Sub-Quadratic Task Construction for
Unsupervised Meta-Learning: Approximate KNN
Graphs and OT Assignments in the Inner Loop

Liz Lemma Future Detective

January 20, 2026

Abstract

Recent work (e.g., DHM-UHT) argues that meta-learning is partic-
ularly robust to label noise and task heterogeneity, and leverages this
by placing unsupervised task construction (clustering-based pseudo-
labeling) inside the inner loop. A key obstacle to scaling this idea
to 2026-era backbones (ViTs/VLMSs) is computational: density-based
clustering such as DBSCAN becomes the dominant cost in the inner
loop for high-dimensional embeddings and large batch sizes. We for-
mulate inner-loop task construction as a primitive that maps a batch
of embeddings to a variable-cardinality pseudo-partition with outlier
handling, and propose two scalable families of constructors: (i) ap-
proximate kNN graph construction followed by fast community detec-
tion / label propagation, and (ii) Sinkhorn-based optimal-transport
(OT) soft assignments with straight-through hardening. We provide
(a) time/space bounds showing near-linear per-task complexity, (b) re-
covery guarantees under a planted-partition noisy-embedding model,
and (c) unconditional lower bounds showing that exact DBSCAN-style
e-neighborhood connectivity requires quadratic work on worst-case in-
puts. The resulting UHT meta-learning pipelines retain heterogeneity
and noise robustness while making "meta-learn task construction" vi-
able at foundation-model scale. (Implementations and scaling experi-
ments would strengthen the contribution.)

Table of Contents

1. 1. Introduction: motivation from DHM-UHT; why inner-loop DB-
SCAN is the bottleneck in 2026 regimes; contributions and guarantees.

2. 2. Background: bilevel meta-learning (MAML/ANIL), UHT as task-
construction-in-the-inner-loop; why variable cluster count + outliers
matter.

10.

. 3. Problem Formulation: formalize meta-training with a task construc-
tor g; define desiderata (heterogeneity, outliers, stability, compute).

4. Scalable Task Constructors: (A) ggraph using ANN kNN graphs +
community detection; (B) gor using Sinkhorn soft partitions; unified
interface and head reinitialization.

5. Theoretical Model: planted partition in embedding space with
noise/drift; formal definitions of recovery and stability under pertur-
bations.

6. Main Guarantees: recovery theorems for ggrapn and gor; pertur-
bation bounds; conditions under which cluster count is correctly esti-
mated (up to outliers).

7. Complexity and Lower Bounds: upper bounds for ANN+community
detection and Sinkhorn; unconditional lower bound for exact DBSCAN

neighborhood graph computation; implications for bilevel training cost.

8. Experimental Protocol (recommended): apples-to-apples replace-
ment of DBSCAN in DHM-UHT; scaling curves in (m, d); accuracy vs
time; ablations for k, ANN error, and outlier thresholds.

9. Discussion and Extensions: streaming/online variants, multi-source
pseudo-labeling compatibility, and how constructors interact with sta-
bility /robustness diagnostics.

10. Limitations and Open Questions: non-differentiability, approxima-
tion bias, worst-case failures; directions for tighter end-to-end meta-
learning guarantees.

1 Introduction

Unsupervised heterogeneous task construction (UHT) has recently become
a convenient mechanism for turning large unlabeled corpora into a stream
of meta-learning tasks: given a minibatch T' of size m, one embeds the ex-
amples by a shared body fy and then clusters the embeddings to obtain
pseudo-labels that define a task-specific classification head. A representa-
tive instance is DHM-UHT, whose inner loop runs a density-based routine
(typically DBSCAN or a close variant) on the current embeddings and then
adapts a freshly initialized head (and sometimes part of) by cross-entropy
on the resulting pseudo-labels. In this design, task construction is not a pre-
processing step but an inner-loop primitive; hence its computational profile,
stability properties, and failure modes directly affect the bilevel optimization.

The present work is motivated by an increasingly common regime in
which DHM-UHT becomes compute-bound not by representation learning
but by the repeated execution of DBSCAN-like neighborhood queries. Con-
temporary backbones produce embeddings of dimension d > 512 (often sub-
stantially larger), and meta-training commonly uses large per-task batch
sizes m > 512 to stabilize the pseudo-labels and to amortize the forward
pass. In such regimes, exact DBSCAN requires, explicitly or implicitly, ac-
cess to an e-neighborhood graph: for each point one must identify all neigh-
bors within radius € to determine core points and density connectivity. On
worst-case inputs this graph is dense, and even writing down the adjacency
can require ©(m?) edges. Consequently, any exact implementation inherits
a quadratic-time worst-case per task, and in practice one observes an ad-
ditional constant-factor penalty in high-dimensional distance computations
and memory traffic. Since the constructor is invoked for every task in every
outer iteration, a quadratic per-task subroutine quickly dominates wall-clock
time, limiting m, limiting the number of tasks per meta-batch, and thereby
constraining statistical efficiency.

Beyond cost, the density-based constructor interacts poorly with the
bilevel loop when embeddings drift. Meta-training continuously perturbs 6,
and thus the embeddings Z = {fg(x;)}!",; move from iteration to iteration.
Density-based connectivity can change discontinuously under small pertur-
bations: a single edge crossing the radius threshold may merge components,
split components, or change the set of core points. Such instabilities are not
merely aesthetic; they induce high-variance gradients and brittle inner-loop
targets, especially when the constructor is applied on the same minibatch
that is used for adaptation. Accordingly, we seek a task constructor that (i)
runs in near-linear time per task, (ii) preserves the defining UHT features
used by DHM-UHT (variable number of clusters, explicit outliers), and (iii)
is stable under small embedding drift so that pseudo-labels do not change
adversarially as 6 is updated.

We propose two scalable constructors, garapn and gor, intended as drop-

in replacements for DBSCAN inside UHT-style bilevel training. The graph-
based constructor garapn forms a bounded-degree approximate kNN graph
on the embeddings using an approximate nearest neighbor (ANN) index and
then applies a community-detection or label-propagation procedure to ob-
tain a partition into communities and an outlier set. The bounded-degree
constraint (each node stores O(k) neighbors) yields |E| = ©(mk) edges and
thereby enforces a near-linear per-task time and space budget for fixed k.
Outliers are handled by a minimum community size threshold 7: small
communities are designated as outliers and are excluded from the inner-
loop cross-entropy loss, preventing noise amplification by forcing a head to
fit idiosyncratic micro-clusters. The second constructor gor replaces hard
graph connectivity with a soft assignment to a small set of anchors (proto-
types) via entropically regularized optimal transport (Sinkhorn scaling). One
then hardens assignments by an argmax-with-confidence rule; low-confidence
points become outliers, and the effective number of clusters K is determined
by the number of anchors that receive nontrivial mass. This yields a variable-
cardinality head dimension while providing a tunable stability—fidelity trade-
off through the regularization and threshold parameters.

Our contributions are organized around the computational, statistical,
and bilevel-compatibility requirements imposed by UHT.

e Scalable task construction. We exhibit constructors whose per-task
cost is O(mk) for ggraph (assuming standard ANN primitives) and
near-linear in m for fixed anchor count and Sinkhorn iterations for
goT. This removes the quadratic bottleneck of exact e-neighborhood
connectivity.

e Unconditional gap for exact DBSCAN primitives. We formalize the
output-size obstruction: constructing the exact e-neighborhood graph,
the core primitive underlying DBSCAN connectivity, requires Q(m?)
time in the worst case. Hence any approach that insists on exact
DBSCAN behavior cannot asymptotically match the per-task budgets
required by modern meta-training.

e Recovery guarantees under separation. Under a planted-partition /noisy-
embedding model with separation parameter A and noise level o, we
provide conditions under which each constructor recovers the ground-
truth partition on non-outlier points with misclustering rate at most ¢,
up to polylogarithmic factors in m. For ggraph this follows from within-
cluster connectivity and between-cluster sparsity in the approximate
kNN graph; for gor it follows from concentration of Sinkhorn mass on
correct anchors.

o Stability under embedding drift. We articulate stability in the sense
relevant to bilevel training: small perturbations of Z should not cause

large perturbations of the soft assignment matrix (for gor) nor ram-
pant relabeling due to threshold effects. In particular, the Sinkhorn-
based mapping admits a Lipschitz-type control under bounded per-
turbations, enabling smoother evolution of pseudo-labels across outer
iterations.

o Meta-compatible inner-loop integration. Both constructors return a
variable K and an explicit outlier set, enabling the inner loop to reini-
tialize a task-specific head of dimension K and to compute CE only
on confidently assigned points. This mirrors the operational seman-
tics of DHM-UHT while permitting substantially larger m and higher-
dimensional d within the same compute envelope.

The net effect is a principled replacement of a quadratic-time, discontinuity-
prone inner-loop primitive by bounded-degree graph and transport-based
alternatives that are tailored to the bilevel setting. In the remainder we
position these constructors within standard meta-learning formalism, clarify
the role of variable cluster count and outliers in UHT, and then develop the
runtime bounds, recovery analyses, and stability properties that justify their
use in large-scale meta-training.

2 Background: bilevel meta-learning and UHT as
inner-loop task construction

We briefly recall the bilevel viewpoint underlying gradient-based meta-learning
and then explain how unsupervised heterogeneous task construction (UHT)
fits into this formalism when tasks and labels are both induced from unla-
beled minibatches. Our emphasis is on two features that are structurally
necessary in the unsupervised setting: a variable number of classes per task
and an explicit mechanism for outliers.

Bilevel meta-learning (MAML/ANIL viewpoint). In standard few-
shot meta-learning, one assumes a task distribution 7 where each task T
provides labeled data, typically split into a support set S and a query set
Q. A shared representation (or “body”) fy is trained so that, after a small
number of inner-loop gradient steps on S, a task-specific predictor achieves
low loss on). Abstractly, if A denotes task-specific parameters (e.g., a linear
head) and Adapt denotes s steps of gradient descent on an inner loss Lipper,
the meta-objective takes the form

Hbin Err {Louter (Adapt(ha Jo; T)a T)])

where Louter 18 evaluated after adaptation, either on a query set or on a
held-out subset of the same data. In MAML, the inner loop may update

both A and 6; in ANIL-style variants, the inner loop updates only h while
fo is updated only by the outer loop. For our purposes, the key property is
that the outer-loop gradient flows through an adaptation map that depends
on the data and on fy, so any high-variance or discontinuous dependence of
the inner-loop targets on 6 can destabilize training.

From labeled tasks to unlabeled minibatches. UHT replaces exter-
nally provided labeled tasks by tasks sampled as unlabeled minibatches from
a dataset D. Concretely, a task T is a set of m examples x1,...,x;, € X
sampled from D, and we form embeddings

Zi = fg(xz) < Rd, 7 = {Zl ;il.

Since T arrives without labels, one introduces a task constructor g that maps
the embedding set Z to pseudo-labels and hence to a pseudo-partition. We
write

g(Z) ~ II=(C,...,Ck,0), gie{1,...,K}yU{L},

where (1, ..., Ck are discovered clusters, O is an outlier set, and L denotes
“unassigned /outlier.” The inner loop then trains a freshly initialized head
h (and optionally part of 6) to predict §; from z;. The resulting bilevel
structure is thus a composition of (i) representation fp, (ii) discrete (or soft)
pseudo-labeling via ¢, and (iii) adaptation via gradient descent on a cross-
entropy loss defined by 7.

Why the constructor must live in the inner loop. In UHT, it is
tempting to regard clustering as a preprocessing step. However, because fy
changes throughout meta-training, the embedding geometry changes, and
the pseudo-labels must be recomputed to remain aligned with the evolving
representation. Thus g is invoked per task, per outer iteration, and its output
is part of the inner-loop supervision signal. Consequently, the constructor is
not an auxiliary heuristic but an algorithmic primitive whose computational
cost and stability properties directly determine the feasibility of scaling the
meta-training loop.

Variable number of classes and the dynamic head. A distinctive
feature of unsupervised task construction is that the number of discovered
clusters K is neither known a priori nor constant across tasks. Even if the
underlying dataset has a fixed set of semantic categories, a minibatch may
contain an unknown subset (or multiple modes within a category), and the
constructor may intentionally return fewer or more clusters depending on
the local geometry in Z. Therefore the task-specific head must be dynamic:
for each task we instantiate h with output dimension K determined by g(%),

and we train it on the non-outlier points. This heterogeneity is not an incon-
venience but a necessary degree of freedom: forcing a fixed K across tasks
either (i) induces spurious class splits/merges that inject label noise into the
inner loss, or (ii) encourages representation collapse by rewarding trivial par-
titions that match the fixed head dimension rather than the intrinsic batch
structure.

Outliers as a first-class object. Unlike supervised tasks, where every ex-
ample arrives with a label, an unlabeled minibatch inevitably contains points
that are ambiguous under the current representation: rare modes, boundary
points between clusters, and points whose nearest neighbors are inconsistent
due to noise. If such points are assigned arbitrary pseudo-labels, the re-
sulting cross-entropy gradients can dominate the inner loop, encouraging h
to fit unstable artifacts and encouraging fy to contort the embedding space
to satisfy brittle assignments. We therefore require g to return an explicit
outlier set O and we define the inner-loop loss only on assigned points:

1
Limer(h; 2,9) = —————— Y CE(h(z),3).
This exclusion mechanism is a robustness device: it allows the constructor to
abstain when the geometry does not support a confident partition, preventing

error amplification in the bilevel loop.

Interaction with outer-loop optimization and stability. Because pseudo-
labels are computed from Z, they depend implicitly on 8. In practice one
often stops gradients through the discrete output of g (treating § as con-
stant within an outer step), yielding a tractable optimization but placing a
premium on stability: small changes in Z induced by incremental updates
of 6 should not cause large changes in II. If IT fluctuates sharply, then the
effective learning target of the inner loop changes erratically across outer it-
erations, increasing gradient variance and causing intermittent failure modes
(e.g., sudden changes in K, mass outliering, or cluster merges/splits). Stabil-
ity is therefore not merely a clustering desideratum; it is a meta-optimization
requirement tied to the smoothness of the composed map 0 — Z — I —
Adapt(-).

Summary. In UHT, we must treat task construction as an inner-loop com-
ponent of a bilevel system. This forces explicit handling of (i) heterogeneous
tasks with variable K and hence dynamic heads, and (ii) outliers to con-
trol pseudo-label noise. These considerations motivate constructors that are
computationally light enough to be invoked repeatedly and stable enough to
define usable inner-loop supervision as fy evolves. In the next section we

formalize this setting and state the computational and statistical desiderata
that the constructor g must satisfy.

3 Problem formulation: meta-training with an inner-
loop task constructor

We now formalize the unsupervised heterogeneous task construction (UHT)
setting as a bilevel optimization problem in which the supervision signal is
produced within the inner loop by a task constructor. The purpose of this
section is to make explicit (i) the objects computed per task, (ii) the interface
required by the meta-learner when the number of classes is task-dependent,
and (iii) the algorithmic desiderata—heterogeneity, outlier handling, stabil-
ity, and computational scalability—that guide the design of g.

Tasks and embeddings. Let D be an unlabeled dataset over X, and let
T denote the induced task distribution obtained by sampling minibatches.
A task T ~ T is a multiset T' = {x;}!"; of size m. Given shared parameters
0, we form task embeddings

zi = fo(z) €RY Z = {z}7y.

The representation fy is the only component shared across tasks; all task-
specific objects are re-initialized each time 7' is sampled.

Constructor output as a pseudo-partition with abstentions. A task
constructor is a (typically non-differentiable) map

g: ®RY™ = ({1,...,m}u{L})"

that assigns each embedding either a pseudo-label in {1,..., K} or an outlier
symbol L. Equivalently, g(Z) induces a pseudo-partition

I = (Cy,...,Ck,O), O={i:g;=1Y, Cp={i:g =1},

where K = K(Z) is discovered and may vary across tasks. The outlier set O
is not an artifact but part of the output specification: it is the mechanism by
which g can decline to label ambiguous points under the current embedding
geometry.

Dynamic heads and the inner loss. Given II, we instantiate a task-
specific head h whose output dimension matches K. Concretely, one may
take h : RY — RE to be a linear classifier (or shallow MLP) initialized

anew for each task. We define the inner-loop loss using cross-entropy on
non-outlier indices:

Linner(h; Zv Q) |O’ Z CE

with the convention that if m—|O| is too small (e.g. below a minimum size 7),
the task can be skipped or downweighted. The adaptation operator Adapt
performs s steps of gradient descent on Linner, updating h and optionally a
subset of # (ANIL corresponds to updating only h). The outer loss Loyter 1S
evaluated after adaptation, either on a support/query split of T or on the
same batch with appropriate regularization:

nbin ETNT [Louter(Adapt(ha f@vg(Z)); T)}, Z = {f@('r) HEAES T}'

In this formulation, the constructor g is an algorithmic component of the
learning system: it is invoked repeatedly during meta-training and defines
the targets used by the inner-loop optimizer.

Desiderata for g. We state the requirements that a constructor must
satisfy to be viable at meta-training scale.

(D1) Heterogeneity (variable K). We require that K be task-dependent
and that g return a consistent labeling of the assigned points, i.e. each i ¢ O
receives exactly one label in {1,..., K'}. This requirement rules out formu-
lations that hard-code a global class count or force every minibatch into a
fixed number of clusters. At the interface level, heterogeneity means that
9(Z) must provide both labels and a canonical reindexing of the discovered
clusters so that the head dimension is well-defined.

(D2) Outlier handling (abstention). We require an explicit outlier set
O so that uncertain points do not contribute to Linner. From the bilevel
perspective, the role of abstention is to prevent high-variance or adversar-
ial pseudo-labels from dominating gradients. Operationally, g should mark
as outliers (i) points not belonging to any sufficiently large community, (ii)
points with low assignment confidence, and (iii) points whose local neighbor-
hood evidence is inconsistent. We emphasize that outliering is not merely
for evaluation convenience; it is a control knob on the noise level of the
inner-loop supervision.

(D3) Stability under embedding drift. Because Z depends on 6, small
outer updates change Z across iterations. Since we typically stop gradients
through the discrete pseudo-labels, we require that g be stable in the fol-
lowing sense: if Z and Z’ satisfy max; ||z; — 2}|| < n for small 7, then the
induced pseudo-partitions should differ on only a small fraction of indices
(up to label permutation) or, in a soft-assignment variant, the assignment

matrix should vary in a Lipschitz manner. Formally, for a suitable distance
dist(-, -) on partitions modulo permutation, we seek bounds of the form

dist(9(2),9(2")) < en or dist(g(2),9(2") < e(n),

with £(n) — 0 as n — 0, away from true geometric degeneracies (e.g. van-
ishing inter-cluster margins). This condition is a meta-optimization require-
ment: it reduces outer-loop gradient variance by preventing frequent discon-
tinuous changes in K, massive relabeling, or oscillatory merge/split behavior.

(D4) Per-task computational scalability. A constructor is called for
every sampled task, so its cost must be near-linear in m under a fixed
neighborhood parameter k. We therefore impose a target per-task com-
plexity of O(mk) time and O(mk) memory (in addition to the embedding
forward pass). In particular, we rule out any design that requires forming all
(g‘) pairwise distances or an exact e-neighborhood graph in high dimension.
This constraint is not cosmetic: when m is in the hundreds or thousands,
a quadratic primitive can dominate the meta-training wall-clock time even
when the backbone is large.

Meta-compatibility. Finally, we require that g be usable within SGD-
based meta-training. Concretely, the constructor must be expressible as a de-
terministic (or controlled-randomness) procedure on Z that returns pseudo-
labels and a corresponding head dimension, and whose output can be treated
as fixed within an outer step. Optionally, one may allow gradients through
a soft constructor (e.g. an assignment matrix) while still using a hardening-
and-outliering step for defining K and excluding ambiguous points. The
central point is that g must compose with Adapt without introducing patho-
logical discontinuities or prohibitive cost.

Conclusion. The above formulation reduces the design of UHT to the
construction of a map g that outputs a variable-cardinality pseudo-partition
with abstentions, is stable under small perturbations of Z, and runs in near-
linear per-task time. In the next section we instantiate two such construc-
tors: a bounded-degree graph-based method and an entropically regularized
optimal-transport method, both equipped with a unified interface supporting
dynamic heads.

4 Scalable task constructors

We now instantiate two families of constructors satisfying the interface and
desiderata of the preceding section while avoiding quadratic primitives. Both
constructors take as input the embeddings Z = {z;}/"; of a task and return
a pseudo-partition with abstentions IT = (C1, . .., Cx, O), where K is discov-
ered from Z and may vary across tasks. In each case, we additionally specify

10

a canonical reindexing rule so that the induced labels g; € {1,..., K} U{L}
are stable under benign symmetries (e.g. permutation of samples) and so
that head initialization is well-defined.

4.1 Graph-based constructor ggrapn: ANN ENN graph +
community detection

The guiding principle is to replace dense e-neighborhood connectivity with
a bounded-degree proximity graph whose size is ©(mk). Given Z, we build
an approximate kNN graph using an ANN data structure (e.g. HNSW-style
indexing, IVF-PQ, or a GPU-friendly approximate search), producing for
each node i a list Ny (i) of k candidate neighbors. We then form an undirected
graph G = (V, E) with V ={1,...,m} and

E = {{i,j}:j € Ni(i) or i € Ni(j)}, |E| = ©(mk).

Optionally, to reduce spurious bridges in high dimension we may use a
mutual-kNN rule {i,j} € E iff j € Ni(i) and i € Ny(j), at the cost of
a sparser graph. We attach weights

L 5|2
_”Zz zll) or wi; =1,

Wi = exp(7_3]
and we run a near-linear community detection routine to obtain connected
communities that serve as pseudo-classes. Suitable choices include label
propagation, Leiden/Louvain heuristics on weighted modularity, or simple
pruning plus connected components; our framework does not require opti-
mization of an explicit clustering objective, only a partition that is stable
and approximately respects local neighborhoods.

Outlier handling is implemented by a minimum community size threshold
T > 2: after community detection yields candidate components 51, .. ,6’ e
we set

K
Cy = éﬂ(@ for those 6’j with |5’J\ > T, O =V\ U Cy,
/=1

where 7 is a deterministic ordering of retained communities. A convenient
canonical rule is to sort by decreasing size and break ties by the smallest
index in the community; this makes the label set invariant to permutations
of Z up to the inherent symmetry of equal-sized components. The resulting
pseudo-labels are then ¢; = £if ¢ € Cy and g; = L if i € O.

The computational profile is immediate: ANN construction plus kNN
querying yields O(mk) expected time for fixed k and O(mk) adjacency stor-
age, after which most community heuristics run in time near-linear in |E/.
Importantly, this constructor never enumerates all pairs, so it remains vi-
able for m in the hundreds or thousands. Finally, stability is mediated by

11

locality: away from geometric degeneracies, small perturbations of Z change
only a small fraction of neighbor relations, and hence only a small fraction
of edges in GG, which empirically yields fewer catastrophic relabelings than
density thresholds that hinge on a single global radius.

4.2 OT-based constructor gor: Sinkhorn soft partitions +
hardening with abstention

Our second constructor replaces hard graph connectivity with a soft assign-
ment of points to a small set of anchors. Fix an anchor budget A < m.
Given Z, we choose anchors {ai,...,a4} C Z (e.g. uniform subsampling,
farthest-point sampling on a coarse sketch, or a memory-bank based proto-
type set). We compute similarities

_llzi — aa?

Sia = eXp()e 0,1, ie[m], aclA],

2
and we form an entropically regularized transport plan P &€ RTXA by ap-
proximately projecting S onto a set of matrices with prescribed marginals,
using I Sinkhorn iterations. Concretely, for row marginal r = %Ln and
column marginal ¢ = %1 A (or a relaxed column marginal to allow unused
anchors), Sinkhorn updates compute scaling vectors u € R, v € Rﬁ such
that

P = diag(u) S diag(v)

approximately satisfies P14 = r and P'1,, = ¢. We then harden the
assignment by

a(i) = argmax P, conf(i) = max Pj,.
a€lA] a

A confidence threshold g € (0, 1) induces abstention: if conf(i) < 3, we set
9; = L. Otherwise, i is assigned to the anchor a(i). Anchors that receive
fewer than 7 assigned points are discarded, and their assigned points are
reclassified as outliers (or, alternatively, merged into the nearest retained
anchor). After pruning, the number of surviving anchors is K < A, and we
reindex them canonically (again by decreasing cluster size with deterministic
tie-breaking) to obtain labels in {1,..., K'}.

This constructor is near-linear in m for fixed (A, I): computing S costs
O(mdA), Sinkhorn scaling costs O(ImA), and the memory footprint is
O(mA) (which can be reduced by streaming or blockwise Sinkhorn when
A is moderate). In contrast to graph partitioning, the OT construction
yields an explicit soft assignment P whose variation under small perturba-
tions of Z can be controlled by the regularization, which is advantageous for
meta-optimization; moreover, one may optionally backpropagate through P
while still using hardening only to define K and O.

12

4.3 Unified interface and dynamic heads

Both ggraph and gor expose the same output: (g, K, O), with g; € {1,..., K}U
{1}. Given this, we instantiate a task-specific head h : R? — R¥ reini-
tialized per task. In practice we adopt a fixed initialization distribution
(e.g. Gaussian with prescribed variance) and fix all constructor randomness
per task (anchor sampling seed, ANN seed) to reduce outer-loop variance.
We then perform inner-loop adaptation on the cross-entropy restricted to
{i:y; # L}, and we skip or downweight tasks for which K is too small or
m — |O)] falls below 7. The net effect is a constructor layer that is (i) hetero-
geneous by construction, (ii) explicit about abstention, (iii) compatible with
SGD-based bilevel training, and (iv) scalable to large m without invoking an
Q(m?) neighborhood primitive.

4.4 Theoretical model: planted partitions, noise, and drift

We formalize the statistical and perturbation regimes under which a task
constructor g is expected to output a meaningful pseudo-partition and under
which its output varies stably as 6 (and hence fy) changes across outer-loop
iterations. The model is intentionally minimal: it imposes separation in
embedding space, allows heterogeneous tasks with variable K, and isolates
a small outlier set on which we do not demand correctness.

Task generation and ground-truth partition. A task T ~ 7T is a mul-
tiset of m examples drawn from D. Conditional on T, we observe embeddings
Z = {z}, with z; = fo(z;) € R%. We posit that, for a given task, there
exists an (unobserved) ground-truth partition

.
I = (S1,...,5¢,0%), [m] = (|_| Sk>|_|0*,
k=1

where Sy, are “inlier” clusters and O* is an outlier set (e.g. background points,
small spurious modes, or points near cluster boundaries). We allow K* to
be task-dependent and random under 7. To align with the constructor
interface, we fix a minimum resolvable cluster size 7 > 2 and only require
recovery of the large clusters

Ky = {ke[K"]:|Sk|l >}, K7 = K]

Clusters smaller than 7 may be treated as outliers without penalty, since any
method that discards small communities necessarily cannot guarantee their
identification.

13

Planted-partition geometry in embedding space. Our main assump-
tion is geometric separation with bounded within-cluster diameter. Specifi-
cally, for each task there exist radii 7y, rous (task-dependent but controlled
in distribution) such that

|zi — zj|| < rin for all 4,5 € Sy and all k € [K™], (1)
|zi — 2| > rous forall i € Si, j € Sy, k#, (2)

and we define the separation margin A := ryq — 7, > 0. This ball-separation
condition is a convenient abstraction of more general mixture models; it is
sufficient to reason about neighborhood graphs and soft assignments with-
out committing to a particular generative distribution. Outliers are uncon-
strained except that they may violate —; in particular, O* may contain
points arbitrarily close to inlier clusters.

It is often useful to refine f into a “noise around prototypes” model.
Namely, there exist (unobserved) cluster centers {1}, such that for i €
Sk7

zi = pg + &, &l < o,
and ||, — pel| > Ao for k # £. Then (I)—(2) holds with riy < 20 and
Tout =, Ao — 20, and the effective separation parameter is A ~ Ag — 40. In
this reading, o quantifies embedding noise induced by both data variability
and imperfect representation learning.

Embedding drift and perturbation model. Because the embeddings
depend on 6, they change during meta-training, and we require the construc-
tor to be stable to such changes. We model drift as a per-task perturbation
of the embedding multiset: let Z = {z;}/; and Z' = {2/}, be embeddings
of the same task examples under two nearby representations (e.g. successive
outer-loop iterates). We assume a uniform perturbation bound

max ||2; — 2| < n,
€fm]

or, more generally, a high-probability bound under a stochastic perturbation
model. The parameter 7 is interpreted as the embedding drift magnitude.
The purpose of the model is not to predict n from optimization dynamics,
but to express stability properties as explicit functions of 1 and separation.

Recovery metric (labels up to permutation, with abstentions). A
constructor returns II = (C1,...,Ck,0O) and induced labels g; € {1,..., K}U
{L}. Since cluster labels are only defined up to permutation, we compare I
to IT* by minimizing over relabelings. Let Z := ek, Sk denote the inlier
points in large clusters. For a labeling § and a permutation 7 on [K], define
the misclustering rate on Z by

err(y; IT%) = m#n |Il| HZ €Z: yi=_Lormn(y) #c (i)}

)

14

where c*(i) is the (unique) index with i € S..(;). Thus, abstaining on a
true inlier counts as an error, whereas behavior on O* is not scored. We
say II achieves e-recovery (at size threshold 7) if err(j;II*) < e. This def-
inition matches the intended use in bilevel training: the inner-loop loss is
computed only on non-abstained points, but we still require that, on most
inliers, pseudo-labels coincide with ground truth up to permutation.

Stability metric (bounded change under perturbations). We mea-
sure stability of the constructor by comparing outputs on (Z,Z’). Let
9 = g(Z) and §' = g(Z') be the resulting labelings with abstentions, each
canonically reindexed. We define the disagreement rate on large-cluster in-
liers by

1
stab(g, ¢’; IT*) := min [l {ieZ: gi=Lorg=Lorm(f)#ii}
K
We call g (1, «)-stable (on the task distribution) if, whenever max; ||z; — 2| <
7, we have stab(g,9; IT*) < «(n) with high probability over T'~ T and any
internal randomness of ¢g. In words: small embedding drift should not cause
a large fraction of inlier points to flip pseudo-labels or fall into abstention.

Correct estimation of the number of clusters. Finally, since K is
data-dependent, we require that the constructor estimate the number of
recoverable clusters. We say that g estimates K correctly up to outliers if,
with high probability,

K = K7,

and moreover each recovered cluster Cy corresponds (up to permutation) to
one of the large true clusters S; with at most € relative contamination from
other inlier clusters. This notion aligns with the operational constraint that
the task head has output dimension K and should not be inflated by small
spurious components.

The subsequent guarantees are stated in terms of these definitions: sepa-
ration A and noise level o control recovery, while perturbation magnitude 7
controls stability, both subject to the minimum size threshold 7 that delin-
eates clusters we intend to learn from versus those we intentionally abstain
on.

4.5 Main guarantees: recovery, stability, and correct cluster
count

We now state guarantees for the two scalable constructors garapn and gor
under the separation/noise/drift model introduced above. Throughout, cor-
rectness is measured by the misclustering rate err(y; II*) on the large-cluster
inliers Z, and stability by stab(g, ¢’; IT*) under perturbations of magnitude
at most 7.

15

Guarantees for ggraph (ANN ENN 4 community detection). Fix a
task and form an (approximate) kNN graph G = (V, E) on Z, with |[V|=m
and out-degree k, and let the community detection routine return commu-
nities C1,...,Ck along with an outlier set O obtained by discarding com-
munities of size < 7. We emphasize that the specific community detection
method is not critical, provided it satisfies a standard cluster-preservation
property: if the input graph is a disjoint union of well-connected components
plus a small number of inter-component edges, then the routine returns com-
munities aligned with those components, up to a vanishing fraction of errors.
This property holds for common label-propagation and modularity heuristics
on graphs with strong within-cluster expansion and sparse cuts.

Theorem 4.1 (Recovery for garaph under separation). Assume that for the
large clusters Si with k € K., the within-cluster neighborhoods are suffi-
ciently dense in the sense that, for each such k, the exact kNN subgraph
induced by Sk is connected and has expansion bounded below by a constant
(equivalently, it contains a connected core once k > clogm). Assume further
that separation dominates noise so that, for all © € I, every true within-
cluster neighbor of i is strictly closer than every cross-cluster inlier point by
a margin proportional to A (e.g. A > coo for an absolute ¢y > 0 in the
prototype-plus-noise specialization). Let ANN return a (1 + +)-approzimate
kNN list with failure probability at most 6. Then, with probability at least
1 —0 —exp(—S(k)), the labeling § = gGrapn(Z) satisfies

err(y; IT7) < ¢, with & = O(exp(—ck))
for some constant ¢ > 0, and the returned number of clusters obeys K = K.

The conclusion K = K should be interpreted as “correct up to outliers”™
any true cluster of size < 7 may be absorbed into O (or merged into an-
other small component) without violating the guarantee, since we explicitly
exclude such clusters from /C,. In particular, the theorem rules out spurious
inflation of K by small noisy components inside Z.

Perturbation stability for ggraph. We next state a stability statement
which formalizes the requirement that small embedding drift should not in-
duce widespread relabeling. The key observation is that, under a margin
condition, the £NN identity of each inlier point is locally invariant: if the
gap between the kth nearest inlier neighbor (within the true cluster) and the
nearest cross-cluster inlier exceeds 27, then any perturbation of magnitude n
preserves the set of true inlier neighbors up to permutation, hence preserves
the graph structure relevant for community recovery.

Theorem 4.2 (Stability of ggraph under drift). Let Z and Z' be embeddings
of the same task satisfying max; ||z; — zi|| < n. Suppose that for all i € T

16

there exists a margin M; > 0 such that

max ||z; —zi|]| + M; < min min||z; — z;
P 120 — 2]l P S i min |z — 2],
and that M; > 4n for all but an € fraction of points in Z. Then, for k above
the same connectivity threshold as in Theorem the outputs § = gGrapn(Z)

and §' = gcrapn(Z') satisfy
stab(g, 9", IT") < & + eann,

where eANN 18 the probability that ANN fails on either Z or Z' (typically
eANN < 26).

The theorem makes explicit that instability is concentrated near points
with small neighborhood margins (intuitively, boundary points), which are
precisely the points our outlier mechanism is designed to abstain on (either
because they form small, unstable communities or because they lie in low-
density regions of the kNN graph).

Guarantees for gor (anchors + Sinkhorn + hardening). The OT
constructor replaces discrete neighborhood connectivity by a soft assignment
of points to a set of A anchors. We assume a sampling condition ensuring
anchor coverage of the large clusters and a separation-to-temperature con-
dition ensuring that the correct anchor receives dominant mass for most
inlier points. Let P € R™*4 denote the (approximately) doubly-stochastic
Sinkhorn projection of the similarity matrix S, and let hard labels be ob-
tained by 7; = arg max, P;, if max, P,, > 3, otherwise §J; = L. Let K be the
number of anchors actually selected by at least one non-outlier point (thus
K is data-dependent).

Theorem 4.3 (Recovery and correct K for gor). Assume that anchors are
sampled so that each large cluster Sy, with k € I contains at least one anchor
with probability at least 1 — 0 (e.g. A 2 K*log(K*/d) for uniform sampling
when clusters are not too imbalanced). Assume further that the separation
parameter satisfies A/Tiemp > €1 where Tiemp 5 the similarity bandwidth
used in Siq = exp(—||zi — a||*/Tiomp), and choose the hardening threshold 3
below the typical correct-anchor mass but above the mass of incorrect anchors
(a constant gap regime). Then, with probability at least 1 — & over anchor
sampling,
err(g; I1%) < e, and K = K7,

where £ decreases as the separation margin and the Sinkhorn approximation
accuracy increase.

17

Perturbation stability for gor. Unlike the graph constructor, the OT
pipeline admits a direct Lipschitz-type perturbation statement because the
Sinkhorn operator is stable to multiplicative perturbations of the kernel ma-
trix, and the kernel entries are smooth functions of the embeddings.

Theorem 4.4 (Lipschitz stability of OT assignments). Let Z and Z' satisfy
max; ||z — zi|| <1, and let P and P’ be the corresponding Sinkhorn assign-
ment matrices (with the same anchors, or anchors perturbed by at most n as
well). Then there exists a constant L depending on Tiemp and the Sinkhorn

reqularization such that
|P =Py < Ln.

Moreover, if the row-wise assignment gaps satisfy P o« (;y — MaXqqx (i) Pia 2
2k for all but an € fraction of i € Z, and if Ln < k, then the hardened labels
satisfy stab(g, 9'; 11*) < e (up to anchor relabeling).

Consequences for bilevel meta-learning. The preceding statements
isolate two principles that we use operationally: (i) correctness is guaran-
teed on the large-cluster inliers Z under separation and coverage assumptions,
while ambiguous points may be safely abstained; and (ii) stability is con-
trolled by explicit margins (nearest-neighbor gaps for ggraph and assignment
gaps for gor), yielding small disagreement under small drift. Having estab-
lished statistical correctness and perturbation robustness, we next quantify
the computational cost of these constructors and contrast it with uncondi-
tional lower bounds for exact DBSCAN-style neighborhood connectivity.

4.6 Complexity and lower bounds: scalable constructors ver-
sus exact density connectivity

We quantify the per-task and per-iteration costs of the proposed constructors
and contrast them with an unconditional lower bound for exact DBSCAN-
style neighborhood connectivity. Our goal is to isolate the regime in which
task construction is no longer the bottleneck of bilevel meta-training, while
preserving the UHT requirements of heterogeneous K and principled absten-
tion.

Upper bound for ggraph (ANN ANN + community detection). Fix
a task with embeddings Z = {z;}", C R%. The dominant primitive is the
construction of a bounded-degree similarity graph on m nodes. Under the
standard assumption that an ANN data structure supports building a (di-
rected) (14 7)-approximate kNN adjacency list in expected time O(mk) and
space O(mk), we obtain a sparse graph with |E| = ©(mk). Any subsequent
graph routine whose work is linear (or near-linear) in the number of edges—
e.g. a fixed number of label-propagation passes, greedy modularity updates,

18

or local refinement—therefore runs in O(|E|) = O(mk) time. This yields the
per-task bound summarized in Theorem 1:

TGraph(m) = O(mk) + Teomm(mk), SGraph(m) = O(mk).

Two remarks are operationally important. First, the outlier mechanism (dis-
card communities of size < 7) is asymptotically free: it is a single pass
over the community sizes and node labels, hence O(m). Second, because we
treat the partitioning step as discrete, we do not backpropagate through the
community detection decisions; thus the gradient cost of the constructor is
negligible compared to the forward pass to compute Z and the inner-loop
updates of (h,).

Upper bound for gor (anchors + Sinkhorn). The OT-based con-
structor replaces graph construction by computing similarities to a set of
A anchors. Given anchors {a,}7t, C R? chosen from (or derived from) Z,
forming the kernel matrix

Sip = exp(—||Z¢ - a€||2/7—t2€mp)

costs O(mdA) arithmetic operations, which is near-linear in m for fixed
(A,d). Sinkhorn scaling then iteratively rescales rows and columns to obtain
an approximately doubly-stochastic matrix P, with each iteration requiring
O(mA) time. For [iterations we obtain

Tor(m) = O(mdA+ ImA), Sor(m) = O(mA),

as in Theorem 1. In memory-constrained settings we may stream the Sinkhorn
updates (maintaining row/column scaling vectors and recomputing kernel
blocks), reducing peak memory below O(mA) at the expense of a modest
constant-factor increase in time. As above, hardening and outlier rejection
(thresholding by) are O(mA) operations and do not change the asymptotic
bound.

Unconditional lower bound for exact DBSCAN neighborhood con-
nectivity. We now formalize the sense in which exact DBSCAN-style task
construction is intrinsically incompatible with the near-linear per-task bud-
get when worst-case inputs are allowed. Let G, denote the exact e-neighborhood
graph on m points: (4,j) € E. iff ||z — z;|| < e. Exact DBSCAN requires,
at minimum, the ability to determine for each point its e-neighbors (or to
compute equivalent core-point connectivity), which amounts to constructing
G, or an object of comparable output size. Theorem 4 states the following
output-size lower bound: there exist instances for which |E.| = ©(m?) (e.g.
all pairwise distances are < ¢), and therefore any algorithm that outputs G.
must spend Q(m?) time simply to write down the edges. This lower bound

19

is unconditional: it does not depend on dimension d, on any hardness con-
jecture, or on limitations of nearest-neighbor data structures; it is a direct
consequence of potentially dense output.

This observation explains the practical scaling gap between exact DBSCAN-
UHT and bounded-degree alternatives. Even if one accelerates radius queries
via spatial indexing, the worst-case cost cannot be subquadratic because the
output itself can be quadratic. In contrast, both ggraph and gor explicitly
cap per-node connectivity (by k or A), ensuring that the produced interme-
diate objects are of size O(m).

Implications for bilevel meta-training cost. Let C; denote the amor-
tized cost of one forward+backward pass through fy per example, and let s
denote the number of inner-loop gradient steps. A single task then incurs
embedding and inner-loop cost on the order of

Tembed+inner(m) ~ O(me) + O(Sme),

up to constants depending on whether we adapt only h or also a subset of
6. Let Cy(m) denote the constructor cost. In an outer iteration with a
meta-batch of B tasks, the total wall-clock cost is approximately

Touter ~ B (Tembed+inner(m) + Cg(m)> .

Theorem 5 makes precise a threshold phenomenon: if Cy(m) = Q(m?) (exact
DBSCAN-like) while Cy = O(1) per example, then for sufficiently large m
the constructor dominates the entire meta-step. This is precisely the undesir-
able regime in which increasing task size to improve representation learning
yields diminishing returns because the clustering step saturates the compute

budget. Conversely, if Cy(m) = O(mk) (Graph) or Cy(m) = O(mA) (OT
with fixed A, I), then for modern backbones with large Cy the constructor
becomes a lower-order term, so scaling in m and d is limited primarily by
the embedding network rather than by task construction.

Finally, we note that the above bounds are compatible with the stability
requirements of bilevel training. By constraining intermediate structures to
be sparse and by abstaining on ambiguous points (small communities or low-
confidence assignments), we avoid the combinatorial instability associated
with dense neighborhood graphs, while retaining sufficient signal for inner-
loop adaptation. In the next section we specify an experimental protocol
that isolates these computational effects by replacing DBSCAN in DHM-
UHT with ggraph or gor while controlling all other components.

4.7 Experimental protocol: apples-to-apples replacement of
DBSCAN in DHM-UHT

We specify an experimental protocol whose sole purpose is to isolate the
computational and statistical consequences of the task constructor. Con-

20

cretely, we treat DHM-UHT with DBSCAN as the reference implementation
and replace only the constructor by either ggraph (ANN kNN + community
detection) or gor (anchors + Sinkhorn), keeping all remaining meta-learning
components fixed.

Controlled replacement and invariants. In all experiments we keep
fixed: (i) the unlabeled dataset D and task sampler 7 (minibatches of size
m), (ii) the backbone fy architecture and initialization, (iii) the inner-loop
adaptation operator Adapt(-) (number of steps s, optimizer, learning rates,
and whether 6 is adapted or frozen), (iv) the outer-loop optimizer and sched-
ule, and (v) the head parameterization (a linear classifier with output di-
mension K reinitialized per task). The only altered module is the mapping
Z + 1II and the induced pseudo-labels §; € {1,...,K} U {L}. Outliers
(i = L) are excluded from the inner-loop cross-entropy in all methods,
so that differences are attributable to the constructor rather than to loss
reweighting.

Datasets and downstream evaluation. We meta-train on standard un-
labeled image corpora (e.g. MinilmageNet, CIFAR-FS, tieredlmageNet, or a
chosen ImageNet subset with labels hidden during meta-training) and eval-
uate the learned representation by few-shot classification on disjoint labeled
classes. For few-shot evaluation we use episodic N-way S-shot tasks (e.g.
N € {5,20} and S € {1,5}), reporting mean accuracy and 95% confidence
intervals over a fixed set of evaluation episodes. To decouple representation
quality from any particular episodic solver, we additionally report a linear
probe and a kNN classifier on frozen embeddings. The intent is not to maxi-
mize absolute accuracy but to compare constructors under identical training
compute.

Time and memory measurement methodology. We measure three
wall-clock components per task: (a) embedding time T’ for computing Z =
{fo(xi)}i,, (b) constructor time T, for producing II, and (c) inner-loop
time Tipper for s gradient steps on non-outliers. We instrument GPU/CPU
boundaries with CUDA events and synchronize before timing each block;
data loading is excluded by prefetching. We then report

T,(DBSCAN)
T, (9)

We also report peak memory (GPU and host) attributable to the constructor,
together with the retained fraction

Trask = Tf + Tg + Tinner, speedup(g) =

o= |{i i # 1)

)

21

since aggressive abstention can artificially reduce inner-loop cost while de-
grading supervision quality.

Scaling curves in (m,d). To study scaling we vary the task size m over

a geometric grid (e.g. m € {64,128,256,512,1024,2048}) and the embed-
ding dimension d over a grid determined by architecture choice (e.g. ResNet
widths) and /or an explicit projection head (e.g. d € {128,256, 512,1024, 2048}).
For each (m,d) pair we run a fixed number of outer iterations (or, alterna-
tively, a fixed wall-clock budget) and record: (i) final few-shot accuracy,
(i) Ty and Tiask, and (iii) stability statistics defined below. We emphasize
accuracy—time trade-offs by plotting Pareto frontiers (accuracy versus con-
structor time) at matched training budgets; this prevents conflating speed
improvements with having trained for longer.

Constructor-specific hyperparameter ablations. For ggrapn We ablate
the neighbor parameter k (e.g. k € {8,16,32,64}) and the minimum commu-
nity size 7 used for outlier rejection. We additionally ablate the community
detection routine (label propagation versus a greedy modularity heuristic)
while keeping the same input graph. For gor we ablate the number of an-
chors A, the number of Sinkhorn iterations I, and the hardening/outlier
threshold (e.g. declare | when maxy Py < (). In each case we report the
induced K distribution across tasks, «, and downstream accuracy; this is
essential because two constructors may achieve comparable accuracy with
very different pseudo-task cardinalities.

ANN error sensitivity. To quantify the effect of approximate neighbor
search, we treat the ANN index parameters as a dial that controls recall
at fixed k (e.g. HNSW parameters such as efSearch and M). We estimate
recall by sampling a subset of nodes and comparing ANN neighbors to exact
neighbors computed on that subset, yielding an empirical recall rec. We
then report accuracy and stability as a function of rec, thereby separating
the effect of graph sparsity (controlled by k) from the effect of neighbor
errors.

Stability and robustness diagnostics. Because bilevel training can be
destabilized by rapidly changing pseudo-labels, we measure partition sta-
bility across outer iterations. For a fixed task sampled repeatedly with
controlled randomness, we compute the normalized variation of information
(NVI) or adjusted Rand index (ARI) between successive pseudo-partitions
after matching cluster labels by permutation, restricting to non-outliers. We
also measure the sensitivity of II to small embedding perturbations by inject-
ing Gaussian noise z; + z; +&; with & ~ N(0,0%I) and recording the change

22

in assignments and in a. These diagnostics allow us to detect regimes where
speed is obtained at the cost of highly discontinuous pseudo-supervision.

Reporting and statistical practice. All results are averaged over multi-
ple random seeds (at least 3) and reported with dispersion (standard devia-
tion across seeds for training, confidence intervals across evaluation episodes).
We fix the meta-training budget either by outer iterations or by wall-clock
time; both are reported, since constructor acceleration may alter the number
of effective parameter updates achievable within a given time.

The outcome of this protocol is an explicit accuracy—time-stability trade-
off map as (m, d) vary, together with ablations that identify which construc-
tor knobs control this trade-off. In the subsequent discussion we use these
empirical regularities to motivate streaming variants, multi-source pseudo-
labeling, and principled robustness monitoring.

4.8 Discussion and extensions: streaming/online variants,
multi-source pseudo-labeling, and stability diagnostics

We discuss three directions that naturally follow from the proposed scal-
able constructors: (i) streaming or online task construction when tasks are
drawn sequentially and embeddings evolve during meta-training, (ii) compat-
ibility with multi-source pseudo-labeling schemes that combine several weak
partitioners, and (iii) explicit interactions between the constructor and sta-
bility /robustness diagnostics, including the possibility of feeding diagnostics
back into training.

Streaming and online task construction. The outer loop induces a
slowly drifting embedding map fy, hence the geometry of each task cloud
Z = {fo(x;) }I"| changes over time. If tasks arrive as a stream, it is wasteful
to rebuild neighbor indices from scratch whenever the same or similar points
reappear (e.g. under reservoir sampling or repeated augmentations). A direct
extension is to maintain a global memory bank M of recent embeddings to-
gether with an ANN index that is updated asynchronously. At outer iteration
t, for a new task T we compute Z;, insert Z; into M, and query the index
to obtain approximate neighbors either within-task (restricted queries) or
cross-task (full queries). The latter yields a bipartite (or augmented) graph
in which each task node has edges to a bounded number of memory-bank
nodes. We may then run a community routine on the induced subgraph on
Vr UV, and subsequently restrict the resulting labeling to V. This con-
struction preserves bounded degree (hence near-linear time) while allowing
information reuse across tasks; it also amortizes index construction, replacing
per-task indexing by incremental insert/delete operations.

A similar streaming idea applies to gor. Instead of sampling anchors
anew from each task, we maintain a set of persistent prototypes {ag}le

23

stored in M and updated online (e.g. by exponential moving averages of
assigned embeddings). For a task T' we compute similarities S;y = exp(—||z;—
a¢||?/7?) and run a fixed small number of Sinkhorn iterations to obtain a soft
assignment matrix P. Hardening via g; = arg maxy Py with abstention yields
pseudo-labels, while the prototypes are updated using only high-confidence
assignments. This resembles an online clustering layer, but the key constraint
is that we must preserve per-task heterogeneity: we therefore interpret K
as the number of prototypes actually used (i.e. those receiving at least 7
confident points) and treat the rest as irrelevant to the current task. In
this way, persistent prototypes serve as a shared scaffold, while task-specific
heads remain variable-dimensional.

Temporal smoothing and warm-starting. Streaming emphasizes a prac-
tical tension: discrete pseudo-partitions can change abruptly even under
small parameter updates. Two mitigations are immediate. First, in the
graph constructor we can warm-start community detection from the previ-
ous iteration’s labeling for the same task identity (or for a matched task
obtained by approximate nearest neighbor search in task space), performing
only a few refinement passes; this both reduces computation and discourages
spurious label flips. Second, for both constructors we can explicitly smooth
the embeddings used for construction by maintaining an EMA body 6 and
constructing II from fg while adapting and updating using fg. This decou-
ples pseudo-label stability from fast inner-loop dynamics, and it is compatible
with the invariant that gradients need not pass through g.

Multi-source pseudo-labeling and compatibility. Because g is an in-
terchangeable module, it is natural to combine multiple weak constructors.
Let g(l), e g(R) be candidate constructors producing partitions 1" and
pseudo-labels 4. A conservative fusion is to accept a label only when
sources agree: define a point ¢ as inlier if there exists a consensus label
under an alignment between cluster identities (computed, for example, by
maximum bipartite matching on overlap counts between clusterings), and
otherwise set y; = L. This reduces effective supervision noise at the cost
of lowering the retained fraction c. One may then trade off noise versus
coverage by allowing partial agreement: for each point we can compute an
empirical distribution over labels induced by the sources after alignment and
minimize a soft cross-entropy between head predictions and this distribution,
excluding points whose entropy exceeds a threshold.

A complementary approach is heterogeneous multi-view pseudo-labeling:
I'un gGraph ON a similarity derived from cosine distance (or a learned met-
ric), and run gor on Euclidean distance with temperature 7, then encour-
age agreement via a consistency term. In the OT case, since P is differen-
tiable with respect to S (and hence to Z) when we backpropagate through

24

Sinkhorn, we can optionally add a regularizer that aligns P with a graph-
based soft label propagation distribution P computed on the kNN graph.
This yields an objective of the schematic form

Linmer = CE(7,h(Z)) + AKL(P | P),

with ¢ used only for confident points. The intent is not to claim global
optimality of either constructor, but to exploit their different failure modes:
OT tends to be stable under small perturbations but may blur fine structure;
graph methods capture local connectivity but may be sensitive to neighbor
errors.

Interplay with stability and robustness diagnostics. Stability mea-
sures such as ARI/NVI across outer iterations, as well as perturbation sen-
sitivity under z; — z; + £;, can be used not only for reporting but also as
a control signal. We can treat instability as a symptom of operating in a
regime where fy has not yet separated the data or where the constructor
hyperparameters are too aggressive. Concretely, in the graph constructor we
may adapt k and 7 online: if measured instability increases, we increase 7
(reject more small communities) and/or increase k (improve within-cluster
connectivity), subject to a time budget. In the OT constructor we may adjust
the hardening threshold S and the temperature 7: high instability suggests
that assignment margins are small, hence we either raise 8 (more abstention)
or decrease 7 (sharper affinities) depending on whether instability is due to
ambiguity or due to oversmoothing.

We may also incorporate a partition inertia constraint. Suppose a task T’
is revisited (or approximated by a near-duplicate under data augmentation).
Let §°4 be a stored pseudo-labeling for its previous embedding snapshot,
and let "V be the current labeling. After aligning labels, we can penalize
disagreement on the intersection of non-outliers:

1 . . A N
Laa = g LM £ 0™ o= g0 £ L g™ £ 1)
1€

For OT, an analogous differentiable inertia is ||P — P°9||; on stored soft
assignments. Such terms formalize the intuition that pseudo-supervision
should not oscillate faster than the representation can adapt.

Failure modes suggested by diagnostics. The diagnostics also help
classify constructor-specific failures. For graph methods, low ANN recall
produces spurious inter-cluster edges that often manifest as sudden merges;
this is detected by a sharp drop in K and a large NVI jump. For OT, an
overly small anchor budget A (or poorly placed prototypes) yields persistent
high abstention a@ < 1 or systematic collapse of multiple modes onto a

25

single anchor, visible as a heavy-tailed cluster size distribution. In both
cases, monitoring (K, «) jointly with stability metrics is essential: stability
alone can be achieved trivially by declaring all points outliers, while high «
alone can be achieved by forcing assignments even when margins are small.
The practical extension is thus a constraint-based tuning rule: maintain «
within a target interval and minimize instability subject to time constraints
by adjusting (k,7) or (A, 1,).

These extensions preserve the core design: variable K, principled out-
liers, and near-linear per-task cost. They also clarify that the constructor is
not merely a preprocessing step but a control point that mediates the noise—
coverage—stability trade-off that ultimately governs bilevel training dynam-
ics.

4.9 Limitations and open questions: non-differentiability, ap-
proximation bias, and worst-case behavior

Our proposed constructors garaph and gor trade exact density connectivity
for scalability and meta-compatibility, and this trade induces limitations that
are not merely implementational but structural. We collect the most salient
issues and outline open questions toward tighter end-to-end guarantees for
bilevel meta-learning with pseudo-partitions.

Non-differentiability and gradient mismatch. For the graph construc-
tor, the mapping Z — II is discrete (ANN neighbor selection, community
detection, and the subsequent label map), and we typically do not backprop-
agate through it. Consequently, the outer-loop gradient VgLgyter is com-
puted with g treated as a stop-gradient operator, even though g depends on
Z = fp(T). This introduces an inherent gradient mismatch: improvements
to fp that would make g produce better pseudo-labels are only indirectly en-
couraged via downstream adaptation. In favorable regimes (where partitions
are stable under perturbations), the mismatch may be negligible; however,
near phase transitions where small changes in Z change II discontinuously,
the resulting training dynamics can be difficult to characterize. A concrete
open problem is to formalize conditions under which the piecewise-constant
dependence of Ilon Z yields an outer objective that is “almost everywhere”
smooth enough for standard stochastic optimization arguments, possibly via
stability bounds on label changes (e.g. NVI control) implying bounded bias
in the meta-gradient.

Approximation bias from ANN and heuristic community routines.
The near-linear runtime relies on approximate neighbor search and on com-
munity detection heuristics that do not optimize a canonical objective with
provable approximation guarantees in general graphs. This yields two dis-
tinct biases. First, ANN errors perturb E; even if the planted-partition

26

assumptions hold for the true kNN graph, the approximate graph may in-
troduce adversarial inter-cluster edges or delete crucial intra-cluster edges,
breaking the recovery conditions used in our analysis. Second, common
community routines (label propagation, Louvain-style modularity maximiza-
tion, greedy merges) may have multiple local optima, and their outputs can
depend sensitively on tie-breaking and iteration order, creating additional
stochasticity across outer iterations. While one can empirically improve ro-
bustness (e.g. by ensembling, warm starts, or multiple random seeds), the
theoretical question remains: can we obtain recovery and stability guar-
antees for the full pipeline (ANN + community routine) under explicit and
verifiable conditions on embedding separation, ANN recall, and graph expan-
sion? Even for benign random graph models, understanding how heuristic
variability translates into pseudo-label noise is largely open.

OT-specific limitations: anchor coverage, smoothing, and capacity
mismatch. The OT constructor replaces combinatorial partitioning by a
softened assignment P whose stability can be controlled via temperature
7 and the Sinkhorn iterations. This differentiability is partial: while P is
continuous in Z for fixed anchors, the choice of anchors and the harden-
ing/abstention step reintroduce non-smoothness. Moreover, OT introduces
its own approximation bias: with too few anchors A, distinct modes can
collapse onto a single anchor, while with too large 7 the assignments can
oversmooth and blur cluster boundaries. Thus, OT may be stable yet sys-
tematically wrong, and stability alone is not a sufficient diagnostic. An
open direction is to quantify a bias—variance trade-off: increasing smoothing
improves Lipschitz stability (variance reduction) but increases assignment
bias, and it is unclear how this trade-off interacts with inner-loop adap-
tation, particularly when K is defined as the number of “active” anchors.
A related question concerns head capacity: the dynamic head of size K is
trained on pseudo-labels, but the representation fy is shared across tasks; we
lack a principled characterization of when the induced per-task label spaces
are compatible enough for a single body to support fast adaptation.

Worst-case failures and adversarial geometries. Our lower bound
for exact DBSCAN emphasizes that avoiding (m?) work requires approxi-
mation, but approximation admits worst-case failures. In high-dimensional
spaces, distance concentration and hubness can make kNN graphs unreliable:
a few points become nearest neighbors of many others, and local neighbor-
hoods cease to reflect latent clusters. Similarly, in data with heterogeneous
densities, any fixed (k,7) can be inappropriate: small dense clusters may
be merged into larger ones by graph connectivity, while elongated manifolds
can be fragmented by bounded-degree graphs. OT can fail in the opposite
direction by enforcing approximately balanced transport to anchors, which

27

may be misaligned with true cluster sizes. These issues suggest that no
single constructor dominates uniformly, and the practical success of UHT
depends on the implicit regularization induced by the constructor. A theo-
retical open question is to identify impossibility results (or minimax lower
bounds) for variable-K partition recovery under computational constraints
such as bounded-degree graphs, thereby clarifying when observed failures are
unavoidable rather than artefacts of implementation.

Outliers, abstention, and identifiability in bilevel training. Outlier
handling is essential to control noise amplification, yet abstention introduces
a subtle selection bias: the inner loss CE is computed on a subset of points
whose membership depends on Z. If the constructor preferentially retains
“easy” points, the meta-learner may overfit to highly separable regions and
neglect hard-but-important structure. Conversely, if abstention is too weak,
pseudo-label noise may dominate, degrading both inner adaptation and outer
updates. We currently lack a principled rule that links the retained fraction
« (and the distribution of retained points) to guarantees on meta-learning
performance. An open problem is to model abstention as a missing-data
mechanism and to derive conditions under which minimizing Loyter on the
retained set is consistent for a target objective (e.g. representation learning
that supports downstream supervised tasks), possibly requiring assumptions
about how the constructor’s confidence correlates with correctness.

Toward end-to-end guarantees: coupling misclustering to meta-
objectives. Finally, our recovery statements are phrased in terms of mis-
clustering rates under a planted model, whereas the bilevel objective concerns
post-adaptation loss. Bridging these requires a coupling argument: how does
an e-fraction of incorrect pseudo-labels affect Adapt and hence Loyter? The
answer depends on the head architecture, regularization, inner-step count,
and the margin properties induced by fy. A compelling direction is to de-
velop bounds of the schematic form

E[Louter (Adapt(+))] < E[Louter(Adapt(-;11))] + ¥(e, a, m, s),

where ¥ quantifies the degradation due to pseudo-label errors and absten-
tion. Establishing such bounds would move beyond constructor-level cor-
rectness to an end-to-end theory of UHT that (i) incorporates approximation
and non-differentiability, (ii) accounts for the stochasticity of tasks T ~ T,
and (iii) yields actionable prescriptions for choosing (k,7) or (A,I,[) as a
function of compute budgets and desired generalization behavior.

28

	Introduction
	Background: bilevel meta-learning and UHT as inner-loop task construction
	Problem formulation: meta-training with an inner-loop task constructor
	Scalable task constructors
	Graph-based constructor gGraph: ANN kNN graph + community detection
	OT-based constructor gOT: Sinkhorn soft partitions + hardening with abstention
	Unified interface and dynamic heads
	Theoretical model: planted partitions, noise, and drift
	Main guarantees: recovery, stability, and correct cluster count
	Complexity and lower bounds: scalable constructors versus exact density connectivity
	Experimental protocol: apples-to-apples replacement of DBSCAN in DHM-UHT
	Discussion and extensions: streaming/online variants, multi-source pseudo-labeling, and stability diagnostics
	Limitations and open questions: non-differentiability, approximation bias, and worst-case behavior

