we treat robustness to near-zero allocations primar-
ily as a design constraint rather than an estimation trick. Enforcing a
hard Chin keeps the feature domain bounded, yielding uniform bounds on
|x(C)]|2 that propagate directly into uniform prediction guarantees. When
an engineering stack requires the possibility of true zeros (sources absent),
a practical compromise is to use a soft floor only in the feature map, e.g.
2k (C) = 1og(Ck + Choor) With Choer < Ciot, while still implementing C, = 0
in training. This sacrifices exact parametric correctness but often improves
stability and maintains approximate identifiability.

Having specified a design family that yields an informative and numeri-
cally stable X, we now turn to the estimation procedure. In the next section
we fit (a, ©) via nuclear-norm regularized multi-response regression, and we
discuss how to select the regularization level (or effective rank) and incorpo-
rate optional convex constraints such as monotonicity.

6 Estimation via nuclear-norm regularized multi-
response regression

Given an experiment design {C(")}?:1 and corresponding oracle responses
Yy = log L(C™) 4 ¢4 € RP, we form the design matrix X € R™K with
rows 0T =1og(C™)T (with an explicit floor inside the logarithm) and the
response matrix Y € R"*P with rows y® 7. Estimation in stage 1 amounts
to fitting the affine map = — a+ ©x under the structural prior rank(©) < r.
Since r is typically unknown and the noise is non-negligible, we prefer a
convex surrogate that (i) encourages low rank, (ii) couples information across
the D responses, and (iii) is stable under modest misspecification.

19

6.1 Convex formulation
We estimate (a, ©) by nuclear-norm regularized least squares:

~ A . 1
(a,0) € arg min

a€RD, OERPXK %HY —la' - XGTH; + MO, (7)

where |||, = >_,0;(©) is the nuclear norm and A > 0 is a regularization
level. The fitted predictor is then, for any allocation C' € A(Cot),

log E(C’) =4+0 log(C), E(C) = exp(logZ(C)),

with exponentiation performed elementwise. We emphasize that downstream
optimization and evaluation are numerically more stable in log-space; in
particular, we recommend storing and composing log L(C) rather than L(C)
whenever possible.

The objective ([7]) is jointly convex and directly exploits the multi-response
structure: the same covariates X explain all domains, while the nuclear norm
couples domains by favoring a shared low-dimensional latent factorization.
In contrast, fitting each domain separately by an fo or £ penalty ignores
the assumed rank structure and typically requires more runs for comparable
uniform accuracy.

6.2 Centering, intercept handling, and feature scaling

Although @ includes an explicit intercept a, practical performance improves
if we eliminate avoidable numerical ill-conditioning in X. Two issues arise
in log-space: (i) a large common offset (e.g. many coordinates pinned at
log Cyin) can inflate ||z(C)||2 without adding identifying variation; and (ii)
columns of X may have markedly different variances due to unequal activa-
tion frequencies under sparse designs.

A simple remedy is to center and optionally standardize the features
before fitting. Let z = (1/n) Y1,) and define the centered design X
with rows () = () — Z. Writing in terms of X yields the same model
with a reparameterized intercept, and the estimator can be computed by first
fitting © on centered covariates and then recovering @ as the mean residual:

~_ Ll waT
i=-—1 (Y-Xx0'). (8)

If some sources are rarely activated, we additionally scale columns by em-
pirical standard deviations, i.e. use XS~ with S = diag(sy,...,sx) and
s2 = (1/n) >, X2 (with a small lower cap to avoid division by very small
numbers). This scaling changes the implicit prior induced by [|©]]«, so we
apply the inverse transformation to report coefficients in the original coor-
dinates.

20

6.3 Optimization algorithms

Problem (7)) is a standard composite minimization problem: a smooth quadratic
loss plus a non-smooth convex regularizer. We solve it by proximal gradient
methods (e.g. FISTA). Denote the smooth part by

f(a,0) = 5[~1aT — X6T|[2.

Given (a(t), 0M), we take a gradient step on f and apply the proximal op-
erator of Al - ||« to ©. The proximal step is singular value thresholding: if G
is the gradient-updated matrix and G = ULV T is an SVD, then

proxy ., (G) = U(S = pA) VT,

where (-)4+ thresholds singular values at zero. The intercept update is cheap
and can be done either by an explicit gradient step or by the closed form
at each iteration (or every few iterations) when using centered features.
When D and K are large, we compute only a truncated SVD (to a rank
slightly larger than the effective rank), which is sufficient because singular
values below the threshold do not contribute to the prox output.

In regimes where we have a credible bound r and want a smaller memory
footprint, a non-convex factorization ® = UV with U € RP*", V e R™*K
and a ridge penalty (v/2)(|U[|% + ||[V||%) is also viable; it corresponds to
a variational form of the nuclear norm. We treat this as an implementa-
tion option rather than our primary estimator, since provides a clearer
interface to theory and hyperparameter selection.

6.4 Choosing)\ or an effective rank

We require a principled method for selecting A (or, equivalently, selecting
an effective rank through the spectrum of (:)) A purely theoretical choice
A < 0By\/(D+ K)/n is useful as a default, but in practice the noise level
and conditioning constants are only approximately known. We therefore
recommend a small grid search over A coupled with cross-validation, subject
to the constraint that n is small and each run is expensive.

We partition the n runs into Kt,q folds (typically Kiq € {3,5}), fit
on Kioq — 1 folds, and evaluate prediction error on the held-out fold using a
domain-weighted metric in log-space, e.g.

D
CV(A) = ‘Ill’ Z de (ad()‘)‘f'é\d()\)—rx(i)_yid>27 wgq > 0, de =1
Vall jeT o d=1 d

Weights wy may reflect downstream importance or measurement reliability.
To maintain comparability across folds under sparse designs, we stratify folds

21

so that each source appears with similar frequency in training and validation
subsets. Having selected A, we refit on all runs to obtain the final (a, (:))

If we wish to target a hard rank r rather than a penalty level, we may
choose A by cross-validation and then define 7 by thresholding the singular
values of © at a noise-dependent level, or simply by taking the smallest r
explaining a desired fraction of nuclear norm. This rank extraction is used
only for interpretability and for accelerating subsequent computations; the
predictor remains log L(C) = @ + ©log C.

6.5 Convex constraints and numerical safeguards

The log-linear parameterization implies that increasing C} (holding other
coordinates fixed) should not increase loss; in our model this corresponds to
©g4 <0 for all (d, k). Because the simplex constraint couples coordinates,
monotonicity is not an absolute physical law for finite-budget reallocations;
nonetheless, the sign constraint is a useful inductive bias and often prevents
pathological extrapolations when optimizing mixtures. We incorporate it by
solving the constrained variant

I(Egl %HY —1a' — X@TH? + A6 st. © <0 (entrywise). (9)
This remains convex. Algorithmically, we use a projected proximal method:
after the singular value thresholding step, we project onto the nonpositive
orthant by (0)gx ¢ min{©4,0}. While the nuclear-norm proximal map
and orthant projection do not commute, alternating them yields a convergent
scheme for the sum of convex functions via standard splitting methods (e.g.
ADMM), and in practice a small number of inner iterations suffices.

Two further safeguards improve robustness. First, we clip the feature
map by enforcing a floor C, > Chiy inside log(+), even if the training pipeline
can implement Cj = 0; this prevents extreme leverage. Second, we bound
prediction ranges by working in log-loss space and, if necessary, clipping
log Ed(C’) to a conservative interval determined from observed validation
losses. This does not affect the fitted coefficients but avoids numerical over-
flow when exponentiating and prevents downstream mixture optimization
from being driven by implausible extrapolations.

The estimator (7)) (or @) completes stage 1: it produces a low-rank,
multi-domain predictor that can be queried cheaply at arbitrary allocations
C € A(Ctot). We now analyze its estimation and uniform prediction error
under the design and noise assumptions.

22

7 Theory I (Upper bounds): estimation and uni-
form prediction over mixtures

We analyze the estimator) produced by (or its monotone variant @D)
under the log-linear mixing model

Y =1a" + X007 + E,

where E € R"*P has independent, mean-zero, o2-sub-Gaussian entries (con-
ditional on X). Since our downstream use-case is to query the fitted map
at arbitrary allocations C' € A(Ciet), the relevant target is a uniform bound
on the prediction error log E(C’) —log L(C'), not merely an average error on
the training allocations.

7.1 Design regularity and bounded log-features

Uniform control over mixtures requires that log(C') remain bounded on the
feasible set. We therefore enforce a floor C > Chyin > 0 inside the logarithm
and define the (deterministic) feature bound

B := sup [log(C)llz < VK max{|log Cuinl|, |logCit|}. (10)

CeA(Chot)

The bound is crude but sufficient: our theory degrades only logarithmi-
cally in the ratio Ciot/Chin-

We also require a restricted strong convexity (RSC) property of the
quadratic loss along low-rank directions. Writing A = o - O, define the
prediction seminorm

1 T
|8 = XA,

We assume that there exists k > 0 such that
1
ﬁHXATH% > k|Al% for all A € Cy, (11)

where Cy, is the usual cone of matrices whose components orthogonal to the
tangent space at © are dominated by the tangent component (equivalently,
the cone arising from nuclear-norm decomposability and rank-r structure).
For the sparse randomized designs described earlier, holds with high
probability once n is large enough that the resulting X is well-conditioned
on O(r)-sparse supports; in particular, x can be bounded away from 0 up to
logarithmic factors under mild incoherence conditions.

7.2 Estimation error in Frobenius and operator norms

We now state an upper bound that makes explicit the dependence on rank,
dimensions, noise, and design conditioning. For notational simplicity we
present the result for centered covariates (so that the intercept is updated as
in); the same rates hold with an explicit intercept in the optimization.

23

Theorem 7.1 (Upper bound for nuclear-norm regression). Assume rank(©) <
r, the entries of E are independent o®-sub-Gaussian, ||log(C?D)|s < B for
all i, and the design matriz satisfies the RSC condition (L1|) with parameter
Kk > 0. Choose the reqularization level

\ s CUB\/D+K+log(1/5)’ (12)
nD

for a universal constant ¢ > 0 (the normalization reflects that we have nD
scalar loss measurements across runs and domains). Then with probability
at least 1 — 9,

~ D+ K log(1/4
16— 0lr < CopyrRHE)+ rloel/o) (13)
K nD
and hence, since rank(© — ©) < 2r,
~ ~ C r(D+ K) +rlog(1/d
B-0lup < 18-0r < Capy/ TR rlelfs)

Moreover the intercept estimate a obtained by satisfies

la-aly < Coy/ 2B 4 Cx@-0)r 19

We sketch the proof, emphasizing the steps that later feed into uniform
mixture control. First, we write the basic inequality comparing the objective
at (a,0) and (a,O):

1 R ~ ~ 1
Y =187 = X8T|E+ MBIl < o[V — 10T — XOT |+ A6,

Expanding Y = 1a' + XO' + E and rearranging yields a bound on the
prediction error || X (©—©)T |2 in terms of the stochastic term (X T E, 0-0)
and the nuclear-norm difference. Second, we control the stochastic term by
duality:

LxTEA) < |2xTE| jal.,

n n op
and we choose A to dominate |(1/n)X " E||o, with probability 1 — §. The
bound follows from standard matrix concentration for sums of sub-
Caussian rank-one matrices (each run contributes (Ve), together with
|2®|]2 < B and the normalization by n.D scalar measurements.

Third, nuclear-norm decomposability and rank(©) < r imply that A lies
in the cone Co and that ||All, < 4v2r||Al|r. Plugging these inequalities
into the basic inequality yields an upper bound on the prediction error of
the form

1
JIXATIE < eAVEIAR

24

Finally, RSC converts prediction error to parameter error, giving k[A||% <
CA\/r||Al|r and hence (13]). The operator-norm bound follows from
|Allop < [|A|lF (or, slightly more sharply, [|Allop < ||Al|r/v2r when one

tracks rank).

7.3 Uniform-in-mixture prediction bounds over the simplex

We now translate parameter error into a uniform prediction bound over

C € A(Ciot). For any such C,
log L(C) —log L(C) = (@ — a) + (6 — ©) log(C)

(up to the noise ¢ in the generative model, which is already absorbed into
the oracle measurements). Using [[v]lc < [[v]l2 and [[(© — ©)log(C)]2 <
16 — ©llop 10g(C)l2, we obtain

sup ||log L(C) —log L(C)[lse < [[@—alls + B||® — Ollop. (16)
CeA(Ctot)

Combining with Theorem yields the desired scaling: up to condi-
tioning constants and logarithmic factors,

L D B? [r(D+K
sup [[log L(C) —log L(O)||lc S “\f L2 \/ﬁ
CEA(Crot) n - D

In the regime where the intercept is well-estimated (e.g. after centering, or
when n is moderately large), the dominant term is the second, which ex-
hibits the expected low-rank dependence /(D + K) and the per-run multi-
domain benefit of D scalar measurements. In particular, to achieve a target
uniform error ¢ it suffices (up to log factors) to take

. 5<7~(D + Kl))—;log(l/é)) |

(17)

which matches the heuristic “nD measurements for r(D + K) degrees of
freedom” once we account for the conversion from average prediction error
to a uniform bound over the bounded log-simplex.

Two remarks are in order. First, the dependence on B is unavoidable
for uniform bounds: without a floor Ciyin, log(C) is unbounded near the
simplex boundary and no estimator can control sup. error from finitely
many samples. Second, the design enters only through s (and through the
concentration used to set A); sparse randomized allocations are thus accept-
able provided they yield an X that is sufficiently diverse in log-space. This
is precisely the role of the “well-spread Dirichlet on supports” condition in
our design subroutine: it prevents X from being nearly rank-deficient when
restricted to the low-rank tangent cone, which would otherwise inflate the
factor 1/k in and, through , lead to unstable mixture extrapolation.

25

8 Theory II (Lower bounds): minimax sample com-
plexity and necessity of structure

We complement the upper bounds of Section 8 with information-theoretic
lower bounds showing that, up to logarithmic factors (and benign condi-
tioning constants), our run complexity is unimprovable under the stated
modeling assumptions. The key point is that each converged run produces
a vector of D domain losses, hence n runs yield nD scalar measurements;
nevertheless, the unknown coefficient matrix © € RP*X contains on the or-
der of (D 4 K) degrees of freedom under a rank-r constraint. The lower
bounds formalize that, even allowing adaptive choice of allocations, one can-
not beat n = Q(rKk/(De?)) in the worst case (for constant D), and that
without low-rank (or other structural) restrictions the required number of
runs scales linearly with K (and with K D if all domains are to be predicted
simultaneously).

8.1 A minimax lower bound under rank-r mixing

To state a clean minimax bound, we work with a bounded feature class con-
sistent with the floor Cy > Chyy imposed for uniform prediction. Namely,
we consider designs whose log-features satisfy ||z(C)|l2 < B, where B is the
deterministic bound in . We view an algorithm as an interactive pro-
cedure that (possibly adaptively) selects allocations C(M), ... O™ (equiva-
lently, feature vectors 2() = log(C')) and receives oracle responses

Yy = 4+0204+£0) e RP, é(i) independent, mean-zero, o2-sub-Gaussian.

Since @ is a nuisance parameter, we may fix a = 0 in the lower bound (or
absorb it by centering) without weakening the conclusion.

Theorem 8.1 (Minimax run complexity under low rank). Fiz B,o > 0 and
let M(r) denote the class of instances with rank(©) < r and ||©|r < R for
a fized radius R (and arbitrary intercept). Consider any (possibly adaptive)
algorithm that makes n oracle calls and outputs a predictor E, equivalently
log L(C) =@+ ©log(C). Then there exists a universal constant ¢ > 0 such
that, for some instance in M(r), with probability at least 1/3,

~ rK
~ log L(C) —log L(C)|| > Ui
CEZLZEM)H 0g L(C) —log L(CO)||, = coy[5

In particular, achieving uniform error at most € requires
rK
n=Q =—=].

26

We outline the proof in the standard packing + Fano style, emphasizing
the origin of the factor D and the dependence on rK. We construct a finite
set of hypotheses {©M) ..., 01 C M(r) such that (i) the matrices are
well-separated in operator norm (or in their induced predictions on bounded
features), and (ii) the Kullback—Leibler divergence between the transcript
distributions induced by two distinct hypotheses is small when n is small.
Fano’s inequality then implies that no estimator can reliably identify the
correct hypothesis, which in turn forces nontrivial prediction error.

For the packing, it suffices to embed an r x K sign matrix into
by choosing an isometry U € RP*" with UTU = I, and setting © =
UV with V € R™¥. By a Varshamov-Gilbert argument, there exists a
set {V(j)}jj\il with M > exp(corK) and with pairwise separation ||V —
VO||p > cian/TK for a scale a > 0 chosen below. Setting ©U) = Uy)
yields rank(@(j)) < r and preserves Frobenius separation. Moreover, for any
feature vector x with ||z]|2 < B,

RDXK

1892~ 8Oallz > [0 — 0@l - [lll2 2 aVE |1l
after choosing the packing so that |©W) — 0W|,, > av/K (which can be
arranged by normalizing V(7 appropriately).

For the divergence calculation, condition on the algorithm’s (possibly
adaptive) choice of features M, .. 2™ Under two hypotheses © and @,
the oracle responses across runs and domains form an n x D matrix with
independent sub-Gaussian noise added to the mean X0 (up to transpose
conventions). In the Gaussian case (and similarly for sub-Gaussian noise
by standard comparison arguments), the KL divergence between the two
induced transcript distributions is bounded by

1< ; 1 < ; nB?
KL(Po | Por) < 53> [1(0-0)20 (5 < 55> 0-6I5, 2713 < 5 16—,
i=1 =1

Crucially, although each run returns a D-dimensional vector, the divergence
accumulates proportionally to the total number of scalar coordinates, effec-
tively scaling like n.D once one expresses ||© — ©'[|2, in terms of average
per-domain separation. Choosing the packing scale o so that KL < log M
when n < rK/(Da?) yields a regime in which hypotheses are hard to dis-
tinguish. Fano’s inequality then forces a constant probability of misidentifi-
cation, which implies that for some pair of hypotheses the prediction error
on a suitably chosen bounded feature vector (hence on a corresponding
allocation (') is at least on the order of o/rK/(Dn). Translating this into

supe || - [loo yields Theorem 8.1}
We note that adaptivity does not improve the rate: the above diver-

gence bound already conditions on the (random, history-dependent) chosen
design and hence applies to any adaptive strategy. Intuitively, adaptivity

27

cannot manufacture more than nD noisy scalar constraints, while a rank-r
matrix with K columns contains ©(rK) effective degrees of freedom once D
is treated as constant.

8.2 Impossibility without low-rank (or comparable) struc-
ture

The rank constraint is not merely a convenient sufficient condition for ef-
ficient estimation; it is necessary (up to replacement by some other strong
structural prior such as sparsity) to avoid a linear blowup in the number of
required runs. We formalize this by exhibiting families of instances in which
the coefficients decouple across sources and/or across domains, reducing the
problem to estimating many independent parameters from bounded linear
measurements.

Theorem 8.2 (No structure = linear regression lower bound). Assume only
that © is an arbitrary matriz (no rank constraint) and that ||x(C)|2 < B for
queried allocations. Then:

1. For D = 1, there exists a family of instances such that any algo-
rithm requires n = Q(K/e?) runs to guarantee SUPCEA(Croy) | 108 L(C) —
log L(C)| < & with constant probability.

2. For general D, there exists a family of instances such that guaranteeing
simultaneous prediction for all domains requires n = Q(K D/e?) runs
in the worst case.

The proof is a reduction to classical minimax lower bounds for linear
regression. For (1), take D = 1 and choose a hypothesis class where the
regression vector § € R¥ has independent coordinates), € {+a}; the oracle
returns ¥ = (0,2®) + €. Any estimator that achieves uniform predic-
tion over a bounded set must, in particular, recover the signs of 6 well
enough to predict on feature vectors aligned with coordinate axes (which
correspond to allocations concentrating compute on one source, up to the
imposed floor). Standard Assouad or Fano arguments then give an (K /e?)
sample requirement. For (2), we apply the same construction independently
across domains, i.e. take © with rows that vary independently, yielding
O(K D) independent signs; each run supplies D noisy scalar observations,
so nD observations must cover KD unknown degrees of freedom, giving
n=Q(KD/e?).

Finally, we remark on a distinct impossibility phenomenon tied to uni-
form control over mixtures: if one removes the floor Cn and insists on
the full simplex boundary, then x(C) = log(C') is unbounded and no finite-
sample procedure can guarantee sup, prediction error, even in one dimen-
sion. Indeed, for any finite set of queried allocations, one may construct
two coefficient vectors that agree (up to the noise level) on those points

28

yet diverge arbitrarily on allocations approaching the boundary, simply by
exploiting the unbounded leverage of log(Cy) as Cx — 0. This justifies the
explicit bounded-feature assumption that underlies both our upper and lower
bounds.

Taken together, Theorems and [8:2] show that our upper bound scal-
ing in is essentially tight: the improvement over naive K D-parameter
regression arises precisely from the low-rank coupling across domains and
sources, and the multiplicative 1/D factor in the required number of runs
reflects the fact that each converged run yields D domain measurements.

9 Theory III (Composition to downstream predic-
tion and mixture optimization)

9.1 Error propagation through loss—performance maps

Our stage-1 estimator yields, with high probability, a uniform bound of the
form

sup || log L(C) — logL(C’)HOO < e, (18)
CeA(Chot)

where log L(C) = @ + ©log(C). Downstream model selection and mixture
choice typically proceed by applying a deterministic map from (predicted)
domain losses to a scalar performance metric. We therefore study composi-
tion with a function

g:RP SR, P(C):=g(log L(C)), P(C):=g(log L(C)).

The simplest sufficient regularity condition is Lipschitz continuity of ¢ on
the relevant range of log-loss vectors. Let Z C R” denote a compact set
containing {log L(C) : C' € A(Cior)} and {log L(C) : C € A(Cior)} on the
event (18). Assume that g is Ly-Lipschitz on Z with respect to a norm || - ||:

9(2) — g < Lyllz — || V2,2 € 2.

Then composition immediately transfers uniform prediction error in log-loss
space to uniform prediction error in performance:

swp [P(C)— P(C)| < L, swp |logZ(C) ~log L(O). (19)
CEA(C(—,ot) CGA(Ctot)

In particular, if holds then for || - || = || - ||2 we obtain
sup |P(C) — P(C)| < LyVDe,
C

and for || - || = || - ||co We obtain the sharper

sup |P(C) — P(C)| < Lye.
C

29

This covers linear and generalized-linear stage-2 maps, as well as small neural
networks with bounded weights on bounded input ranges; in practice, if g
is implemented by a trained stage-2 model (e.g. an FLP-M predictor taking
domain log-losses as input), one can bound or estimate an empirical Lipschitz
constant on Z via spectral norm products or Jacobian norms.

A further implication is an optimization regret guarantee for selecting a
mixture by maximizing predicted performance. Let C* € arg maxcea (cyo,) P(C)

be an optimal (unknown) allocation and let C e arg MaxceA (Cyo)]3(0) be
the recommended allocation. Then deterministically

P(C*)-P(C) < (P(C*)-P(C*)+(P(C)-P(C)) < 2sgp|13<0>—P<O>\-

(20)
Combining with shows that uniform stage-1 prediction bounds
translate to end-to-end mixture-selection guarantees at essentially no addi-
tional statistical cost.

9.2 Mixture optimization formulations and convex regimes

We now consider the computational problem of selecting C' once L (and
optionally g) is fixed. We emphasize two points. First, the stage-1 predictor
is cheap to evaluate: computing log E(C) =a+ @log(C) costs O(DK)
arithmetic (or O(r(D + K)) if we store a factorization © = UV). Second,
tractability of mixture optimization depends almost entirely on the structure
of the composed objective]3((3’) =g(a+ &) log(C)).

To avoid dealing with the equality constraint), Cj = Cio directly, it
is convenient to work in log-coordinates = = log(C'). If we enforce a floor
Cy > Chin, then x> log Chin and the feasible region may be written as the
convex set

K
X = {IL‘ e RE . Zel’k < Ctot, Tk > 10g Crnin Vk} (21>
k=1

If the objective is monotone in the sense that increasing any C} cannot
decrease performance (equivalently, performance is nondecreasing as losses
decrease and losses are nonincreasing in compute), then the constraint in
is tight at the maximizer, but using < is computationally convenient
and does not change the optimizer under such monotonicity.

A clean convex regime arises when ¢ is concave as a function of z = log L
(or, more realistically, concave as a function of —z and then we maximize
—g(z)). For definiteness, suppose that g is concave on Z. Since x +— a+0Ou is
affine, the composition z — g(a-+ @x) is concave. Therefore the optimization
problem

max g(a+ Ox) (22)

30

is a convex optimization problem (maximization of a concave objective over
a convex feasible set) and admits polynomial-time algorithms with global
optimality guarantees (interior point, first-order methods with appropriate
step sizes, etc.). A particularly important special case is a linear stage-2 map

D
9(z) = Bo— dezd, wq 2 0, (23)
d=1

corresponding to maximizing a weighted negative log-loss. Then reduces
to maximizing an affine function of x over X', which can be solved efficiently
and is often numerically stable.

Outside such structured cases, mixture optimization becomes non-convex.
This includes essentially all multi-layer neural-network stage-2 maps (such
as a generic FLP-M stage-2 MLP), as well as objectives designed to approx-
imate thresholded or saturated metrics. In these settings we do not expect
polynomial-time global optimality guarantees without further restrictions;
the best we can generally ensure is that the statistical error in the objective
is controlled (via (19)) while the optimization itself is handled by standard
non-convex heuristics.

9.3 Practical algorithms on the simplex

When applies, we may use projected gradient ascent in z:
gt = H;((.Z‘t +ntVag(a + (:)act)>,

where IIy denotes Euclidean projection onto X. The projection can be
implemented by a scalar dual search because the constraint Ek ek < Ciot 18
separable after introducing a Lagrange multiplier, and the lower bounds x; >
log Cyin can be imposed by clipping. If g is differentiable and implemented
by a stage-2 neural model, then V,g(a+©z) is obtained by backpropagation
through the affine map = — a + Ox.

A mirror-descent parameterization is also natural. Writing C = Ciotp
with p on the probability simplex (and a corresponding floor), we have
logC = logCiot - 1 + logp. Updates in p using exponentiated gradients
respect nonnegativity automatically:

P o plexp (m O 9@+ @xt)>,

followed by renormalization and enforcement of the floor. This is often prefer-
able numerically when K is moderate to large, because it avoids repeated
exponentiation inside projections.

In the non-convex regime, we recommend two families of methods. First,
multi-start projected gradient (or mirror descent) remains effective because

31

evaluating ﬁ(C’) is cheap and differentiable in x whenever g is differentiable.
One runs several initializations (e.g. near vertices, near the uniform mix-
ture, and near mixtures suggested by simpler baselines such as one-source
optima) and keeps the best outcome. Second, if gradients are unavailable
or unreliable (e.g. g is a black box trained with non-smooth preprocessing),
one may apply derivative-free optimization directly over A(Ciet), includ-
ing Bayesian optimization with a simplex-aware kernel, random search with
low-discrepancy sequences, or evolutionary strategies. Because the objective
evaluation is inexpensive, these methods can be run with a large number of
function evaluations without incurring additional converged-run cost.

Finally, when we have uncertainty estimates for log Z(C’) (e.g. from a
bootstrap over the stage-1 fit or a debiased low-rank estimator), we may
incorporate them into mixture selection via robust or optimistic criteria,
such as maximizing a lower confidence bound

P(C) — Brad(C),

where rad(C') upper bounds the possible performance error induced by un-
certainty in log E(C) through a Lipschitz factor. This does not change the
fundamental sample complexity—which is governed by the stage-1 oracle
calls—but can materially improve practical stability of the chosen mixture
when n is small or when the design is imperfect.

10 Experiments (recommended)

We outline an experimental suite intended to validate (i) the stage-1 low-
rank log-linear mixing law, (ii) the sample-efficiency claims implied by the
theory, and (iii) the practical usefulness of the resulting predictor for mixture
selection. The experiments are structured to be feasible with a small number
of fully-converged runs while still enabling informative ablations.

10.1 Real pretraining study with K € {3,4,5,6} sources

Data sources and compute accounting. We select K € {3,4,5,6} pre-
training data sources that are sufficiently distinct to plausibly induce domain
tradeoffs, e.g. web, code, math, multilingual, instruction-like synthetic, and
academic. We fix a total compute budget Cio (token-FLOPs proxy) and
represent an allocation by C' € A(Cie), enforcing a floor Cf > Chn for
numerical stability. For each converged run we record (a) the allocation C,
(b) the converged validation losses on D held-out domains, and (c) auxiliary
traces (training loss, gradient norm) for sanity checking convergence.

Validation domains. We choose D validation domains aligned with the

sources but not identical to them, so that generalization across related distri-
butions is measured rather than memorization of source-specific validation

32

sets. For example, for a code source we include multiple code validation
sets (different languages or repositories); for multilingual we include multi-
ple scripts; for math we include both formal and informal math. We report
domain losses in log-space, i.e. yq = log Ls(C'), consistent with the model.

Designs and number of runs. We compare at least three experiment
designs for choosing allocations {C' (i)}?zlz (i) the proposed sparse random-
ized design (sampling supports of size s and drawing weights from a well-
spread Dirichlet, with floor on the complement); (ii) a dense Dirichlet design
(weights over all K sources, no sparsity beyond the floor); (iii) a vertex-plus-
uniform design (the K near-vertices and a few near-uniform points), which is
a common heuristic but is not tailored to low-rank recovery. For each design
we sweep n over a small grid (e.g. n € {K,2K,4K,8K}) to expose scaling.
The primary evaluation is out-of-design prediction error on a separate test
set of allocations C' ~ Dirichlet(«) (with the same floor), reporting

Errse := max max |§d(Cte3t’(j)) - yd(CteSt’(j))|, y(C):=a+ @log C.

de[D] j€[m]

We also report 9 and per-domain errors to diagnose whether a few domains
dominate.

10.2 Stage-1 fitting details and diagnostics

Estimators. We fit the nuclear-norm regularized regression model
- .1
(@,0) € argmin —||Y —1a' — X0 |2 + A||©]s,
a,® 2n

and compare it to (i) an explicit rank-r factorization fit @ = UV with al-
ternating minimization, and (ii) an unconstrained (full-rank) ridge baseline.
We tune A (or r) by cross-validation over runs, using held-out allocations.
To check qualitative model fit we report residual plots versus log Cy and test
for systematic curvature indicating misspecification.

Monotonicity and sign constraints. When the application justifies that
more compute on a source should not increase loss, we optionally enforce
© < 0 coordinatewise (either as a hard constraint or via a penalty). We then
evaluate whether the constraint improves out-of-design accuracy and whether
it stabilizes mixture selection. We report the fraction of unconstrained fits
that violate @d’k < 0 and the magnitude of violations.

Rank diagnostics. We compute the singular values of O and report the
effective rank (e.g. the smallest r capturing 95% of Frobenius energy). We
also evaluate prediction error as a function of enforced rank, including under-
and over-specified regimes, to empirically test the sensitivity implicit in the
low-rank assumption.

33

10.3 Ablations: rank, design sparsity, and noise

Rank ablation. Holding the design fixed, we sweep r (or the regularization
strength) and plot error versus effective rank. The goal is to verify that a
low-dimensional latent structure is sufficient and that gains saturate after a
small 7 < min{D, K'}.

Design sparsity and conditioning. In the sparse design we sweep the
support size s (e.g. s € {2,3,4, K} for K < 6) and record both predic-
tive performance and numerical conditioning of X (restricted eigenvalues or
empirical condition number on the sampled subspace). This ablation distin-
guishes whether improvements arise from sparsity per se or from improved
spread in log-coordinates.

Noise robustness. We separately consider (i) measurement noise from
finite validation tokens and (ii) optimization noise from imperfect conver-
gence. To probe robustness we repeat evaluation with reduced validation-set
size (increasing measurement variance) and with early-stopped checkpoints
(introducing bias). We then check whether the error behaves approximately
as O(n~'/2) when noise dominates, and we report failure modes when bias
dominates.

10.4 Baselines: pairwise/binary mixing laws and classical
heuristics

To justify the multivariate low-rank law, we compare against two families of
alternatives.

Pairwise laws. A common approach is to fit pairwise tradeoff curves be-
tween sources, e.g. modeling loss as a function of the mixture weight between
two sources while holding others at a floor. We implement a pairwise surro-
gate by fitting, for each pair (k,%’), a univariate model on the line segment
between near-vertices and then combining pairwise preferences to propose
a global mixture (e.g. via tournament or aggregation). We evaluate both
predictive accuracy on random mixtures and the quality of the proposed
mixture under a fixed downstream objective.

Binary/one-vs-rest laws. Another heuristic is to treat each source as
either “on” or “off” and fit a regression on the indicator vector (or on a
coarse grid of weights). We fit such models at equal n and compare sample
efficiency. Since these models discard the log-scale structure, we expect
degraded extrapolation; the experiment quantifies the extent of degradation.

34

10.5 Mixture optimization case studies

We recommend at least two case studies that use the fitted stage-1 predic-
tor as the sole expensive component and then perform mixture selection by
optimizing a downstream map (trained cheaply, or specified analytically).

Case study A: linear downstream objective. We define a linear proxy

D
9(2) = Bo— Y wazs, wg >0,
=1

representing a weighted preference over validation domains. We then solve
MAXCeA(Cror) 9(@+ O log C) and report (i) the recommended C, (ii) the pre-
dicted improvement relative to uniform and best single-source baselines, and
(iii) the realized improvement when we actually run a small number of confir-
matory trainings near the recommended mixture. This directly tests whether
prediction accuracy is sufficient for decision quality.

Case study B: learned stage-2 predictor. We train a small stage-2
model (e.g. a shallow MLP) mapping predicted domain log-losses to a mea-
sured downstream metric (such as accuracy on a held-out evaluation suite).
The training labels for stage-2 are obtained from intermediate checkpoints
or from a small pool of already-trained models, making stage-2 inexpensive
relative to converged runs. We then optimize the composed objective and
evaluate regret by comparing the chosen mixture to the best mixture found
by an expensive grid search over a low-dimensional simplex (possible when
K <6).

10.6 Scaling simulations to K € [10, 20]

To test regimes where real converged runs are infeasible, we recommend a
controlled simulator generated from the assumed model: draw a ground-
truth O, of rank r (e.g. ©, = U, V, with bounded entries), draw intercepts
ax, and generate noisy observations

Y =1a] + X6, +E,

with E sub-Gaussian. We then repeat the full pipeline (design, fit, predic-
tion, mixture optimization) for K € {10, 15,20}, varying n and comparing
sparse versus dense designs. The main outputs are (i) empirical sample
complexity curves for Erry,, (ii) sensitivity to rank mis-specification, and
(iii) decision regret under a Lipschitz downstream map. This simulation iso-
lates statistical scaling from systems artifacts and provides evidence that the
proposed approach continues to behave favorably as K grows beyond what
is practical for exhaustive mixture sweeps.

35

11 Discussion and limitations

Misspecification of the log-linear law. Our guarantees are conditional
on the approximation

log Ly(C) =~ aq + 95 log C,

together with low rank of the coefficient matrix. In practice, several de-
viations are plausible. First, losses may exhibit curvature in log C' due to
threshold effects (e.g. a source only becomes useful beyond some minimum
exposure) or diminishing returns that are not well captured by a single affine
function on the entire simplex. Second, interactions between sources may be
non-additive in log-space: a domain may benefit from joint exposure to two
sources more than the sum of their individual contributions (synergy), or
conversely suffer from interference. Third, the noise may be heteroskedas-
tic across allocations, e.g. if certain mixtures make optimization less stable
and yield higher run-to-run variance, violating the simplest sub-Gaussian
homoskedastic abstraction.

From a methodological standpoint, we view the low-rank log-linear model
as a first-order local approximation in the coordinate system induced by
log C. Accordingly, we recommend explicit misspecification diagnostics in
any deployment: (i) residual-versus-log Cy plots; (ii) held-out prediction on
allocations sampled from a distribution different from the training design;
and (iii) sensitivity of recommendations to mild perturbations of © (a sta-
bility proxy). When misspecification is detected, natural extensions preserve
the same experimental philosophy while relaxing the model: add a small set
of nonlinear features in log C' (quadratic terms, splines, or random features)
with a low-rank constraint on the resulting coefficient tensor; or adopt a
piecewise-affine model over a partition of the simplex (at the cost of more
runs). These extensions reduce to structured regression problems in which
the stage-1 objective remains convex (or nearly so) and the primary bottle-
neck remains oracle calls, not computation.

Rank as an approximation and identifiability under limited designs.
Even when the log-linear form holds approximately, the effective rank of ©
may not be small globally. Empirically, we expect approximate low rank
when domains share latent “skills” (e.g. reasoning, multilinguality) that are
elicited by multiple sources, but the number of such factors can grow with the
diversity of D and with the granularity at which sources are defined. When r
is misspecified upward, nuclear-norm regularization typically yields graceful
degradation but may produce overly smooth predictions; when misspecified
downward, bias can be substantial and can manifest as systematic errors
localized to particular corners of the simplex.

A separate limitation concerns identifiability induced by the design dis-
tribution for C'. The theory presumes that the induced design matrix X

36

satisfies an RSC-type condition on low-rank directions, which in turn re-
quires sufficient variation in log C' along informative coordinates. Designs
that are overly concentrated near the uniform mixture, or that vary only
a few sources in a correlated manner, can make © effectively unidentifiable
even if low rank holds. This is not merely a proof artifact: if two sources
are always co-allocated, their effects cannot be disentangled from loss data
alone. In such cases, we should either (i) redesign experiments to decorre-
late allocations, or (ii) accept that only a lower-dimensional combination of
sources is estimable and explicitly merge the confounded sources into a single
composite coordinate.

Nonstationary data and shifting objectives. The formulation treats
sources as stationary distributions and assumes that the loss mapping C' —
L(C) is stable across time. Modern pretraining pipelines violate this in
at least three ways: (i) data refresh and deduplication alter the marginal
distribution of each source; (ii) model architecture, tokenizer changes, or
optimizer schedules change the mapping from exposure to loss; and (iii)
the downstream objective that ultimately matters may drift as benchmarks
evolve. Under such nonstationarity, a single © estimated from historical
runs can become stale, and mixture recommendations can be systematically
suboptimal.

A principled extension is to treat © (and possibly a) as time-indexed,
Oy, and impose a smoothness or bounded-drift prior, e.g. ||©; — O;_1]|p < 7.
One can then fit ©; via windowed nuclear-norm regression or via an online
proximal method with a forgetting factor. The experimental implication is
that a small number of periodic re-estimation runs can maintain calibration,
analogous to standard monitoring in production ML systems. We emphasize
that this requires committing to a reproducible compute accounting scheme
so that “one unit of compute” is comparable across time; otherwise, even the
coordinate system z(C) = log C becomes ill-defined.

Overlap, contamination, and the meaning of “sources” and “do-
mains”. Our abstraction treats sources as distinct and validation domains
as fixed held-out distributions. In reality, sources can overlap substantially
(e.g. web data contains code and math; multilingual corpora contain En-
glish), and validation domains can be contaminated by training data or by
near-duplicates. Overlap has two distinct consequences. First, it reduces
the effective dimension of the problem: if two sources are nearly identical
in distribution, then varying their relative compute has little effect, and the
corresponding columns of © become nearly collinear. Second, contamina-
tion breaks the semantic link between loss and generalization, potentially
yielding misleadingly optimistic losses in domains that are actually present
in training.

37

Mitigations are partly procedural: perform deduplication between sources
and between training and validation; quantify overlap via hashing or embedding-
based near-neighbor estimates; and report overlap statistics alongside fitted
coefficients. Conceptually, one can incorporate overlap by modeling each
observed source as a mixture of latent “pure” sources and estimating in that
latent basis; however, this introduces additional non-identifiability unless one
has external measurements of overlap. For the purpose of mixture selection,
a conservative stance is to treat any domain with suspected contamination
as a weak label for generalization and to downweight it in the downstream
map g (or to exclude it entirely), rather than attempting to correct post hoc
via the stage-1 fit.

Extension to continual pretraining and curriculum-like schedules.
Our allocation variable C' describes a static distribution of compute across
sources. Many training runs use curricula: allocations change over steps,
sources are introduced or removed, and the effective learning dynamics de-
pend on order. A static mixture can approximate such schedules only insofar
as the optimization is path-independent with respect to the empirical distri-
bution of tokens, which is not generally true.

To extend the framework, we can parameterize a schedule by a small set
of interpretable variables (e.g. two-phase mixtures with a switch time, or a
low-dimensional basis of time-varying weights) and treat those variables as
the decision vector in place of C'. The same measurement model then applies
with z(-) replaced by a feature map of the schedule. The limitation is that
schedule spaces are larger and can quickly invalidate the sample-efficiency
advantages unless we impose strong structure (low-dimensional parameter-
izations, low rank, monotonicity) and correspondingly design experiments
that excite the schedule degrees of freedom.

Interaction with post-training (SFT/RLHF) and evaluation pipelines.
The stage-1 predictor targets pretraining losses, whereas many downstream
metrics are realized after substantial post-training. The composition theo-
rem with a Lipschitz map g provides a clean abstraction, but it may fail if
post-training introduces sharp regime changes (e.g. instruction tuning that
disproportionately benefits certain domains once a capability threshold is
crossed). Moreover, post-training may depend on representations and not
merely on pretraining losses, so two mixtures with similar L(C) can yield
different post-training outcomes.

In such settings, we see two practical directions. First, treat post-training
as inducing additional “domains” by measuring losses (or proxy scores) on
post-training-relevant validation sets at intermediate checkpoints; this in-
creases D but keeps the stage-1 fit conceptually intact. Second, learn g on a
dataset that spans mixtures, so that the composed objective implicitly cap-

38

tures post-training sensitivity; this shifts burden to stage-2 generalization
and demands careful control of covariate shift between the mixtures used to
train g and those explored during optimization.

Reproducibility artifacts and what should be released. Because ora-
cle calls are expensive, the credibility of any empirical claim depends on elim-
inating avoidable sources of variance. We therefore regard reproducibility as
part of the technical contribution. At minimum, an artifact should include:
(i) the allocation design generator (including random seeds, Dirichlet param-
eters, and the floor Cu,y); (ii) the exact compute accounting conventions
(tokenization, sequence packing, and any per-source weighting that affects
token-FLOPs); (iii) the fitting code for the nuclear-norm estimator (solver
choice, stopping criteria, regularization path, and cross-validation splits);
and (iv) the evaluation protocol for out-of-design allocations. If mixture
optimization is performed, the optimizer (initialization, constraints, and ter-
mination) should be fixed and logged, since many objectives are non-convex
in practice and can be sensitive to these choices.

Finally, we emphasize that the experimental efficiency of the approach
can create a false sense of certainty: producing a recommendation after
relatively few converged runs is only useful if uncertainty is quantified and
the recommendation is robust. Reporting confidence intervals for predicted
losses (e.g. via bootstrap over runs, or via asymptotic variance estimates
under a fixed design) and performing a small number of confirmatory runs
near the proposed optimum are therefore not optional if the method is used
to make high-stakes training decisions.

39

	Introduction
	Background and source context
	Problem formulation
	Model class: low-rank mixing laws
	Log-linear mixing in log-allocation coordinates
	Low-rank shared structure across domains
	Monotonicity and sign structure (optional)
	Extensions: total-compute scaling and enriched feature maps
	Interpretability via latent capability factors

	Experiment design for identifiability
	Design objectives and the role of log-space
	Sparse allocation families
	Conditioning and restricted strong convexity in log-space
	A practical recipe for choosing runs
	Robustness to near-zero allocations

	Estimation via nuclear-norm regularized multi-response regression
	Convex formulation
	Centering, intercept handling, and feature scaling
	Optimization algorithms
	Choosing or an effective rank
	Convex constraints and numerical safeguards

	Theory I (Upper bounds): estimation and uniform prediction over mixtures
	Design regularity and bounded log-features
	Estimation error in Frobenius and operator norms
	Uniform-in-mixture prediction bounds over the simplex

	Theory II (Lower bounds): minimax sample complexity and necessity of structure
	A minimax lower bound under rank-r mixing
	Impossibility without low-rank (or comparable) structure

	Theory III (Composition to downstream prediction and mixture optimization)
	Error propagation through lossperformance maps
	Mixture optimization formulations and convex regimes
	Practical algorithms on the simplex

	Experiments (recommended)
	Real pretraining study with K{3,4,5,6} sources
	Stage-1 fitting details and diagnostics
	Ablations: rank, design sparsity, and noise
	Baselines: pairwise/binary mixing laws and classical heuristics
	Mixture optimization case studies
	Scaling simulations to K[10,20]

	Discussion and limitations

