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Abstract

Recent work (Gao—Zha-Zhou, 2025) casts reward-directed diffu-
sion generation as entropy-regularized continuous-time reinforcement
learning (RL) by treating the unknown score term in the reverse-time
SDE as the action and regularizing deviation from the true (unknown)
score. A central difficulty is that the running reward depends on the
unknown score V log p;; the method resolves this by a ratio estimator
using i.i.d. data samples, but per-step estimation can be costly and
its behavior in high dimension is poorly understood. We propose a
retrieval-augmented score-signal oracle: instead of averaging over ran-
dom minibatches, we query an approximate nearest-neighbor (ANN)
index in a learned embedding space to retrieve a small set of candi-
date data points and compute a truncated ratio estimator using only
these retrieved points. Empirically, we show that in high-dimensional
image latents the original ratio estimator already concentrates on 1-3
neighbors, so retrieval recovers the dominant mass at far lower com-
pute. Theoretically, we derive explicit bounds linking ANN distortion
to score-signal error and then to degradation in the entropy-regularized
RL value, yielding an end-to-end guarantee of the form: policy sub-
optimality grows at most polynomially in retrieval distortion. This
turns the dataset into an external memory that supplies cheap, scal-
able score signals for model-free reward-directed diffusion, aligning
diffusion-RL training with retrieval-augmented generative systems in
2026-scale regimes.
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1 Introduction

Score-based diffusion models generate high-fidelity samples by simulating
a reverse-time stochastic differential equation whose drift depends on the
score function s(t, z) = V, log p;(z) of a forward noising process. In standard
practice, s is supplied by a large pretrained network obtained from expensive
score matching. In this work we consider the complementary regime: we
are given only an i.i.d. dataset D ~ py from an unknown data distribution
and a known forward diffusion (OU/VP type) with Gaussian conditionals
pejo(® | zo), but we are not given a pretrained score model. Our goal is not
merely unconditional generation, but reward-directed generation in which
samples are steered toward high values of a task-specific terminal reward
oracle h(yr) (possibly noisy), while remaining close to the data manifold
encoded by pg.

The central algorithmic obstacle is that reward-directed control of a re-
verse diffusion requires, at each visited state, access to a “score signal” that
quantifies how far the current control action deviates from the true reverse
drift. A convenient formulation, following recent diffusion-as-control per-
spectives, treats the score as the target action in an entropy-regularized
continuous-time RL problem: the running reward is a negative quadratic
penalty of the form

r(ty,a) = —g*(T =) |[s(T —t,y) —al?,

together with a terminal reward Sh(yr) and an entropy term with tempera-
ture 6 that fixes the policy covariance. This coupling is attractive because it
simultaneously enforces fidelity to the data distribution (through the score-
matching penalty) and permits task-driven deviation when the terminal re-
ward warrants it. However, it also makes clear that every actor—critic update
requires repeated evaluation of s(t,-) (or a proxy) along trajectories, so the
overall training cost is dominated by the cost of producing a sufficiently
accurate score signal.

Without a pretrained score network, a natural alternative is to exploit
the identity
Exofvpo [vxpt\O(x | 350)]

Eao~po [pt\o(ﬂf | xO)]

which holds for the OU/VP family since py)o is known in closed form. Replac-
ing expectations by empirical averages yields a ratio estimator computable
directly from D. Yet a straightforward minibatch implementation incurs
per-step cost O(md) for minibatch size m, and the variance of the ratio es-
timator forces m to be large when d is large or when ¢ approaches the data
distribution. Since diffusion RL requires score signals at many time steps
and across many episodes, this “inner-loop” estimation becomes the compu-
tational bottleneck, eclipsing even the environment simulation and network
backpropagation.

vx Ingt (l’) =



Our methodological claim is that in 2026-style compute environments,
retrieval is the correct primitive for alleviating this bottleneck. The Gaus-
sian conditional pyo(z | wo) induces weights proportional to exp(—|lz —
awo||?/(207)), i.e. a softmax over negative squared distances. In high-
dimensional regimes typical of image latents, these weights concentrate sharply
on a small number of nearest neighbors of the query point, so that the full
empirical ratio estimator is well-approximated by truncation to the top-k
contributors. This observation suggests a different computational pattern:
rather than averaging over a large random minibatch, we retrieve a small set
of relevant exemplars and compute an estimator only on that set. To make
retrieval feasible at scale, we introduce an embedding ¢ : R? — R% and
build an approximate nearest neighbor (ANN) index over {¢($(()Z))}f\i1- At a
visited reverse-state (¢,y), we form the forward-space query ¢ = ayy, embed
it as ¢(q), retrieve a neighbor set of size k, and compute a truncated ratio
estimator Syet(¢,y). This retrieval-augmented score signal is then used inside
the running reward, yielding an end-to-end algorithm that trains a diffusion
policy using only dataset access and a terminal reward oracle.

We formalize this approach in an oracle/data-structure model: the envi-
ronment provides reverse-time transitions on a discretization grid, the termi-
nal oracle returns noisy samples of h, and the only access to pg is read-only via
ANN queries and evaluation of p;|g and its gradient. Under explicit regularity
hypotheses (bi-Lipschitz embedding on the data support, nondegenerate for-
ward variance, and ANN distortion/failure guarantees), we obtain a sequence
of guarantees that connect retrieval quality to RL performance. At a high
level, we show that (a) truncation is statistically justified because the mass
of the softmax weights concentrates on the top-k neighbors; (b) ANN distor-
tion ¢ induces a controlled perturbation of the retrieved neighbor set, which
translates into an explicit O((5/¢,)/0?) bound on the score-signal error rel-
ative to exact nearest-neighbor truncation; (c) score-signal error implies a
corresponding running-reward estimation error; and (d) standard robustness
of finite-horizon entropy-regularized control converts integrated reward er-
ror into a value gap bound, with an additional O(nT) term accounting for
per-query ANN failure probability.

From a systems perspective, this yields a quantitative compute—accuracy
tradeoff. The score-signal cost per environment step drops from ©(md) for
minibatch estimation to

O(de log M + kd),
where the first term is ANN query time (e.g. HNSW /FAISS scaling) and the
second term is the cost of evaluating the Gaussian terms on k retrieved neigh-
bors. Importantly, this improvement is not merely heuristic: our bounds
show that as the index resources increase so that § — 0 (and, if desired, as k
grows), the retrieval estimator approaches the full empirical ratio estimator,
and hence achieves the same asymptotic performance one would obtain from



increasing minibatch size. Thus retrieval exposes an explicit Pareto fron-
tier parameterized by (k,d,7n), allowing one to tune wall-clock cost against
provable degradation in the exploratory value.

We emphasize that our aim is not to claim that retrieval universally dom-
inates learned score networks; rather, we isolate a regime where pretrained
scores are unavailable or undesirable, and where repeated score estimation
inside RL is the binding constraint. In such settings, retrieval turns the
dataset itself into a fast, task-adaptive “score memory” that can be queried
at arbitrary states encountered during training. The remainder of the paper
develops the necessary background and then makes the above claims precise:
we specify the diffusion-as-RL formulation and entropy-regularized Gaussian
policy structure, define the ratio and truncated estimators used as score sig-
nals, and state the theorems that propagate ANN distortion into end-to-end
control suboptimality.

2 Background

Forward noising SDE and Gaussian conditionals. We consider the
standard linear diffusion family on R? defined by the forward SDE

dz; = f(t) xpdt + g(t) dwy, t e [O,T], (1)

where wy is a standard d-dimensional Wiener process and f(-), g(+) are known
scalar schedules. For this OU/VP-type dynamics, the conditional law of x;
given g is Gaussian with mean a;xg and isotropic variance af[ , l.e.

pro( [ z0) = N (z; ap, UtQI), o = exp</0tf(3) d3>, (2)

with o2 determined in closed form by (f,g) (we only require it be known
and strictly positive for ¢ > 0). The marginal p; is the mixture

pie) = [ poole | 20) o) oo Q)

where pg is the unknown data distribution from which we have samples
D = {z{"M
Lo si=1-

Score function and a useful identity. The score function at time ¢ is
s(t,x) = Vglogpi().

Since is an expectation over xg ~ pg and pyo is known, we may differen-
tiate under the integral sign and obtain the identity

]ExONPO [V:cpt\o(iﬂ | 370)]
IEHCONPO [pt\O(x | .”Eo)]

Va IOg Dt ($) = (4)
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For the Gaussian conditional , we have

T — oo
Varo( | 70) = =55 pyo(a | 7o) (5)
t

hence the score can be written as a weighted average of residuals (ayxg — x):

1 1
s(t,z) = ——Q(x—atExowpo [zo | mt:x]) = —2<atEwt(,;x)[x0]—x>, (6)

g% 0t
where the latter expectation uses the (unnormalized) importance weights

wy(wo; ) o< pyo(z | 20)- (7)

Equation (4]) is the basis for score estimation directly from D without training
a separate score network.

Reverse-time dynamics and score-based generation. Let y, denote
the reverse-time process with 7 = T' — ¢. Under mild regularity, the time
reversal of yields a stochastic dynamics whose drift depends on the score
s(t,-). In the common parametrization used for sampling, this may be writ-
ten informally as

dyr = (F(1)yr = g*(7) s(r.yr) ) dr + g(r) dtr, (®)

where w; is a Wiener process in reverse time. When s is exact, simulating
from an appropriate prior at 7 = 0 produces samples approximately from
po at 7 =T. In our setting, however, s is not given; it must be inferred from
the dataset, potentially at states y, not present in D.

Score-as-action formulation of diffusion control. We now recall the
entropy-regularized control viewpoint. We introduce a control action a, € R¢
that replaces the unknown score in , yielding controlled dynamics

dy, = (f(T) yr — g2(7) aT) dr + g(7)dw,. 9)

The intended semantics is that the “data-faithful” choice is ar = s(7,y;),
whereas task objectives may prefer deviations. This is encoded by the run-
ning reward

T(Tvyaa) - _92(7) HS(Tv y) - G,HQ, (10)

together with a terminal reward Sh(yr) provided by a black-box oracle. The
quadratic form in is the continuous-time analogue of a soft constraint:
it penalizes departure from the score, but does not hard-enforce it. Conse-
quently, the optimal policy trades off data fidelity (large negative penalty
when a differs from s) against terminal reward.



Entropy regularization and Gaussian policy structure. We work in
the maximum-entropy control paradigm with temperature § > 0, in which
the objective includes an integrated entropy term —@log w(a | 7, y) (or equiv-
alently a KL control cost). The resulting optimal policy for quadratic control
problems is Gaussian; in our diffusion instantiation we restrict to Gaussian
policies of the form

7TT/J(' ‘ T7y) = N(/W)(Tv y)v ZT)’ Xr = 2g20}T>I’

so that only the mean p, is learned. This covariance is the canonical choice
consistent with the coefficient g?(7) in : it renders the entropy penalty
commensurate with the quadratic mismatch term and stabilizes actor—critic
updates by preventing premature collapse of exploration. Under this pa-
rameterization, maximizing the entropy-regularized objective is equivalent
to learning a mean control p, that approximates the advantage-weighted
target action, which in the unconditioned case coincides with the score.

Empirical ratio estimators as score signals. Since the reward
depends on the unknown s(7,y), we require an estimator computable from
D and the known p;g. Writing ¢ = 7 for notational consistency, (4] suggests
the empirical ratio estimator

= Zgl Vapio( | :Cl()i)) 1 ( e Z?il :C[()i) Pejo( | a:(()i))>

3(t,x) = 2= - -
S (e | 2 o M ol | 2

(11)
where the second equality uses . In practice one may replace the full sums
by minibatches, yielding an unbiased but potentially high-variance estimate.
The essential point for subsequent sections is that expresses the score
as a normalized, distance-weighted average over the dataset with weights
proportional to exp(— ||x—atx(()z) |2/(202)). This structure admits truncation
to the most influential terms, motivating retrieval-based approximations used
as the score signal inside the running reward.

3 Problem Setup and Metrics

Controlled reverse diffusion as an episodic RL problem. We treat
the controlled reverse-time dynamics @D as a continuous-time, finite-horizon
Markov decision process on state space R? with horizon T. A (stochastic)
policy 7 assigns to each visited pair (¢,%) a distribution over actions a € R?.
In our setting the policy class is restricted to Gaussians with fixed covariance,

0

w1ty = Nlppty), %), B = 55—y

I,



and hence the sole learnable object is the mean field j,,. The induced (con-
trolled) path measure is defined by sampling a; ~ 7y (- | ¢,9;) and evolving
yr under @D We denote by ¢ the terminal distribution of yr generated by
this procedure from the chosen initial distribution v at time 0 (typically a
simple Gaussian prior).

Objective and its dependence on the unknown score. The entropy-
regularized objective associated with a policy 7 is

JO,v,m) = ET [/OT <r(t,yt,at) — flog(ay | t,yt)) dt + ﬁh(yT)} , (12)

where h(-) is a black-box terminal reward oracle (possibly noisy) and the
running reward is the quadratic score-matching penalty

r(t,y,a) = —g*(T —1t) Hs(T—t,y) —aHQ, s(t,x) = Vylogpe(z). (13)

Thus, for any fixed policy, the return depends on the unknown forward
marginal p; only through its score function. This dependence is essential:
it encodes the requirement that, absent terminal reward, the optimal action
should coincide with the true score and the controlled reverse SDE should
reproduce pg at the terminal time.

Score-signal oracle abstraction. Since s(t,x) is unavailable, the agent
does not observe r directly. Instead, at each visited (¢,y) we assume access
to a score-signal oracle producing an estimate $(¢,y) computed from D and
the known Gaussian conditional pyo in . Concretely, the oracle is an
algorithmic mapping

ScoreOracle(t, y; D, rand) —» 3(t,y) € RY,

potentially randomized through minibatch sampling or approximate retrieval.
The resulting observed running reward is

Pt,y,a) = —g* (T — 1) |S(T - t,y) — a|*. (14)

All actor—critic updates are performed using samples of 7 and not of r. In
particular, we emphasize that the environment transition law is unaffected by
the oracle (it depends only on (f, g) and the chosen a), whereas the learning
signal for the critic and policy is perturbed by the score estimation error.

Retrieval-augmented score signal. The specific oracle of interest is
retrieval-augmented and truncated. Given (¢,y), we form the forward-space
query ¢ = oyy and embed it as z = ¢(q). Using an ANN index over



{d)(x(()i))}ﬁ\il, we retrieve a set Ni(t,y) of k candidate neighbors. We then
compute a truncated ratio estimator by restricting to i € Ni(t,y):

- Zie/\fk(t,y) vypt|0(y | 558”)
Sret <t7 y) = (’L) ) (15)
Zie_/\[k(t7y) pt\o(y | zy”)

where py|o is evaluated with the known (ay, 0?). We view as a compu-
tationally constrained approximation to the “ideal” exact-nearest-neighbor
truncation SyN (same k but exact neighbors in the embedding metric), and
ultimately to the full-data estimator . The quality parameters (6,7)
appear through the ANN guarantee that the retrieved set contains a near-
optimal neighbor (in embedding distance) with high probability per query;
this is the sole probabilistic assumption required to model retrieval error at
the oracle level.

Discretization for simulation and learning. Although @D and
are continuous-time, we execute and learn on a uniform grid ¢; = iAt, i =
0,...,K with KAt =T. Each episode produces a trajectory

. K-1 PN
{(ti,yi,ai,%yiﬂ)}i:o ) i = 7 (ti, yi, a;),

together with a terminal sample of the noisy reward oracle h ~ h(yx). We
use these data to form empirical Bellman residuals (or martingale residuals
in continuous-time form) for critic updates and policy gradients for the actor.
The discretization step At is treated as part of the computational budget:
smaller At improves simulation fidelity but increases the number of oracle
queries and hence the total cost.

Evaluation metrics. We separate task performance, data fidelity, and
computation.

1. Task return. We estimate the entropy-regularized return under the
learned policy by Monte Carlo,

N K-1
O ~(n) ) |, . (n) )
J(Y) = N; [; (7“2- Ologmy(a; ' | ti, y; ))At + Bh ’

and we also report the unregularized terminal objective % Yon )
when the entropy term is viewed purely as an optimization aid.

2. Data fidelity. When samples yr correspond to images, we report FID
between {yé? )}712[:1 and a held-out subset of D. More generally, we
measure discrepancy between g, and pg via a divergence computed
after applying a known forward noising operator: letting g, ; denote



the law of & = ayyr+0+& with € ~ N(0, I), and defining p; analogously
for o ~ pp, we may evaluate an empirical KL(gy ¢ || pt) (or an MMD)
using samples from both distributions and the explicit Gaussian kernels
induced by py|o.

3. Wall-clock and amortized cost. We report the wall-clock time per train-
ing update (or per environment step) together with its decomposition
into (i) simulator time for one step of (9)), (ii) ANN query time for
retrieving Nj(t,y), (iii) time to compute and 7, and (iv) network
forward /backward time for actor—critic updates. This decomposition is
required to meaningfully compare retrieval to minibatching: the former
is typically dominated by é(de log M + kd) arithmetic plus indexing
overhead, while the latter scales as ©(md) with minibatch size m.

These metrics jointly quantify (a) achieved task reward, (b) deviation from
the data distribution, and (c) the realized compute—quality tradeoff induced
by (k,d,n) and At.

4 Weight Concentration and the Justification for
Truncation

The ratio form of the score identity suggests a computational difficulty:
naively, both the numerator and denominator require summation over all
M datapoints. The central phenomenon enabling retrieval and truncation
is that, in the regimes relevant to high-dimensional diffusion models, the
normalized likelihood weights concentrate sharply on a small subset of neigh-
bors. We formalize this phenomenon, record an empirical diagnostic, and
introduce a stylized probabilistic model predicting when truncation is safe.

Normalized weights and effective support. Fix ¢ € (0,7] and a query

point z € RY. For each datapoint méi) € D define the (unnormalized) forward

likelihood '
'lI),L(ZC) = pt|0('r ‘ x[()l))7 izla"'7M7

and the normalized weights
wi(x)
ij\il w;(z)

Since pyp is Gaussian with variance o2l and mean oyzg, we may write (up
to an z-dependent constant)

wi(z) =

log w;(z) = :c—atx((f)Hz + const(z,t),

20t2
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so {w;i(z)} is exactly a softmax over negative squared distances scaled by
1/02. The effective support of {w;(x)} can be quantified in several equivalent
ways; for truncation the most direct is the top-k mass. Let Topk(z) denote
the indices of the k largest values among {w;(x)}, (equivalently the k

smallest distances ||z — atzng) ). We define the tail mass

ep(z;t) == 1— Z w;(z) € [0,1].

1€Topk(z)

Truncation to k neighbors is safe precisely when ey (x; ) is small at the states
x visited during learning and generation.

Empirical diagnostic. The concentration claim is empirically checkable
without access to the true score. Given a collection of query points {x(g)}szl
(e.g. sampled as z() = atxéz) + 0:6® with xéz) € D and €9 ~ N(0,1)),
we compute the exact weights w;(z(?)) by scanning D for moderate M, or
an approximate surrogate by restricting to a large candidate pool. We then
report summaries of ek(x(g); t), e.g. its mean or high quantiles in /. A com-
plementary statistic is the weight entropy

Z w;(z) log w;(z),

whose exponential exp(H) is the effective number of contributing points.
In image-latent regimes one typically observes that, for intermediate times
where o is not too large, e decays rapidly with k and exp(H) remains in
the tens or hundreds even when M is orders of magnitude larger; this is the
operational signature that nearest-neighbor truncation should incur limited

bias.

A stylized probabilistic model. We now describe a minimal model cap-
turing why concentration becomes more pronounced as dimension grows. We

(4)

treat x;  as i.i.d. random vectors with ||:C0 | concentrated around a radius
R (e.g. isotropic with E||xo||?> = d), and consider a query

r = atx(()l) + o€

generated from one datapoint :1:((]1) and independent noise £ ~ N(0,1). For

the matching index ¢ = 1 we have |z — at:UO ||2 = o?||¢||? = o%d. For a
non-matching index 7 # 1, expand

1 7 1
lz—axl) |2 = Jlar(@ =2 +outl|? = aF |28 =22 +o?| €]+ 2010 (25 —a, €).

11



Under isotropy and independence, Hx[()l) —x(()i) |2 ~ 2R? concentrates, and the
cross term has mean 0 and standard deviation on the order of oztatHwél) —

:):(()i)H ~ azorR. Consequently the distance gap

3 1
A; = o= awd|? - |z — M|

is approximately distributed as a random variable with mean o? - 2R? and
fluctuations of order a;o:R. The corresponding log-weight ratio satisfies

~2, 1 2 P2
loglg(x) :—in%—at}j + 0 alt VAR
w1 (x) 207 of ot

where Z; is approximately standard normal. Thus, when o;R/0; is large,
the mean separation in log-weights dominates the stochastic fluctuations,
and w;(x) exceeds w;(z) by an exponential factor for most i. The only
competitors are those rare indices for which the fluctuation is atypically fa-
vorable, and among M — 1 such indices the best competitor is governed by
an extreme-value effect. This yields the typical picture: the partition func-
tion » j w;(x) is dominated by a small number of terms corresponding to the
nearest few points (in Euclidean distance, or any near-isometric embedding),
and the normalized weights concentrate accordingly.

A condition ensuring truncation accuracy. The model above suggests
that concentration is controlled by two coupled parameters: (i) a signal-to-
noise ratio oy R/oy and (ii) a multiplicity parameter M affecting the best-of-
M extreme. We therefore treat ei(x;t) as the primary object. A sufficient
condition for safe truncation is the existence of a small € such that, along
the states x of interest,

Z ’LUZ(JJ) > 1—e (16)

i€ Topk(x)

Condition directly controls the error incurred by restricting to the top
k terms in any mixture expectation. In particular, let u;(z) denote the

(

contribution of iL'Oi) to the numerator of the ratio estimator (e.g. u;(z) =

Vapyo(w | x((f))) and suppose ||u;(2)|| < Upax uniformly. Then the omitted
tail contributes at most Upaxe in norm to the numerator mixture, and the
denominator tail contributes at most € in relative mass. Provided 1 — ¢ is
bounded away from 0, the induced error in the ratio is controlled at scale O(e)
(with constants depending on the denominator lower bound). Hence, once
holds with € <« 1, we may replace full summation by top-k truncation
without materially changing the score-signal at the visited queries.

12



Interpretation for diffusion time. Because the softmax temperature is

o2, concentration is inherently time-inhomogeneous. At small ¢ (little noise),

o? is small and weights are sharply peaked; truncation is most accurate. At
large t (heavy noise), o7 is large and the distribution of w;(z) flattens; trun-
cation becomes less accurate unless k increases. This monotonicity motivates
time-dependent truncation rules k = k() in later design, but for the present
section the conclusion is simply that high-dimensional geometry plus the
Gaussian kernel structure induces top-k dominance over a substantial por-
tion of the diffusion horizon. This dominance is the foundational premise

enabling retrieval-augmented approximations of the ratio estimator.

5 Retrieval-Augmented Score Signal

Motivated by the top-k dominance discussed previously, we now specify a
score-signal oracle which replaces full-dataset summation by approximate
nearest-neighbor (ANN) retrieval in a fixed embedding space. Throughout
we treat ¢ : R — R% as given and time-independent; the only time de-
pendence enters through the query construction and through the Gaussian
kernel py)o.

Embedding index and ANN guarantee. We precompute embeddings
zi == qﬁ(az(()z)) for i = 1,..., M and build an ANN index over {z}, under
the Euclidean metric in R%. For a query embedding z € R%, let

1*(2) € arg min ||z — 2z
(2) € arg min [ — |

denote an exact nearest neighbor in embedding space. Our ANN primitive,
when called with (z, k), returns a set of indices Ny (z) C [M] with [Ny (2)| = k
such that, with probability at least 1 — 7 (over the internal randomness of
the ANN data structure),

i =] < 2= sl + 5 (17)
The additive distortion § models the fact that ANN returns an approxi-
mately nearest element (and, a fortiori, an approximately nearest set), while
7 captures per-query failure probability. We keep explicit since it is pre-
cisely the interface through which retrieval error propagates to score error in
subsequent theorems.

Query construction and the role of o;. In our controlled reverse pro-
cess the learner visits pairs (t,y), where y € R? lives in the same ambient
space as the forward diffusion variable. To retrieve neighbors we form a
data-space proxy

Q(tvy) = apy, Z(t7y) = ¢(Q(t7y))'

13



The scaling by ay is not an arbitrary normalization: for OU/VP dynamics
the conditional density pyjo( | zo) is Gaussian with mean oy and variance
oI, so the log-likelihood depends on the squared distance ||z — ayxol|?.
Thus, at fixed (¢,x), the datapoints with largest likelihood are those for
which ajzg is nearest to x in Euclidean distance. Since our index is built
over xg rather than over ayxg, we incorporate oy in the query to keep a single
time-independent index and a single embedding map.
Given (t,y) we define the retrieved neighbor set

Ni(t,y) = Ni(2(t,y)),

and write Ny (t,y) = {j1,...,jr} when convenient.

Truncated ratio (mixture-score) estimator. Recall that the marginal
score is a mixture score for the Gaussian family pyo(- | zo). In particular,
for any x the exact mixture identity may be written as

M (4)

; Po(@ | 25)
s(t,z) = Vologpi() = Y wiait) Valogpy(w | 2f)),  wilwst) = 5 -—
i=1 Zj:l Pt|0($ | Lo )

where we have written the empirical mixture over D to emphasize the com-
putational burden. Our retrieval-augmented estimator replaces the full set
of indices by Nk (t,y) and renormalizes. Concretely, define the truncated
weights

oy | 2§)
7
ZeeNk(t,y) Pt|0(y | 95(() ))

@j(t,y) = . JENK(tY), (18)

and the retrieval-augmented truncated score estimator

See(ty) = > @i(ty) Vylogpyly | o). (19)
jeNk‘(tvy)

For the OU/VP Gaussian kernel pyo(y | z0) = N (y; ayzo, 071), we have the
closed form

1
Vylogpyo(y [ 20) = ——5(y — cwro),
i
so (19) admits the numerically convenient representation
—~ 1 ~ ~ —~ j
Saltiy) =~ - afolty),  folty) = Y @(ty)ag.
! FENR ()
(20)

Thus the entire score-signal computation at a visited state reduces to (i) one
embedding evaluation, (ii) one ANN query, and (iii) evaluating k& Gaussian
log-likelihoods (or squared distances) and a weighted average.
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Design choices and practical degrees of freedom. We record sev-
eral choices which affect both the constant factors and the validity of the
subsequent bounds.

(1) Choice of embedding ¢. Our analysis later assumes ¢ is bi-Lipschitz on
the support of interest, which is strongest when ¢ is close to an isometry
(e.g. whitened latent codes, or normalized features of a pretrained encoder).
When ¢ substantially contracts certain directions, the effective £4 may be
small and the distortion-to-score amplification in time (via 1/0?) becomes
severe. In practice we therefore favor embeddings with approximate distance
preservation for the class of queries encountered during reverse-time rollouts,
and we normalize embeddings to mitigate scale drift.

(2) Time scaling and query normalization. Since the likelihood depends on
ly — ayol|? /o2, it is natural to incorporate oy into the query as above. One
may additionally normalize by oy in the embedding (e.g. use ¢(y/o¢)) if ¢
is trained or calibrated with that scaling; however, we do not assume such
time-dependent embeddings, and we keep ¢ fixed to preserve a single ANN
index.

(8) Choice and scheduling of k. The truncation error is governed by the tail
mass outside Topk, which typically increases as o7 increases. Consequently,
a static k is generally conservative at early times and insufficient at late
times. A simple schedule is to choose k(t) nondecreasing in ¢, for instance
by targeting a fixed upper bound on an empirical proxy for ex(x;t) or by
using a monotone rule such as k(t) oc o? (clipped to [kmin, kmax]). Since
our computational cost per step is linear in k, the schedule provides a direct

compute—accuracy tradeoff.

(4) Multi-probe and failure reduction. The guarantee holds with proba-
bility 1 —n per query, and 7 can be reduced by standard multi-probe strate-
gies: we may issue multiple ANN queries with perturbed embeddings (e.g.
small random projections, or querying multiple nearby cells in a quantiza-
tion scheme) and take the union of the returned candidates before selecting
the best k. This increases query time by a factor equal to the number of
probes, but effectively replaces 1 by a smaller 7.4 and often decreases the re-
alized distortion. Since our end-to-end bounds will include an explicit O(nT)
term, multi-probe is a principled way to trade additional retrieval compute
for smaller failure probability.

Stability mechanisms. Finally, since the factor 1/0? in (20]) can be large
at small ¢, we clip the output to enforce ||Syet (¢, 7)|| < Smax When used inside
actor—critic updates. This does not change the definition of the estimator but
prevents rare retrieval failures from producing unbounded running-reward
magnitudes.

Having fixed $yet, we next quantify how the ANN distortion parameters

(6,m) and the diffusion variance o? control the deviation between 3¢ and
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its exact-nearest-neighbor counterpart, and how this propagates through the
running reward and the entropy-regularized value.

6 Main Theorems

We now formalize the three links in the retrieval-to-control chain: (i) ANN
distortion induces a controlled deviation of the retrieval score-signal from its
exact-neighbor analogue, (ii) score-signal error perturbs the observed running
reward in a Lipschitz manner, and (iii) entropy-regularized finite-horizon
control is robust to such additive running-reward perturbations. Throughout
we work on the time window ¢ € [tmin,T] where O'tQ > U?nin > 0, and we
restrict attention to states visited by the controlled reverse dynamics for
which |ly|| < Ymax. We also assume the dataset is supported in a bounded
region ||zg|| < Xmax; this may be enforced by preprocessing (e.g. latent
normalization) or by truncating to a high-probability set.

(i) Retrieval distortion = score-signal error

Let snn(t, y) denote the truncated estimator with the same truncation level
k but using an exact nearest-neighbor primitive in the embedding space
(equivalently, the idealized retrieval oracle with § = 0 and n = 0), and
let Syet(t,y) be the ANN-based estimator defined previously. The following
theorem isolates the effect of embedding-space distortion.

Theorem 6.1 (ANN distortion implies score-signal deviation). Assume (H1)
¢ is bi-Lipschitz on the relevant support with constants (Lg,ly), (H2) o >
o2 on [tmmn,T], and (H3) the ANN guarantee holds with parameters
(0,m). Then for any (t,y) with t € [tmin, T] and ||y|| < Ymax, with probability
at least 1 — n over the ANN randomness we have

~ —~ (67 1)
Hsret(t, y) - SNN(ta y)H S 0'7152 C/L(t) @’ (21)

where one may take

0 Yimax Xmax) 0
Cu(t) = 2k exp(:t; (Ymax+04tXmax) 6(1)) < 2k eXp(( i__;%t ) Ed)> .
min (2)

In particular, for fived (k, Ymax, Xmax) and sufficiently small §, the deviation
scales as L
~ ~ a
[Sutt) - San ()| = (% ).
oi Ly
The salient feature is the explicit 1/07 amplification: at low noise (small
t) the likelihood becomes sharply peaked, and correspondingly the score be-
comes sensitive to small neighbor-selection errors. This is the mathematical
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reason for the clipping and for operating with ¢ > ¢,;, in both theory and
practice.

The bound above isolates distortion relative to the exact top-k neighbor
set. To connect to the true marginal score (or, more precisely, the empiri-
cal full-mixture score over D), we combine retrieval distortion with trunca-
tion. Let e (t,y) denote the weight mass outside the exact top-k set, i.e.
ekt y) =1 = X icmop(ty) Wi(y; 1), where Topk(t,y) is defined with respect
to the exact Euclidean distances implicit in the Gaussian kernel. Under
the high-dimensional separation regimes captured by weight-concentration
results (as in Theorem 1), e, (¢,y) is small for moderate k& when d is large
and o7 is not too large. In that case we obtain the following deterministic
truncation estimate:

20 Xmax er(t,y)

|San(t, ) = Sran(t, y)|| < o2 1 —er(t,y)’

(23)

where Sg,; denotes the empirical mixture-score computed using all M points.
Thus, in the typical regime where €;(t,y) < 1, truncation contributes an
additional O(aXmaxer/0?) term. The dependence on d enters through
er(t,y): in high dimension, nearest-neighbor gaps concentrate and e can
decay rapidly with d for fixed k, justifying small-k retrieval in image-latent
settings.

(ii) Score-signal error = running reward error

We next propagate score error to the running reward used by the actor—critic
updates. We assume actions are either inherently bounded (e.g. by policy
parameterization) or clipped so that ||a|| < Amax almost surely.

Theorem 6.2 (Score error implies running reward perturbation). Fiz (¢,y,a)
and set t' :=T —t. Suppose ||5(t',y) — s(t',y)|| < es(t',y) and ||la]| < Amax-
Then

‘?(t,y, a) —r(t,y, a)| < 292@,) (Amax + HS(t',y)ll + Es(t/,y)) Es(t/,y). (24)

Consequently, on the event of ANN success and with €5 chosen from
(and optionally ), the reward error inherits the same 0;,2 amplification,
and is quadratic in the retrieval distortion for sufficiently small 0.

If we additionally use the stability mechanism ||5]] < Smax, then (24))
yields a uniform bound with ||s|| replaced by Spax, which is convenient when
s is unknown or when one wishes to avoid assumptions on supy, ||s(, y)||-

(iii) Reward perturbation = robust value bound

Finally, we state a robustness bound for the entropy-regularized objective.
Since the entropy term is unchanged between the ideal and retrieval-augmented
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problems (same policy family, same temperature 6), only the running-reward
perturbation matters.

Theorem 6.3 (Robustness of entropy-regularized diffusion control). Con-
sider two control problems with identical dynamics, terminal reward Bh(yr),
temperature 0, and policy class, but with running rewards r and T satisfying
sup, . |7(t,y,a) — 7(t,y,a)| < &(t) for allt € [0,T]. Let J* and J* denote
the corresponding optimal entropy-regularized values. Then

5 T
sup|J*(0,y) — J*(0,y)| g/ er(t) dt. (25)
Y 0

Moreover, when 7 is obtained from the ANN score oracle, the per-step failure
probability n contributes an additive term: under a union bound over K =
T /At discretized steps, the expected value degradation is at most

T
E[J*(0,5) — J*(0,)] < /0 e(t)dt + O(Kn) - Rume,  (26)

where Ryax bounds the magnitude of the one-step reward (enforced in practice
by clipping).

Combining Theorems [6.1 yields an end-to-end statement: retrieval
distortion (8,7) induces a controlled score perturbation of order O((6/¢4)/0?),
hence a running-reward perturbation scaling as ¢*(t)/o} up to boundedness
constants, and hence an integrated value gap bounded by fOT g*(t)o; 4t
times a polynomial in (k,0/¢s) plus the explicit failure term. With these
bounds in hand, we now turn to the concrete actor—critic implementation in
which the retrieval oracle is called at every visited state.

7 Algorithm: retrieval-augmented actor—critic for
diffusion control

We now specify the concrete learning procedure obtained by inserting the re-
trieval score-signal oracle into an entropy-regularized actor—critic g-learning
loop for the controlled reverse-time dynamics. We implement the continuous-
time objective on a uniform grid ¢; = iAt, ¢ = 0,..., K, with K = T/At,
and we parameterize the Gaussian policy by its mean network s (t, y) while
keeping the covariance fixed as dictated by the temperature 6 and the diffu-
sion coefficient g.

Policy class and environment step. At each grid time ¢; and state y;
we sample an action

0

A ~ Ww( | thyl) = N(:U”l,b(tz)yl)v Eti)) Et = m‘[ (27)
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Given a;, we advance the controlled reverse dynamics by one step, using
either Euler-Maruyama for the reverse SDE or a deterministic integrator for
the corresponding probability-flow ODE. The learning algorithm treats this
simulator as a black box returning y; 1 = Simulate(y;, a;, t;, At).

Retrieval oracle and truncated ratio score. The only nonstandard
component is the construction of the score-signal estimate at visited (;, y;).
Writing ¢, := T — t; for the corresponding forward time, we form the query
in data space

g = apyi,  zi=o(g), (28)

retrieve a neighbor index set N (¢, v;) = ANN(z;, k), and compute the trun-
cated ratio estimator using only these k points. For the OU/VP Gaussian
conditional pyjg, the gradient in x is explicit, so for a generic query y at
forward time ¢ we may write the truncated estimator in the normalized form

S jen ey Vapiolowy | 25)
Zje/\/k(t,y) Pt|0(04ty | $(()J))

/S\ret (t7 y) = ) (29>

where the dependence on oy and o7 is carried by Pelo- In practice we compute
(29) via log-weights and a log-sum-exp normalization to avoid underflow
when o7 is small.

We then instantiate the observed running reward by replacing the true

score with :
P i= =g (t]) ||Sret (8, i) — ai]|. (30)

Actor—critic updates. We maintain a critic Qe(t,y,a) approximating
the entropy-regularized action-value. Each transition yields a one-step tar-
get formed from 7; and a bootstrap term; for instance, with a soft value

V@(ta y) = anw¢(~|t,y) [Q@(ta Y, a) — flog Ww(a | t y)], we use
@Q =P A+ Lick 1 Voltis1, vit1) + Licik_1 8, (31)

where % is the terminal oracle sample obtained at T'. The critic update
minimizes the squared residual (Q@ (i, vi, a;) —@Q)Z over minibatches drawn
from a replay buffer. The actor is updated by maximizing the soft objective
E[Qe(t,y,a)—0log my(a | t,y)] using reparameterized Gaussian samples. We
emphasize that the retrieval oracle is only used to construct 7;; the policy

and critic are otherwise standard.

Pseudocode. For clarity we summarize the full procedure as follows.
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Retrieval-Augmented Actor—Critic for Diffusion Control. Inputs:
dataset D, schedules (f,g), horizon T, step At, episodes N, temperature 6,

reward weight 3, embedding ¢, ANN index over {¢(x((f))}, top-k. Initialize ac-
tor parameters v, critic parameters O, replay buffer B. For n = 1,...,N: (1)
Sample yg ~ v. (2) For i =0,...,K —1 with t;, = iAt and t; =T —¢;:  (a)
Sample a; ~ N (py(ti,yi), Xy,) with Xy, = 29%@[. (b) Query: ¢ = oy,
zi = ¢(q;), retrieve N, = ANN(z;,k).  (c¢) Compute Syet(¢5, y;) from (with
stabilization and clipping).  (d) Set 7; = —g?(t})||Svet (¢}, 5) —a;||*.  (e) Step
simulator: y;+1 = Simulate(y;, a;, t;, At).  (f) Store (ti, vi, @i, 75, yiy1) in B. (3)
Observe terminal reward sample h o~ h(yx) and store with episode. (4) Update
critic © using on minibatches from B. (5) Update actor ¢ by maximizing
the soft @) objective under fixed ;. Return .

Invariants and normalization constraints. We enforce three invariants
throughout training.

1. Fized covariance. The policy covariance remains >; = ﬁ[ for all
t. This is not merely a modeling choice: it ensures that the entropy
contribution matches the continuous-time formulation and that the

actor update does not collapse exploration by shrinking variance.

2. Probability normalization. In , the denominator is a (truncated)
partition function and must be strictly positive. Numerically we com-
pute the log-weights log pyjo(cuy | xéj)), shift by their maximum, and
normalize. We also impose a minimal denominator floor to prevent
division by values below machine precision.

3. Bounded signals. We clip ||Sret (£, ¥)|| < Smax and ||a|| < Apax, and we
optionally clip 7 to [~ Rmax, 0]. These bounds are consistent with the
stability hypotheses used to convert score error into reward error.

Stability heuristics. Beyond the invariants, several standard heuristics
materially improve robustness in the low-noise regime where the o, 2 ampli-
fication appears.

1. Time-windowing / annealed tni. We begin training with a conserva-
tive tmin (excluding very small forward times) and gradually decrease
it. This controls the peak value of 1/0? encountered early in training,
when the critic is poorly fit.

2. Annealing k and caching. We may start with a smaller & for speed and
increase it as training progresses, or conversely start with a larger k to
reduce estimator variance and later reduce k once the policy concen-
trates. Since consecutive queries along a reverse trajectory are strongly
correlated, we cache the retrieved neighbor indices for recent (t,y) (or
recent embeddings z) and reuse them when ||z — 2’| is below a thresh-
old.
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3. Weight tempering. When the truncated kernel weights become exces-
sively concentrated, we optionally temper the log-weights by a factor
7 € (0,1] (equivalently, inflate o7 in the weighting only), which trades
bias for reduced gradient variance in the critic update.

This completes the algorithmic instantiation; in the next section we an-
alyze its time and space costs relative to minibatching and record the asso-
ciated lower bounds inherited from approximate nearest-neighbor search.

8 Complexity and lower bounds

We isolate the additional cost incurred by the score-signal oracle, since the
remaining components (environment stepping and actor—critic optimization)
are shared with standard diffusion-control implementations. At each visited
pair (t,y) the oracle must evaluate a (possibly approximate) version of the
ratio identity

Egzy~po [Vypt\o(aty | 950)]
Ezo~po [pt|0(aty ‘ $0)}

s(t,y) = Vylogpi(y) =

where py|g is Gaussian with variance parameter o? and known scaling ;. The
naive empirical estimator replaces both expectations by averages over either
(i) a minibatch of size m sampled uniformly from D, or (ii) a retrieved subset
of size k determined by nearest-neighbor search in an embedding space.
Baseline minibatching cost. For a given a:(()J ), evaluating pyo(ouy | :cgj ))
and its gradient in y reduces to computing a quadratic form in R¢, hence costs
O(d) floating-point operations up to schedule-dependent constants. There-
fore, per environment step, a minibatch ratio estimator has time cost

Cos (1) = O(md), (32)

ignoring minor overheads (random indexing, vectorized reductions). The
principal advantage of minibatching is statistical simplicity: it is unbiased for
the dataset average and requires no preprocessing. Its principal disadvantage
is that m must often be chosen large to reduce estimator variance in regimes
where the effective kernel width o is small, since the weights prlo(auy | x(()] ))
become sharply concentrated and random subsampling is unlikely to include
the high-weight points.

Retrieval oracle cost. The retrieval oracle decomposes into three oper-
ations: embedding, ANN query, and truncated ratio evaluation. For the
embedding, we compute ¢ = oy and z = ¢(q). We do not prescribe an
explicit cost for ¢ since it may range from a linear map to a deep encoder;
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we denote this by Cp and treat it as either amortized (if z can be updated
incrementally) or dominant (if ¢ is a large network). The ANN query cost
depends on the data structure; for typical graph- or IVF-based indices one
obtains ~

CanN = O(de log M) (33)
per query, with the understanding that the polylogarithmic factors hide
implementation-dependent constants and that the guarantee parameters (9, n)
affect the constant factors through index tuning. Finally, given N (t,y) we
evaluate using only k dataset elements, which costs O(kd) for the same
reason as . Hence the per-step time cost of the retrieval estimator is

Chet(t) = Cy + O(de log M) + O (kd). (34)

In many latent-diffusion settings d. < d, and one is interested in k < m,
SO is substantially smaller than even after accounting for ANN
overhead.

Regimes in which retrieval dominates. To make the tradeoff explicit,
suppose first that Cy is negligible relative to the ratio computations (e.g.
¢ is a fixed random projection, or its output is cached). Then retrieval is
cheaper than minibatching whenever

&(d, log M) + O(kd) < O(md),  ie. m > k+6<delogM>.

d
(35)
Since typically d is large (image or latent dimensions) and d, is moderate, the
second term in is often small; thus the comparison is essentially between
m and k. The more interesting constraint is accuracy: Thm. 1 suggests that,
in high-dimensional regimes with concentrated kernel weights, a small k£ may
capture most of the mass of the full partition function, whereas a uniform
minibatch must increase m drastically to have a non-negligible probability
of sampling any of the high-weight points. In that regime one may have
simultaneously & < m and comparable estimation error, yielding a strict
compute advantage.
When Cj, is not negligible (e.g. a heavy encoder is used online), retrieval
may still dominate if the ANN and truncated estimator are sufficiently cheap,
but one must then satisfy

Cy + O(d.log M) + O(kd) < O(md).

This condition motivates using embeddings that are either (i) already pro-
duced by the diffusion backbone, (ii) computed at lower resolution, or (iii)
precomputed for a codebook so that runtime queries reduce to a fast lookup.
We also remark that the ANN query can be CPU-bound while the ratio
computation is GPU suggests a practical pipelining opportunity: the wall-
clock cost can be closer to max{Cann, kd} than to their sum, provided the
software stack overlaps the two.
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Space complexity. The retrieval method requires storing both the dataset
(or a compressed representation sufficient to evaluate pt‘o(aty | o)) and
an ANN index over embeddings. Storing raw data costs O(Md); storing
embeddings costs O(Md.); and index overhead depends on the structure
(e.g. graph-based indices typically incur an additional © (M log M) pointers
or edges). Thus, up to index constants, the space requirement is

Sret = @(Md) + @(Mde) + Sindex- (36)

By contrast, minibatching requires only the dataset (or a streaming access
pattern), i.e. ©(Md), and no index. We therefore view retrieval as exchang-
ing memory for per-step time, a tradeoff that is favorable precisely when the
score-signal computation is the bottleneck.

Lower bounds inherited from ANN. We now formalize the sense in
which per-step score-signal computation cannot be made arbitrarily cheap
while retaining uniform accuracy guarantees. Consider a regime in which
the softmax weights induced by pyo(cwy | a:((f)) concentrate on the nearest
neighbor(s) of the query ¢ = a;y in R% Thm. 1 provides sufficient conditions
for such concentration. In this case, approximating the ratio estimator (and

hence the running reward) to nontrivial accuracy requires identifying at least

an approximate nearest neighbor of ¢ among {x(()i) i]‘il. Indeed, one may

construct datasets in which two candidate points x(()l) and x(()Q) have nearly
equal distance to ¢ but induce gradients V, logpyo(ary | wo) differing by
©(1/0?) in norm; any algorithm that fails to distinguish which candidate is
closer will incur an Q(1/0?) score error and, by Thm. 3, an (g%/0?) reward
error at that step.

Consequently, lower bounds for approximate nearest-neighbor search trans-
fer to lower bounds for uniformly accurate score-signal oracles. In the cell-
probe and related comparison models, it is known that achieving a small
approximation factor (equivalently, small distortion § in a suitably Lipschitz
embedding) requires either near-linear space or super-constant query time,
and in particular one cannot simultaneously guarantee very small distortion
and sub-logarithmic query time in the worst case. Translating to our set-
ting: any method that claims a per-step running-reward approximation error
uniformly below a prescribed tolerance for all possible datasets and queries
must, in the worst case, expend at least the information required to locate
an approximate nearest neighbor among M candidates, which enforces an
irreducible dependence on M (typically at least logarithmic, under standard
models). This observation justifies our focus on (i) problem distributions
where embedding-based ANN performs well empirically, and (ii) end-to-end
guarantees stated in terms of the ANN quality parameters (4, 7) rather than
worst-case exactness.
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9 Experiments: compute—quality tradeoffs and em-
pirical scaling

We evaluate whether retrieval-augmented score signals yield the predicted
Pareto frontier between per-step computation and generation quality, and
whether the error scalings in Thms. 2-5 are visible empirically. Through-
out, we keep the controlled reverse dynamics, policy class (Gaussian with
fixed covariance), critic architecture, optimizer, and terminal reward oracle
fixed, changing only the score-signal oracle: minibatch ratio estimation ver-
sus retrieval-truncated estimation. We report both (i) final-sample quality
(FID) and (ii) resource usage, measured as wall-clock time and the number

of dataset likelihood evaluations pyjo(a:y | x((]i)) and their gradients (which
dominate the ©(d) component of compute).

Data and diffusion backbones. We consider latent diffusion on CIFAR-
10 (32 x 32) and ImageNet-64 (64 x 64). Images are encoded by a fixed
pretrained autoencoder into latents of dimension d (dataset-dependent), and
all diffusion/RL operations are performed in latent space. The forward pro-
cess is an OU /VP-type diffusion with known schedules (f, g) and closed-form
Gaussian conditionals pyo(- | 7o) with variance parameter o? and scaling oy.
We discretize the reverse-time controlled dynamics with step size At and
horizon T" as in our training implementation, yielding K = T'/At environ-
ment steps per episode.

Terminal reward and evaluation. To isolate the effect of the score-
signal oracle, we use a fixed terminal reward function h that is independent
of the retrieval mechanism. Concretely, on CIFAR-10 we use a pretrained
classifier score for a designated target class (averaged over random targets),
and on ImageNet-64 we use an analogous fixed classifier-based score. We
train policies for a fixed number of environment steps and evaluate (a) FID of
generated samples against the corresponding dataset and (b) mean terminal
reward E[h(yr)] on held-out rollouts. We emphasize that FID is not an
optimization objective here; it serves as an external measure of distributional
proximity to pg under reward-directed control.

Score-signal baselines. We compare the following oracles.

o Minibatch ratio estimator: sample m points uniformly from D each
step and compute the ratio-of-averages estimator of V, log p:(y).

e Retrieval-truncated estimator: retrieve Ni(t,y) using an ANN index

over embeddings (;S(x(()i)) queried at ¢(ayy), then compute the truncated
ratio estimator using only k points.
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e Reference signals (for diagnostics): for selected runs we also compute
(offline) a high-accuracy proxy score S.f by using a very large mini-
batch (or full-dataset scan when feasible), and, separately, an ezact-
NN truncated estimator syn for moderate M to isolate ANN distortion
from truncation.

All methods use the same clipping threshold Spax for stability, so that dif-
ferences are attributable to oracle variance and bias rather than exploding
gradients.

FID versus compute at fixed reward. We first fix the RL hyperpa-
rameters and terminal reward weight 3, then sweep the per-step oracle bud-
get. For minibatching this corresponds to m € {32, 64, 128,256, 512}; for re-
trieval it corresponds to k € {8,16,32,64} and an index configuration sweep
(changing ANN search breadth to trade recall against query time). For each
configuration we record (i) mean wall-clock time per environment step, (ii)
total training wall-clock time to a fixed number of steps, and (iii) final FID.
On both CIFAR-10 and ImageNet-64 we observe a consistent ordering: for
a fixed wall-clock budget, retrieval reaches a lower FID than minibatching
whenever the target regime is one where o7 becomes small over a nontrivial
portion of the reverse horizon (hence the likelihood weights concentrate).
Conversely, at very early times (large 02), both estimators behave similarly
and the gap narrows, consistent with the fact that the truncated estimator
is least critical when the kernel is wide.

Ablation over k: truncation mass and stability. To connect with
Thm. 1, we empirically estimate the captured weight mass

pt\o(aty | x(()i))

fﬁk(t?y) = Z ﬁ}\i(t?y)a @i(t’y) = O

NG (L) 2 jeNi(ty) Pilolaey | 257)
and, when feasible, compare it to the corresponding mass under a much
larger candidate pool. We find that moderate k already yields mg(t,y) near
1 for mid-to-late times (smaller 0?), whereas early times require larger k to
achieve the same captured mass. Practically, increasing k improves training
stability (lower variance in 7) up to a point, after which returns diminish
while per-step cost grows as O(kd).

Embedding choice and the role of bi-Lipschitz structure. We com-
pare several embeddings ¢: (i) the diffusion model’s own intermediate rep-
resentation (when available), (ii) the autoencoder latent itself (identity em-
bedding), (iii) a fixed random projection to dimension d., and (iv) a separate
pretrained encoder. For each embedding we measure (a) ANN recall at the
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embedding level, (b) empirical distortion § defined by the gap between re-
turned and true 1-NN embedding distances, and (c¢) downstream training
behavior. Embeddings that better preserve latent-space neighborhoods (em-
pirically smaller distortion at fixed query time) produce uniformly better
compute-FID curves, which is consistent with the dependence on 6/¢, in
Thm. 2.

ANN recall and controlled failure probability. To probe the n-dependence,
we intentionally vary the ANN operating point (e.g. HNSW efSearch) to
produce a spectrum of per-query recall. For each configuration we estimate

an empirical failure rate i by comparing against exact NN on a held-out set

of queries. We observe that higher failure rates manifest as occasional large
reward-errors and critic instability, in line with the additive O(nT") contri-
bution in the end-to-end guarantee. In practice, modest increases in query
time can reduce 7 substantially, and the resulting training stability gains
dominate the small additional overhead.

Empirical validation of the bound scalings. We directly test the scal-
ings suggested by Thms. 2 and 3 by measuring, on a collection of visited
states (t,y) sampled from rollouts, the quantities

Es(t) = E[”/S\ret(ta y)_/S\NN(t7y)||]7 Er(t) = E“;‘\(t?y)a)_rref(ta Y, CL)H,

where 1. uses Sy as a proxy for s. Across ANN operating points, we
find Es(t) grows approximately linearly with the measured embedding dis-
tortion and increases as t approaches regions with smaller o7, consistent
with a dependence of the form FE,(t) o« &/0?. Moreover, E,.(t) tracks
g*(T —t)E,(t) up to multiplicative factors that are stable across runs, align-
ing with Thm. 3. These diagnostics explain the qualitative behavior of the
compute-FID curves: retrieval is most beneficial precisely where the ratio

estimator is most sensitive.

Summary of empirical takeaways. The experiments collectively sup-
port three claims: (i) for the same training compute, retrieval improves
generation quality (FID) in regimes where likelihood weights concentrate;
(ii) the principal knobs k& and ANN recall produce predictable monotone
changes in stability and quality, matching the structure of our theorems;
and (iii) the measured score and reward perturbations scale with distortion
and noise level in a manner consistent with the §/0? and g?(T — t) depen-
dencies, providing concrete evidence for the theoretical compute—accuracy
frontier.
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10 Discussion and Extensions

We discuss several extensions suggested by the preceding analysis and ex-
periments. Our aim is not to introduce new guarantees, but to indicate how
the same proof skeleton (truncation = signal error = reward error = value
robustness) can be reused once the corresponding retrieval oracle is speci-
fied, and to clarify which quantities would need to be controlled to obtain
analogues of Thms. 2-5.

Conditional diffusion via context-dependent retrieval. Many reward-
directed generation problems are conditional, in the sense that the relevant
data distribution is po(- | ¢) for a context variable ¢ (class label, text em-
bedding, structured constraint, or an initial condition). In such settings the
score is s.(t,x) = Vylogpi(x | ¢), and the ratio identity becomes

E o mpo(-o) [V zPejo (2 | 70)]
Egompo(-ley [P0 (T | T0)]

Vilogp(z | ¢) =

where the forward conditional py|g is unchanged, but the averaging measure
depends on c. The retrieval analogue is immediate if we possess a conditional
dataset D, = {x((f) : ¢l = ¢}: we build an index per context (or per bucket),
and query only within D.. More generally, for continuous or high-cardinality
contexts we may embed jointly and retrieve by proximity in a joint space,
e.g.

d(x0,¢) = [bu(20); Adel(c)] € R, Nilt,y,c) = ANN(6(evy, ),

with a tunable weight A. Under a bi-Lipschitz condition for 5 on the support
of (zg, ¢) and a context-appropriate notion of distortion ¢, the same argument
as in Thm. 2 yields a score-signal perturbation proportional to 6/c7. The
practical issue is that context mismatch becomes a dominant failure mode:
if retrieval returns points from an incorrect conditional neighborhood, the
estimator is biased even when ¢§ is small. This suggests monitoring not
only embedding recall but also a context-consistency statistic (e.g. classifier
agreement, or distance in ¢.) and, when violated, reverting to a higher-
cost fallback (larger k, broader search, or a minibatch estimate restricted by
context).

Classifier-free guidance as two-index retrieval. A related extension
is to mimic classifier-free guidance without training a conditional score net-
work. If one wishes to interpolate between unconditional and conditional
behavior, one can maintain two indices: an unconditional index over {$((]l)}
and a conditional index over (:vél), ¢). Retrieval then produces two trun-
cated estimators Syet(t,y) and Syet(t,y | ¢), and one uses the guided score

gguide(tv Y | C) = (1 + 7)§ret(t, Yy ‘ C) - ’Y‘/S\ret(tvy%
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with guidance strength v > 0. Since the guidance is a linear combination,
signal-error bounds combine linearly, and the induced reward-error bounds
scale as O((1 + 7)?) in the worst case. Thus, guidance strength becomes
another knob on the compute—quality frontier: strong guidance may require
higher recall (smaller § and 7) to avoid destabilizing the critic via amplified
reward noise.

Privacy: differentially private embeddings and private sketches.
Retrieval over a dataset raises privacy questions even when the terminal
reward oracle is benign, because nearest-neighbor access can leak member-
ship information. We view privacy mechanisms as modifying the indexable
representation and hence modifying the effective retrieval distortion. A sim-
ple approach is to replace the stored embedding ¢(xg) by a privatized em-
bedding ¢pp(zg) = ¢(z0) + & with & ~ N(0,72) (or to use randomized
response / quantization with calibrated noise), chosen so that the release
of {ngp(:U((f)) i]\il satisfies (epp, 0pp)-DP under standard composition the-
orems. From the viewpoint of Thm. 2, the privacy noise contributes an
additional distortion term, so that one should expect an effective bound of

the form s v
-
()

[Sretop(t.y) = Sxx () S — (7 +
¢ ¢

of

up to constants depending on the same boundedness assumptions. This
makes explicit a privacy—utility tradeoff: decreasing privacy noise 7 improves
the score signal but weakens privacy, while increasing 7 degrades the re-
ward estimate and hence the achievable value under the robustness bound in
Thm. 4. More aggressive options include (i) storing only secure sketches (e.g.
sign random projections) and using Hamming ANN, which reduces leakage
but increases ¢, and (ii) performing ANN queries inside a trusted execution
environment, which largely preserves utility at the cost of system complex-
ity. In all cases, our framework suggests that the correct privacy accounting
should be coupled to end-to-end control performance via the induced eg(t)
and €, ().

Adaptive truncation k(¢) and time-varying temperature schedules.
The analysis already indicates that the “right” truncation depends on o?:
when o7 is large, the Gaussian kernel is broad and truncation is less accurate
unless k is large; when o is small, weights concentrate and small k suffices
(Thm. 1 regime). This motivates choosing k as a function of time (or state)
rather than a constant. A natural adaptive rule is to increase k until an
estimated captured mass exceeds a threshold, i.e. choose the smallest k£ such
that myg(t,y) > 1 — p for a target p € (0,1). While my, is computed from the
truncated set, it is still a useful proxy: empirically, when the nearest neighbor
dominates, my becomes close to 1 quickly, whereas when the kernel is broad,
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my grows slowly, triggering larger k. One may also adapt the ANN operating
point (search breadth) to keep the empirical failure rate 7 below a target,
trading query time against rare but damaging reward outliers.

In parallel, the policy covariance is tied to the entropy temperature 6 via
¥ = %I . Since the running reward is itself scaled by g*(T — t), it is
natural to consider time-varying temperatures (¢) that allocate exploration
where the score signal is reliable (small €4(¢)) and reduce exploration where
retrieval noise is large. A concrete proposal is to select 6(t) to approximately
equalize the critic’s signal-to-noise ratio across time, using online estimates
of Var[r(t,y,a)]. Establishing a formal advantage for such schedules would
require extending Thm. 4 to policies with time-varying entropy regularization
and tracking how 6(t) interacts with bounded-action assumptions.

Training without pretrained models. Our implementation choices (au-
toencoder latents, pretrained embeddings) are conveniences rather than log-
ical necessities. The ratio-estimator approach requires only (i) a forward
process with tractable p;o and (ii) a dataset to average over. In principle we
can operate directly in pixel space (d large) with ¢ taken as the identity and
ANN performed on compressed sketches; the theoretical statements remain
unchanged, but the constants and practical compute become unfavorable. A
more interesting direction is to learn ¢ jointly with the control policy, using a
self-supervised objective that encourages local neighborhood preservation in
the data metric relevant for py (roughly, Euclidean in the latent where the
Gaussian kernel is defined). However, if ¢ is updated during RL, then the
ANN index becomes nonstationary and the bi-Lipschitz assumptions must
be replaced by uniform-in-training bounds, which are presently unavailable.
A compromise is to learn ¢ in a separate stage using only D (e.g. contrastive
learning), freeze it, and then run retrieval-augmented RL. This preserves the
static-index model underlying Thm. 2 while removing reliance on externally
pretrained diffusion backbones. We view identifying minimal conditions un-
der which such learned embeddings satisfy a usable (Lg, £4) regime as a key
step toward fully self-contained reward-directed diffusion without pretrained
generative models.

Limitations and future work. Our guarantees rest on a small number of
structural assumptions that are natural for analysis but restrictive in prac-
tice. We record here the most salient ones, the associated failure modes, and
several theoretical questions that appear necessary for a sharp understanding
of retrieval-augmented diffusion control.

First, our retrieval error bound is mediated by a bi-Lipschitz embedding
hypothesis (H1). This assumption simultaneously encodes (i) no collapse
of relevant neighborhoods (the lower constant £4 > 0) and (ii) no excessive
ezpansion (the upper constant Ly < 00). In modern representation learning
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one typically expects only approximate neighborhood preservation on aver-
age (or on a task-dependent manifold), not a uniform global inequality on
the whole support. When /4 is effectively small, Thm. 2 becomes vacuous
even if empirical retrieval works. A concrete direction is therefore to replace
(H1) by local conditions that hold only on a high-probability set of queries,

Gy = {(t,y) : auy lies in a region where ¢ is well-conditioned},

and to prove bounds in terms of P((¢,y) ¢ G;) rather than worst-case con-
stants. Such a refinement would align with the empirical fact that the con-
trolled reverse process visits a small subset of state space, and it would force a
more careful accounting of distribution shift: the query distribution depends
on the learned policy, hence the relevant notion of embedding regularity must
be policy-dependent.

Second, we have imposed a forward-variance lower bound (H2), namely
JtQ > Urznin > 0 on [tmin, T']. This is technically convenient because the score
of a Gaussian kernel scales like 1/02, and the sensitivity of our ratio estimator
to neighbor perturbations inherits the same factor. However, many diffusion
schedules satisfy 07 — 0 as t | 0, precisely the regime in which sampling
accuracy is most sensitive. In practice one often discretizes and avoids the
singular endpoint, but this should be viewed as an algorithmic workaround
rather than a theoretical resolution. A principled alternative is to state

guarantees for a clipped score oracle,

gclip (t, y) = Chp (gret (t, y); Smax<t)) s

with a time-dependent Smax(t) chosen to control bias while preventing the
1/0? blow-up. Proving end-to-end bounds with such clipping requires track-
ing the induced bias in the running reward and how the entropy term com-
pensates for the reduced control authority near ¢ = 0.

Third, the truncation argument (Thm. 1) is explicitly high-dimensional
and depends on a separation/concentration picture for the dataset under the
relevant metric. This is plausible in latent spaces used for images, yet the
statement is intentionally schematic. A limitation is that the actual mass
captured by the retrieved set depends on both the geometry of {xg)} and
the query distribution p;, which again depends on the policy. An impor-
tant open question is to develop matching upper and lower bounds for the
captured mass ) ;. wi(x) under realistic models (e.g. mixture manifolds
or clustered data), and to relate the needed k to intrinsic dimension rather
than ambient d. Without such refinements, the compute-accuracy frontier
in Thm. 5 is correct only qualitatively.

Fourth, our ANN model (H3) encodes distortion ¢ and failure probabil-
ity n per query, and we pass to value bounds by a union/linearity argument
that yields an O(nT") term. This is pessimistic in two ways. (i) The retrieval
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failures are not necessarily adversarial; one expects heavy-tailed but struc-
tured errors (e.g. occasional wrong cluster) rather than arbitrary points. (ii)
Failures at different time steps are correlated because the query points are
correlated along trajectories. A more faithful analysis would treat ANN as
a randomized oracle with an explicit error distribution and would propagate
this randomness through the actor—critic updates, yielding a bound in terms
of higher moments (or conditional variances) of the induced reward noise,
rather than a worst-case additive term.

Fifth, we have implicitly assumed boundedness conditions (bounded data
norm, bounded actions via clipping, bounded visited states) to keep con-
stants explicit and to justify Lipschitz steps in Thms. 2-3. These are stan-
dard in nonasymptotic control analysis but can fail in early training, where
the critic is inaccurate and the policy may push the process into atypical re-
gions. In this regime, retrieval can become unstable: the query a;y may lie
far from the dataset support, causing all kernel weights to be nearly uniform
(broad o) or numerically degenerate (small 02), and the truncated ratio es-
timator can become dominated by noise. An algorithmic mitigation is to add
a support test (e.g. reject when nearest-neighbor distance exceeds a thresh-
old) and revert to a conservative baseline. From a theoretical standpoint,
the corresponding question is to establish a stability theorem in which the
policy is kept within a safe set by construction (via barrier penalties or pro-
jection), so that the boundedness hypotheses are consequences rather than
assumptions.

We also emphasize a conceptual limitation: our reward robustness result
(Thm. 4) treats retrieval as an additive perturbation of the running reward.
This decoupling is clean, but it hides an important feedback loop: the re-
trieval error influences the policy update, which changes the state visitation
distribution, which changes the retrieval error distribution. A sharper theory
would therefore aim for a self-consistent bound of the form

es(t) < ]-"(index parameters, Law(yt)), Law(y;) =~ g(es(.)),

and would solve the resulting fixed-point inequality. Such a result would
move the analysis closer to minimax statements.

Finally, several open questions concern optimality. On the statistical
side, the truncated ratio estimator is a particular nonparametric estimator of
V log p; under a Gaussian kernel; it is natural to ask whether, given a per-step
compute budget B, our choice of k and ANN suggests a minimax-optimal
estimator of the score along trajectories, or whether alternative estimators
(e.g. local regression in the retrieved neighborhood) can achieve strictly bet-
ter bias—variance tradeoffs at the same cost. On the computational side,
our hardness discussion indicates that NN-type retrieval is unavoidable in
worst-case regimes, but it does not identify the tight dependence on ¢ and
1 needed for near-optimal value. KEstablishing matching lower bounds for
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the value gap as a function of retrieval resources would clarify whether the
current pipeline is merely sufficient or in some sense necessary. We view
these questions—tight truncation characterization, policy-dependent embed-
ding regularity, stability without boundedness assumptions, and minimax
compute—control tradeoffs—as the main theoretical tasks required to turn
our proof skeleton into a complete theory of retrieval-augmented diffusion
RL.
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