Stability-Guided Meta-Control for Unsupervised
Bilevel Meta-Learning

Liz Lemma Future Detective

January 20, 2026

Abstract

Unsupervised meta-learning methods such as DHM-UHT place task
construction (pseudo-labeling via clustering) inside the inner loop, en-
abling robustness to label noise and heterogeneous tasks—but at sub-
stantial compute cost, especially when using MAML-style inner up-
dates and expensive clustering. Inspired by the source material’s representation-
stability analysis (SVCCA), we propose turning stability from a diag-
nostic into a control signal. We formalize training as an online de-
cision problem: at each outer iteration, the learner chooses among
discrete inner-loop strategies (e.g., ANIL vs MAML, number of steps)
and task-construction granularities (e.g., clustering resolution/outlier
thresholds), trading off accuracy and compute. We introduce cheap
stability proxies based on CKA over random projections and EMA
checkpoints, and design a stability-guided cost-sensitive (contextual)
bandit controller. Theoretically, we prove O(vTK) regret (K = |A|)
for the compute-regularized objective with a matching lower bound,
and show that if stability predicts when deeper inner updates are ben-
eficial, the controller approaches an oracle that always chooses the
best compute level. Empirically (implementation recommended), we
evaluate on the DHM-UHT benchmark suite and larger backbones to
demonstrate self-tuning behavior: ANIL-like compute in easy/stable
regimes and MAML-like adaptation only when instability indicates
drifting pseudo-labels or heterogeneous task difficulty.

Table of Contents

1. 1. Introduction: unsupervised bilevel meta-learning with in-the-loop
task construction; compute bottleneck; representation stability as ac-
tionable signal; contributions (controller + bounds + empirical valida-
tion plan).

2. 2. Background and Motivation: recap DHM-UHT inner/outer loops;
dynamic head; SVCCA stability definition; empirical observation that
stability differs across algorithms and noise/heterogeneity regimes.



. 3. Problem Formulation: online selection of inner-loop strategy and
constructor granularity; define action space, cost, stability signal, and
compute—accuracy objective; discuss evaluation metrics (accuracy vs
wall-clock vs gradient steps).

. 4. Stability Signals: define CKA /SVCCA proxies that are cheap; EMA
checkpoints; random projection CKA; probe batch selection; invari-
ances/limitations; calibration diagnostics.

. 5. Algorithm: Stability-Guided Cost-Sensitive Bandit (and contextual
variant): exploration, cost-aware updates, stability-conditioned action
filtering; practical variants (thresholding, two-stage gating).

. 6. Main Theorems: regret bounds vs best fixed action and piecewise-
stationary comparator; stability-informativeness implies near-oracle com-
pute selection; matching lower bound from adversarial bandits.

. 7. Complexity and Optimality: time/space overhead, dependence on
probe batch size, number of actions; discussion of what is information-
theoretically unavoidable; sensitivity to stability noise.

. 8. Implementation & Experimental Plan (recommended): reproduce
DHM-UHT settings; extend to larger backbones; controlled regimes
(label noise, heterogeneity, cluster drift); ablations (stability-only vs
loss-only vs random).

. 9. Limitations and Extensions: continuous action spaces (tuning eps/min_samples),
contextual policies learned by small networks, multi-objective con-
straints, and transfer of controllers across datasets.

. 10. Conclusion: stability-guided self-tuning meta-learning; implica-
tions for 2026-scale unsupervised adaptation.



1 Introduction

Unsupervised bilevel meta-learning has recently emerged as a practical mech-
anism for learning transferable representations without annotated tasks by
constructing episodic supervision on the fly. In this setting, an outer loop
updates a shared backbone network using a meta-objective, while an inner
loop adapts a task-specific module using pseudo-labels or partitions produced
from the current minibatch by a task constructor (e.g., clustering in repre-
sentation space). Such pipelines inherit much of the algorithmic structure of
supervised meta-learning, but the absence of ground-truth labels introduces
an additional degree of freedom: the task itself is a stochastic function of the
model parameters and of the chosen construction granularity. Consequently,
training dynamics depend not only on the underlying optimizer, but also on
how aggressively we adapt per batch and how finely we partition data into
pseudo-classes.

A persistent obstacle to scaling these methods is that the most accurate
variants often require expensive inner-loop computation, frequent reconstruc-
tion of pseudo-tasks, or both. In particular, deep inner adaptation (e.g., up-
dating the backbone during inner-loop steps) and high-resolution task con-
struction (e.g., more clusters, additional refinement passes) can substantially
increase wall-clock time per outer iteration. Conversely, lightweight updates
(e.g., adapting only a head) can be markedly cheaper, but may underperform
when the induced pseudo-tasks drift rapidly or when the representation is
not yet sufficiently stable for shallow adaptation to be reliable. This creates
a compute—accuracy tension that is not naturally resolved by fixing a single
algorithmic choice throughout meta-training: the right level of inner-loop
effort is typically nonstationary, varying across phases of training and across
regimes of data heterogeneity and pseudo-label noise.

We formalize this tension by introducing a finite set of actions A, where
each action encodes (i) an inner-loop update rule and its depth (e.g., ANIL-
like versus MAML-like variants, number of inner steps), and (ii) a constructor
granularity (e.g., clustering resolution or refinement schedule). Each action
a € A has an associated compute cost ¢(a), which we treat as known or mea-
surable, and induces a meta-loss ¢;(a) when executed at outer iteration t.
The central difficulty is informational: under the usual online training pro-
tocol, we observe only the loss of the chosen action, i.e., bandit feedback, so
we cannot directly compare all candidate strategies at each iteration. Thus,
selecting compute adaptively cannot be reduced to an offline hyperparameter
sweep, nor can it be solved by a standard full-information controller.

Our guiding observation is that, although meta-losses are unobserved
for unchosen actions, we can often obtain cheap side information about the
state of training. Specifically, we assume access to a representation stabil-
ity signal s; € [0, 1], computed with negligible overhead from a fixed probe
batch via a similarity functional between consecutive checkpoints (e.g., CKA



or SVCCA-style proxies). Intuitively, high stability indicates that the back-
bone representation is changing slowly, so aggressive inner-loop updates and
frequent high-resolution reconstruction may yield diminishing returns; low
stability indicates substantial drift, suggesting that additional inner adapta-
tion and/or more careful task construction may be needed to prevent mis-
match between the induced pseudo-tasks and the evolving representation.
The key point is that s; can be computed independently of the action choice
with cost 0 < ¢(a), making it a candidate signal for compute allocation.

We therefore pose the following online decision problem: at each outer
iteration ¢, we choose an action a; € A to execute one meta-update, with
the aim of minimizing a compute-regularized objective

T

Z (ﬁt(at) + )\C(at)),

t=1

where A > 0 encodes a user-specified trade-off between accuracy and com-
pute. This Lagrangian formulation also subsumes constrained variants in
which one seeks to minimize ), f;(a;) subject to >, c(a;) < B. Impor-
tantly, the losses ¢;(a) may be nonstationary, since both the pseudo-tasks
and the backbone parameters evolve over time; hence, the controller must
operate robustly under potentially adversarial or drifting losses.

Our main contribution is a stability-guided, cost-sensitive bandit con-
troller for this online bilevel training loop. At a high level, we combine two
ideas. First, we employ an EXP3-style multiplicative-weights algorithm on
the cost-regularized loss, which yields regret guarantees under bandit feed-
back without assuming stochasticity. Second, we optionally incorporate a
stability gate that restricts exploration to subsets of actions deemed plausi-
ble given the current stability s;; this heuristic is analytically accounted for
by comparing against an appropriate comparator class or by bounding the
number of rounds on which gating may exclude near-optimal actions. The
resulting controller is lightweight—maintaining only O(|.A|) weights—and
can be inserted into existing unsupervised meta-learning code with minimal
intrusion.

We complement the algorithm with theory that matches the informa-
tional structure of the problem. In the adversarial regime, we prove an
expected regret bound of order O(y/T|A]) for the cost-regularized objec-
tive, up to the natural scaling factor induced by the range of ¢:(a) + Ac(a).
We also provide a matching Q(,/T|A|) lower bound, demonstrating that
one cannot generally improve the dependence on T and |A| under bandit
feedback without additional assumptions. Since algorithmic preferences can
shift over training, we further extend the analysis to piecewise-stationary
comparators, yielding guarantees against a policy that changes its preferred
action a bounded number of times.

Finally, we articulate an additional “stability informativeness” condition



under which the stability signal is predictive of the performance gap between
cheap and expensive action families. Under this calibration assumption, a
simple stability-based gating rule yields near-oracle compute selection: the
controller pays only an additive O(eT') penalty relative to a hypothetical
policy that, at each iteration, could evaluate all actions and choose the best
compute—accuracy trade-off. This result formalizes the intuition that stabil-
ity can serve not merely as a diagnostic, but as actionable information for
allocating inner-loop compute.

Empirically, we propose to evaluate the controller on unsupervised meta-
learning benchmarks with in-the-loop task construction, varying backbone
scale, data heterogeneity, and pseudo-label noise. The aim is to demon-
strate that the controller attains the accuracy of compute-intensive inner
updates when instability demands it, while reverting to ANIL-like costs in
regimes where representations stabilize and expensive adaptation becomes
redundant.

2 Background and Motivation

We briefly recall the unsupervised meta-learning loop with in-the-loop task
construction that motivates our controller, using DHM-UHT as a represen-
tative instance. The salient feature is that, at each outer iteration, we must
manufacture an episodic supervision signal from an unlabeled minibatch,
and this manufactured task depends on the current representation. Con-
sequently, both the quality of the pseudo-task and the value of inner-loop
adaptation vary across training, and the appropriate compute expenditure
is inherently nonstationary.

Unsupervised tasks from a minibatch. Let T; = {z;}!' ; denote the
minibatch sampled at outer iteration ¢. Given the current backbone fy,,
we form embeddings z; = fp,(z;) € RL A task constructor g maps the
embeddings to a partition or pseudo-labeling, for instance by clustering:

Ui = 9({21‘}?:1; T)i’

where 7 denotes a granularity parameter (e.g., number of clusters, refinement
passes, temperature). From {(x;, ;) } we then sample an episode by splitting
indices into a support set S; and a query set Q¢, typically with an N-way K-
shot structure induced by the pseudo-classes. The resulting “task” is thus a
random object depending on both data and current parameters; in particular,
changing 6; changes the clustering geometry and can alter g; discontinuously.

Inner-loop adaptation with a reinitialized head. Given a constructed
task, we introduce a task-specific module h (e.g., a linear classifier, a small
MLP, or an adapter) with parameters ¢. In DHM-UHT-style procedures, ¢



is (re)initialized per task, either from a fixed initialization ¢g or from a data-
dependent initialization (a “dynamic head”) computed from the support set,
e.g., by prototype statistics or a least-squares fit. We then perform k& inner
steps on the support loss

¢(i+1) — gb(i) —aVy ﬁst(fgt, h¢(i)), 1=0,...,k—1,

with ¢(©) given by the reinitialization rule. The algorithmic choice that
matters for compute is whether we adapt only ¢ (ANIL-like) or also (part
of) 6 during the inner loop (MAML-like), and how many inner steps k are
taken. These choices directly affect the number of forward /backward passes
and, when combined with clustering resolution 7, determine the per-iteration
cost.

Outer-loop update and the role of pseudo-task drift. After inner
adaptation, the outer update uses the query set @J; to update the shared
backbone:

Ori1 = 01 — BV L fors hym),

where the gradient may be computed with full meta-gradients (backprop-
agating through inner steps) or with first-order approximations, depending
on the action chosen. In unsupervised task construction, the query loss de-
pends on pseudo-label quality; if g produces inconsistent partitions as 6
evolves, then the effective objective is noisy and may require more aggres-
sive inner adaptation or more conservative construction to avoid chasing
transient pseudo-classes. Conversely, when the representation evolves slowly
and partitions stabilize, the marginal utility of expensive inner updates can
diminish.

Representation stability as cheap side information. We therefore
seek a scalar signal indicating whether the representation is currently drift-
ing. We assume access to a fixed probe batch P = {33?}?":1, drawn from the
same distribution as training data but not used for optimization. Let

fat (xll))—r
F, = : € R™*d

f9t (x%)'l'

collect probe representations. A stability functional S(6;,6;_1; P) measures
similarity between F; and F;_1, yielding s; € [0, 1] where larger values indi-
cate greater stability. Two standard choices are SVCCA-style similarity and
linear CKA. For instance, a common CKA proxy is

I ALY
1B Fl e [ FL P

CKA(Ft,Ft_l) St = CKA(Ft,Ft_l),

6



possibly after centering rows and applying a random projection to reduce
the effective dimension. The key property for our purposes is computa-
tional: since m is small and fixed, and since the computation is a pairwise
comparison of probe features, the overhead o is negligible relative to any
full bilevel update. Moreover, s; is available regardless of which action we
take at iteration ¢, and thus constitutes valid side information in an online
controller.

Empirical motivation: stability separates regimes. Empirically, sta-
bility behaves differently across algorithmic choices and data regimes. First,
deep inner-loop variants that modify the backbone (or use many inner steps)
tend to exhibit larger representation drift early in training, reflected in
smaller s;, as the model rapidly reshapes its embedding space. Head-only
adaptation typically yields higher s; because the backbone changes only
through the outer gradient. Second, task-constructor granularity interacts
strongly with stability: increasing clustering resolution or adding refinement
passes can increase the sensitivity of pseudo-labels to small representation
changes, inducing oscillatory partitions and reducing s; even when outer
learning rates are unchanged. Third, exogenous factors such as batch het-
erogeneity (e.g., implicit domain shifts across minibatches) and pseudo-label
noise can reduce stability by forcing the backbone to accommodate incom-
patible local clusterings; in such regimes, shallow adaptation can underfit,
whereas deeper adaptation or more careful construction can improve the
effective query loss.

These observations suggest that s; can be used as a diagnostic for when
additional compute is likely to be beneficial. In stable phases, expensive in-
ner computation often yields diminishing returns relative to its cost, whereas
in unstable phases it may be necessary to prevent mismatch between rapidly
changing pseudo-tasks and the learner. The technical challenge is that we
do not observe ¢;(a) for unchosen actions, so we cannot directly validate
this heuristic online; hence we require a principled bandit-style mechanism
that can exploit s; without assuming full information. This motivates the
formal online control problem and action-based compute accounting intro-
duced next.

3 Problem Formulation

We formalize the control of inner-loop compute and task-constructor gran-
ularity as an online decision problem coupled to an unsupervised bilevel
meta-learner. The salient difficulty is informational: at each outer iteration
we may choose among multiple algorithmic variants, but we only observe
the resulting query loss for the variant we actually run. Our aim is to select
variants so as to trade off accuracy and compute in a principled way, while



permitting the use of a cheap stability signal as side information.

Outer iterations as rounds; tasks as random batches. Let D be an
unlabeled dataset (or stream), and let 7' € N denote the training horizon
(number of outer-loop iterations). At round ¢ € {1,...,T} we sample a
minibatch T; from D and treat it as an implicit meta-task. For a fixed
shared backbone fp, at the start of the round, we may run one outer meta-
update using any admissible combination of (i) how we construct pseudo-
labels/partitions from 7} and (ii) how we adapt within the induced episode
prior to the outer gradient step.

Action space encodes algorithmic variants. We assume a finite set of
actions A with |A| = K. Each a € A specifies a complete “inner-loop strategy
-+ constructor granularity” recipe for a single outer iteration. Concretely, an
action may encode: (i) the task constructor setting (e.g., clustering resolution
r, refinement passes, temperature), (ii) the inner-loop adaptation rule (e.g.,
head-only versus including part of the backbone, number of inner steps k,
first-order versus higher-order meta-gradient), and (iii) any other discrete
knobs that materially change compute. We denote by ¢;(a) € [0,1] the
meta-loss incurred on the query set of the constructed episode if we were
to execute round ¢ using action a. The normalization [0,1] is without loss
of generality and is enforced in practice by rescaling or clipping (e.g., by
dividing by a fixed constant and truncating to [0, 1]).

Compute costs as known arm-dependent penalties. Each action has
an associated compute cost ¢(a) € [1,C], assumed known (or pre-measured)
up to a fixed scale, where C is the maximal per-round cost among actions. We
treat c(a) as an abstract compute budget unit, chosen to correlate with wall-
clock time. Typical instantiations include a weighted sum of: the number
of forward/backward passes through the backbone, the number of inner-
loop gradient evaluations, and the number of task-constructor calls (e.g.,
clustering iterations). In this work we take c(a) to be action-dependent but
time-invariant; this matches the common situation in which each variant has
a predictable per-iteration cost profile, even though the realized wall-clock
time may vary mildly due to hardware effects.

Stability as cheap side information. At each round ¢ we assume access
to a scalar signal s; € [0, 1] measuring representation stability between suc-
cessive checkpoints, computed on a small fixed probe batch P. We model
s¢ as available prior to selecting a;, with overhead o negligible relative to
minge 4 c(a). We emphasize that s; is not a loss and is not required to be
predictive; it is merely auxiliary information that may be exploited by a con-
troller to bias exploration or to gate expensive actions. The precise choice



of stability functional S(6;,60;—1; P) is deferred to the next section.

Online control protocol and bandit feedback. A controller chooses an
action a; € A at each round according to past observations and the current
stability signal. The interaction is:

1. observe s; (and any other admissible history-dependent state);

2. sample a; (possibly randomly) and execute one outer iteration of the
meta-learner under ay, yielding 6;41;

3. observe the incurred bandit feedback ¢¢(a;) and the cost c(ay).

Crucially, we do not observe ¢;(a) for any unchosen a # a;. This is the
standard bandit setting; our results do not rely on full-information access.

Compute—accuracy objective: Lagrangian and constrained forms.
We study two equivalent formulations, depending on whether compute is
treated as a penalty or a hard budget. In the Lagrangian form, for a fixed
trade-off A > 0, the controller seeks to minimize

fj(exat) + hefar) ). M

t=1

Define the cost-regularized per-round loss Li(a) := ¢;(a)+Ac(a) € [0, 1+AC].
The Lagrangian formulation is convenient analytically, since it reduces to an
adversarial bandit problem over bounded losses L;(a).

Alternatively, in the constrained form, given a total compute budget B,
we aim to minimize the unregularized query losses subject to Z?:l c(at) < B.
Standard duality heuristics suggest that for appropriate A the Lagrangian
controller yields near-feasible and near-optimal solutions in the constrained
sense; in our experiments we report both the achieved losses and the realized
compute consumption to expose the trade-off directly.

Performance metric: regret against natural comparators. To quan-
tify the online penalty for not knowing which action is best in advance, we
measure regret relative to a comparator class. For the basic case of a single
best fixed action in hindsight, we define

T T
Ry = E[Z Lt(at)} — E?EZ Li(a),
t=1 t=1

where the expectation is over the controller’s internal randomness (and any
algorithmic randomness in task construction and optimization). We also
consider nonstationary comparators (piecewise-constant best actions), moti-
vated by the empirically observed regime changes during training.



How we evaluate compute—accuracy trade-offs empirically. The
formal objective (1f) is a training-time proxy for what we ultimately care
about: downstream generalization under a compute budget. Accordingly,
we report (i) downstream evaluation accuracy after meta-training (e.g., few-
shot accuracy on held-out episodes or linear evaluation), (ii) total wall-clock
time, and (iii) normalized compute in gradient-evaluation units 7., ¢(ay).
The last metric is the one directly controlled by our formulation; wall-clock
time is reported to validate that c(a) is a faithful surrogate. Finally, by
sweeping A (or imposing budgets B) we obtain a Pareto curve of accuracy
versus compute, which allows direct comparison to fixed-action baselines
(e.g., always-ANIL-like or always-MAML-like) and to stability-agnostic ban-
dit controllers.

4 Stability Signals

We now specify the stability functional S(6y,0;_1; P) used to form the side-
information scalar s; € [0,1]. Our design requirement is that s; (i) be com-
putable at negligible overhead relative to any admissible action, (ii) reflect
nontrivial changes in the representation induced by the backbone update,
and (iii) be sufficiently robust to nuisance transformations (e.g., feature
rescaling) to admit consistent thresholding and calibration.

Probe representations and a generic stability template. Let P =
{xi}F] be a fixed probe batch (or a small fixed collection of batches) drawn
once and held constant. For a chosen probe layer ¢(-;6) € R? (typically the
penultimate backbone features), define the probe feature matrices

Z, € RMP*4 (Z4)i,: = (5 6;).
A large class of stability measures can be written as
st := S04, 01-1; P) == S(Z4, Zi-1),

where S outputs a scalar in [0, 1], with larger values indicating greater rep-
resentational similarity between successive checkpoints. In practice we com-
pute Z; and Z;_1 without gradients and cache Z;_; from the previous round,
so that the marginal per-round overhead is one forward pass of the probe
batch (plus a small amount of linear algebra).

Linear CKA as a cheap default. We take as our default S the linear
centered kernel alignment (CKA), which we recall in a form convenient for
implementation. Let Z denote row-centered features, Z := HZ with H :=
I,, — 117, The linear CKA similarity between Z and Z’ is

np np

7T 7112
CKA(Z,7") = — UZ Z~”F~
1ZTZ|p 1277 2" |

€ [0,1]. (2)

10



We then set s; := CKA(Z;, Z;—1). The principal invariances of are
desirable for our purposes: it is invariant to isotropic rescaling of either rep-
resentation, and (in the linear case) to post-multiplication by an orthogonal
transform, so the signal is insensitive to benign reparameterizations of the
feature space. Computationally, if np < d then forming Gram matrices in
R™P*"P ig cheap; if d < np then forming the feature covariances is cheap.
Since we choose np small (typically 32 to 256), either route is negligible
compared to any outer iteration.

Random-projection CKA for high-dimensional backbones. For large
d (e.g., ViT backbones with wide embeddings) the naive computation of
Z'Z e R*™? may be unnecessarily expensive. We therefore employ a
Johnson—Lindenstrauss style approximation: draw a fixed random projection
R € R¥" with r < d (e.g., Gaussian or Achlioptas entries), and compute
projected features Y; := ZyR € R""*". We then use s; := CKA(Y;, Yi—1).
The resulting overhead is O(npdr) for the projection plus O(npr?) for the
CKA computation, which we treat as o in our protocol. Since R is fixed
across training, the approximation noise is stable and does not introduce
spurious nonstationarity into the controller’s context.

SVCCA-style alternatives and when they matter. When one seeks
sensitivity to subspace changes rather than full-feature similarity, singular
vector canonical correlation analysis (SVCCA) is a natural alternative. Let
U € R¥™k and U’ € R¥™F be the leading k right singular vectors of Z
and Z’, and let {pj }§=1 be the canonical correlations between the projected
activations ZU and Z'U’. One may define s := %Z?:l p;j € [0,1]. Exact
SVCCA can be more costly than linear CKA due to SVD and CCA steps;
however, with small np and modest k, or after random projection to r,
SVCCA becomes practical. Empirically we find linear CKA sufficient for
action selection, and we view SVCCA primarily as a diagnostic tool when
assessing whether s; is dominated by a low-dimensional drift.

EMA checkpoints to suppress high-frequency noise. A stability sig-
nal computed between consecutive iterates can be overly sensitive when 6,
changes rapidly due to optimizer noise or data-order effects. We there-
fore consider an exponential moving average (EMA) reference checkpoint
0; == af;_1 + (1 — a)f; with a € (0,1). A robust variant is

St 1= S(Zt, Zt—l): Zt—l = ()O(P’ ét_l)’

which compares the current representation to a smoothed historical represen-
tation. This reduces variance in s; and yields more stable gating thresholds,
at the cost of maintaining one extra forward pass through the EMA model
(which is still negligible for small P).

11



Probe batch selection and practical invariances. The probe set P
should be small, fixed, and representative enough that changes in s; corre-
spond to global shifts rather than idiosyncratic batch effects. In practice
we select P by uniform sampling from D at initialization and then freeze it.
To reduce sensitivity to augmentation randomness, we either (i) store fixed
augmented views for each probe example, or (ii) average features across a
small, fixed number of deterministic augmentations. We emphasize that s;
is not intended to detect every meaningful training event: it is insensitive
to transformations that preserve pairwise similarities in feature space (by
design), and it may fail to detect changes localized to layers not probed
by . Moreover, if representations collapse (e.g., near-constant features),
CKA may appear artificially high; accordingly, we recommend monitoring
simple companion statistics on P, such as feature variance tr(Z 'z )/np, to
disambiguate “stable and informative” from “stable due to collapse.”

Calibration diagnostics for stability informativeness. Our later near-
oracle guarantee relies on s; being informative about the relative advan-
tage of more expensive actions. Since this is assumption-dependent, we
propose a simple calibration protocol. On a sparse subset of rounds (e.g.,
every M steps), we execute an audit in which we evaluate (without up-
dating 6) a representative cheap action ac, € Acheap and a representative
deep action agp € Ageep on the same batch T}, yielding an empirical gap
A; = li(ach) — li(agp). We then regress A; on s (e.g., isotonic regres-
sion to enforce monotonicity, or binning to obtain a reliability curve) and
report the resulting prediction error as an estimate of the calibration param-
eter € appearing in the stability-informativeness condition. This diagnostic
serves two purposes: it justifies the use of stability-conditioned filtering in
the controller, and it provides a principled method to set or adapt stability
thresholds used by the algorithm in the next section.

5 Stability-Guided Cost-Sensitive Bandit Control

We now describe the online controller that selects, at each outer iteration
t, an action a; € A encoding both (i) the task-constructor granularity (e.g.,
clustering resolution) and (ii) the inner-loop adaptation strategy (e.g., ANIL-
style head-only steps versus MAML-style full-body steps and the number of
steps). The controller observes only bandit feedback ¢;(a;) for the executed
action, but it also receives the cheap side-information scalar s; € [0,1] from
Section 4l Our goal is to minimize the compute-regularized objective

T
Z (ﬁt (at) + Ac at))

t=1

12



where A > 0 is a user-specified trade-off parameter and c(a) € [1,C] is a
known per-action cost (measured in any consistent unit such as gradient
evaluations plus constructor calls).

Base controller: EXP3 on cost-regularized losses. Let K := |A|. We
define the per-round regularized loss

Li(a) := li(a) + Ac(a), Li(a) € 10,1+ A,

and we run an exponential-weights bandit update (EXP3-style) on L;. The
controller maintains nonnegative weights {w;(a)}.e4 and forms a sampling
distribution p; with explicit exploration. Writing v € (0,1] for the explo-
ration rate, we set

N (1 C) B
pt(a) = (1 7) Za’ wt(a/) + K’

sample a; ~ p;, execute one outer-loop meta-update under a; to obtain 6,1,

and observe L; := Li(a;). We then form the usual importance-weighted
estimator
E(a) N 1{a = a;}
t . pt(at) t M
and update

w1 (a) == wi(a)exp (— nft(a)),
for a learning rate n > 0. If one wishes to keep losses in [0, 1] for numerical
stability, it suffices to rescale by 1+ AC, i.e., replace L; by L;/(1 4+ AC') and
accordingly adjust . This controller is intentionally agnostic to the internal
structure of unsupervised meta-learning: all algorithmic complexity (con-
structor g, inner-loop steps for h, and outer update of fy,) is encapsulated
by the black-box action interface and its bandit feedback.

Stability-conditioned action filtering (gating). The stability signal
s¢ can be used to reduce wasteful exploration among clearly inappropriate
compute regimes. We formalize this as a per-round eligible set F; C A
computed from s; and a user-chosen rule. The distribution is then defined
on E; only:
wi(a) gl
wia) = g @ T
O, a ¢ Et,

with the convention that F; must be nonempty. A simple and practically
effective instance is threshold gating. Partition A = Acheap U Adecp (€.8-,
ANIL-like versus MAML-like). For a threshold 7 € [0, 1], one may set

-Acheapv 8¢ > T,
Et =
Adeepa S5t < T,

13



which encodes the design heuristic that high representation stability indi-
cates that expensive inner adaptation is less likely to be beneficial. More
graded policies are also natural: with multiple thresholds 1 > 7 > 19 > - -+,
one may define a ladder of eligible sets of increasing cost, thereby restricting
the controller to progressively deeper actions only when instability persists.
We emphasize two implementation details. First, to avoid pathological
exclusion due to noisy s;, we may enforce a safety fallback E; = A whenever
the chosen rule yields |E;| < mpyin for a small myi, > 2, ensuring meaning-
ful exploration. Second, gating need not be hard; one can implement soft
gating by multiplying weights by a stability-dependent prior m(a) € [0, 1]
(e.g., m(a) decreasing with ¢(a) when s; is high), and sampling from the
renormalized product 7 (a)wi(a). This retains a nonzero probability for all
actions while still biasing the search toward plausible compute regimes.

Two-stage (hierarchical) selection. When A is large and structured,
a two-stage controller is convenient. We introduce a coarse regime variable
r; € {cheap,deep} and a within-regime action a; € A,,. The first stage can
be implemented either deterministically from s; (thresholding) or via a small
bandit on the two regimes using the same loss L; but with the regime costs
defined as minge 4, ¢(a). Conditional on 7, we then run an independent
EXP3 instance over A,,. This decomposition reduces variance in the within-
regime estimates and makes it straightforward to add or remove fine-grained
actions without retuning a single flat K-arm controller.

Contextual variant via discretized stability. Although s; is a scalar,
it can be used as context by maintaining separate bandit weights for different
stability ranges. Concretely, fix bins {I,}2_, partitioning [0, 1] and let b(t)
be the bin index containing s;. We maintain weights wt(b)(a) for each bin
and update only the active bin:

wt(i(f))(a) = wib(t))(a) exp ( — nft(a)), wt(i)l(a) = wlgb) (a) for b # b(t).

Sampling is performed from p; computed using wlgb(t)) (and optionally gat-
ing). This “binned contextual bandit” is a minimal mechanism for condi-
tioning on stability without assuming any parametric relationship between

s¢ and loss gaps.

Budget handling and adaptive A. While our primary presentation uses
the Lagrangian objective, practitioners often specify a target average cost c.
A standard remedy is to update A online by dual ascent:

At = [/\t + p(C(at) - 5)] v

14



with step size p > 0 and projection onto [0,00). The controller then uses \;
in place of a fixed A when forming L,. This converts the trade-off into an
adaptive constraint-tracking mechanism without altering the bandit feedback
interface.

Summary pseudocode. For clarity we collect the preceding choices into
the following template:

Initialize wi(a) = 1 for all a. For t = 1,...,T: compute s;
choose F from s; (optional); form p; from wy restricted to Ey with
exploration ~; sample a; ~ p;; execute one meta-update under
as; observe {(a;) and incur cost c(at); set Ly = £i(ar) + Ac(ar);
update weights by importance weighting; optionally update A by
dual ascent.

In the next section we analyze the regret of these controllers under bandit
feedback and quantify when stability-conditioned filtering yields near-oracle
compute selection.

6 Regret Guarantees and Near-Oracle Compute Se-
lection

We analyze the stability-guided controller of Section [5| as an online learning
algorithm over the finite action set A under bandit feedback. Recall that
the meta-learner incurs at outer iteration t the query loss ¢;(a;) € [0, 1] for
the executed action a;, and we regularize by the known cost ¢(a;) € [1,C]
through the Lagrangian loss

Li(a) := £i(a) + Ac(a) € [0,1 4+ AC].

The controller uses only the realized scalar Ly = L;(a;) and the sampling
probability ps(a¢) to form an importance-weighted estimate. For the present
section we treat the inner/outer optimization and task construction as black
boxes that merely instantiate the per-round loss vector Lq(-).

Theorem 1 (adversarial regret for cost-regularized EXP3). Assume
that for each ¢, the loss vector Ly(-) is arbitrary with L;(a) € [0,1 + AC].
Run the base controller (no gating) with exploration v € (0,1] and learning
rate 7 > 0 on the scaled losses Ly(a) := Li(a)/(1 + AC) € [0,1]. Then the
expected regret with respect to the best fixed action in hindsight satisfies

T T
E[ZLt(at) —géileLt(a) < O((l—&—)\C)\/TKlogK), K = |A|.
t=1 t=1

15



In particular, up to logarithmic factors, the controller pays a TK price

for online selection among K possible inner-loop/constructor configurations,

while the cost regularization contributes only via the scale factor 1 4+ AC.
Proof sketch. We apply the standard EXP3 potential argument to Et.

The importance-weighted estimator Ly(a) = (L¢/pi(ar))1{a = a;} is unbi-

ased for Ly(a). Bounding the one-step increase of the log-partition log 3 L wi(a)

yields a comparison between the algorithm’s cumulative estimated loss and

that of any fixed comparator action, plus a variance term controlled by the

explicit exploration floor pi(a) > /K. Choosing n and v on the order of
(log K)/(TK) gives the stated bound after rescaling by 1+ AC.

Theorem 2 (piecewise-stationary comparator). In many meta-training
regimes the optimal compute/action choice drifts over time (e.g., as pseudo-
label quality improves). Suppose the identity of the best action changes at
most S times across T' rounds, yielding an unknown partition of {1,...,7T}
into S + 1 contiguous segments. Using a restarted variant of the controller
(or an EXP3.S-style algorithm), we obtain the dynamic-regret guarantee

S+1

T
ZLt(at)] — min_ Y 3" LyaY) < 5((1+>\C)\/TK(S+1)),
t=1

segment actions 4
o) g5+ J=1tel;
Jeees

E

where I; are the (unknown) segments and O hides polylogarithmic factors.
Thus, if the best regime changes infrequently, the controller tracks it with
only a /S + 1 multiplicative overhead relative to the stationary case.

Theorem 3 (stability-informativeness = near-oracle compute se-
lection). We now formalize when stability-based gating can be more than
a heuristic. Partition A = Agheap U Adeep, Where the former correspond to
low-cost inner adaptations and the latter to higher-cost adaptations. As-
sume there exists a measurable function A : [0, 1] — R and calibration error
€ > 0 such that, for every ¢,

min f(a) — min f(a) — A(sy)| < e
ae-Acheap t( ) aEAdeep t( ) ( t) =€
Define the cost gap Ac := minge4,,,, c(a) — minge 4,,,, ¢(a) > 0. Con-

sider a gating rule that admits only cheap actions when A(s;) < AAc (deep
compute not justified in the Lagrangian sense) and admits deep actions oth-
erwise. Then the expected Lagrangian suboptimality relative to an oracle
that observes ¢;(a) for all a is bounded by

O(eT') + (bandit regret incurred within the eligible sets).

In words, if the stability signal predicts the cheap-versus-deep loss gap up to
error €, then stability-gated selection loses at most O(¢) per round compared

16



to a compute-aware oracle, plus the unavoidable bandit cost of choosing
among actions within the selected regime.

Proof sketch. The oracle’s per-round decision compares minge A,.,, li(a)+
AMiNge Ay ., ¢(a) to the analogous deep quantity. The gating rule makes the
same comparison but with A(s;) substituted for the unknown loss gap; the
assumed calibration inequality implies that whenever the rule selects the
wrong regime, the resulting excess Lagrangian loss is at most O(e). Sum-
ming over ¢ yields the O(eT’) term, and the remaining difference is controlled
by applying Theorem 1 (or Theorem 2) to the restricted action set active
under gating.

Theorem 4 (matching lower bound). The vTK dependence in Theo-
rem 1 is information-theoretically unavoidable in the worst case. Specifically,
for any online controller with bandit feedback over K actions and losses in
[0, 1], there exists an adversarial loss sequence such that the expected regret
against the best fixed action is Q(v/TK). This remains true even if the con-
troller additionally observes a side-information signal s; that is independent
of the losses (or otherwise non-informative). Consequently, improvements
over ©(vVTK) require additional structure beyond adversarial bandits, such
as stochastic losses, realizable contextual models, or a stability signal satis-
fying an informativeness condition of the form used in Theorem 3.

The foregoing theorems provide our main guarantees: standard adversar-
ial regret for cost-regularized action selection, extensions to nonstationarity,
and a precise route by which representation stability can justify aggressive
compute reduction without sacrificing accuracy. We next quantify the com-
putational overhead of stability measurement and controller maintenance,
and we discuss optimality and sensitivity to noisy stability in the complexity
and information-theoretic terms.

Complexity, overhead, and scaling. We separate the computational
cost of the controlled meta-update from the overhead of the controller and
stability measurement. At round ¢, executing the chosen action a; incurs
the dominant cost c(a;), which aggregates (i) task construction cost (e.g.,
clustering, Sinkhorn, or assignment updates at the granularity encoded by
at), (ii) the prescribed number of inner-loop gradient steps and associated
forward /backward passes, and (iii) the outer/meta-gradient computation.
The controller adds only: (a) an EXP3-style weight update and sampling
step over K = | A| arms, and (b) the stability computation s; = S(6;, 6;—1; P)
on a fixed probe batch P. The controller arithmetic is O(K) time and O(K)
memory per iteration, which is negligible compared to a single gradient step
once the backbone has nontrivial size.

17



Stability computation cost and dependence on |P|. Let |P| denote
the probe batch size, d the representation dimension at the probed layer, and
r < d the rank of a random projection used to approximate CKA /SVCCA-
type similarities. A typical implementation computes probe representations
Zy € RIPIXd and Z;_; by two forward passes (no backpropagation), projects
to Z! = Z;R € RIPIX for a fixed R € R¥", and then evaluates a normalized
similarity. This yields overhead

o = O(|P|-FWD(fy)) + O(|P|dr) + O(|P|r?),

where FWD( fp) denotes the cost of a single forward pass through the back-
bone. In regimes where inner-loop actions require multiple forward /backward
passes, it is typical that o < c(a) for all a € A; indeed, if ¢(a) is measured
in gradient evaluations, then o is comparable to at most a small constant
number of forward evaluations. The probe size |P| controls a variance—cost
trade-off: increasing | P| decreases the noise of s; but raises overhead linearly.
In practice, |P| can be fixed to a small fraction of the training batch size,
and we may also amortize stability by computing it only every m rounds,
replacing s; by an exponential moving average §; with negligible effect on
the controller analysis provided the gating rule uses the same signal used in
practice.

Total time and space over T rounds. Summing per-round costs, the
overall runtime is

T
Z(c(at)Jro) = Zc(at) + To.

t=1 t=1

The first term is the intended controlled compute, while the second term
is an additive overhead independent of the selected action. Controller state
requires storing weights w;(a) (and optionally their normalized probabilities
pt(a)), thus O(K) memory. Stability computation can be performed either
by caching the projected probe features Z; € RIPIX" giving O(|P]r) extra
memory, or by recomputing both Z] and Z,_; on demand, which uses O(| P|r)
transient memory but incurs two forward passes. In both cases the memory is
negligible relative to standard optimizer states for the backbone (e.g., Adam
moments), which scale with the number of parameters.

Dependence on the number of actions K. The dependence on K en-
ters in two places: (i) the controller update is linear in K, and (ii) the regret
bounds scale as O(vTK) under adversarial losses (Theorem 1). Conse-
quently, K should reflect the granularity at which we actually need distinct
inner-loop strategies. In our setting, actions typically factor into a small
Cartesian product (e.g., #inner steps x constructor resolution x whether

18



higher-order gradients are used), and thus K is moderate. If one wishes to
expose a large discrete grid of actions, then it is natural to exploit structure
(e.g., hierarchical or factorized bandits) to replace the v/K dependence by
sums of smaller terms; this is an algorithmic refinement rather than a change
in the underlying bilevel learning problem.

Optimality and what cannot be improved in the worst case. Even
though the controller observes a side-information signal s;, the bandit feed-
back model still restricts us to observing ¢;(a;) only for the chosen action.
Theorem 4 formalizes that, without further assumptions linking s; to the loss
vectors Ly(+), the minimax regret scales as Q(v/TK). Thus, improvements
in the dependence on T and K are information-theoretically impossible un-
der adversarial losses unless we either (a) assume stochasticity /realizability,
(b) enrich the feedback (e.g., observe losses for multiple actions per round),
or (c) assume that the stability signal is genuinely informative about loss
differences, as in Theorem 3. In particular, our cost regularization through
Ac(a) changes only the loss scale 1+ AC, and does not alter the fundamental
exploration cost: identifying a near-optimal action among K candidates still
requires @(\/TiK )-type uncertainty under bandit feedback.

Sensitivity to stability noise and miscalibration. The stability signal
is computed from a finite probe and is therefore noisy. We may model this
by observing s; = s;+& where & is bounded or subgaussian, and by allowing
the calibration condition in Theorem 3 to hold with an effective error e.g
that absorbs both approximation error of S (e.g., random-projection CKA)
and measurement noise (finite |P|). Under such a model, the near-oracle
term O(eT") becomes O(eegT), and the dominant failure mode is system-
atic misgating: repeatedly excluding the regime (cheap or deep) that would
minimize the Lagrangian. Two mitigations are immediate and preserve the
bandit analysis within the eligible set: (i) soft gating, in which we do not set
pi(a) = 0 but merely downweight disfavored regimes, maintaining a nonzero
exploration floor across all actions; and (ii) hysteresis/EMA gating, in which
the gate depends on §; and uses separate thresholds for switching from cheap
to deep and vice versa, reducing spurious oscillations when s; is near the de-
cision boundary A(s) = AAc. Both mechanisms trade a small amount of
additional compute for robustness, and can be viewed as controlling the
number of rounds on which the gate disagrees with the oracle regime, which
is precisely the quantity that enters the approximation term discussed after
Theorem 3.

Compute-budget variants and tuning. While our analysis is phrased
in the Lagrangian form ), ¢;(a;) + Ac(a;), the same complexity accounting
applies to the constrained budget >, c¢(a;) < B. In practice one may adapt

19



A online via a dual update to target a desired average cost, which adds only
constant additional arithmetic per round. From the standpoint of overhead,
this does not change the leading terms: stability measurement remains 7o
and controller maintenance remains O(TK), while the meta-update cost
remains » , c¢(a;), which is the quantity being optimized.

Summary. The controller introduces negligible memory and O(K) time
per round, and stability measurement contributes an additive T'o overhead
linear in probe size and (projected) representation dimension. The vTK
dependence of regret is minimax-optimal in the absence of further structure,
so any practical gains must come from either (i) the cost scaling captured by
A, which encourages cheaper actions when accuracy permits, or (ii) informa-
tiveness of stability, which can reduce unnecessary exploration of expensive
regimes while remaining consistent with the online bandit setting.

Implementation and experimental plan. We implement SG-MetaControl
as a thin wrapper around an existing unsupervised bilevel meta-learning
codebase with in-the-loop task construction (DHM-UHT-style). Concretely,
each outer round ¢ samples a batch Ty C D, applies the action-selected
constructor g(-;a¢) to obtain pseudo-partitions (e.g., cluster assignments,
Sinkhorn transport plans, or nearest-neighbor graphs), splits the batch into
support/query subsets according to the DHM-UHT protocol, reinitializes the
task module h, performs the inner adaptation specified by a; (e.g., ANIL-
like head-only steps versus MAML-like full-body steps, with optional higher-
order gradients), and then applies the outer update to . The per-round ban-
dit loss #;(a;) is taken to be the query/meta-loss produced by that round’s
construction and adaptation, clipped to [0,1] by a fixed affine rescaling de-
termined from a short calibration run (the same rescaling is applied across
all actions to maintain a common range). Compute costs c(a) are measured
in a hardware-agnostic proxy (number of forward/backward passes plus con-
structor calls) and are optionally validated against wall-clock time; we report
both when available.

Action set design and cost calibration. We define A as a small Carte-
sian product capturing the dominant compute—accuracy knobs in DHM-
UHT. A representative choice is

A =1{0,1,2,4} inner steps x {head-only, full-body} x {coarse, fine} constructor granularity,

yielding K = 16 actions. The “coarse/fine” granularity may correspond to
a smaller/larger number of clusters, Sinkhorn iterations, or graph neighbor-
hood size. For each action a, we precompute c(a) by counting primitive
operations (one clustering call, one forward pass, one backward pass), and
we additionally record empirical wall-clock ratios on a fixed reference batch;

20



in the controller we use the proxy c(a) to preserve portability across devices,
while experimental plots may annotate both. We fix A either by targeting a
desired average cost % > ¢ c(ay) via a dual update, or by sweeping A over a
logarithmic grid to obtain compute—accuracy frontiers.

Stability signal and gating instantiation. We instantiate s; = S(6;,6;_1; P)
using random-projection linear CKA on a single probed layer (typically the
penultimate block), computed on a fixed probe batch P resampled once at
initialization and then held fixed. We use an exponential moving average ;
for gating and log both s; and §; to quantify noise. The optional eligible-set
rule is chosen to match Theorem 3’s cost-benefit comparison: we partition
A into Acheap (head-only and/or fewer inner steps and/or coarse construc-
tors) and Ageep (full-body and/or more steps and/or fine constructors), and
we switch regimes based on whether §; lies above or below a threshold. To
reduce oscillations we employ hysteresis (two thresholds 7 < 7) and soft
gating (never setting probabilities to zero, but enforcing a small exploration
floor ay/ K on all arms). This permits a direct empirical study of the trade-off
between stability-driven compute savings and the risk of misgating.

Baselines and ablations. We evaluate against (i) fixed-action training
for each a € A, yielding an oracle-in-hindsight reference for the Lagrangian
objective and a compute-accuracy Pareto set; (ii) uniform random action
selection; (iii) loss-only bandit control (EXP3 on ¢; without stability gating);
(iv) stability-only heuristics (deterministic gating between a single cheap and
a single deep action based on §;, without EXP3 within the regime); and (v)
cost-blind bandit control (EXP3 on ¢; with A = 0), which isolates the effect
of explicit compute regularization. We also ablate the stability estimator
(CKA versus cosine similarity of mean features; different probe sizes | P| and
projection ranks 7) to test robustness of the controller to measurement noise,
as suggested by the discussion following Theorem 3. Finally, we include a
“no-constructor-change” ablation in which ¢ is fixed (no clustering updates)
to verify that the controller’s benefits indeed align with constructor drift
rather than generic training nonstationarity.

Reproducing DHM-UHT settings. Our first experimental block re-
produces DHM-UHT training schedules, data augmentations, and evalua-
tion pipelines on the standard benchmark suite used in that literature (same
datasets, episodic sampling rules, and evaluation splits). We report (a) down-
stream few-shot accuracy (e.g., N-way K-shot episodes using a standard
ridge-regression or prototype head on frozen features), (b) linear-probe accu-
racy on a held-out labeled set, and (c) compute statistics: average c(ay), frac-
tion of deep actions, and achieved Lagrangian objective Y, (¢:(a¢) + Ac(ay)).
To connect to the online-learning framing, we also plot the cumulative regret

21



proxy relative to the best fixed action in hindsight (computed offline from
separate runs per action), acknowledging that this is an empirical quantity
rather than an observed online signal.

Scaling to larger backbones and longer horizons. We then scale the
same controller to larger representation learners (e.g., ResNet-50 and ViT-
S/ViT-B) where the separation between cheap and deep inner-loop updates
is magnified in wall-clock time. The action set is adapted to include mixed-
precision and gradient-checkpointing options as additional compute levers
when appropriate; these are treated as actions with associated costs and (po-
tentially) different loss profiles. We test longer horizons 7" to examine nonsta-
tionarity effects and, when relevant, we include the restarted /nonstationary
controller variant corresponding to Theorem 2. The central question is
whether stability-guided control continues to select predominantly cheap
actions once representations stabilize, while still escalating compute dur-
ing representation shifts (e.g., at learning-rate drops or after constructor
re-initializations).

Controlled nonstationarity: label noise, heterogeneity, and cluster
drift. To isolate mechanisms, we construct three controlled regimes. (i)
Pseudo-label noise: we inject controlled corruption into the constructor out-
put (e.g., flipping a fraction p of assignments, perturbing transport plans,
or adding Gaussian noise before clustering) and measure how the controller
shifts toward deep updates as p increases. (ii) Heterogeneity: we form D as
a mixture of domains (or classes with differing augmentation difficulty) and
schedule domain proportions over time; we test whether stability drops at
mixture shifts and whether compute allocation responds accordingly. (iii)
Cluster drift: we explicitly change constructor granularity over time (e.g.,
increasing the number of clusters or annealing Sinkhorn temperature), in-
ducing predictable changes in the pseudo-task distribution; this setting is
designed to validate that s; detects representation/assignment mismatches
and that deep actions are selected primarily when the induced drift makes
them cost-effective.

Reporting and reproducibility. We run all methods with matched outer-
loop optimization hyperparameters and report means and standard errors
over multiple seeds. We log per-round /¢, c(a;), s¢, and p; to enable post
hoc verification of controller behavior (e.g., whether action probabilities con-
centrate as stability increases). We additionally provide plots of compute—
accuracy frontiers as A varies, and we report sensitivity to |P|, r, v, and 7,
emphasizing whether qualitative conclusions persist under reasonable retun-
ing. These experiments jointly test (a) the empirical relevance of stability-
informativeness, (b) the practical impact of cost regularization, and (c)

22



the extent to which the controller attains near-oracle compute allocation in
regimes where stability reliably anticipates the cheap-versus-deep loss gap.

Limitations and extensions. Our formulation deliberately restricts the
controller to a finite action set A, which is appropriate when the dominant
design choices are categorical (e.g., head-only versus full-body, coarse ver-
sus fine constructors) or when a small grid over inner-loop steps suffices.
A first limitation is that several practically important knobs are naturally
continuous or high-resolution, such as clustering hyperparameters (e.g., €
in DBSCAN, min samples, Sinkhorn entropic temperature, augmentation
strength), inner-loop learning rates, or the fraction of layers adapted. Dis-
cretization of these quantities into A can induce either a large K (hurting the
VK dependence) or a coarse grid that misses the compute—accuracy sweet
spot.

A direct extension is to replace finite-armed bandits by continuous (or
large) action models with structure. One mathematically clean route is to
endow the action space with a metric and assume a regularity condition on
the cost-regularized loss Li(a) = ¢;(a) + Ac(a), such as Lipschitzness in a
for each t, or stochastic smoothness in expectation. Then we may apply
continuum-armed bandit techniques (e.g., zooming-style adaptive discretiza-
tions) to obtain regret scaling with an intrinsic dimension rather than with
K. In our setting, one would represent actions as vectors

a = (k, scope, 7, a, &,...)

encoding inner steps k, adaptation scope, constructor resolution r, inner-loop
step size «, and constructor hyperparameters £. The principal difficulty is
that the map a — ¢;(a) need not be smooth under adversarial task sequences,
and thus any improved rate demands explicit structural assumptions (e.g.,
stochastic tasks and stable constructor behavior). A more conservative al-
ternative, which preserves adversarial guarantees, is hierarchical or coarse-
to-fine discretization: we begin with a small Ap, periodically refine around
empirically good actions, and treat refinement as increasing K over time
with a corresponding nonstationary analysis.

A second limitation is that our contextual signal is essentially one-dimensional
(stability s;, possibly smoothed), and the controller is a simple exponential-
weights scheme (with optional gating). This choice is intentional: it keeps
the update unbiased and the analysis standard. However, practical training
dynamics offer richer side information, such as ¢;_1(a;—1), gradient norms,
variance proxies from augmentation views, entropy of pseudo-label assign-
ments, or disagreement between multiple constructors. We may therefore
consider learned contextual policies that map a feature vector z; € R? (in-
cluding s;) to a distribution over actions. If we posit a realizable model class
IT (e.g., small MLPs producing logits over actions), then the controller be-
comes a contextual bandit problem with bandit feedback. Algorithmically,

23



one may use EXP4-style aggregation over a finite policy class, or (for para-
metric IT) online methods such as neural contextual bandits with importance-
weighted losses. Analytically, regret guarantees depend on the complexity of
IT (e.g., log |TI| in EXP4) or on realizability assumptions (e.g., linear payoffs
in LinUCB). In exchange, the controller can learn context-dependent sched-
ules, such as “use deep actions during constructor entropy spikes” without
manually setting thresholds.

This direction raises a methodological caveat: as soon as we learn a con-
textual mapping z; — p;, we must address exploration in a state-dependent
manner to preserve identifiability, and we must control bias introduced by
function approximation. In particular, if a learned policy collapses too early,
then some actions may never be sampled in contexts where they matter,
invalidating both regret claims and empirical conclusions. A principled mit-
igation is to enforce a uniform exploration floor p;(a) > o/ K (as we already
do for soft gating) and to use doubly robust estimators for off-policy evalu-
ation when comparing candidate controllers.

A third limitation concerns multi-objective compute constraints. Our ob-
jective Y, £¢(as) + Ac(ay) captures a single scalarized notion of cost. In prac-
tice, one may face multiple budgets simultaneously: wall-clock latency, peak
memory, energy, communication in distributed training, or even a constraint
on stability disruption itself (e.g., limiting representation drift to preserve
downstream compatibility). A natural extension is to consider vector-valued
costs c¥)(a) for j = 1,...,m and either (i) a scalarization with multiple
multipliers A;, giving Li(a) = fi(a) + 3, Ajcl)(a), or (ii) a constrained
formulation

T T
minZEt(at) s.t. Zc(j)(at) < Bj, Vj.
t=1 t=1

The latter suggests primal-dual updates in which A; are adapted online via
subgradient ascent on constraint violations, coupled with an EXP3-like inner
loop on the instantaneous Lagrangian. The technical point is that adversarial
bandit analysis extends cleanly when A; are predictable and bounded, but
care is required when ); are updated from bandit feedback, since the dual
variables become data-dependent and can amplify estimator variance.

Relatedly, one may wish to optimize a risk-sensitive objective rather
than the mean query loss, e.g., controlling tail events where pseudo-labeling
collapses. This leads to bandit objectives involving CVaR, or robust losses,
which again can be addressed by online convex optimization with bandit
feedback, at the cost of additional assumptions (boundedness, mixing) and
typically worse constants. From the meta-learning perspective, these formu-
lations correspond to explicitly pricing instability events rather than using
stability only as a heuristic input to the controller.

A fourth limitation is transfer of controllers across datasets, backbones,
and horizons. SG-MetaControl is, by design, an online algorithm that can

24



start from uniform weights and adapt within a single run. Nevertheless, in
large-scale practice we often repeat training across many datasets or model
sizes, and it is natural to ask whether a controller tuned on one setting can
warm-start another. In the finite-action case, a simple mechanism is prior
initialization w1 (a) o exp(—BL(a)) based on historical performance L(a)
from related runs, yielding faster concentration when the transfer is valid.
More structured transfer treats the action losses as arising from a latent en-
vironment parameter ¢ (dataset/backbone descriptor) and learns a mapping
¢ — prior over actions, which is then refined online. This is essentially a
meta-contextual bandit problem: we learn a controller of controllers. The
main open issue is robustness: if transfer is poor, an overly confident prior
can delay exploration and incur large transient regret. Thus any transfer-
able controller should retain explicit mechanisms for uncertainty (e.g., en-
tropy regularization or posterior sampling) and must guarantee recovery to
baseline exploration in the worst case.

Finally, our use of stability s; relies on a fixed probe distribution and on
a particular layer choice, and it is not guaranteed to be informative in all
regimes. For example, stability may saturate even when pseudo-tasks shift in
a way that matters for adaptation, or it may fluctuate due to benign symme-
tries (e.g., feature rotations) that do not affect downstream performance. Ex-
tensions here include: (i) multi-layer stability vectors 31@ to disambiguate lo-
cal versus global changes; (ii) task-constructor stability metrics (e.g., cluster-
assignment mutual information across rounds) that more directly measure
pseudo-label drift; and (iii) learned stability predictors trained to forecast
the cheap-versus-deep loss gap. Each of these moves the signal closer to what
Theorem 3 assumes, but also introduces additional modeling choices whose
failure modes must be empirically and theoretically characterized.

Conclusion: stability-guided self-tuning meta-learning. We have
studied an unsupervised bilevel meta-learning loop in which the learner must
repeatedly construct pseudo-tasks from unlabeled data and decide, online,
how much inner-loop adaptation and task-constructor granularity to spend
on each outer iteration. The central observation is that, in such systems,
compute is itself a control variable: the difference between an ANIL-like
update and a MAMUL-like update, or between coarse and fine pseudo-label
partitions, is not merely an engineering detail but a decision that trades
immediate progress against cost. Our contribution is to cast this decision
as an online learning problem with bandit feedback and to show that a
simple controller, driven by exponential weights on a cost-regularized loss,
yields provable performance guarantees while remaining compatible with the
stochastic and nonconvex nature of the underlying meta-optimizer.
Concretely, we define the per-round cost-regularized objective

Li(a) = l(a) + Ac(a),

25



where £;(a) € [0, 1] is the query/meta-loss incurred by choosing action a € A
at outer iteration ¢, ¢(a) € [1,C] is a known compute proxy, and A > 0 con-
trols the compute—accuracy trade-off. The controller selects a; online under
bandit feedback and updates via an EXP3-style importance-weighted esti-
mator. This yields an adversarial regret bound scaling as O((1 + A\C)VTK)
against the best fixed action in hindsight (Theorem 1), extensions to non-
stationary comparators (Theorem 2), and a matching minimax lower bound
Q(VTK) (Theorem 4). The latter is not merely a technicality: it formalizes
that, without additional structure, no controller can reliably outperform the
VT exploration barrier, even if it observes arbitrary side information uncor-
related with losses. Thus, any practical improvement beyond minimax rates
must exploit informativeness of observed signals.

The role of representation stability is precisely to supply such exploitable
structure while retaining negligible overhead. We compute a stability statis-
tic sy = S(0y,0,—1; P) € [0,1] from a fixed probe batch P, chosen to be small
enough that its cost o is dominated by every action cost ¢(a). Empirically, in
unsupervised task construction, instability often coincides with pseudo-label
drift, abrupt changes in partition structure, or feature reshaping induced by
the outer update; these are precisely the regimes in which deeper adaptation
or higher-resolution constructors tend to pay off. This intuition is made ex-
plicit by the stability-informativeness condition in Theorem 3, which relates
the stability level s; to the gap between the best achievable losses among
cheap versus deep actions. Under this condition, a stability-gated strategy
obtains near-oracle compute selection up to an additive calibration term
O(eT'), separating the cost of learning within an action class (handled by
bandit regret) from the cost of deciding which class is worth the compute
(handled by the informativeness error €).

From a systems perspective, the resulting picture is a self-tuning meta-
learning procedure with two nested feedback loops: the inner loop adapts
a task-specific module h according to the selected strategy; the outer loop
updates the shared representation fy; and the controller modulates the inner-
loop depth and constructor granularity so as to minimize a compute-aware
objective over the training horizon. Importantly, the controller is agnostic
to the details of the underlying bilevel optimizer: it treats each candidate
configuration as an arm and only requires that each arm can be executed
for one outer iteration and returns a bounded query loss. This modularity
is essential in practice, because the space of plausible unsupervised meta-
learning recipes continues to expand (new constructors, new augmentations,
new normalization and regularization techniques), while the controller inter-
face remains stable: a set of actions with known costs, a bandit loss, and a
cheap stability signal.

We emphasize a practical implication that becomes decisive at 2026 scale.
As backbones grow and training pipelines move toward longer horizons and
more heterogeneous data streams, the marginal cost of deep inner-loop adap-

26



tation rises substantially, not only in raw FLOPs but also in memory pres-
sure, communication overhead in distributed settings, and wall-clock vari-
ance. In such regimes, static choices (always deep, always shallow, always
fine-grained) are structurally mismatched to the temporal heterogeneity of
unlabeled training. One should instead expect phases: stable phases where
representation change is modest and cheap actions suffice, and volatile phases
where pseudo-task definitions shift and deeper adaptation prevents collapse
or accelerates recovery. Stability-guided control provides a principled mech-
anism for this phase adaptation, with the guarantee that, even under ad-
versarial loss sequences, the controller cannot be forced into arbitrarily poor
long-run performance relative to the best constant compute strategy, up to
the unavoidable VVTK term.

We also draw a methodological conclusion. In unsupervised meta-learning,
the absence of labels makes it tempting to introduce increasingly elaborate
heuristics for task construction and inner-loop scheduling. Our analysis sug-
gests a different discipline: whenever we introduce a heuristic signal (here,
stability), we should ask whether it can be (i) computed cheaply and repeat-
edly, and (ii) related, even approximately, to a decision-relevant quantity
(here, the cheap-versus-deep loss gap). When such a relation holds, Theo-
rem 3 shows that the signal can be elevated from a diagnostic to a control
primitive with a quantifiable suboptimality cost. When it does not hold,
Theorem 4 reminds us that no amount of cleverness can circumvent the
fundamental bandit uncertainty without further assumptions.

In summary, the stability-guided controller gives a mathematically trans-
parent and implementation-friendly bridge between two desiderata that are
usually in tension: robust online selection under bandit feedback, and ag-
gressive compute savings via conditional escalation. The resulting algorithm
is not an alternative to unsupervised meta-learning; it is a wrapper that
makes unsupervised meta-learning self-tuning with respect to compute. We
regard this as an enabling ingredient for the next generation of unsuper-
vised adaptation systems: ones that must operate over long horizons, under
shifting pseudo-task definitions, with limited budgets, and at scales where a
fixed “deep everywhere” rule is no longer tenable. The open technical agenda
is correspondingly clear: to sharpen the stability—performance link in more
realistic stochastic environments, to characterize when stability is predictive
versus merely correlated, and to design controllers whose guarantees remain
meaningful while the underlying meta-learner and task constructor evolve.

27



	Introduction
	Background and Motivation
	Problem Formulation
	Stability Signals
	Stability-Guided Cost-Sensitive Bandit Control
	Regret Guarantees and Near-Oracle Compute Selection

