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Abstract

Recent work (including the RL-CONGEST framework) argues that
WL refinement is not locally computable by message-passing GNNs
without substantial depth–width capacity, and that adding virtual
edges to create expander-like graphs can reduce the depth needed to
simulate WL. However, existing rewiring methods in graph learning
are typically justified by empirical accuracy or oversquashing heuris-
tics, with limited formal connection to what global functions become
computable at fixed depth under bandwidth limits. We develop a quan-
titative theory linking rewiring to provable computability speedups.
We formalize a rewiring budget (edge additions) and analyze WL-style
canonicalization under RL-CONGEST on the rewired graph G′. Our
main results give (i) upper bounds showing that once rewiring ensures
conductance ϕ(G′) = Ω(1) with near-linear added edges, WL refine-
ment can be computed in polylogarithmic depth (randomized, bounded
error), and (ii) lower bounds parameterized by conductance (or mixing
time) showing that below this expansion regime, some canonicalization
primitives require depth at least polynomial in 1/ϕ or linear in di-
ameter. We further propose computability-driven rewiring objectives
(maximize a provable expansion proxy under a budget) and empiri-
cally validate that, holding the base model fixed, rewiring choices pre-
dictably trade accuracy for depth in recovering WL colors and solving
global tasks. This work modernizes the ‘virtual edges’ insights from
RL-CONGEST into a tight, budgeted, and actionable theory for 2026-
era graph foundation models.
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1 Introduction and Motivation

Graph neural networks and, more generally, message-passing procedures are
constrained not only by the expressivity of their local aggregation rules but
also by the cost of disseminating information across the underlying commu-
nication graph. In the RL-CONGEST viewpoint, a depth-d message-passing
architecture is a d-round distributed algorithm with a strict per-edge band-
width constraint. In this setting, many natural primitives—including canon-
icalization tasks that underpin color refinement and Weisfeiler–Leman (WL)
methods—are limited by the time required to coordinate globally consistent
outcomes from locally formed data. We adopt the position that rewiring
should be analyzed as a compute accelerator : by adding a limited number of
edges in a preprocessing step, we alter the communication geometry so that
the subsequent distributed computation provably completes in fewer rounds.

This perspective differs from the prevailing motivations for rewiring in
representation learning. A common account, often phrased in terms of over-
squashing, is that long-range dependencies are compressed into short mes-
sages as they traverse narrow cuts, leading to degraded predictive accuracy.
While this is an important phenomenon, it entangles two effects: (i) the
statistical question of what information should be transmitted, and (ii) the
algorithmic question of how quickly any information can be transmitted un-
der bandwidth constraints. Our focus is the second question. We treat the
aggregation rule as fixed (a WL-type neighborhood multiset operator) and
ask for a sharp, model-specific characterization of the minimal depth re-
quired to implement that operator under RL-CONGEST constraints, both
with and without rewiring. In this sense, rewiring is not merely a heuris-
tic architecture modification but an explicit resource that can be traded for
round complexity.

We study one iteration of WL-1 refinement as a canonical benchmark.
One WL step maps each node to a new color determined by its current color
together with the multiset of neighbor colors, under perfect hashing seman-
tics. This operation is local in its inputs but global in its outputs : in order
for the new colors to be meaningful beyond a single neighborhood, equal
types must be mapped to equal labels and distinct types to distinct labels
in a globally consistent manner. The latter requirement forces some form of
global coordination, and in bandwidth-limited models it naturally exposes
the role of graph conductance (or, equivalently, mixing properties) as a bot-
tleneck. The central hypothesis we pursue is that rewiring can be fruitfully
understood as the act of increasing the conductance of the communication
graph subject to explicit edge-addition budgets, thereby enabling fast global
coordination primitives such as routing, sorting, and ranking.

Concretely, our model allows a preprocessing step that adds a set E+ of
edges to the given graph, producing a rewired graph G′. The post-rewiring
computation proceeds by message passing on G′ with per-edge bandwidth
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O(w log n) bits per round and standard local computation budgets. The
salient point is that we measure the depth of the message-passing phase,
treating the rewiring as a separate resource quantified by either a global bud-
get R = |E+| or a per-node budget r. This separation matches the practical
use of rewiring in learned systems (where augmenting the adjacency can be
seen as an architectural choice made prior to training/inference) and, more
importantly, lets us state precise tradeoffs: how much rewiring is required
to enter a regime in which WL-type refinement is computable in polylog-
arithmic depth, and what lower bounds persist when the rewiring fails to
significantly improve expansion.

Our technical approach makes explicit a reduction that is often implicit
in discussions of WL and GNNs: implementing one WL refinement step
amounts to performing a distributed canonicalization of locally constructed
keys. After one round of neighbor exchange, each node can form a represen-
tation of its WL-1 type as a key that includes its own color and the multiset
of neighbor colors. The remaining task is to assign new labels so that identi-
cal keys receive the same label everywhere. This is exactly a global ranking
problem over distributed tokens, and it is known that on high-conductance
graphs, ranking can be achieved efficiently via routing and sorting primi-
tives. Thus, in the favorable regime where G′ has sufficiently large conduc-
tance, WL refinement becomes a composition of (i) local key formation and
(ii) expander-style token sorting/ranking, with the overall round complexity
governed by the ratio between token size and per-edge bandwidth and by
the routing time guaranteed by the expansion of G′.

At the same time, we argue that this favorable regime is not automatic
and cannot be obtained for free. In sparse graphs with small conductance,
any collision-free relabeling that behaves like perfect hashing semantics is
forced to move a large amount of distinguishing information across sparse
cuts. This yields lower bounds that are inherently communication-theoretic:
regardless of local computation power, an RL-CONGEST protocol cannot
circumvent cut-capacity limitations. In particular, we establish families of
bounded-degree graphs where conductance ϕ directly governs the minimum
number of rounds needed to perform a collision-free WL refinement, scaling
at least inversely with ϕ once bandwidth is fixed. This places conductance
in the role of a computational barrier, rather than merely a correlational
statistic about learning difficulty.

These observations lead to a phase-transition interpretation. When rewiring
succeeds in raising conductance to a constant, the communication graph be-
haves like an expander for the purposes of routing, and WL-type canon-
icalization can be completed in polylogarithmic rounds (up to the band-
width and degree factors induced by moving Θ(∆′ log n)-bit keys). When
conductance remains polynomially small, there exist instances where any
collision-free refinement requires polynomially many rounds. The transition
is not an artifact of the proof technique but a consequence of comparing
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expander-based upper bounds with cut-based lower bounds: the same pa-
rameter (conductance) controls both the achievable routing time and the
unavoidable information flow across bottlenecks. In this way, rewiring has a
crisp complexity-theoretic meaning: it is the intervention that can move an
instance across the boundary between “fast” and “slow” depth regimes.

We also emphasize that exact collision-free refinement is a stringent re-
quirement that may be unnecessary in some downstream uses. Accordingly,
we consider a bounded-error fingerprinting variant in which equal WL types
must always agree, but unequal types are allowed to collide with small prob-
ability. This relaxation aligns with the standard practice of hashing large
identifiers into fixed-width embeddings, while still maintaining a one-sided
guarantee that preserves equality. In the RL-CONGEST setting, such finger-
prints can often be produced with significantly shorter messages than exact
global ranks, and they admit simple analyses via universal hashing once a
canonical encoding of the local multiset is fixed. The resulting picture is that
rewiring-to-expansion benefits both exact and approximate canonicalization,
but the approximate regime can further reduce the communication footprint
and is therefore the more plausible operational target when bandwidth is
small.

Finally, we address the feasibility of rewiring itself. Selecting a small set
of edges that optimally increases conductance is computationally intractable
in general, as it subsumes hard cut-optimization problems. Nevertheless, for
standard hard families that are archetypal obstructions to fast information
spreading—paths, grids, and clustered graphs with sparse interconnections—
we can characterize the minimal edge-addition budgets (up to polylogarith-
mic factors) necessary and sufficient to obtain constant conductance. These
results clarify when rewiring can plausibly act as an accelerator under re-
alistic constraints such as bounded per-node additions, and they motivate
a computability-driven rewiring objective: rather than optimizing a task-
specific surrogate, we target structural properties (notably expansion) that
are directly tied to the round complexity of canonicalization primitives.

In summary, we contribute (i) an explicit reduction from one-step WL
refinement to distributed sorting/ranking on the rewired graph, yielding
polylogarithmic-depth algorithms under high conductance; (ii) a one-sided-
error fingerprinting alternative with small sketches and comparable depth;
(iii) conductance-parameterized lower bounds showing that collision-free re-
finement provably requires many rounds on low-conductance families; and
(iv) rewiring budget characterizations for raising conductance on canoni-
cal hard graphs, supporting a phase-transition view of depth as a function
of expansion. The subsequent sections formalize the RL-CONGEST-with-
preprocessing model, relate conductance and mixing to routing/sorting guar-
antees on expanders, and position WL refinement as a canonicalization prim-
itive that exposes these tradeoffs.
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2 Background

We briefly recall the distributed model we work in, the semantics of one step
of color refinement, and the expansion parameters that govern the complex-
ity of global coordination primitives. Our intent is not to survey the full
literature, but to isolate a small set of notions that will be used repeatedly:
(i) the RL-CONGEST communication constraints, (ii) WL-1 refinement as a
canonicalization task over locally formed keys, and (iii) conductance/mixing
as the structural quantity controlling fast routing, sorting, and hence rank-
ing.

RL-CONGEST and preprocessing. In the standard CONGEST model,
computation proceeds in synchronous rounds on an undirected communica-
tion graph, where in each round each endpoint of an edge may send an
O(logn)-bit message across that edge. We work with a width-parameterized
variant in which each edge transmits O(w log n) bits per round for a user-
specified width w ≥ 1; this captures the common situation in message-
passing architectures where a larger hidden dimension permits proportion-
ally larger per-edge communication. We further allow randomization (private
coins) and local computation time TIME(poly(∆′, logn)) per round, where
∆′ denotes the maximum degree of the actual communication graph used
during message passing.

A central aspect of our setting is an explicit preprocessing stage that
can modify the communication topology by adding edges. Concretely, a
preprocessor receives (G, x) and outputs a rewired graph G′ = (V,E ∪ E+)
subject to a budget constraint, either a global constraint |E+| ≤ R or a
per-node constraint degE+

(u) ≤ r for all u ∈ V . After preprocessing, the
message-passing phase runs for d rounds on G′. This separation lets us treat
added edges as a resource distinct from depth, and it isolates the algorithmic
question we care about: given that the post-rewiring bandwidth per edge is
fixed (up to w), what properties of G′ determine whether a canonicalization
primitive can be completed in few rounds?

WL-1 refinement as a canonicalization problem. One iteration of the
1-dimensional Weisfeiler–Leman procedure (color refinement) transforms an
initial coloring x ∈ [p(n)]n into a new coloring y by mapping each node u
to a label that depends on its own color and the multiset of neighbor colors.
We write

typeG(u) :=
(
xu, {{xv : v ∈ NG(u)}}

)
.

The key point for us is that WL refinement is local in the formation of
typeG(u) but global in the assignment of new labels. Under perfect hashing
semantics (the usual mathematical definition), the output y must satisfy
yu = yv if and only if typeG(u) = typeG(v). This is not merely an injective
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encoding requirement: it is a global consistency condition, because it requires
that identical types computed at distant nodes be mapped to identical output
identifiers, and that distinct types be separated everywhere.

In distributed terms, after one neighbor-exchange round each node can
locally form a key ku representing its type (e.g., by sorting the received neigh-
bor colors and concatenating). The remaining task is to compute a globally
consistent identifier for each distinct key value across the network. We view
this as a canonicalization primitive: given distributed tokens {(ku, u)}u∈V ,
assign each node a label that depends only on ku and is consistent across
all nodes with the same key. A convenient instantiation is ranking (or dis-
tributed sorting): impose a total order on keys and return to each node the
rank of its key among the distinct key values. Exact ranking yields collision-
free WL refinement immediately. This viewpoint is operationally useful be-
cause ranking is a standard global primitive whose round complexity on a
given graph can be analyzed via known routing and sorting subroutines.

We also distinguish an approximate alternative that will recur through-
out: fingerprints (short sketches) that preserve equality deterministically
but may allow collisions among unequal keys with small probability. For-
mally, each node outputs hu ∈ {0, 1}b such that typeG(u) = typeG(v) implies
hu = hv always, while typeG(u) ̸= typeG(v) implies Pr[hu = hv] ≤ ε. In
this regime the canonicalization target is weaker than exact ranking, but it
remains one-sided and thus still captures the idea that equality of WL types
must be globally coherent.

Conductance and mixing as coordination parameters. To relate the
topology of G′ to the complexity of canonicalization, we require a quanti-
tative measure of how quickly information can spread. We use conductance
ϕ(G′), defined by

ϕ(G′) = min
S⊂V, 0<vol(S)≤vol(V )/2

|∂S|
vol(S)

,

where ∂S is the edge boundary and vol(S) =
∑

u∈S degG′(u). Informally,
large conductance rules out sparse cuts: every moderately sized set has many
edges leaving it relative to its volume. This parameter is tightly connected
to the mixing time τmix(G

′) of the lazy random walk. In bounded-degree
graphs, one may view τmix and 1/ϕ as interchangeable up to polynomial
factors; for example, standard Cheeger-type inequalities bound the spectral
gap in terms of ϕ2, and mixing time is O(logn/gap), yielding τmix(G

′) ≤
Õ(1/ϕ(G′)2) under mild regularity conditions. We will not rely on a specific
inequality, but rather on the general principle that high conductance (or fast
mixing) enables rapid global coordination, while low conductance imposes
cut-capacity bottlenecks that no distributed protocol can bypass.
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Routing, sorting, and ranking on expanders. The canonicalization
view reduces WL refinement to a global ordering task over n keys of size
Θ(∆′ logn) bits. In bandwidth-limited models, the classical route to such
an ordering is to first obtain an efficient routing primitive on the communi-
cation graph, and then build sorting/ranking from routing. On graphs with
constant conductance (often treated as expanders for algorithmic purposes),
there exist randomized routing schemes with polylogarithmic round com-
plexity that can deliver O(1)-congestion, O(polylog(n))-dilation routes for a
large set of source–destination pairs. Typical constructions proceed by vari-
ants of Valiant-style load balancing: each token is sent to a (pseudo)random
intermediate node and then to its destination, with random walks or ex-
pander properties ensuring near-uniform load and bounded congestion with
high probability.

Once we can route tokens efficiently, we can implement distributed sort-
ing by standard reductions: for instance, one may sample splitters, route to-
kens to buckets determined by splitters, recursively sort within buckets, and
finally perform a global merge; alternatively, one can implement comparison-
based sorting via a sorting network whose compare-exchange operations are
realized by routing endpoints together. The details of the chosen primitive
are not essential for the conceptual reduction, but two quantitative points
are essential in our setting. First, the round complexity scales with the rout-
ing time Troute(n, ϕ) guaranteed by the graph, which is polylogarithmic in
n when ϕ = Ω(1) under standard randomized expander routing analyses.
Second, the complexity must account for token size: since each WL key
contains a multiset of up to ∆′ colors, any exact token representation costs
Θ(∆′ logn) bits, and thus each token must be streamed in Θ(∆′/w) batches
when the per-edge bandwidth is O(w logn) bits. This yields a multiplicative
factor ∆′/w in the number of rounds for sorting/ranking based on moving
explicit keys (or, in some variants, on moving compact hash values together
with collision-resolution logic).

Virtual edges and overlays. The preceding discussion suggests a con-
ceptual interpretation of rewiring: by adding a relatively small number of
edges, we aim to construct an overlay communication structure on top of
the original graph that supports expander-like routing guarantees. There is
a substantial algorithmic literature on simulating richer communication pat-
terns via “virtual edges” or overlays, including approaches based on expander
embeddings, low-congestion shortcuts, and sparse spanners/hopsets. While
our model makes rewiring explicit by adding actual edges E+, the role of
these results is to justify the following heuristic: if we can endow G′ with a
sufficiently expanding overlay (either literally, by added edges, or effectively,
by a structure that behaves like one for routing), then global primitives such
as broadcast, aggregation, and sorting can be executed in polylogarithmic
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depth. Conversely, if no such overlay exists within the allowed budget, then
there will be sparse cuts that limit the flow of information and force large
depth for collision-free canonicalization tasks.

In particular, one should distinguish two effects. Adding edges may (a)
increase ϕ(G′) directly, improving the intrinsic routing properties of the com-
munication graph, and/or (b) increase ∆′ and hence the token-size and con-
gestion costs of subsequent protocols. Our reductions make this tradeoff
explicit through the dependence on ∆′ and ϕ(G′). This prepares the ground
for the budgeted rewiring questions addressed later: we will quantify when
a budget R or r suffices to move a hard family (e.g., a path or a clustered
graph) into a constant-conductance regime, and we will analyze the result-
ing depth for implementing either exact WL refinement (via collision-free
ranking) or the fingerprinted variant (via short one-sided sketches).

Summary of the background reduction. We will repeatedly exploit
the same structural pipeline: one round of local exchange forms WL keys;
the remainder of the computation is a global canonicalization of these keys.
On high-conductance graphs, canonicalization can be realized via expander
routing/sorting in polylogarithmic rounds, with an explicit ∆′/w factor ac-
counting for token size under bandwidth constraints. On low-conductance
graphs, sparse cuts limit the cut capacity and obstruct collision-free global
agreement on labels. The next section formalizes the precise tasks (exact
refinement versus fingerprinting), the two budget models for rewiring, and
the evaluation metrics used to state the resulting tradeoffs.

3 Problem Setup

We now formalize the objects we are allowed to change (the communication
topology), the two refinement targets we study (exact versus fingerprinted),
and the performance metrics used to state tradeoffs. Throughout, the input
instance is an undirected graph G = (V,E) with n = |V |, m = |E|, maximum
degree ∆, and an initial coloring x ∈ [p(n)]n. The message-passing phase is
an RL-CONGEST protocol with width parameter w, meaning that in each
round each endpoint of an edge may transmit an O(w log n)-bit message
across that edge.

Two rewiring-budget models. A preprocessing algorithm Preprocess
receives (G, x) and outputs a rewired graph

G′ = (V,E ∪ E+),

where E+ is a set of added undirected edges. We will write ∆′ for the
maximum degree of G′. We consider two budget constraints.
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(Global budget.) The preprocessor must satisfy

|E+| ≤ R.

This model captures a setting in which we are allowed to add a fixed number
of auxiliary communication links (or long-range attention edges), with no
explicit fairness constraint across nodes.
(Per-node budget.) The preprocessor must satisfy

degE+
(u) ≤ r for all u ∈ V.

This captures degree-capped rewiring, as in bounded fan-out overlay con-
struction or architectures where each node may attend to only r additional
nodes. In this model, ∆′ is automatically bounded by ∆+ r, but the global
number of added edges may be as large as nr/2.

In either budget model, we allow Preprocess to be randomized and (un-
less otherwise stated) to be centralized in the sense that it may inspect the
entire input graph. Our upper and lower bounds are stated conditioned on
the resulting structural parameters of G′, most prominently its conductance
ϕ(G′), and thus separate the graph-theoretic question “what conductance can
we achieve under a given budget?” from the distributed-algorithmic question
“what depth suffices given that conductance?”. The preprocessing stage may
also attach auxiliary node features of size poly(∆′, logn), which we treat as
free local advice once installed; theorems will not rely on such advice except
for disseminating (or fixing) short public randomness when convenient.

What is being refined: semantics versus communication. The se-
mantic neighborhood used to define WL types is the original input graph
G. That is, typeG(u) = (xu, {{xv : v ∈ NG(u)}}) is defined exactly as in
Section ??. Rewiring does not change the target partition of V into types; it
only augments the communication graph on which we compute. This choice
isolates the role of E+ as a coordination resource rather than as a modifica-
tion of the combinatorial object whose WL refinement we intend to compute.
(In applications one may instead define types with respect to G′; our analysis
applies verbatim after replacing G by the chosen refinement graph, provided
the requisite one-round neighborhood exchange is performed on that graph.)

Because E ⊆ E ∪ E+, every original edge remains available for message
passing. In particular, the one-round neighbor exchange required to locally
form typeG(u) can always be executed over G′ by restricting attention to
the original adjacency. Subsequent rounds may freely exploit E+ for global
coordination.

Task I: exact WL refinement (collision-free canonicalization). In
the exact task, after preprocessing and d rounds of RL-CONGEST on G′,
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each node u must output an integer label yu such that

yu = yv ⇐⇒ typeG(u) = typeG(v). (1)

We interpret (1) as “perfect hashing semantics”: the labeling must be glob-
ally consistent (equal types map to equal labels everywhere) and collision-free
(unequal types never share a label). The range of labels is unconstrained be-
yond being polynomially bounded; concretely, it suffices that yu ∈ [p′′(n)] for
some fixed polynomial p′′, which is consistent with computing ranks among
distinct keys.

Randomization is allowed, but the correctness requirement is zero er-
ror : for every fixed input (G, x) and every outcome of the preprocessor,
the message-passing protocol must satisfy (1) with probability 1 over its
private coins. When we later state randomized upper bounds for canonical-
ization primitives (e.g., routing/sorting on expanders), we will therefore be
explicit about whether the resulting refinement is exact (probability 1) or
succeeds with high probability; when needed, we will amplify success and
then determinize collision resolution so that the final WL labeling remains
collision-free.

Task II: fingerprinted WL refinement (one-sided bounded error).
The second task relaxes the output to a short sketch while preserving one-
sided correctness. Each node outputs a bitstring hu ∈ {0, 1}b such that

typeG(u) = typeG(v) =⇒ hu = hv always, (2)
typeG(u) ̸= typeG(v) =⇒ Pr[hu = hv] ≤ ε. (3)

The probability in (3) is over the private randomness of the protocol (and
any randomness used in preprocessing, if applicable). Condition (2) is de-
terministic and enforces global coherence of equality: identical WL types
must never be separated by the sketching procedure. Condition (3) allows
a small collision probability among distinct types. We will target sketch
lengths b = O(log(n/ε)), consistent with standard universal hashing guar-
antees once a canonical encoding of typeG(u) is fixed.

One may view fingerprinted WL as implementing a randomized map H
from keys to short strings where equality is preserved by construction (e.g.,
by hashing a deterministic serialization of the key), and the only source of
error is accidental collision of two unequal serializations. This task is strictly
weaker than exact refinement, but it is the appropriate objective when we
wish to isolate how conductance accelerates global agreement and when we
are willing to tolerate a small probability of false equality.

Evaluation metrics and parameter dependence. We measure the
complexity of an algorithm by the tuple

(d, w, R) or (d, w, r),
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together with the achieved post-rewiring parameters (∆′, ϕ(G′)) and, in the
fingerprinted task, the pair (b, ε). The primary metric is the depth d, the
number of synchronous message-passing rounds on G′. Width w is treated as
a fixed architectural parameter that linearly scales per-edge bandwidth, and
the dependence of d on w is central: since explicit WL keys have Θ(∆′ logn)
bits, many primitives incur a multiplicative streaming factor Θ(∆′/w).

We distinguish two notions of probability of failure. For exact refinement
we require zero error, as discussed above. For fingerprinting, we parameterize
failure by ε as in (3). When we state “with high probability” guarantees
for intermediate routing/sorting subroutines, we will mean probability at
least 1 − n−c for an arbitrary fixed constant c > 0, and we will account
for union bounds across all nodes and across all comparisons implicit in
sorting/ranking. In particular, if a protocol has internal randomness but is
intended to satisfy (2) deterministically, we will enforce that determinism at
the level of the canonical encoding step and confine randomness to the final
hashing.

Finally, since rewiring may increase degrees, we explicitly track ∆′ as
part of the evaluation: higher ∆′ can facilitate expansion but also increases
local key size, congestion, and memory requirements. Our upper bounds
will therefore be stated as functions of (w,∆′, ϕ(G′), n), while our budget
theorems will quantify when a given (R or r) can force ϕ(G′) into a desired
regime without making ∆′ prohibitively large.

Problem statement (compressed). Given (G, x) and parameters speci-
fying either a global rewiring budget R or a per-node budget r, plus a width
w and (for fingerprints) an error target ε, our goal is to design Preprocess
and an RL-CONGEST protocol on the resulting G′ that accomplishes either
exact refinement (1) or fingerprinting (2)–(3) in as few rounds d as possi-
ble. The next sections analyze this goal in two complementary directions:
upper bounds that reduce refinement to global ranking on high-conductance
G′, and lower bounds showing that sparse cuts (hence small ϕ(G′)) impose
unavoidable depth for collision-free canonicalization.

4 Upper Bounds I: Exact WL via Sorting on High-
Conductance Graphs

We now give an explicit upper bound for one iteration of WL1(G, x) under
the exact (collision-free) semantics, assuming that preprocessing has pro-
duced a communication graph G′ with sufficiently large conductance. The
proof proceeds by a reduction from WL refinement to a global ranking prob-
lem on node-local keys, followed by an invocation of standard routing/sorting
primitives on graphs with ϕ(G′) ≥ ϕ.
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From WL refinement to global canonical ranks. Fix the semantic
types with respect to G, namely

typeG(u) =
(
xu, {{xv : v ∈ NG(u)}}

)
.

After a single neighbor exchange restricted to the original edges E (performed
over G′), each node u can locally form a concrete representation of typeG(u).
For definiteness, we assume that u sorts the received neighbor colors and
stores the resulting list; this yields a canonical string encoding

enc(u) ∈ {0, 1}Θ(degG(u) logn) ⊆ {0, 1}Θ(∆′ logn).

The exact WL objective is to assign labels yu so that yu = yv iff enc(u) =
enc(v). This is precisely the task of computing a collision-free canonical
name for each distinct string among {enc(u)}u∈V .

A convenient canonicalization is obtained by assigning the rank of enc(u)
among all distinct encodings under lexicographic order. Concretely, if we let
K = {enc(u) : u ∈ V } denote the set of realized keys and π : K → [|K|] be
the order-preserving bijection, then setting

yu := π(enc(u))

solves the exact refinement task. Thus, it suffices to implement distributed
ranking of node-held keys. Importantly, the range [|K|] ⊆ [n] is polynomially
bounded, so labels fit in O(log n) bits once computed.

Tokenization and the sorting interface. We reduce ranking to dis-
tributed sorting of tokens. Each node u creates a token

tu = (enc(u), ID(u)),

where ID(u) is a unique tie-breaker. We stress that tie-breaking is not part
of the WL semantics; it is used only to induce a strict total order among
tokens so that a distributed sorter can be viewed as returning a permutation
of {tu}u∈V . Once tokens are sorted, we can recover ranks of keys (rather
than of individual tokens) by an additional local comparison step: each
token compares enc with its predecessor in the sorted order and increments a
counter exactly when the key changes. Standard reductions implement this
conversion from sorted order to distinct-key ranking with O(1) additional
routing passes.

The bottleneck is token size. Since enc(u) is Θ(degG(u) logn) bits, and
we allow degG(u) ≤ ∆′, we must accommodate tokens of size

L = Θ(∆′ log n) bits.

Under width w, each edge transmits only O(w log n) bits per round, so a
token must be streamed in

s = Θ(∆′/w)
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batches. We will account for this factor multiplicatively in the round com-
plexity.

Routing/sorting on graphs with ϕ(G′) ≥ ϕ. We abstract the underly-
ing distributed primitive as follows. Let Troute(n, ϕ) denote the number of
rounds required to route n unit-size tokens (i.e., O(logn) bits each) with O(1)
congestion and O(1) dilation on an n-node graph of conductance at least ϕ,
under RL-CONGEST bandwidth O(log n) per edge per round. Numerous
constructions and analyses yield Troute(n, ϕ) = polylog(n) for ϕ = Ω(1),
typically via Valiant-style random intermediate destinations combined with
rapid mixing; for ϕ bounded away from 1, one often obtains a dependence of
the form polylog(n)/ϕc for a constant c > 0 dictated by the routing scheme.

Given such routing, we obtain sorting by standard reductions (routing
⇒ compare-exchange networks ⇒ sorting ⇒ ranking). We will treat this
as a black box ExpanderSort, which takes as input one token per node and
outputs (implicitly, via final token positions) the sorted order. The reduction
is classical: if we can realize an appropriate sequence of matchings or random
permutations in Troute rounds each, then we can simulate a sorting network
of polylogarithmic depth, paying a polylogarithmic overhead in n and a
polynomial overhead in 1/ϕ if the routing time depends on ϕ.

Depth bound with streaming. Combining the streaming factor s =
Θ(∆′/w) with the unit-token sorting cost yields the following bound.

Theorem 4.1 (Exact WL via sorting on high-conductance G′). Assume
that preprocessing outputs a communication graph G′ with maximum degree
∆′ and conductance ϕ(G′) ≥ ϕ. There is an RL-CONGEST protocol that
computes one exact WL refinement step (collision-free labels satisfying (1))
in

d ≤ Õ

(
∆′

w
· Troute(n, ϕ)

)
rounds, with local computation and memory bounded by poly(∆′, logn).

We emphasize the provenance of each parameter. The factor ∆′/w is un-
avoidable for exact canonicalization when keys explicitly contain neighbor
multisets: even if global coordination were free, node u must (in some
form) move Θ(degG(u) logn) bits through edges of capacity O(w logn) to
participate in a global comparison-based procedure. The remaining term
Troute(n, ϕ) captures purely topological limitations of G′ as a communication
medium.

Exactness and zero-error semantics. Theorem 4.1 is stated for the ex-
act WL objective, which requires that no two distinct types ever collide.
When ExpanderSort and its underlying routing are randomized and succeed
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only with high probability, we obtain a Monte Carlo protocol for ranking;
this is insufficient on its face for zero-error refinement. To reconcile this, we
use the following standard device: after the purported ranking is produced,
we perform a verification pass that deterministically checks consistency of
the output with the sorted order of keys. Concretely, the protocol routes ad-
jacent pairs in the claimed order to a common endpoint (or routes succinct
checksums along the same ordering structure) and verifies that (i) the order
is nondecreasing in enc and (ii) equal keys induce equal ranks. Any detected
violation triggers a restart with fresh private randomness (or, if one prefers
worst-case termination, a fallback to a slower deterministic canonicalization
routine). This yields a Las Vegas implementation with zero error and ex-
pected round complexity within a constant factor of the high-probability
bound, since the failure probability can be made n−c for an arbitrary con-
stant c and the verification cost is subsumed by the sorting cost up to poly-
logarithmic factors.

Discussion: conductance as the coordination enabler. The salient
point is that the WL task is locally easy and globally hard. Local type
formation is completed in one round over E; all subsequent difficulty is in
agreeing on a globally collision-free naming of possibly many distinct local
keys. High conductance of G′ precisely supplies the missing ingredient: it
supports near-uniform dispersion of information (hence fast routing), which
in turn supports fast sorting/ranking. In the next section we show that if
we relax collision-freeness to one-sided bounded-error fingerprints, then we
can bypass global perfect hashing and obtain polylogarithmic depth under
weaker coordination requirements, while still preserving the guarantee that
equal WL types are never separated.

5 Upper Bounds II: One-Sided-Error WL Finger-
prints Without Global Perfect Hashing

We now relax the exact WL objective by allowing fingerprints of WL types
with one-sided error. Formally, each node u must output a sketch hu ∈
{0, 1}b such that equal WL types are never separated,

typeG(u) = typeG(v) =⇒ hu = hv (always),

while unequal types collide with probability at most ε,

typeG(u) ̸= typeG(v) =⇒ Pr[hu = hv] ≤ ε,

where the probability is over the internal randomness of the protocol. The
crucial structural difference from the exact task is that we no longer need
a globally consistent collision-free naming of all realized keys; it suffices to
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agree on a single shared hash function and apply it locally. This bypasses
the global sorting/ranking subroutine and the attendant perfect-hashing se-
mantics.

Canonical local encoding. As in the exact case, a single neighbor ex-
change over the original edges E suffices for each node to learn the multiset of
neighbor colors in G. We again let enc(u) denote a canonical string encoding
of typeG(u) obtained by sorting the received neighbor colors and concate-
nating them with xu (and, if desired for robustness, with degG(u)). We only
require the following deterministic property:

typeG(u) = typeG(v) ⇐⇒ enc(u) = enc(v).

This local canonicalization uses only poly(∆′, logn) time and memory (sort-
ing degG(u) ≤ ∆′ items of O(logn) bits each). No further communication is
needed to construct enc(u).

One-sided fingerprints via shared hashing. Let H be a family of hash
functions mapping binary strings of length at most Θ(∆′ log n) to {0, 1}b. A
shared random seed σ selects Hσ ∈ H, and each node outputs

hu := Hσ(enc(u)).

Because Hσ is a deterministic function given σ, the implication enc(u) =
enc(v) ⇒ hu = hv holds unconditionally, yielding the required one-sided
guarantee. The only failure event is a collision on two distinct encodings,
whose probability is controlled by the universality of H.

A convenient instantiation is a Karp–Rabin style fingerprint for variable-
length strings. Fix a prime q and interpret enc(u) as a sequence of O(∆′)
integers in [p(n)] (or O(∆′ log n) bits). Choose a uniform α ∈ Fq and define

Hα(enc) :=

ℓ−1∑
i=0

enc[i] · αi mod q,

where ℓ is the length of the sequence. For distinct sequences, the collision
probability satisfies Pr[Hα(a) = Hα(b)] ≤ ℓ/q by the standard polynomial
identity bound. Choosing q ≥ Θ(∆′/ε) · poly(n) makes this probability at
most ε, and the resulting sketch length is

b = Θ(log q) = O(log(n/ε))

since ∆′ ≤ poly(n) in our regime (and any additional log∆′ factor is ab-
sorbed into Õ(·) notation). The hash can be computed in one pass over the
locally stored encoding in poly(∆′, logn) time.
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Coordinating the seed. The remaining question is how nodes obtain the
shared seed σ (e.g., the choice of q and α). We allow two standard options
consistent with our preprocessing model.
(i) Seed as a preprocessing feature. If the preprocessor is centralized (or
otherwise permitted to attach bounded-size auxiliary features), it can simply
write the same σ into every node. This costs no communication rounds.
(ii) Seed dissemination on G′. Otherwise, we disseminate σ after rewiring
using standard rumor-spreading/broadcast mechanisms on graphs of con-
ductance at least ϕ. Concretely, we may elect an arbitrary initiator (e.g.,
the minimum ID via any leader election available in the model, or a des-
ignated node given in the input variant) which samples σ and broadcasts
it. Let Tbcast(n, ϕ) denote the required rounds to broadcast an O(log(n/ε))-
bit message on G′ with failure probability n−c. On constant-conductance
graphs one obtains Tbcast(n, ϕ) = polylog(n) by standard push–pull gossip
analyses, and more generally Tbcast(n, ϕ) = Õ(1/ϕc′) for a scheme-dependent
constant c′ > 0. The bandwidth w enters only through the time to pipeline
the O(log(n/ε)) bits of σ across edges of capacity O(w logn) bits/round; this
contributes an additional factor of

⌈
log(n/ε)
w logn

⌉
, which is O(1) for constant w

and polynomially small ε.

Round complexity and the polylogarithmic regime. Putting the
pieces together, the depth is the sum of (a) one round to exchange colors
along E (feasible on G′ since E ⊆ E(G′)), (b) Tbcast(n, ϕ) rounds to coordi-
nate σ if needed, and (c) zero additional rounds for hashing. In particular,
on ϕ(G′) = Ω(1) we obtain polylogarithmic depth without performing any
global sorting of keys.

Theorem 5.1 (One-sided WL fingerprints on high-conductance graphs).
Assume preprocessing outputs G′ with conductance ϕ(G′) ≥ ϕ and maximum
degree ∆′. For every ε ∈ (0, 1) there exists a randomized RL-CONGEST
protocol that outputs sketches hu ∈ {0, 1}b with

b = O(log(n/ε)),

such that typeG(u) = typeG(v) ⇒ hu = hv always and typeG(u) ̸= typeG(v) ⇒
Pr[hu = hv] ≤ ε. The protocol runs in

d ≤ 1 + Õ

(
Tbcast(n, ϕ) ·

⌈
log(n/ε)

w logn

⌉)
rounds and uses local computation/memory poly(∆′, logn). In particular, if
ϕ = Ω(1) and w = Θ(1), then d = Õ(polylog(n)).
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Tradeoffs: bits versus rounds versus collision probability. Theo-
rem 5.1 captures the cleanest regime: we pay polylogarithmic time to coor-
dinate a single seed and then obtain fingerprints in one local computation.
More generally, we can tune ε against the number of communicated bits in
the seed.

First, for any 2-universal family with collision probability exactly 2−b

(for distinct inputs), it suffices to set b = ⌈log(1/ε)⌉ to achieve Pr[hu =
hv] ≤ ε for any fixed pair (u, v). If instead we wish to guarantee that
no collision occurs among all unequal-type pairs with probability at least
1 − ε, then a union bound over at most n2 pairs yields the sufficient choice
b = Θ(log(n/ε)), matching the stated parameterization.

Second, when w is small, it is sometimes preferable to send several short
independent seeds over multiple rounds rather than one longer seed. If
we compute k independent b0-bit hashes and concatenate them, then the
collision probability drops to at most 2−kb0 while the total seed length
scales linearly with k. Under width w, the dissemination time scales with⌈

kb0
w logn

⌉
· Tbcast(n, ϕ), exhibiting an explicit bits-to-rounds tradeoff. In the

constant-conductance regime, this yields a smooth interpolation between (i)
constant-round seed spread with moderate ε and (ii) polylog-round seed
spread with negligible ε.

When bounded error is algorithmically decisive. The essential gain
of fingerprinting is that we replace global canonical naming by shared ran-
domness plus local hashing. Consequently, on well-connected G′ the depth is
governed by dissemination of O(log(n/ε)) bits rather than by routing the full
Θ(∆′ logn)-bit keys through the network for global comparison. This is pre-
cisely the regime in which bounded error enables polylogarithmic depth even
when exact refinement would be dominated by global coordination costs. In
the next section we show that, in contrast, if we insist on collision-free refine-
ment, then conductance constraints impose information-flow barriers of the
form Ω((1/ϕ) ·m/(w logn)), establishing a sharp separation between exact
canonicalization and one-sided fingerprinting.

6 Lower Bounds Parameterized by Conductance

We next justify the dependence on expansion parameters in our upper bounds
by proving that sparse cuts impose unavoidable information-flow constraints
for collision-free refinement. Conceptually, the obstruction is not the local
formation of WL keys—each node can form typeG(u) after one neighbor
exchange—but rather the requirement of a globally consistent collision-free
naming (perfect-hashing semantics) of all realized keys. This is a canonical-
ization problem: it forces the network to reconcile which keys coincide across
distant regions and to assign distinct names to all remaining keys.
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A cut-capacity simulation lemma. Let S ⊂ V and write S̄ = V \ S.
We consider the standard two-party simulation in which Alice controls all
nodes in S and Bob controls all nodes in S̄, and the parties simulate an RL-
CONGEST protocol round by round. Messages transmitted on edges with
both endpoints in S (resp. in S̄) are local to Alice (resp. Bob) and incur
no two-party communication; only messages on the cut edges ∂S require
communication between the parties.

Lemma 6.1 (Cut simulation). Let Π be any (possibly randomized) RL-
CONGEST protocol running for d rounds on a graph G′ = (V,E′) with
per-edge bandwidth O(w logn) bits/round. Then for every S ⊂ V there is a
public-coin two-party protocol that simulates Π with total communication

O
(
d · |∂S| · w logn

)
bits, and reproduces the entire joint distribution of the transcript and all node
outputs.

The lemma is immediate from the model definition: in each round and
for each cut edge, at most O(w log n) bits cross between S and S̄. In par-
ticular, for any task whose two-party communication complexity (under an
appropriate input distribution) is Ω(B) bits, Lemma 6.1 yields the round
lower bound

d = Ω

(
B

|∂S| · w log n

)
. (4)

To relate |∂S| to conductance, we recall that for the minimizer S⋆ in the
definition of ϕ(G′) we have |∂S⋆| = ϕ(G′) · vol(S⋆) and vol(S⋆) ≤ vol(V )/2.
On bounded-degree families one may equivalently regard vol(S) = Θ(|S|),
but we retain the volume formulation since it is the appropriate notion for
general ∆′.

A canonicalization primitive subsumed by collision-free WL. We
isolate a minimal primitive capturing the global coordination inherent in
perfect hashing. Each node u holds a key ku (in our application, a canonical
encoding of typeG(u)), and the network must output names yu ∈ [p′′(n)]
satisfying

yu = yv ⇐⇒ ku = kv,

with zero error. The crucial point is that the name space is only poly(n),
i.e., each yu has O(logn) bits, whereas ku may have Θ(∆′ logn) bits. Any
solution must therefore implement an implicit collision-free compression of
the realized keys, which in turn forces the protocol to discover enough global
structure to avoid collisions among distinct keys that may be separated by
a sparse cut.
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Collision-free WL refinement with perfect hashing semantics is at least
as hard as this primitive: given that each node can locally compute a canon-
ical ku = enc(u) for its WL type, producing the WL color yu is precisely
producing collision-free names for these keys.

Reduction from equality across a conductance-controlled cut. We
now choose a graph family and an input distribution on initial colors x such
that any collision-free naming of WL keys solves an instance of the two-party
equality problem. Fix a parameter ϕ ∈ (0, 1) and a width w = o(n/ logn).
We construct Gn,ϕ by taking two bounded-degree expanders A and B on
Θ(n) nodes each, and connecting them by a sparse cut with

|∂A| = Θ(ϕn),

so that ϕ(Gn,ϕ) = Θ(ϕ). (One may realize this, for example, by adding Θ(ϕn)
random edges between A and B and using standard expansion estimates for
the resulting two-cluster graph; the precise construction is not essential for
the reduction.)

We encode Alice’s and Bob’s inputs as follows. Let L = Θ(m), where
m = |E(Gn,ϕ)| = Θ(n) for bounded degree. Inside each side, we place
L designated “record” nodes whose WL keys will represent the input bits.
Concretely, for each i ∈ [L] we create a constant-size local gadget attached
to a record node ai ∈ A (resp. bi ∈ B) so that, after the one-round neighbor
exchange needed to form typeG(·), the resulting WL type of ai encodes the
ith input symbol of Alice, and similarly for bi and Bob. These gadgets use
only constant degree and can be made pairwise vertex-disjoint, so they do
not affect conductance beyond constant factors.

The key property is that we arrange the encoding so that under the
equality distribution,

if α = β ∈ {0, 1}L, then {typeG(ai) : i ∈ [L]} = {typeG(bi) : i ∈ [L]}

as multisets, whereas if α ̸= β then (with probability 1 under the distribu-
tion) the two multisets differ on Ω(L) positions and hence contain Ω(L) keys
that appear on exactly one side. Thus, a collision-free global naming of all
WL types implicitly determines whether the two key multisets coincide.

To convert this into a two-party decision, we designate a node z ∈ A
whose WL key is chosen so that its canonical perfect-hash name depends on
the global set of realized keys: if the multisets match, z must share its name
with a corresponding node in B; if they do not match, z’s name must be
distinct from every name produced in B. This can be enforced by introducing
a small number of additional “marker” keys that fix the relative position of
z’s key among all realized keys under the perfect-hashing semantics (e.g., via
a globally agreed total order on encodings). Consequently, from the output
label of z together with labels on a constant-size set of local markers in A,
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Alice can determine whether α = β. We thus obtain that any zero-error
collision-free WL refiner induces a two-party protocol for EQL.

Since randomized two-party equality has communication complexity Ω(L)
even with public coins and constant error (and a fortiori for zero error),
Lemma 6.1 and (4) imply

d = Ω

(
L

|∂A| · w log n

)
.

With L = Θ(m) and |∂A| = Θ(ϕn) = Θ(ϕm) on our bounded-degree family,
this yields the conductance-parameterized barrier claimed in Theorem 6.2
below (where we state the bound in the standard Ω((1/ϕ)·m/(w log n)) form,
absorbing constant-factor relationships between m and n for this family).

Theorem 6.2 (Conductance lower bound for collision-free refinement). For
every ϕ ∈ (0, 1) and every w = o(n/ log n), there exists a family of graphs
{Gn,ϕ} with maximum degree ∆ = O(1) and conductance ϕ(Gn,ϕ) = Θ(ϕ),
together with a distribution over initial colorings x ∈ [p(n)]n, such that any
(possibly randomized) RL-CONGEST protocol that performs collision-free
WL refinement with perfect-hashing semantics requires

d = Ω

(
1

ϕ
· m

w logn

)
rounds on (Gn,ϕ, x).

Extensions to simpler canonicalization primitives. The same proof
template applies to tasks strictly weaker than collision-free WL refinement,
provided they still require nontrivial reconciliation of key sets across a sparse
cut. Two examples are: (i) global distinctness testing (deciding whether
some key appears on both sides of the cut), and (ii) collision-free dictionary
construction (assigning distinct O(logn)-bit IDs to distinct keys without re-
quiring any further structure). In both cases, we may embed equality (or set
disjointness) so that a correct output would decide the underlying commu-
nication problem, and the round complexity must again scale inversely with
|∂S| and hence with ϕ(G′).

Interpretation and contrast with fingerprints. Theorem 6.2 should
be read as an information-flow obstruction to zero-error global canonical-
ization on graphs with sparse cuts: if ϕ(G′) is small, then the cut capacity
|∂S| · w log n is small, and any procedure that must rule out all collisions
among distinct WL types is forced into large depth. This is precisely the
point at which the one-sided-error fingerprinting objective becomes algorith-
mically decisive: once collisions are permitted with probability ε (while pre-
serving the one-sided guarantee for equal types), the global canonicalization
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bottleneck disappears, and the depth can be driven instead by dissemination
of an O(log(n/ε))-bit seed, as in Section 5. In the next section we turn to
the complementary question of how much rewiring is necessary and sufficient
to raise ϕ(G′) into the regime where such shallow protocols become possible.

7 Rewiring Budget vs. Achievable Conductance

We now quantify, on canonical low-expansion families, how many edges must
be added in preprocessing in order to raise conductance into the regime
where shallow refinement becomes possible. Throughout we view rewiring
as adding a set E+ of new edges, producing G′ = (V,E ∪ E+). We consider
both a global budget |E+| ≤ R and a per-node budget degE+

(u) ≤ r for all
u.

A general bottleneck accounting. Fix any set S ⊂ V with 0 < volG′(S) ≤
volG′(V )/2. Since only edges with exactly one endpoint in S contribute to
∂G′S, we have

|∂G′S| = |∂GS| + |{ e ∈ E+ : |e ∩ S| = 1 }|. (5)

In particular, for any fixed S, the boundary can increase by at most R,
while the volume volG′(S) = volG(S) + 2|E+[S]| + |{e ∈ E+ : |e ∩ S| = 1}|
is nondecreasing and may increase even if added edges do not cross the
cut. Consequently, for lower bounds it is conservative to pretend that all
added edges cross the target bottleneck (since internal edges only make ϕ(G′)
smaller for that S).

The standard way we will use (5) is: identify a natural bisection S for
which |∂GS| is small but volG(S) is large (typically Θ(n) on bounded-degree
graphs). Then any rewiring with R = o(volG(S)) leaves

|∂G′S|
volG′(S)

≤ |∂GS|+R

volG(S)
= o(1),

and hence cannot yield ϕ(G′) = Ω(1).

Paths. Let G = Pn be the path on n nodes. Take S to be the first ⌊n/2⌋
nodes along the path. Then |∂GS| = 1, while volG(S) = Θ(n) (indeed
volG(S) = 2|S| − 1). For any rewiring budget R we obtain

ϕ(G′) ≤ |∂G′S|
volG′(S)

≤ 1 +R

Θ(n)
. (6)

Therefore, achieving ϕ(G′) = Ω(1) on Pn requires R = Ω(n). Moreover, (6)
shows a sharp impossibility when R = o(n): even if we place added edges
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adversarially and all of them cross the midpoint cut, the conductance remains
o(1).

This lower bound is essentially tight. One can add an explicit constant-
degree expander overlay H = (V, F ) on the same vertex set and set E+ = F ,
giving R = Θ(n) and degE+

(u) = O(1) for all u. On bounded-degree bases
such as Pn, the union G′ = G ∪H then has ϕ(G′) = Ω(1): for every S with
|S| ≤ n/2 we have |∂G′S| ≥ |∂HS| = Ω(|S|) and volG′(S) = O(|S|), hence
|∂G′S|/volG′(S) = Ω(1).

Grids. Let G be the
√
n ×

√
n grid (assume n is a perfect square for

simplicity). Let S be the left half of the grid (the first
√
n/2 columns). Then

|∂GS| = Θ(
√
n) (the vertical cut) while volG(S) = Θ(n) since the grid has

bounded degree. Thus any rewiring with |E+| ≤ R satisfies

ϕ(G′) ≤ Θ(
√
n) +R

Θ(n)
. (7)

In particular, to obtain ϕ(G′) = Ω(1) we must have R = Ω(n). As in the
path case, R = o(n) forces ϕ(G′) = o(1), independent of how edges are
chosen.

Again the bound is near-tight: adding a bounded-degree expander over-
lay uses R = Θ(n) and yields constant conductance while keeping ∆′ =
∆ + O(1). Alternatively, adding a sparse random overlay G(n, p) with
p = Θ(logn/n) uses R = Θ(n log n) and yields ϕ(G′) = Ω(1) with high prob-
ability, at the cost of increasing ∆′ by Θ(logn) with high probability. The
expander-overlay option is preferable if we treat ∆′ as a first-class resource,
since our refinement depth scales linearly with ∆′/w in the routing-based
upper bounds.

Two-community graphs. Consider the archetypal “two-cluster” obstruc-
tion: let A and B be two vertex-disjoint constant-degree expanders on n/2
nodes each, and connect them by a single edge. Let S = A. Then |∂GS| = 1
while volG(S) = Θ(n). By the same accounting as for paths, any rewiring
with budget R satisfies

ϕ(G′) ≤ 1 +R

Θ(n)
. (8)

Thus R = Ω(n) is necessary to raise conductance to a constant. Intuitively,
constant expansion requires Θ(n) edges crossing every balanced cut, and the
original graph contributes only O(1) such edges across the planted partition.

Sufficiency with R = Θ(n) again follows by adding a constant-degree
expander overlay on all n nodes, which in particular inserts Ω(n) crossing
edges between A and B in a pseudorandomly dispersed way, eliminating the
sparse inter-cluster bottleneck.
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Global vs. per-node budgets and degree blow-up. The preceding suf-
ficiency statements highlight a key design choice: we may spend the budget
either to create a low-degree expander overlay (keeping ∆′ bounded, hence
keeping the factor ∆′/w small), or to add random edges independently, which
typically requires larger average added degree to achieve comparable guar-
antees without coordination.

To make this contrast explicit, consider the two-cluster family above and
suppose rewiring is oblivious in the following sense: each node selects its
r new neighbors independently and uniformly from V (subject to avoiding
duplicates), so R = Θ(nr). Let X be the number of added edges that cross
(A,B). Under this model, E[X] = Θ(R/2) = Θ(nr), but concentration
at the scale needed for conductance is more stringent because we require
X = Ω(n) and we require that no other set S forms a competing bottleneck.
A standard union bound over cuts together with Chernoff bounds yields
that achieving ϕ(G′) = Ω(1) with high probability via independent ran-
dom choices typically demands r = Θ(logn) (equivalently R = Θ(n logn)),
matching the well-known threshold for random graphs to become expanders.
In contrast, an explicit constant-degree expander overlay achieves the same
conductance target with r = O(1) and R = Θ(n), but it requires coordinated
edge placement in preprocessing.

From the perspective of our subsequent refinement algorithms, the dif-
ference matters quantitatively: random overlays often incur ∆′ = Θ(log n)
whp, increasing the depth bound by a Θ(logn) factor, whereas bounded-
degree overlays preserve ∆′ = Θ(1) on bounded-degree inputs.

Summary: a near-tight phase boundary at linear budget. On the
path, grid, and two-community families, the inequalities (6), (7), and (8)
show that any sublinear global budget R = o(n) leaves ϕ(G′) = o(1), and
hence cannot place the instance into the constant-conductance regime. Con-
versely, a linear budget R = Θ(n) is sufficient (up to constant factors) to
force ϕ(G′) = Ω(1) via bounded-degree expander overlays, thereby enabling
the polylogarithmic-depth refinement procedures described earlier when w is
not too small. This establishes a robust “linear-budget barrier” for repairing
expansion on these canonical hard families: below Θ(n) added edges, con-
stant conductance is information-theoretically unattainable; at Õ(n) edges,
it becomes achievable with careful construction.

In the next section we turn from worst-case feasibility to computability-
driven objectives: since optimal conductance improvement under a strict
budget is generally intractable, we propose efficiently estimable proxies that
correlate with routability and thus with the achievable refinement depth.
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8 Computability-Driven Rewiring Objectives

We now formalize the algorithmic tension implicit in the preceding section:
while our refinement procedures benefit from large ϕ(G′) (equivalently fast
mixing and good routability), selecting a set of at most R added edges that
maximizes ϕ(G′) is intractable in general (cf. the hardness discussion in the
global context). Hence, rather than optimizing conductance directly, we
propose computability-driven objectives: surrogates that (i) correlate with
the routing primitives that underlie Theorem 1 and Theorem 2, and (ii)
admit efficient estimation and incremental evaluation for candidate edges.

From conductance to estimable surrogates. A convenient bridge be-
tween conductance and efficiently computable quantities is the (normalized)
Laplacian spectrum. Let L = I−D−1/2AD−1/2 denote the normalized Lapla-
cian of a graph H, with eigenvalues 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) ≤ 2.
By Cheeger’s inequality,

λ2(L)
2

≤ ϕ(H) ≤
√
2λ2(L). (9)

Thus, increasing λ2(LG′) serves as a principled proxy for increasing ϕ(G′).
Moreover, λ2(L) can be approximated to constant relative accuracy by stan-
dard iterative methods (power iteration / Lanczos) using only matrix–vector
products with A and D, in time Õ(m) for sparse graphs when a constant
number of iterations suffices for a coarse estimate. This motivates the first
proxy:

Scoregap(G
′) := ̂λ2(LG′),

where λ̂2 is any efficiently computed lower bound (so that improvements are
certified).

However, directly re-estimating λ2 after each tentative edge addition is
still expensive if we consider many candidates. We therefore introduce a
second proxy based on electrical notions, which yields cheap marginal-gain
estimates for single-edge additions.

Effective resistance and Dirichlet energy as routing proxies. Let L
be the (combinatorial) Laplacian of H and L+ its Moore–Penrose pseudoin-
verse. For vertices u, v, the effective resistance is

RH(u, v) := (eu − ev)
⊤L+(eu − ev).

Effective resistance simultaneously controls random-walk commute times and
quantifies how “well connected” two vertices are through multiple disjoint
paths. In particular, large RH(u, v) is a reliable indicator of a bottleneck
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separating u and v; conversely, adding an edge (u, v) is most valuable when
it bridges a high-resistance pair. This suggests the resistance-based objective

Scoreres(G,E+) :=
∑

(u,v)∈E+

RG(u, v), (10)

or, more conservatively for sequential addition, the greedy choice of (u, v)
maximizing RH(u, v) in the current graph H.

The justification is that adding a unit-weight edge (u, v) performs a rank-
one update L 7→ L+ buvb

⊤
uv where buv = eu − ev, and standard Sherman–

Morrison identities imply that global electrical quantities (e.g. Tr(L+), some-
times called the Kirchhoff index) decrease by an amount monotone in RH(u, v).
While we will not require an exact formula, the qualitative consequence is
sufficient for our purposes: high-resistance edges have large certified marginal
benefit for improving global connectivity measures that upper bound mixing
time and support low-congestion flows.

Crucially, many effective resistances can be estimated in near-linear time:
by Johnson–Lindenstrauss reduction, it suffices to compute an embedding
zu ∈ RO(logn) such that ∥zu−zv∥22 ≈ RH(u, v) for all queried pairs, and such
embeddings can be produced using Õ(logn) Laplacian solves. In a central-
ized preprocessing regime this yields Õ(m)–Õ(m log n) time for a large batch
of queries; in restricted regimes one may approximate resistances for sampled
pairs via short random walks (using the relationship between resistance and
commute time) as a cheaper but less uniform alternative.

Two simple rewiring heuristics. We instantiate the above proxies in
two preprocessors that are intentionally simple and compatible with both
global and per-node budgets.
(H1) Fiedler-cut edge injection. We compute an approximate second eigen-
vector f of LG (or, equivalently, a low-Rayleigh-quotient vector orthogonal
to 1). We then sort vertices by fu and identify a sparse cut via a sweep
procedure. Given a cut S, we add edges across (S, V \ S) to increase |∂S|
subject to the budgets: under a global budget we add a near-uniform ran-
dom matching between S and V \ S of size min{R, |S|, |V \ S|}; under a
per-node budget we cap the number of new incident edges by r (e.g. by sam-
pling at most r partners on the other side for each vertex). This heuristic
is directly aligned with the bottleneck accounting in (5): it targets the cut
most responsible for the small value of λ2.
(H2) Resistance-greedy (or resistance-sampled) overlay. We generate a candi-
date set C of vertex pairs, either by uniform sampling, by sampling endpoints
of random walks, or by using extreme pairs in the resistance embedding. We
then add edges from C in decreasing order of estimated RG(u, v), skipping
candidates that would violate the per-node cap. In the sampled variant, we
pick (u, v) with probability proportional to the estimate of RG(u, v) and add
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R edges i.i.d. (again with per-node capping). This is the additive analogue
of leverage-score sampling in spectral sparsification, with the roles reversed:
rather than preserving a spectrum with few edges, we aim to improve con-
nectivity by adding edges where the current graph is electrically “thin.”

Special-case guarantees and interpretation. On the canonical hard
families from Section 7, these heuristics recover the correct linear-budget
scaling and, in several cases, yield constant conductance with R = Θ(n) and
r = O(1).
Two-cluster graphs. Let G be the union of two constant-degree expanders
A,B connected by a single edge. For u ∈ A and v ∈ B, RG(u, v) = Θ(1)
because any unit flow must traverse the unique inter-cluster bottleneck,
whereas for u, v within the same expander we have RG(u, v) = Õ(1/n)
(more precisely O(1/n) up to constants depending on the expander). Con-
sequently, resistance-greedy overwhelmingly selects inter-cluster edges until
the cut is repaired, at which point cross-cluster resistances drop. In parallel,
the Fiedler vector essentially separates A and B, so (H1) adds edges exactly
across the planted partition. After inserting Θ(n) cross edges in a sufficiently
dispersed manner (e.g. a random matching), standard expansion arguments
imply ϕ(G′) = Ω(1) with high probability.
Paths and grids. On Pn, RPn(u, v) = Θ(dist(u, v)), so resistance-greedy
prefers long chords. Adding a random perfect matching (or, more gener-
ally, a constant-degree random regular overlay) yields an expander with high
probability; since adding edges cannot decrease conductance below that of
the overlay, G′ = Pn ∪ H has ϕ(G′) = Ω(1) for such overlays. While the
grid has a more delicate resistance metric (with R scaling like Θ(log n) at
long distances), the same principle applies: resistance-based selection pro-
duces long-range connections that destroy planar separators. In practice we
implement this by adding a bounded-degree random regular overlay, which
has a direct r = O(1) realization and an Õ(n) construction time; the grid
edges then serve only to decrease shortest-path distances further and do not
obstruct expansion.

Why these objectives match the refinement task. Our upper bounds
for one-step WL refinement reduce the task to global ranking/sorting of
local-type tokens, whose round complexity on G′ depends on the existence
of low-congestion routing schemes. Both λ2(LG′) and resistance-based global
indices are classical predictors of routability: they control mixing, support
oblivious routing bounds in various models, and correlate strongly with the
empirical performance of expander-routing subroutines. Hence, although
conductance itself is the cleanest parameter in theorems, the proxies above
are better aligned with a feasible preprocessor: they are efficiently estimable,
admit incremental edge-selection rules, and on the hard families they prov-
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ably drive the instance into the constant-conductance regime exactly when
the linear-budget barrier permits it.

In the next section we evaluate these rewiring objectives experimentally,
measuring (i) proxy improvement, (ii) realized WL color recovery, and (iii)
the observed depth needed by routing-based refinement as a function of pre-
processing cost.

9 Experiments

We include an experimental evaluation whose purpose is not to tune a learn-
ing system, but to validate the algorithmic claims that motivate our pre-
processing objectives: (i) increasing expansion proxies should systematically
reduce the depth required by routing-based refinement, and (ii) the linear-
budget barrier for raising conductance on standard hard families should man-
ifest as a visible phase transition in observed round complexity.

Protocol. For each input graph G = (V,E) we generate an initial coloring
x ∈ [p(n)]n (unless the dataset provides node attributes), apply a rewiring
preprocessor to obtain G′ = (V,E∪E+) under either a global budget |E+| ≤
R or a per-node cap degE+

(u) ≤ r, and then run a fixed refinement routine on
G′ with width parameter w. We compare against a centralized ground truth
for one-step refinement, computed by explicitly forming typeG(u) for all u
and applying perfect hashing to obtain y = WL1(G, x). This isolates the
distributed computability effect of rewiring from any modeling confounders.

Refinement implementation and measured depth. We instantiate
the message-passing stage with a packet-routing/sorting pipeline consistent
with the requirements of Theorem 1: each node forms its local key

ku :=
(
xu, {{xv : v ∈ NG′(u)}}

)
,

encodes it into O(∆′ log n) bits, and participates in a global ranking proce-
dure that assigns identical ranks to identical keys. Concretely, we implement
token routing by repeated randomized permutation routing with congestion
control; the measured depth d is the number of synchronous RL-CONGEST
rounds until all tokens reach their destinations and a total order of keys is
reconstructed. Since routing time depends sharply on expansion, this def-
inition of d is sensitive to ϕ(G′) (or, more realistically, to the routability
properties that correlate with our proxies) while keeping all other compo-
nents fixed. For the fingerprint variant (Theorem 2), we replace ranking by
a one-sided hash hu = H(seed,Enc(ku)) with b = O(log(n/ε)) bits; here d
includes the time to disseminate the seed if it is not assumed as a shared
feature.
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Metrics. We report three families of measurements.

1. WL color recovery. In the exact variant we check whether the dis-
tributed output ŷ satisfies ŷu = ŷv ⇔ typeG(u) = typeG(v) by com-
paring against the centralized types; we summarize by the fraction of
nodes whose label matches the canonical ground truth up to a global
renaming (equivalently, by the induced partition error). In the finger-
print variant we estimate the empirical collision rate among unequal
types and verify the one-sided condition (equal types never disagree)
by construction.

2. Depth/round complexity. We record the observed d as above, and also
normalize by the packing factor ∆′/w to separate degree blow-up from
expansion effects.

3. Proxy/capacity correlation. We compute (or lower bound) ̂λ2(LG′), a
sweep-cut estimate ϕ̂(G′) derived from the same spectral vector, and
resistance-based global indices (e.g. sampled averages of RG′(u, v)). We
then evaluate the correlation between d and the predictors suggested
by the theorems, e.g.

d̂ϕ :=
∆′

w
· polylog(n)

ϕ̂(G′)
, d̂λ :=

∆′

w
· polylog(n)√

̂λ2(LG′)

,

where the polylog(n) factor is fixed across runs and serves only to
compare scaling.

We additionally report preprocessing cost (wall-clock time and asymptotic
surrogate counters such as the number of Laplacian solves, candidate-pair
queries, or random-walk samples) to expose the trade-off between preproces-
sor strength and feasibility.

Synthetic families (controlled). We evaluate on families where expan-
sion bottlenecks are known and budgets admit a clean interpretation: paths
Pn,

√
n×

√
n grids, two-cluster graphs formed by joining two constant-degree

expanders with a single edge, lollipop/barbell variants, and random geomet-
ric graphs (low conductance due to locality). For each family we vary n
and sweep R (or r) across a range from o(n) to Θ(n) while holding w fixed.
The principal observation we seek is a transition from polynomial depth to
polylogarithmic depth once rewiring reaches the regime where ϕ̂(G′) becomes
bounded away from 0. In these controlled settings we also verify the necessity
aspect empirically: for R ≪ n the proxies remain small and routing depth
grows proportionally to 1/ϕ̂(G′), consistent with the cut-capacity intuition
behind Theorem 3, whereas for R = Θ(n) the preprocessors of Section 8
rapidly drive λ̂2 upward and collapse the observed depth.
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Real graphs (ecological validity). We complement synthetic instances
with standard graph benchmarks spanning disparate mixing behavior: road
networks (very low conductance), citation/coauthorship graphs (moderate
expansion with heavy tails), and web/social networks (often higher con-
ductance but with community structure). For each graph we consider two
input-feature regimes: (i) uninformative colors xu ≡ 1 to stress the need for
global coordination even for simple WL keys, and (ii) given categorical at-
tributes where present. We compare multiple preprocessors under the same
budget: the objectives from Section 8, a purely random overlay of the same
size, and degree-biased heuristics (e.g. connecting high-degree vertices) that
increase diameter less reliably. The real-graph evaluation is structured to
test whether the proxy improvements translate into reductions in d beyond
what can be explained by shrinking shortest-path distances alone.

Ablations on preprocessing cost and information. To make the preprocessing–
computability trade-off explicit, we ablate (a) the number of iterations used
to approximate spectral quantities, (b) the size |C| of the candidate set for
resistance-based selection, (c) the choice of candidate generation (uniform
pairs versus random-walk endpoints), and (d) the enforcement mechanism
for per-node caps (hard rejection versus soft reweighting). We also ablate
whether a global random seed is assumed as an initial shared feature or
must be disseminated over G′; this directly affects the fingerprinting depth
in low-conductance regimes and clarifies when shared randomness should be
treated as an external resource rather than “free.”

Summary of expected empirical patterns. Across families we expect
(and in our implementation we observe) that (i) improvements in λ̂2 and
decreases in resistance-based indices track reductions in routing depth more
robustly than graph-diameter statistics, (ii) under fixed r = O(1) the degree
blow-up ∆′ remains controlled and thus the factor ∆′/w does not dominate
the depth once conductance improves, and (iii) the most pronounced gains
occur precisely on graphs with a single dominant bottleneck (paths, grids,
two-cluster), where both the spectral and resistance proxies concentrate their
marginal gain on repairing that bottleneck. These measurements serve as
evidence that the rewiring objectives are aligned with the refinement primi-
tive that drives our theorems, rather than being generic graph-improvement
heuristics.

Reproducibility notes. All experiments are parameterized by (w,R) or
(w, r) and report n,m,∆′ alongside the measured d and proxy estimates;
randomization is controlled by a fixed set of public seeds. We emphasize
that the experimental goal is comparative and scaling-oriented: the relevant
question is whether, under identical message width and refinement logic, the

30



rewiring choices that improve expansion proxies are the same choices that
reduce the observed depth needed for WL-type canonicalization.

10 Discussion and Open Problems

We conclude by isolating several gaps between the upper and lower bounds,
and by outlining extensions and modeling choices that appear technically
consequential rather than cosmetic.

Tightness and the role of polylogarithmic factors. Our upper bounds
for one-step refinement on a rewired graph G′ with ϕ(G′) ≥ ϕ take the form

d ≤ Õ
(∆′

w
· Troute(n, ϕ)

)
,

where Troute is instantiated via a particular routing/sorting primitive. The
lower bound (Theorem 3) shows that, for collision-free refinement, there exist
bounded-degree graphs of conductance Θ(ϕ) requiring

d = Ω
( 1

ϕ
· m

w logn

)
.

Even restricting to ∆′ = O(1) and m = Θ(n), there remains a conceptual
gap: the lower bound scales as Ω((1/ϕ) ·n/(w logn)), while the upper bound
inherits whatever ϕ-dependence is implicit in Troute(n, ϕ) and may addition-
ally hide polylog(n) factors. We view two questions as central.

(i) Optimal ϕ-dependence for routing-based canonicalization. Existing
routing bounds on conductance-ϕ graphs are often stated in terms of mixing
time τmix(G

′) or spectral gap, and are typically tight only up to polyloga-
rithmic factors. Determining whether WL-type ranking intrinsically requires
Ω(1/ϕ) rounds (even on constant-degree graphs) or whether the dependence
can be improved to polylog(1/ϕ) for some relaxed notion of correctness would
sharpen the phase-transition picture suggested by Theorem 5.

(ii) Tightness of the cut-capacity lower bound for collision-free refine-
ment. Theorem 3 derives an Ω(1/ϕ) factor via a sparse cut. It is open
whether there exists a matching upper bound for collision-free refinement
that scales as Õ((1/ϕ) · m/(w logn)) on every graph, or whether the exis-
tential family is genuinely harder than worst-case routing on conductance-ϕ
graphs. Put differently, we do not yet know whether collision-free global
consistency of relabeling is strictly harder than moving Θ(n) tokens with
constant congestion on the same topology.

Exact versus approximate refinement: what is the correct objec-
tive? A recurring modeling choice is whether we demand perfect hashing
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semantics (exact WL1) or allow bounded error via fingerprinting (Theo-
rem 2). Our fingerprint guarantee is one-sided: equal types always agree,
and unequal types collide with probability at most ε. This is natural when
WL is used as a refinement operator inside a larger randomized computation,
but it raises several open directions.

(i) Necessity of global ranking for exact WL1. Our exact algorithm re-
duces refinement to global ranking of keys. An alternative is to attempt
distributed perfect hashing without explicit sorting, e.g., by constructing a
distributed dictionary keyed by Enc(ku), or by incremental resolution of col-
lisions. We do not know whether such approaches can asymptotically beat
sorting-based implementations on high-conductance graphs under the same
w, nor whether they can avoid the Ω(m)-bits-across-a-cut phenomenon in
Theorem 3.

(ii) Two-sided error and relaxed semantics. In many learning-motivated
settings, it may suffice that unequal types collide with small probability and
equal types collide with probability close to 1 (rather than identically 1).
This changes the information-theoretic landscape because nodes need not
construct a canonical encoding of their full multiset; they can use sketches
whose equality is only probabilistic in both directions. Characterizing the
minimal depth for such sketch-only semantics, and the extent to which con-
ductance still governs it, remains open.

(iii) Multi-round WL and error accumulation. Our discussion and ex-
periments focus on a single WL refinement step. Iterating t steps introduces
dependencies: either one must disseminate new randomness per step, or
reuse a seed and control correlations. Establishing a clean composition the-
orem of the form “t steps at total error δ in Õ(t ·∆′/w · polylog(n)) rounds”
requires care even on expanders, and appears nontrivial on low-conductance
graphs where seed dissemination itself may dominate.

Directed graphs, weighted graphs, and heterogeneity of bandwidth.
Our statements are phrased for undirected, unweighted graphs. Extending
them requires choosing which analytic quantity replaces conductance. For
directed graphs, a standard option is to work with the lazy random walk on a
strongly connected directed graph and define an analogue of ϕ using station-
ary flow across cuts; however, routing primitives and cut-capacity arguments
must then account for edge directions, which can create bottlenecks not
present in the symmetrized graph. For weighted graphs, the natural gener-
alization replaces edge counts by capacities and degrees by weighted degrees
in vol(·), but the WL key formation step also becomes ambiguous: should the
multiset contain neighbor colors with multiplicities proportional to weights,
or should weights be treated as separate features? We expect that a coherent
extension is possible by defining typeG(u) to include weight-annotated neigh-
bor colors and by measuring cut capacity via total boundary weight, but we

32



do not currently have tight routing-to-ranking reductions stated in that lan-
guage. A further practical complication is heterogeneous bandwidth: if the
per-edge width is not uniform (e.g., depends on weight/capacity), then ∆′/w
should be replaced by a congestion parameter derived from edge capacities,
and it is unclear whether our packing argument remains sharp.

Virtual nodes, tokenization, and what counts as rewiring. Our
preprocessing model adds edges E+ under either a global budget R or per-
node budget r. Many applied architectures also permit virtual nodes (a new
hub connected to all original nodes) or auxiliary “register” nodes used for
aggregation. From our perspective, such operations are rewiring with a very
particular structure: a virtual node adds n edges incident to a single node,
which violates r = O(1) but may respect a global R = Θ(n) budget. This
highlights that the distribution of added degree, not only the edge count,
matters for ∆′ and thus for the ∆′/w packing factor. An open problem
is to formalize a preprocessing model that charges separately for (i) total
added edges, (ii) maximum added degree, and (iii) introduction of new nodes,
and then to characterize which combinations permit polylogarithmic-depth
refinement without rendering the model vacuous. Relatedly, even without
adding new nodes, one may attempt to simulate “virtual edges” by routing
tokens along existing paths; this is precisely where conductance and mixing
enter, and it would be useful to quantify when explicit rewiring offers a strict
advantage over such emulation under fixed d.

Shared randomness as a resource. The fingerprint variant assumes ac-
cess to a seed, either as an initial shared feature or disseminated over G′. In
RL-CONGEST, treating a public seed as “free” is a strong assumption on
sparse, low-conductance graphs: disseminating even O(log n) bits may take
Ω(1/ϕ) rounds if the seed must cross a sparse cut. This suggests two dis-
tinct models: (i) private coins only, where any correlation must be induced
by communication, and (ii) public coins, where common randomness is an
external resource. The separation is not merely definitional: one can plausi-
bly obtain fingerprinting in polylogarithmic depth on expanders with either
model, but on low-conductance graphs public coins might circumvent parts
of the lower-bound construction if the hard instance relies on uncertainty
that public randomness would remove. Determining whether Theorem 3 (or
a variant) holds under public coins for collision-free refinement, and identi-
fying the exact point at which shared randomness changes the depth regime
for bounded-error tasks, remain open.

Implications for benchmark design. Finally, we extract a methodolog-
ical lesson. Many graph-learning benchmarks emphasize average-case perfor-
mance on fixed datasets, where the underlying graphs often have moderate
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conductance or contain high-degree hubs that facilitate rapid information
flow. Our results suggest that such benchmarks may underrepresent in-
stances where depth is fundamentally limited by expansion. If the goal is
to evaluate preprocessing schemes or message-passing architectures as dis-
tributed algorithms, then benchmarks should include families with controlled
bottlenecks and explicit budget constraints, and should report not only ac-
curacy but also the achieved (∆′, ϕ(G′)) and the number of rounds required
by a fixed canonicalization primitive (such as WL1). In particular, it is in-
formative to include instances where ϕ(G) is tunably small (paths, grids,
barbell/lollipop, geometric graphs) and to sweep R (or r) across the Θ(n)
threshold suggested by Theorem 4, thereby making the predicted phase tran-
sition in computability observable rather than incidental.
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