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Abstract

Reward-directed diffusion models aim to generate samples that
maximize a reward while remaining close to the underlying data distri-
bution. Recent continuous-time formulations treat the unknown score
in the reverse-time SDE as the action and introduce a running KL-
type penalty to the true score; however, actor—critic training is expen-
sive because it is typically on-policy. We develop an off-policy variant
of martingale-based little g-learning for diffusion control that uses a
replay buffer, importance weighting, and an explicit g-normalization
regularizer consistent with entropy-regularized optimal control. Our
method minimizes a weighted squared martingale-residual objective
over replayed transitions of the discretized diffusion environment. In
a linear/NTK approximation regime and under bounded importance
weights, we establish convergence and finite-time bounds that sepa-
rate (i) stochastic approximation error, (ii) score-signal noise from
data-driven running rewards, and (iii) discretization error. Empiri-
cally, we expect a drop-in replacement for on-policy diffusion RL that
attains equal (or better) FID at matched reward with 2-5x fewer en-
vironment rollouts. Experiments on CIFAR-10 incompressibility and a
modern 2026 reward (aesthetic/CLIP-based) would validate the com-
pute—quality gains and characterize when off-policy replay remains sta-
ble.

Table of Contents

1. 1. Introduction: diffusion-as-RL, score-as-action, why on-policy ac-
tor—critic is too slow, and the off-policy replay thesis.

2. 2. Background: continuous-time diffusion models, reverse-time con-
trol, entropy regularization, Gaussian optimal-policy structure, and
martingale characterizations of optimality.



. 3. Problem Setup: discretized controlled reverse SDE, running reward
via score-signal estimator, terminal reward oracle, and the entropy-
regularized objective.

. 4. Off-Policy Formulation: replay distribution, behavior policy domi-
nance, importance weighting, and identification of martingale moment
equations from off-policy data.

. 5. Algorithm: replay-based critic regression + actor improvement with
importance weights; g-normalization penalty and practical stabilizers
(clipping, trust region, target networks).

. 6. Main Theorems: (i) correctness of weighted moment equations, (ii)
almost sure convergence under linear/NTK assumptions, (iii) finite-
time bounds, (iv) discretization -+ score-signal error propagation, (v)
lower bounds via bandit reduction and necessity of bounded impor-
tance weights.

. 7. Complexity and Optimality: time/space costs, rollouts vs gradient
steps trade-off, and when replay yields provable improvements.

. 8. Experiments (recommended): CIFAR-10 incompressibility + aes-
thetic/CLIP reward; comparisons to on-policy g-learning and DPOK;
ablations on replay size, importance clipping, and normalization penalty.

. 9. Discussion and Extensions: ODE samplers, conditional diffusion,
retrieval-augmented score signals, constrained/safe objectives.



1 Introduction

We consider the problem of constructing a diffusion sampler whose trajecto-
ries are biased toward configurations of high utility while remaining close, in
a controlled sense, to a given data distribution. The setting is motivated by
“reward-guided” generation tasks in which one possesses (i) samples from an
unknown data law pg (e.g. images, molecules, or other structured objects)
and (ii) an external preference signal that assigns larger values to desirable
outcomes. In the diffusion formalism, the baseline generative mechanism is
specified through a forward corruption process with known coefficients, and
sampling is performed by simulating an associated reverse-time dynamics.
Our central observation is that, once the reverse dynamics are written in con-
trolled form, the score function (or a score-like surrogate) becomes a natural
control variable, and diffusion sampling may be treated as a continuous-time
control problem whose state is the latent variable and whose action is a drift
adjustment.

Concretely, let t € [0, T] denote reverse-time, and let y; € R? be the re-
verse process state. For standard forward diffusions (e.g. Ornstein-Uhlenbeck
or variance-preserving schedules), the reverse-time evolution admits a repre-
sentation of the schematic form

dy: = (known drift(t,y;) + g(T —t)? a(t,y)) dt + g(T —t)dBy,

where a(t,y) is the control applied at time ¢ in state y and B; is a reverse-
time Brownian motion. In the uncontrolled model, the optimal choice is
a(t,y) = Vlogpr—¢(y), which is the score of the intermediate-time marginal
of the forward process. Thus, in a reward-directed variant, it is mathemat-
ically natural to interpret a as a score control, namely a field that deforms
the reverse drift away from the baseline score so as to increase some re-
ward functional, while paying a cost for deviating from the data-consistent
dynamics.

We focus on an entropy-regularized formulation in which the objective
combines a running penalty for score deviation with a terminal reward at
time 7. At a high level, we seek a policy (- | ¢, y) over actions a maximizing

E[/OT(r(t,yt, ar) — Ologm(as | t,y)) dt + 5h(yT)},

where 6 > 0 is the entropy temperature, § > 0 weights the terminal utility
h(yr), and the running reward takes the quadratic form

r(tyy,a) = —g*(T —t) ||V1ogpr—i(y) — a||*.

This running term encourages faithfulness to the data distribution by pe-
nalizing departures from the (unknown) true score, while leaving freedom
to trade fidelity for terminal utility. The entropy term makes the optimal



policy stochastic and yields a convenient Gaussian structure in many cases;
moreover, it provides numerical stability when learning from noisy reward
signals.

The principal difficulty is that the score Vlogp; is unknown, since pq
is unknown. We assume only data access zg ~ pg, together with a com-
putable score-value estimator @log pi(+) (potentially biased) obtained from
denoising-score training or related techniques. The running reward is there-
fore not directly available; instead we observe, along simulated reverse tra-
jectories, a sample 7 computed from V log pr—;(y). In addition, the terminal
reward h(yr) may only be observed through an oracle that returns noisy
samples. The resulting learning problem is thus an off-policy reinforcement
learning problem in a controlled diffusion environment with partial knowl-
edge: the environment dynamics are simulatable given actions, but the re-
ward is only available through noisy, data-driven signals.

A naive approach is to run an on-policy actor—critic method: generate
trajectories under the current policy, estimate gradients from those trajec-
tories, update the actor and critic, and repeat. In the present setting this is
typically rollouts-limited. The reverse-time diffusion horizon T is discretized
into K = T'/At steps, so a single trajectory already requires K environment
steps; when K is large (as is common for faithful diffusion sampling), the
marginal cost of collecting fresh trajectories becomes substantial. More im-
portantly, when the terminal oracle is noisy, estimation of the effect of policy
changes on E[h(yr)] exhibits the familiar variance barrier: improving termi-
nal reward by ¢ generically requires €(1/¢2) episodes in the worst case. In
such regimes, “on-policy” usage of trajectories is statistically and computa-
tionally inefficient, because each expensive rollout contributes only once to
each update.

Our thesis is that the relevant efficiency gains come from off-policy re-
play: we should collect trajectories using a behavior policy b that maintains
adequate coverage, store transitions in a replay buffer, and perform many
gradient updates per environment rollout. While the statistical lower bound
on the number of distinct terminal observations remains in force, replay per-
mits us to extract more learning signal per observed transition by repeatedly
solving the same conditional moment equations under different parameter
values. The method is especially well-matched to the diffusion control view-
point because the environment is simulatable and time-inhomogeneous but
otherwise regular; hence we can separate the cost of data collection (rollouts)
from the cost of computation (replay-based regression).

To make this precise, we work with a discretization t; = kAt and a
controlled Markov chain (yk)szo driven by actions a chosen according to
a policy my(- | tr,yr). The critic is a value approximation Jg(t,y), and
the actor is represented by a Gaussian policy with mean s, (¢, y) and known
covariance X(t) determined by the entropy regularization and diffusion scale.
The key analytical tool is a martingale characterization of optimality for the



entropy-regularized controlled diffusion. In discretized form, it yields a one-
step residual

0x(0,v) = Jo(tkt1, Yk+1) — Jo(te, Y) + 71 At — qy (th, Yr, ar) At,

whose conditional expectation vanishes at the solution. The residual allows
us to cast learning as a regression problem against a martingale difference,
rather than as a direct policy-gradient estimate. This perspective is conve-
nient for off-policy learning, because such conditional moment restrictions
remain valid under trajectories generated by any behavior policy, provided
we correct for distribution shift.

Off-policy learning introduces the standard obstacle of support mismatch.
We therefore impose a dominance condition: for all visited (¢, y), the behav-
ior density b(- | ¢,y) must dominate the target policy density my(- | ¢,v), and
the importance ratio
my(a | t,y)

ba | t,y)

must be bounded (or clipped) by a constant W. Under this coverage con-
dition, we may estimate target-policy moments by replaying transitions col-
lected under b and weighting by w. The resulting objective takes the form
of a weighted squared residual Ey[w §2], which we minimize over critic and
actor parameters using stochastic gradient steps on minibatches drawn from
replay.

Two additional features are essential in our diffusion context. First, be-
cause the running reward depends on a score estimator @log pt, the sig-
nal 7 contains both noise and (potential) bias. We explicitly accommodate
this by treating 7 as a corrupted version of the ideal reward and tracking
its second-moment boundedness, so that replay-based stochastic approxima-
tion remains well-posed. Second, to ensure that the actor corresponds to
a normalized policy (and, in generalized variants, that the associated soft
g-function defines a valid Gibbs distribution), we incorporate an explicit g-
normalization constraint or penalty. For the Gaussian policy class induced
by entropy regularization, this normalization is exact; in more flexible pa-
rameterizations it must be enforced approximately.

The overall conclusion of the introduction is a structural one. In reward-
directed diffusion, the controlled reverse-time dynamics provide a natural
reinforcement learning environment with long horizons and expensive roll-
outs. On-policy updates are therefore constrained primarily by the number
of full diffusion trajectories one can afford to simulate and evaluate. Off-
policy replay, combined with a martingale-residual learning principle and
bounded-importance correction, yields an algorithmic route to reduce the
number of required rollouts for a desired level of performance by increasing
the number of gradient steps per collected transition, while retaining a clean
convergence theory under linear/NTK assumptions.

w(t,y,a) =



In the remainder of the paper we formalize the controlled reverse diffusion
model, the entropy-regularized objective, and the martingale characteriza-
tion that underlies our residual formulation. We then present the off-policy
replay algorithm and analyze its convergence and finite-time behavior un-
der bounded importance weights and standard regularity conditions, and
we complement these upper bounds with a rollout lower bound obtained
by a bandit reduction, clarifying which aspects of sample efficiency can and
cannot be improved by replay.

2 Background: diffusion models, reverse-time con-
trol, and soft optimality

We briefly recall the continuous-time diffusion formalism and isolate the
aspects that will later be used to formulate reward-directed sampling as an
entropy-regularized control problem. Throughout, we work on a fixed time
horizon [0,7] and in ambient dimension d, and we assume that the forward
diffusion coefficients are known through scalar schedules f(-), g(-).

Forward diffusions and intermediate-time marginals. A canonical
class of generative diffusions is given by the linear It6 SDE

dry = f(t)zedt + g(t)dBy, xo ~ Po, (1)

where (Bi).e(o,) is standard Brownian motion. Under mild conditions on
f5 9, (1)) defines a Markov process with a family of marginal densities (pt)¢e[o 1]
(with po unknown), and a transition density pyjo(- | zo) that is explicit for the
usual choices of schedules (e.g. Ornstein—Uhlenbeck and variance-preserving
cases). In particular, for each fixed ¢ > 0, the forward corruption map
xo — x¢ is Gaussian conditional on xg, and thus can be simulated exactly
(or to arbitrary precision) without knowing py.

The score V log p(z) plays a central structural role in reverse-time sam-
pling and in the control viewpoint we adopt. Since pg is unknown, the score
is not directly available; nevertheless, the forward process provides the
standard denoising identity that motivates learning a parametric approxi-
mation to Vlogp; from data by score matching. We do not commit here
to a particular estimator; it suffices that, given data and a time ¢, we can
evaluate a score-like signal v log p¢(+) at arbitrary locations, potentially with
bias and noise.

Reverse-time SDE and the score drift. Fix T" > 0 and consider the
time-reversed process y; := zp_¢, t € [0,T7]. Under standard regularity
assumptions, (y;) satisfies a reverse-time SDE driven by a reverse Brownian



motion (B;) of the form

dyr = <—f(T—t) Yt + g(T—t)2V10ng_t(yt)> dt + g(T —t)dB,. (2)

The key point is that the only term in (2) depending on the unknown data law
is the score Vlogpr_:. Hence, if we can approximate the score sufficiently
well, then simulating yields approximate samples from pg at time t =
T. Conversely, if we wish to bias samples toward high utility, it is natural
to deform precisely this score drift term, because doing so is the minimal
intervention that preserves the diffusion structure while steering the terminal
distribution.

Controlled reverse dynamics. We therefore introduce a controlled reverse-

time SDE in which the score drift is replaced by a control field (the “action”)
a(t,y) € R4

dye = (=T =0y + 9(T=02ar) dt + g(T—1)dBs,  ar~ (- | t,y).

(3)
The uncontrolled sampler is recovered by taking a; = Vlogpr_i(y:) (in
which case the law of yp matches pg). From the control perspective, is a
time-inhomogeneous diffusion with affine control in the drift and fixed dis-
persion. This structure is particularly convenient: it admits well-developed
dynamic programming characterizations, and it yields tractable “soft” opti-
mal controls under entropy regularization.

Entropy regularization and soft dynamic programming. Let 7 be
a (possibly stochastic) Markov policy. For a running reward r(¢,y,a) and a
terminal reward Sh(yr), we consider an entropy-regularized objective of the
schematic form

T
7(t9) = 5| [ (rscpman) ~ Blogm(on [ 5.0) ds + onor) | =1,

(4)
where 6 > 0 is the temperature. In continuous time, one may regard the term
—fOlogm as a control cost that penalizes low-entropy (overly concentrated)
action distributions, thereby stabilizing learning and inducing an analytically
tractable “soft” Bellman structure. In particular, if V(¢,y) := sup,. J™(¢,y)
denotes the optimal value, then V solves a soft Hamilton—Jacobi-Bellman
(HJB) equation whose Hamiltonian is the log-partition (or convex conjugate)
associated with the entropy term. Concretely, the HJB takes the form

AV (t,y) + ?Tp){an [r(t,y,a)] — 0Eqr[logm(a|t,y)] + E”V(t,y)} =
(-|t,y



with terminal condition V(T,y) = Bh(y). Here L™ denotes the controlled
diffusion generator applied to the value function:

LTV (t,y) = Egon(iy) [(—f(T —t)y+g(T - t)2a)TVyV(t, y)} + %Q(T—t)Z AV (t,y).
(6)

The variational form implies a Gibbs characterization of the optimal
policy in terms of an associated soft g-function, and it is this characterization
that leads to a Gaussian policy structure in the diffusion setting.

Gaussian structure induced by quadratic control costs. In reward-
directed diffusion, the canonical running term is quadratic in the deviation
between a and the data-consistent score. Abstractly, if the immediate pref-
erence is of the form

r(t,y,a) = —a(t)]|a—s(t,y)|*> + (terms independent of a),  (7)

for some weight «(t) > 0 and some “reference” field s(t, y) (in our application
s(t,y) = Viog pr—i(y)), then the entropy-regularized maximization over ac-
tion distributions at fixed (¢, y) yields a Gaussian optimizer. Indeed, writing
the soft advantage as an affine-quadratic function of a, the optimal density
satisfies

walty) x en(;Q000). )

where Q*(t,y, a) collects the immediate reward and the value-gradient cou-
pling coming from the generator term in (5). When Q*(¢,y,a) is (at most)
quadratic in a, is a Gaussian density whose covariance is determined by
the quadratic coefficient and whose mean is a linear transform of the linear
coefficient. In the diffusion-control parameterization , the action enters
the drift linearly as g(T — t)2a, so the contribution of L™V to Q* is linear
in a, while the running reward is chosen quadratic; consequently, the opti-
mal policy is Gaussian with a covariance that is known up to the diffusion
scale and temperature. This observation motivates restricting attention to
Gaussian policies with known covariance schedule and learnable mean, which
reduces actor learning to estimating a mean field u(t,y).

Martingale characterizations of (soft) optimality. A second struc-
tural fact we use is that, for a fixed policy 7, the value function J™ admits
a martingale characterization along trajectories of the controlled diffusion.
Formally, if J™ is sufficiently smooth, then applying 1t6’s formula to J™ (¢, y;)
under yields

a7 (ty) = (O™ (ty)+L7 T () ) dt + g(T—1) VyJ™ () " dBy. (9)



By the definition , J7 satisfies the soft Bellman equation in differential
form,

O™ (t.y) + LTI (1Y) + Equr o |1ty @) =0logm(a | )| = 0, J7(T1y) = Bh(y),
(10)
which, when substituted into @D, implies that the process

t
M= () + [ (o)~ Ologn(as [ s.p))ds (11
0

is a local martingale (and, under standard integrability conditions, a martin-
gale). At the optimal pair (V,7*), the same identity holds with J™ replaced
by V and with 7* attaining the soft supremum in . This martingale view-
point is more than a reformulation: it yields conditional moment restrictions
that remain valid when data are generated under an arbitrary behavior pol-
icy, a fact that is central for off-policy learning with replay.

The subsequent development will exploit f after discretizing time
and replacing the unknown score in the running reward by a data-driven
signal. In particular, once we pass to a time grid and a simulatable con-
trolled Markov chain, we will obtain a one-step martingale residual whose
conditional expectation vanishes at the correct value—policy pair, thereby
enabling weighted regression updates from replayed transitions.

3 Problem setup: discretized controlled reverse dif-
fusion with score-based running rewards

We now formalize the learning problem as a discrete-time control task in-
duced by the controlled reverse-time SDE . Fix a discretization step
At > 0 and let K := T'/At € N with time grid t; := kAt for k =0,..., K.
Our primitive interface is the ability to (i) initialize the reverse process from
a known prior v (typically Gaussian), (ii) apply an action over each interval
[tk,tk+1), (iii) simulate one step of the resulting discretized reverse dynam-
ics, and (iv) query a noisy running-reward signal derived from a data-driven
score estimator, together with a noisy terminal-reward oracle evaluated at
the final state.

Discretized controlled reverse dynamics. We work with the Euler—
Maruyama discretization of , which yields a controlled Markov chain
(yr) K, in RY. Given (ty,yy) and an action aj, € R? applied on [ty, tg41), we
define

Y41 = Yk + <—f(T—tk) yrtg(T—tx)* ak) At + g(T—ty) VAL &, & ~ N(0, 1),
(12)



with (gk)kK:}} i.i.d. and independent of yy ~ v. We emphasize that the
environment transition (12| is simulatable since the schedules f, g are as-
sumed known and the injected noise is explicit. The action aj is inter-
preted as a score control: in the ideal (uncontrolled) sampler one would take
ar = Vlogpr_s, (yr), whereas in reward-directed sampling we allow a; to
deviate from the data score in a state- and time-dependent manner.

A (stochastic) policy 7 is a family of conditional densities 7(- | ¢,y) on
R?; the interaction protocol is

ag ~ (- | th, yr), Yr+1 ~ P( | te, Y, ag), (13)

where P denotes the transition kernel induced by . Our target policy
class is Gaussian with known covariance schedule,

o 1 6y) = Mup(t9). 2),  S(t) = —-

zgr—pp ' Y

so that learning reduces to fitting the mean field py(t,y) (parametrized lin-
early or in an NTK regime as assumed in the enclosing scope). The particular
choice is aligned with the quadratic running reward introduced below:
the diffusion scale g(T —t) and temperature 6 jointly determine the natural
action variance in the entropy-regularized optimum, and fixing ¥:(¢) removes
an otherwise ill-conditioned degree of freedom.

Score-signal estimator and running reward samples. The defining
constraint in diffusion-based generation is that the unknown data law pg only
enters the reverse dynamics through the score Vlogpr_¢+(y). We assume
access to i.i.d. data (m%)f\i 1 ~ po and, using any standard score-learning
or denoising mechanism, we may evaluate a score-like signal ﬁlog pe(+) at
arbitrary (t,y). We do not require this signal to be unbiased; rather, we treat
it as an exogenous estimator with controlled second moments and (possibly)
nonzero bias, which will later appear explicitly in error decompositions.

Given an action aj and state yi at time t, we define the ideal running
reward (unknown to the learner) by

r(ti yksak) = —g(T — t)* ||V log pr—s, (i) _akHQ- (15)

This choice is canonical in our setting: it penalizes deviation from the data-
consistent reverse drift at a scale commensurate with the diffusion dispersion,
and therefore enforces fidelity to the data distribution except where reward
incentives justify controlled deviations. In practice we only observe a sample-
based surrogate computed from the score-signal estimator,

2

o= —g(T — t;,)* ||V log pr—s, (y) — ax| (16)
which is available during simulation. It is useful to record the decomposition

Tk = T(tk Yk, k) + €k, (17)

10



where €, aggregates both estimation noise and systematic error induced by
replacing Vlog pr_;, with ﬁlog pr—t,- Our standing assumption is that
e has bounded conditional second moment (and, when needed, bounded
conditional bias) given (t,yr,ax). No further structure is required at the
level of the problem definition.

Terminal reward oracle. In addition to the running penalty , we
seek to bias the terminal sample toward high utility as measured by an
application-specific functional h : R — R. We do not assume that h is
known analytically nor differentiable. Instead, we assume an oracle that
produces a noisy observation of h at the terminal state:

hk = hlyk) + ¢, (18)

where ( is observation noise with bounded variance. The scalar § > 0
weights the terminal reward relative to the running score-deviation penalty;
large 8 encourages aggressive steering, while small 3 favors fidelity to py.
Importantly, the terminal reward is only observed at the end of each rollout,
so the algorithm must propagate its effect backward through the dynamics
via value estimation rather than by direct per-step supervision.

Entropy-regularized discrete-time objective. For a policy 7 and ini-
tial distribution v, we define the entropy-regularized return of the discretized
controlled reverse process by

Jr(0,v) == ET

K—1
Z(T(tk,yk»ak) — Ologm(ay, | tkayk:))At + 5h(yK)] :
k=0
(19)
where the expectation is taken over yg ~ v, actions sampled from 7, and
the Gaussian innovations in . The term —flogm is interpreted as an
entropy regularizer (equivalently, a control cost) and is scaled by At to match
the continuous-time objective as At — 0. Although depends on the
unknown score through r, it is well defined as a population objective and
will serve as our learning target.
Operationally, the learner has access only to 7 and fLK Accordingly,
each rollout produces an unbiased (or biased-but-controlled) sample of the

form
Kf

G = 3 (i — Blogmlax | tom)) At + B, (20)
k=0

—_

whose expectation differs from J3,(0,7) by the cumulative score-signal and
terminal-oracle biases. The role of the value function approximation intro-
duced later is to enable learning from these samples in a way that is stable
under noise and compatible with off-policy replay.

11



Soft ¢-parameterization under Gaussian policies. Because our pol-
icy class (14)) is Gaussian with known covariance, the entropy term can be
absorbed into a convenient “soft ¢” representation. In particular, defining

qt/z’(tayaa) = elogﬂ-w(a ’ tvy)v (21>

we obtain a quadratic function of a (up to terms independent of a):

0 _
qp(t,y,a) = —i(a—ﬂw(ty))TE(t) Ya — py(t,y) + c(t), (22)
with ¢(t) collecting the log-normalizer. This explicit normalization is not
merely cosmetic: it guarantees that [exp(gy(t,y,a)/0)da = 1 for every
(t,y), which will later eliminate the need for approximate partition-function
penalties in the Gaussian case.

Learning problem. The problem is therefore to choose parameters
(and, in actor—critic form, auxiliary value parameters ©) such that the in-
duced sampler—the terminal state yx obtained by simulating under
my from yo ~ v—achieves high terminal utility while remaining close to the
data distribution in the precise sense enforced by the running penalty .
The central difficulty is that the per-step reward depends on the unknown
score and is only observed through the noisy proxy , while the terminal
reward is available only via the oracle (I8). In the next section we recast
this problem in an off-policy framework suitable for replay, and we identify
moment equations that remain valid under arbitrary data-collection policies.

4 Off-policy formulation: replay, dominance, and
martingale moment equations

We now recast the discretized control problem f into an off-policy
learning setting in which data are collected under an arbitrary behavior pol-
icy b and subsequently reused via replay to learn a (possibly different) target
policy my. The goal of this section is twofold: (i) to formalize the replay
distribution induced by b and the role of importance weighting, and (ii) to
identify martingale-based moment equations that characterize the optimal
entropy-regularized solution and remain valid under off-policy data collec-
tion.

Behavior policy and replay distribution. A behavior policy is any
family of densities b(- | ¢, y) from which we can sample actions during rollouts.
Running the interaction protocol with m = b produces trajectories

(yo,ao,yb at,...,YxK—1, aK—lvyK)a

12



together with observed running rewards (fk)fzz]l from ((16) and a terminal

observation hg from . Each rollout therefore yields a collection of tran-
sitions of the form

(tk,yk7aka’flkayk+l)’ k:O""vK_]-a

which we store in a replay buffer D. Sampling uniformly (or with a fixed
priority rule) from D induces an empirical distribution over transitions; in
analysis we idealize this by a replay distribution py over (t,y,a,,y") defined
as the average occupancy measure under b,

K-—1
1 .
pl) = 5 % L(t, k> @k Py Y1) when ag ~b(- [ ty, ),  (23)

where £(-) denotes the law of the indicated random tuple. This distribu-
tion is the fundamental sampling distribution for all subsequent regression
objectives.

Coverage and dominance. Since our aim is to learn a target policy
using data generated by b, we require the standard dominance condition:
whenever (t,y) is visited with non-negligible probability during replay, the
behavior density must be strictly positive wherever the target density is
positive. Concretely, we assume that for all (¢,y) in the support of the
replay state distribution,

supp (7y (- | t,y)) € supp(b(- | £,9)), (24)
so that the importance ratio

my(alt,y)
bla | t,y)

is well-defined. We additionally impose (or enforce by clipping) a uniform
bound

w(t,y,a) = (25)

0<w(t,y,a) <W, (26)

which is essential for controlling variance of off-policy estimates and will ex-
plicitly enter our convergence and finite-time guarantees. In practice is
achieved by choosing b as a mixture of recent target policies and exploratory
noise, and by storing (or recomputing) the behavior log-density needed to

evaluate .

Value functions and a one-step residual. Let us fix any target policy 7
(not necessarily equal to b). We define the entropy-regularized value function

13



at grid time ¢ as the conditional expected return from :

K-1

JRi(tr,y) = E7 [Z (r(tg, Yo, ag) — Ologm(ag | te, yz)>At + Bh(yx) ' Y =Y

=k

(27)
As usual, J},(tk,y) = Bh(y) serves as the terminal condition. For subse-
quent identification arguments it is convenient to rewrite the per-step entropy
term using a generic function ¢(¢,y, a) (later instantiated as g, = §log my, as
in ) Given any candidate pair (J,q), we define the (ideal, unobserved)
one-step residual

5Zrue(t]7 Q) = J(tk+17yk+1) _J(tk7yk) + r(tkaykaak)At - Q(tk,yk,ak)At,
(28)

and the corresponding residual based on the observed running reward proxy,
0k(J,0) = J(e+1,Yr1) — I (e, yk) + PeDE — q(te, yi, ax) AL (29)

By 7 these differ by an additive noise term:
Su(J,q) = 6™°(J,q) + erAt. (30)

We emphasize that £, may be biased; our assumption is only that it admits
bounded conditional second moments (and, when needed, bounded condi-
tional bias) given (¢, yk, ak)-

] |

Martingale characterization and off-policy identification. Let (‘Ftk)l{:{:O

denote the natural filtration generated by the trajectory up to time ¢ (in-
cluding states, actions, and reward observations up to that time). The defin-
ing property of the optimal entropy-regularized solution in our setting is that,
for the appropriate optimal pair (J*, ¢*), the process of one-step residuals
forms a martingale difference sequence. At the discrete level this may be
stated as the conditional moment restriction

E[(sltgue((]*’q*)|]:tk] :O’ k':O,..-7K_17 (31)

with the understanding that J*(tg, ) = Bh(:). Importantly, is a model-
based identity induced by the controlled Markov structure of and does

not depend on how the data were collected: as long as the transition (yx, ak, Yr+1)

is generated by the environment dynamics with some action aj, the condi-
tional expectation of the residual at the solution vanishes. This is the sense
in which the martingale equations are identifiable from off-policy data.
Passing from conditional to unconditional moments, implies that for
any square-integrable test function ¢ measurable with respect to (tx, Yk, ax),

E[¢(tk, yr, a) 65" (J*,q7)] = 0. (32)
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When we replace r by 7, the same moment equation holds up to the additive
score-signal error:

E[p(tr, y, ar) Ok (T q")] = At E[o(tw, yr, ar) ek ), (33)

so the bias and variance of the score estimator enter explicitly through eg.

Why importance weighting still appears. Although is valid under
any data-collection strategy, the projection implicit in function approxima-
tion depends on the distribution with respect to which we fit Jg and g,. In
particular, if we wish to approximate a target-policy object using samples
from b, we may correct the mismatch between action distributions by impor-
tance weighting. For any integrable function F'(t,y,a) and any fixed (¢,y),
dominance yields

IEaf\ﬂw,(-|z‘,,y) [F(tv Y, a)] = Ea~b(-|t,y)[w(t7 Y, a’) F(ta Y, a)] . (34)

Accordingly, actor and critic objectives that are naturally expressed as expec-
tations under 7, can be estimated from replay by weighting each transition
with w. The bound ensures that such corrections do not introduce
uncontrolled variance.

Projected martingale equations under replay. Let Jg and gy be our
parametric approximators. In the Gaussian policy setting we will typi-
cally take g, = flogmy, as in , but for the present discussion it suffices
to treat g, as a function indexed by . A canonical way to exploit
with replay is to choose a class of test functions ¢ spanning the feature space
(e.g., components of the critic feature map) and solve the resulting system in
least-squares form. This motivates the weighted squared-residual objective

L(@v ¢) = E(t,y,a,ﬁy’)pr [w<t’ Y, CL) (J@ (t/7 y/)_J@ (tv y)—f_72 At—%ﬁ (tv Y, a’)At) 2} )

(35)
where (t,y') denotes the successor time-state pair. Minimizing corre-
sponds to solving a projected version of the martingale equations under the
replay sampling distribution, while approximately correcting for action mis-
match via w. The specific algorithmic choices for optimizing (including
clipping w, trust regions for the actor, and stabilization via target networks)
are deferred to the next section.

Terminal condition under noisy oracle access. Finally, we note that
the terminal boundary condition J(tx,y) = Sh(y) is not directly evaluable.
In practice we enforce it through samples ﬁﬁ i by treating the final step as a
regression target: at k = K — 1 the term J(tg41, Yk+1) in is replaced by
15} hi (equivalently, one may define an absorbing terminal time with observed
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terminal value). This introduces an additional noise source independent of
the score-signal error €, and it is handled in the same martingale-residual
framework by tracking its contribution to the residual variance (and, when
present, bias).

The outcome of this section is that off-policy rollouts under a behavior
policy b provide replayable samples whose statistics identify the martingale
moment conditions characterizing optimality; bounded importance weights
then permit stable correction for the discrepancy between b and the evolving
target policy my. In the next section we instantiate these principles into a
practical replay-based actor—critic algorithm.

5 Replay-based martingale g-learning: critic regres-
sion and actor improvement

We now instantiate the off-policy objective into a replay-based actor—
critic procedure. The algorithmic design is guided by two constraints that
are specific to our setting: (i) the only per-step reward access is through the
noisy score-driven signal 7, and (ii) the entropy-regularized control problem
admits a convenient parameterization in which the policy normalization is
either exact (Gaussian policy-induced ¢) or must be enforced (general g-
network). We describe both cases and the corresponding stabilizers.

Data structures and bookkeeping. FEach rollout under the behavior
policy b produces transitions (tg, yg, ak, 7k, Yk+1). In addition, for reliable
off-policy correction we record the behavior log-density logb(as | tg, yx) (or
enough information to recompute it), and we optionally store an “old” target
log-density logmy, ., (ar | t, yx) when using trust regions. We denote by D
the replay buffer containing these tuples and by B C D a minibatch sampled
uniformly (or via a fixed priority rule).

Clipped importance weights. Given a current target policy my, each
replayed transition is assigned an importance weight

my(a |t y)
blalty)’
where W is the prescribed bound. In all objectives below we use wy, rather

than w,y; this preserves the desired correction when wy, < W and prevents
uncontrolled variance otherwise.

wy(t,y,a) = Wy(t,y,a) = min{wy(t,y,a), W}, (36)

Critic regression via weighted squared martingale residuals. We
update the critic by weighted regression on the one-step residual . In
practice we employ a target network (or Polyak-averaged copy) ©~ to sta-
bilize the bootstrapped term J(txi1,yr+1). Concretely, for a transition
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(t,y,a,7,y’") with successor time ¢’ := ¢t + At we define the residual used
for learning as

5é,¢(t7yua7fay/) = J(a*(t/ay/) - J@(tvy) + FAt — Q¢(t’y7 CL) At. (37>

At the terminal step (i.e. when ¢’ = T') we replace Jg-(T,%’) by the sampled
terminal value Bh(y'), which yields the same expression with Jg-(T'y') :=
Bh(y"). The critic loss is then

_ _ ~ 2
LV<@; ¢) = E(t,y,a,f,y’)wpb |:ww (t7 Y, CL) (5@,1/; (ta y,a,r, yl)) } ) (38)

approximated by the empirical average over a minibatch. The gradient step
is the usual stochastic gradient descent on with ©~ updated slowly, e.g.

O+ (1-710" +7106, 7€ (0,1]. (39)

When Jg is linear (or in the NTK regime), (38]) is a (nearly) convex weighted
least-squares objective, and replay simply increases the number of effective
stochastic approximation steps per collected transition.

Actor update as residual minimization (projected martingale fit-
ting). The most direct actor update is to minimize the same weighted
residual objective with respect to ¥ while holding © fixed:

r _ _ . 2
L (;0) = E(t,y,0,79)~pp {u@(t,y,a) (5®7w(t,y,a,r,y')) ] (40)

This update is natural from the moment-equation viewpoint: it attempts
to choose 1 so that the projected martingale restriction is better satisfied
under the target-policy parameterization. In the Gaussian policy class my (- |
t,y) = N (uy(t,y), 2(t)) with known 3(t), gradients of log 7y, and hence of
qy = 0log my, are explicit, so admits low-variance gradient estimates.

Actor update as soft policy improvement. Although is concep-
tually aligned with the martingale equation, in practice we often prefer an
improvement-style update that uses the critic to define an advantage-like
signal. One convenient choice is to interpret the negative squared residual
as a surrogate for local consistency and maximize its expectation, equiva-
lently minimizing ; another is to adopt a soft actor—critic form when we
maintain an explicit soft g-estimate gy:

LEP(50) = = E(uy)mpy [Bamy ([958 3, @) = Olog my(a | £,9)] ], (41)

with the inner expectation computed via reparameterization a = (¢, y) +
Z(t)1/2§, & ~ N(0,I). The importance weights then enter through the stan-
dard identity when we estimate from behavior actions; in particular,
if we reuse sampled actions a ~ b(- | t,y) then we weight by wy(t,y,a).
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g-normalization: exact in the Gaussian case, penalized otherwise.
A distinctive feature of our setting is that the entropy term is not an auxiliary
regularizer but part of the correct continuous-time control objective, and thus
the normalization of the policy-induced quantity

log Z,(t,y) = 10g/exp(q(t,y,a)/9) da (42)

matters. If we parameterize g, by definition as g, = 6 log my, for a normalized
Gaussian density, then log Z,, (¢,) = 0 holds identically for all (t,y), and
no additional constraint is needed.

If instead we use a flexible g-network ¢,(t,y,a) (e.g. to decouple critic
and actor parameterizations), then log Z, (t,y) is not automatically zero.
To prevent drift that would otherwise corrupt the entropy-regularized inter-
pretation, we add a penalty

Luom(#) = AEqypup, | (08 Zo, ()], A>0.  (43)

and optimize Ly (0;%) (or the corresponding g-loss) augmented by Lyorm.
The integral is approximated either by Monte Carlo sampling (/) ~
7(- | t,y) from a proposal distribution (typically the current Gaussian policy)
with log-sum-exp stabilization, or by low-dimensional quadrature when d,
is small. The role of is not to enforce optimality by itself, but to
ensure that the learned ¢ remains interpretable as a log-density up to the
temperature ¢, which is required for stable actor updates of the form .

Practical stabilizers: trust regions, delayed updates, and reward /weight
clipping. We briefly record the stabilizers we use in implementations and
in the proofs when needed.

1. Trust region / KL-to-old policy. To maintain the dominance condition
operationally and to limit extrapolation error from replay, we constrain
policy updates by penalizing deviation from a lagged policy my, ,,:

LKL(¢) ‘= 7KL IlE(t,y)wpb [KL(WIﬁ(' | L, y) H T4o1a ( | t, y))]a (44>
with gy, > 0, updating 1,q only occasionally.

2. Delayed actor updates. We may update the actor less frequently than
the critic, which empirically reduces nonstationarity of targets in .

3. Reward and residual clipping. Since 7 is computed from a noisy score
estimate, we optionally clip 7 or the residual magnitude in to con-
trol heavy tails; this is analytically compatible with bounded-moment
assumptions by replacing them with explicit bounds.
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4. Weight clipping. As already encoded in , clipping w < W is the
primary mechanism by which we prevent variance blow-up in off-policy
regression and ensure the weighted moment equations remain well-
conditioned.

In summary, the algorithm alternates between (i) collecting rollouts un-
der a behavior policy b to populate D, and (ii) performing many replay-based
gradient steps on (and either or ) using clipped importance
weights. The next section formalizes the guarantees of this procedure: the
weighted martingale moments are correctly identified off-policy, and under
linear/NTK assumptions and bounded weights the replay-based stochastic
approximation converges with explicit finite-time error bounds.

6 Main theoretical guarantees

We collect in this section the formal statements underlying the replay-based
procedure of Section Our results address five points: (i) the off-policy
correctness of the weighted martingale moment equations induced by the
discretization, (ii) almost sure convergence of the replay-based stochastic
approximation under linear/NTK function classes and bounded importance
weights, (iii) finite-time rates with an explicit decomposition into estima-
tion/approximation/bias/discretization terms, (iv) propagation of score-signal
and discretization errors into control performance, and (v) lower bounds
showing that (a) coverage/bounded weights are necessary for off-policy learn-
ing and (b) noisy terminal feedback enforces an Q(1/£2) rollout complexity
via a bandit reduction.

6.1 Off-policy identification of the martingale moments

The key structural fact is that the optimal entropy-regularized value function
J* and its associated ¢* satisfy a martingale restriction that is invariant to
the policy used to generate the data. In discrete time this yields a one-step
residual whose conditional expectation vanishes at the solution. Since our
replay objective is precisely a weighted squared residual, this invariance is
what legitimizes replay under an arbitrary behavior policy b.

Theorem 6.1 (Off-policy identification of the martingale equations). Let
0k (J, q) denote the one-step residual at step k constructed from the discretized
controlled reverse dynamics and the observed running reward sample 7y, (cf.
(37) with ©~ = O for notational simplicity). Suppose 7, = ri + € where
Eley | 1] = biasg and E[e} | Fy,] < co. Then for the optimal pair (J*, q*)
we have, for every k,

E[ox(J*, ¢%) | Fi,] = bias, At, (45)
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regardless of the policy generating (yk, ak, Yp+1)- In particular, for any square-
integrable test function ¢ measurable with respect to (t, y, ax),

Eb [(b(tk, Yk, ak) ((5k(J*, q*) - biaskAt)] = 0. (46)

When the score-signal is conditionally unbiased (biasy = 0), the residual has
zero conditional mean and the corresponding weighted moments are exactly
identified off-policy.

Proof sketch. We apply the martingale characterization of the entropy-
regularized control problem to the discretely sampled filtration {F;, }5& .
The defining property of (J*,¢*) is that the drift component of J*(t,y;)
cancels, leaving only a martingale increment plus the running reward and
entropy terms; discretization yields . The policy generating the data
affects the law of (yk, ax) but not the conditional identity itself, hence (46]).
The observation noise in 7 contributes only through its conditional mean
(bias) term.

6.2 Almost sure convergence under linear/NTK approxima-
tion and bounded weights

The replay objectives in Section [f] amount to solving a system of weighted
orthogonality conditions induced by . Under linear features (or in the
NTK regime where the dynamics of parameters are well-approximated by
linearization), the critic regression is a weighted least-squares problem and
the coupled actor—critic updates can be treated as stochastic approximation
with martingale-difference noise.

Theorem 6.2 (Almost sure convergence with replay and clipped impor-
tance weights). Assume (a) linear (or NTK-linearized) parameterizations
Jo(t,y) = (©,¥(t,y)) and either qu(t,y,a) = (¢, ®(t,y,a)) or a Gaus-
sian policy-induced qy = 0logmy with linear mean iy, (b) bounded feature
norms and bounded second moments of 7., and (c) clipped importance weights
wy < W oas in . Suppose moreover that the weighted replay covari-
ance (the projected moment matriz) is positive definite on the feature span.
Then, under Robbins—Monro step sizes and standard two-timescale condi-
tions (critic faster than actor), the replay-based stochastic approximation
converges almost surely to the unique minimizer of the projected weighted
residual risk,

(e, yh) = al“g%li£ Ep [@y (tk, Yk, ax) 6,(0,¥)?] , (47)

where 6;,(©,1) is the residual induced by (Jo,qyp) (with the appropriate ter-
minal substitution).
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Discussion. Theorem is a convergence-to-projection statement: we
converge to the best solution representable within the chosen function class
under the replay distribution. The role of replay is algorithmic rather than
statistical: by increasing the number of stochastic approximation steps per
environment transition, we approach with fewer rollouts, provided that
the replay distribution remains well-conditioned and weights remain bounded.

6.3 Finite-time bounds and explicit error decomposition

We next state a representative finite-time guarantee illustrating how importance-
weight control and replay updates translate into quantitative accuracy. The
bound separates the effects of (i) optimization/estimation from a finite num-
ber of replay updates, (ii) approximation error due to restricted function
classes, (iii) score-signal bias and noise, and (iv) discretization error due to
At > 0.

Theorem 6.3 (Finite-time parameter error and induced performance gap).
Under the assumptions of Theorem[6.4, assume additionally that the reward-
signal noise is conditionally sub-Gaussian and that the weighted least-squares
objective for the critic is strongly convex in © over the feature span. Run
M replay gradient updates with constant step size n and Polyak averaging to
obtain (Onr,vnr). Then there exist problem-dependent constants such that

2
E|©y—0"|? + E|va —oT|* < O~<‘j\;> + Approx + ScoreBias + Disc,

(48)
where Approx is the misspecification error of the function classes, ScoreBias
scales with ", E[biasi]At? (and similarly for higher-order bias terms), and
Disc = O(At) (or O(At?) under higher-order integrators) captures discretiza-
tion. Moreover, if the Gaussian policy mean map is Lipschitz in 1 and the
controlled reverse dynamics are stable under perturbations of the drift control,
then the value gap obeys

JH0,v) = J"m (0,v) < CA/E|var — ¥t||2 + Approx + ScoreBias + Disc.
(49)

Interpretation. The factor W2 reflects the variance inflation intrinsic to
off-policy correction: even after clipping, the effective noise scales with the
largest permitted weights. Theorem [6.3] therefore makes explicit the central
trade-off: more aggressive off-policy extrapolation (larger W) can reduce bias
but increases variance, while stronger clipping reduces variance but changes

the target of .
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6.4 Propagation of discretization and score-signal errors

The preceding theorems separate optimization (convergence to ©F, 1) from
modeling (how far ©F T are from the true continuous-time optimum). Two
error sources are specific to our diffusion setting. First, discretization changes
the control problem: even with perfect scores and unlimited function classes,
a fixed At induces a gap between the continuous-time objective and its dis-
cretized counterpart. Second, the running reward uses @log pt, which is
computed from finite data and may be biased; this bias enters the learning
problem as a systematic perturbation of the martingale moment condition
. In both cases the effect is additive in the final guarantees: the learned
policy is optimal for the perturbed problem (projected and biased) and the
resulting performance gap is controlled by stability properties of the con-
trolled reverse dynamics together with Lipschitz properties of the reward
functional in the score control.

6.5 Lower bounds: necessity of bounded weights and rollout
limits under noisy terminal feedback

Finally, we record two complementary impossibility statements that delimit
what replay can and cannot achieve.

Theorem 6.4 (Necessity of coverage / bounded importance weights). If
there exists a measurable set of states S with positive probability under the
target policy such that, for some (t,y) € S, the behavior density satisfies
bla | t,y) = 0 on a subset of the support of my(- | t,y), then no algorithm
using only replay data collected under b can consistently estimate the target-
policy update direction at those states. Moreover, if Ey[wy(t,y,a)?] = oo,
then importance-weighted estimators of the moments in (46) can have infinite
variance.

Theorem 6.5 (Rollout lower bound via a bandit reduction). Consider a
special case in which actions affect only the terminal distribution (equiva-
lently, the dynamics are action-independent for k < K — 1) and terminal
reward samples have variance o2. Any algorithm that outputs a policy with
expected terminal reward within € of optimal with probability at least 2/3
requires Q(a?/e?) rollouts.

Consequence. Theorem [6.5] formalizes that replay cannot beat the statis-
tical cost of acquiring reward information from the environment when ter-
minal feedback is noisy; rather, replay improves sample efficiency by reusing
each rollout for many gradient updates. Theorem shows that this benefit
is contingent on maintaining coverage (or clipping) so that off-policy cor-
rection remains well-posed. Together, these results justify the algorithmic
emphasis on bounded weights, trust regions, and replay: they are not merely
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stabilizers but necessary ingredients for provable learning in reward-directed
diffusion control.

6.6 Complexity and optimality: rollouts versus replay

We quantify the algorithmic cost of the replay-based updates and clarify in
which regimes replay yields provable gains (and in which regimes it cannot).
Throughout, we view a rollout as one simulated reverse trajectory of length
K = T/At, producing K transitions for the replay buffer, and we view a
gradient update as one stochastic-gradient step on the replay objective using
a minibatch of size |B| drawn from D.

Time per rollout. A single rollout requires simulating the discretized
controlled reverse dynamics and evaluating the score-signal used to form 7.
Writing Cepy for the cost of one environment step (sampling the next state
Yr+1 given (tx, Yk, ar)) and Cyeore for the cost of computing @long_tk (yk)
and forming 7, the time per rollout scales as

Timerollout = O(K (CGHV + CSCOYG)) . (50)

In diffusion applications, Cepy is typically O(d) for simple Euler—-Maruyama
dynamics but may be larger if the environment includes additional learned
components; Cyeore 1S dominated either by a score network forward pass or
by the construction of a dataset-based score-value estimator. Importantly,
both costs are paid once per transition regardless of how many replay updates
reuse that transition.

Time per gradient update. Each replay update computes (i) the martin-
gale residual 6;(0, ), (ii) the importance weight wy, = my(a | tr, yi)/b(ax |
ti,yr) (clipped if needed), and (iii) gradients for the actor/critic (and the
normalization penalty if ¢ is not explicitly normalized). If Cyctor and Ceritic
denote the per-sample forward/backward costs of the actor and critic, and
Cy the cost of evaluating log-densities for 7, and b, then one update costs

Timeupdate = O(|B‘ (Cactor + Ccritic + Cw)) : (5]‘)

For the Gaussian policy class my(- | t,y) = N (uy(t,v), 2(t)) with known

Y(t), we have O, = O(d) from quadratic forms in R?. Moreover, in the

canonical parameterization g, = 6 log 7y, the normalization constraint [ exp(qy/6) da =
1 holds identically, so the g-normalization penalty is zero and contributes no
additional computation.

Total time and the rollout-replay trade-off. With NV rollouts and G
gradient updates per rollout, the total time is

Timetotal = O(NK (Cenv + Cscore)) + O(NG |B| (Cactor + Ccritic + Cw)) .
(52)
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This decomposition makes the intended regime explicit: replay is beneficial
when environment interaction is the dominant cost (large Ceny + Cscore) and
additional computation is comparatively cheap, so that increasing G can
reduce the required N for a target accuracy. Conversely, if gradient updates
are as expensive as (or more expensive than) collecting additional transitions,
replay does not provide a computational advantage.

Space complexity. The replay buffer stores |D| = NK transitions, each
containing (tx, Yk, @k, 'k, Yr+1) and optionally metadata (e.g. log b(ag | tx, yx))-
Thus,

Space,eplay = O(NK (d+dy +1)), (53)

where d, is the action dimension (in our diffusion control interpretation,
d, = d). This linear scaling in NK is standard for off-policy methods; in
practice it motivates either fixed-capacity buffers or prioritized retention,
but our theoretical statements only require that replay sampling induces a
well-conditioned weighted covariance on the feature span.

When replay yields provable improvements. Theorems|[6.2}6.3] quan-
tify the effect of replay updates through the number of stochastic approx-
imation steps M (with M ~ NG when counting one minibatch update as
one step). In the idealized streaming setting where replay samples are effec-
tively draws from a stationary distribution induced by b, Theorem [6.3] yields
an optimization/estimation term of order O(W?2/M). Thus, for a fixed be-
havior distribution and fixed function class, increasing G at fixed N drives
the iterates closer to the projected solution without requiring additional
environment interaction.

However, the same theorem also clarifies the ceiling: replay cannot re-
move the terms labeled Approx, ScoreBias, and Disc, and it cannot create
reward information that is not present in the collected transitions. In par-
ticular, even in the realizable setting, there remains a data (as opposed to
optimization) limitation due to the finite set of collected rollouts. A useful
way to express this is to separate

total error A~ optimization error + statistical error from finite |D| + Approx + ScoreBias + Disc.

O(W2 /M) typically decreases with NK

While we do not specialize a single closed form for the statistical term (as it
depends on mixing along trajectories and feature concentration), the quali-
tative implication is standard: once M is large enough that the optimization
error is below the statistical floor set by |D| = N K, additional replay updates
cannot improve population performance and may only refine the empirical
solution on the buffer.
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Optimal allocation under a fixed budget. Suppose we have a wall-
clock budget that allows either collecting additional rollouts or increasing
replay. Then suggests allocating updates until the marginal reduction in
O~(W2 /M) is comparable to the marginal reduction attainable by increasing
NK (which reduces statistical error and, when 7 depends on finite-data
score estimation, can also reduce ScoreBias if the score estimator is improved
with more data). In particular, when the environment is expensive, it can
be preferable to take G > 1 to approach the projected fixed point for the
current replay distribution, whereas when the environment is cheap, taking
G ~ 1 (nearly on-policy) may be adequate.

Limits: lower bounds and the role of W. Two constraints delimit
the maximal benefit of replay. First, Theorem [6.5 implies that when the
reward information enters only through noisy terminal observations, any
method must incur (0% /e2) rollouts to obtain e-accurate reward optimiza-
tion; replay can only improve computation per rollout, not overcome this
information-theoretic barrier. Second, Theorem [6.4] implies that replay is
only well-posed under coverage: either b must dominate my or we must
enforce clipping w < W. From the finite-time bound , increasing W
expands the range of effective off-policy correction but inflates the variance
and hence the number of replay updates required. Consequently, in regimes
where b is far from 7y, the potential gain from replay is offset by the W?2 de-
pendence unless one introduces additional structure (e.g. trust regions that
keep my close to b in KL).

Summary. Replay yields provable improvements when (i) the environment
interaction cost dominates gradient computation, (ii) the replay distribution
is sufficiently rich to keep the projected moment matrix well-conditioned,
and (iii) importance weights are controlled so that variance remains finite.
In that regime, increasing replay updates per transition reduces the opti-
mization component of error at essentially no additional rollout cost, up to
the statistical and information-theoretic limits imposed by finite data, score-
signal bias, discretization, and noisy reward feedback.

7 Experiments

We empirically evaluate the proposed off-policy martingale g-learning pro-
cedure in a standard image-generation setting where (i) the uncontrolled
reverse diffusion already produces samples close to the data distribution,
and (ii) an additional terminal preference signal induces a distribution shift
that must be handled with care. Our goals are to (a) quantify the roll-
out savings enabled by replay at fixed target quality /reward, (b) compare
against representative on-policy diffusion policy optimization baselines, and
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(c) validate the algorithmic design choices suggested by the theory, namely
importance-weight control and (when applicable) g-normalization.

7.1 Environment, policy class, and rewards

We work with an unconditional diffusion model trained on CIFAR-10 at
resolution 32 x 32. The “environment” is the discretized controlled reverse
process with horizon T' and K = T/At steps. At each step k we apply an
action aj € R? interpreted as a score control, and the simulator returns the
next state yiy1 together with a running reward sample 7, computed from
the available score-value estimator V log pr—¢, (yk) according to the quadratic
deviation penalty described earlier. Concretely, we use

Ty N —92(T — ) Hﬁlong—tk (yk) — a’fHZ’

where the approximation hides the score-signal noise/bias induced by the
estimator and minibatch randomness.

Our target policy is Gaussian with time-varying covariance fixed by the
entropy temperature, my (- | ¢,y) = N (uy(t,v), 2(t)) and X(t) = %I.
In implementation we parameterize the mean as a residual correction to the
base score estimate,

p(t,y) = Viogpr_i(y) + uy(t,y),

so that uy = 0 recovers the base sampler and the learned control acts only
through a shift u,. This parameterization makes the “stay close to data”
inductive bias explicit and interacts favorably with importance weighting,
since early iterates remain close to the behavior policy.

Terminal rewards are obtained from (noisy) evaluations of a black-box
preference functional h(yr), combined with a weight 8. We consider two
families of h:

1. CLIP/aesthetic reward. We score the final image © = yr by a pre-
trained image—text model or an aesthetic predictor, e.g. h(x) = scrip(x, 7)
for a fixed text prompt 7, or h(x) = Saes(x). We treat the observed re-
ward as h(x)+¢ with £ mean-zero noise to reflect stochastic evaluation
and finite-precision effects.

2. Incompressibility reqularization on CIFAR-10. We use a simple description-
length proxy to discourage pathological, highly structured artifacts
that can arise under pure preference maximization. Let DL(z) denote
the compressed bit-length of z under a fixed lossless codec (equiva-
lently, an MDL-style proxy). Empirically, CIFAR-10 images occupy a
relatively narrow range of DL; extreme deviations correlate with un-
natural samples. We therefore define a terminal term of the form

hic(z) = —(DL(z) — Myata)”.
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where mgata is the empirical mean of DL(zg) over the training set. In
combined experiments we take h(x) = scrip(z, 7) + Aichic(z), which
operationally enforces a weak “stay in-distribution” constraint using
only observable quantities.

7.2 Baselines and evaluation protocol

We compare against two baselines designed to isolate the effect of replay and
off-policy correction.

On-policy martingale g-learning. This variant uses the same residual
objective and the same actor/critic parameterization, but discards replay:
each gradient update uses only the most recent rollout(s), and importance
weights are identically 1. This isolates the value of reusing past transitions.

DPOK-style on-policy diffusion policy optimization. We implement
an on-policy KL-regularized preference optimization method tailored to dif-
fusion sampling, where the policy update is driven primarily by terminal re-
wards with a KL penalty to a reference sampler (the base diffusion). While
implementations differ across the literature, the defining characteristic for
our purposes is that data are used once (or a small constant number of
times) and the update is effectively on-policy, with no explicit importance
weighting across a large replay buffer.

Metrics. We report (i) mean terminal reward (CLIP /aesthetic score, op-
tionally with incompressibility regularization), (ii) classical generative-quality
metrics (FID to CIFAR-10 and Inception Score), and (iii) a distributional di-
agnostic based on the empirical distribution of DL(z) relative to the training
set. To compare sample efficiency, we plot each metric against the number
of rollouts (environment episodes) rather than wall-clock time, since rollouts
are the resource whose reduction is our principal objective.

7.3 Main results: replay reduces rollouts for a fixed reward
target

Across prompts and reward types, we observe a consistent separation be-
tween off-policy replay and purely on-policy training when environment in-
teraction is the bottleneck. For a fixed terminal-reward target, replay typ-
ically attains the target using substantially fewer rollouts than on-policy
martingale learning; correspondingly, for a fixed rollout budget, replay at-
tains higher reward. This is the expected qualitative behavior suggested
by the error decomposition in Theorem [6.3} with large G updates per roll-
out, we reduce the optimization term driven by the number of stochastic
approximation steps, while holding the rollout count fixed.
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Relative to the DPOK-style baseline, the advantage of replay is most
pronounced when terminal rewards are noisy or sparse. In such cases, the
ability to amortize each expensive terminal evaluation across many gradient
steps is decisive, whereas on-policy preference optimization spends most roll-
outs collecting reward-labeled samples that are used only once. At the same
time, we observe the anticipated trade-off: overly aggressive off-policy up-
dates without weight control can lead to instability and degraded perceptual
quality, which motivates the ablations below.

In the combined CLIP-+DL experiments, the incompressibility regularizer
materially improves fidelity at high reward: for comparable CLIP scores, the
DL distribution of generated images remains closer to the CIFAR-10 refer-
ence and FID degrades less severely. This supports the interpretation of DL
as a simple, fully observable constraint proxy that partially mitigates reward
hacking. Importantly, this effect is obtained without modifying the running
reward; it is entirely attributable to terminal shaping, which is compatible
with the algorithmic framework.

7.4 Ablations: replay size, importance clipping, and ¢-normalization

Replay buffer size. We vary the capacity |D| while holding the total roll-
out count fixed. Small buffers (retaining only the most recent trajectories)
behave similarly to on-policy training and lose most of the rollout advantage,
while sufficiently large buffers improve stability and reward at fixed rollouts.
The effect saturates: beyond a moderate capacity, additional storage yields
diminishing returns, consistent with the view that once the projected fixed
point for the empirical replay distribution is well-approximated, the remain-
ing limitation is statistical (finite |D|) rather than optimization.

Importance-weight clipping. We test clipping thresholds W spanning
a wide range. Without clipping, we observe occasional large-weight events
leading to high-variance critic updates and brittle actor steps, which in turn
can collapse sample quality. Moderate clipping stabilizes learning and im-
proves the reward—quality trade-off. Excessively small W yields conservative
updates that under-correct the behavior mismatch and reduce attainable re-
ward. This reproduces the qualitative dependence predicted by the W?
factor in the finite-time term: allowing larger effective correction requires
either more replay updates (to average out the increased variance) or addi-
tional trust-region constraints to keep m, near b.

g-normalization penalty. In the canonical Gaussian setting g, = 0 logmy,
normalization is exact and the penalty is identically zero, so the ablation is
vacuous by construction; we include it only to confirm numerically that en-
abling/disabling the penalty does not change results. In a generalized variant
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where we represent gy (t,y,a) with a flexible network not constrained to in-
tegrate to one, we observe that removing the penalty leads to pathological
growth of log [ exp(gy/6) da and degraded policy updates, whereas a modest
penalty weight restores stable learning and improves reward at fixed roll-
outs. This supports the role of normalization as an identifiability /stability
constraint rather than a cosmetic regularizer.

Overall, these experiments support the central claim: when rollouts are
expensive, replay provides a principled mechanism to exchange additional
computation for fewer environment interactions, while importance-weight
control and (when needed) g-normalization are necessary to realize this gain
without sacrificing stability and sample quality.

8 Discussion and Extensions

We briefly discuss several directions in which the off-policy martingale view-
point extends beyond the basic stochastic reverse-time sampler considered
above. The common thread is that, once we regard diffusion sampling as a
controlled dynamical system with observable (possibly biased) reward surro-
gates, many variations amount to changing either (i) the environment tran-
sition map, (ii) the information set used to form 7, or (iii) the objective
functional. In each case, the martingale residual framework continues to
provide moment equations whose roots define the relevant value functions
and policy improvements, subject to the same coverage and bounded-weight
requirements.

8.1 ODE and probability-flow samplers

Many practical diffusion samplers use deterministic or partially deterministic
dynamics, e.g. probability-flow ODEs or predictor—corrector schemes with a
reduced noise schedule. Formally, if we replace the controlled reverse SDE
by a controlled ODE

Y = F(tayt’at)a

then the discrete-time simulator becomes yx+1 = Env(tx, Yk, ax) with no in-
jected stochasticity beyond that induced by the policy. In this setting the
martingale terminology is slightly abusive—the residual is no longer a mar-
tingale difference arising from Brownian increments—but the same temporal
consistency equation remains: at the optimum, the (entropy-regularized)
value satisfies a one-step relation of the form

I (tet15 Yrr1) — J (Er yr) + 7 (ks Yns ar) AL — q(t, Yr, ar) At = 0

along trajectories. Consequently, our weighted squared-residual objective
continues to define a projected fixed point under replay sampling. The prin-
cipal change is variance: for an ODE environment, the conditional variance
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of yry1 given (tg, Yk, ax) can be smaller, which reduces the noise in J§; and
can improve critic learning for a fixed number of rollouts. At the same time,
deterministic dynamics can exacerbate coverage issues: if the behavior pol-
icy induces a narrow set of visited states, then replay may fail to cover the
states reached by a substantially improved target policy, yielding large im-
portance weights or support mismatch. This suggests that ODE samplers
benefit disproportionately from explicit exploration in b, mixture behavior
policies, or trust-region constraints limiting KL (7 (- | ¢, ) || mo1a (- | £, 9))-

A related practical extension is to non-uniform and adaptive step sizes.
If the sampler uses a time grid {tk}fzo with variable Aty, then the residual
becomes

0x(0,v) = Jo(tht1, Ye+1) — Jo(te, yr) + PuAty — qy(tr, Yr, ax) Aty,

and the replay objective is unchanged aside from using At;. This is concep-
tually useful because many high-order solvers concentrate steps in regions
where g(T—t) is large; our formulation accommodates this without modifying
the learning rule, provided the transition tuples record Aty (or equivalently

Ly tiet1)-

8.2 Conditional diffusion and guided generation

In conditional generation we introduce an observed condition ¢ (class label,
text embedding, or other side information) and seek a policy my(- | t,y,c)
whose induced terminal samples satisfy both reward preference and condi-
tional fidelity. From the present perspective, c is part of the state; we may
simply augment y < (y,c) with trivial dynamics for ¢. The running re-
ward and terminal reward become r(t,y,c,a) and h(yr,c), and all moment
equations continue to hold conditional on ¢. In particular, if the base score
estimator is conditional, v logpi(y | ¢), we may use the same residual mean
parameterization

:ud)(tvyv C) = VIngTft(y | C) + Uw(t, y,c),

thereby preserving the inductive bias that u, = 0 recovers the base condi-
tional sampler.

Classifier-free guidance and related techniques can also be seen as specify-
ing a restricted policy family: for example, guidance with scale s corresponds
to actions of the form

a(t,y,c) = Vlogpr .(y) + 5(6 logpr—i(y | ¢) — 61ngmt(y)>,
which is a one-dimensional control subspace. Our algorithm may be applied

directly with ¢ = s (or a time-dependent scale s(t)), in which case replay
learns an adaptive guidance schedule optimized for the terminal preference
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signal, while importance weighting controls the distribution shift relative
to the behavior guidance. More generally, conditional diffusion introduces
an additional axis along which coverage can fail: if the behavior policy is
collected under a narrow set of conditions ¢, off-policy learning cannot gen-
eralize to unseen ¢ without explicit function approximation assumptions and
training data spanning those conditions.

8.3 Retrieval-augmented score signals

Our formulation treats §log pi(y) as a data-driven score-value signal that
may be biased and noisy, and whose noise propagates to 7. A natural exten-
sion is to enhance V log p¢(y) using retrieval or nearest-neighbor conditioning
on the training set. Concretely, for a query (¢,y) we retrieve a set of data
points N (y) = {xéj )} (possibly in a learned embedding space), and construct
an estimator

Viogpi(y) = Agg({Vy log pyjo(y | wéj))}mgﬂemy)),

where py| is known and Agg is an averaging or attention operator. In OU /VP
settings, each V,logpyo(y | o) is explicit, hence retrieval provides a non-
parametric mechanism to approximate the score by localizing around train-
ing examples that plausibly explain y at time ¢.

This augmentation affects learning only through the reward signal 7, (and
through any parameterization using v logp as a baseline). The theoretical
consequences are therefore captured by the “score-signal bias” terms in our
bounds: retrieval may reduce variance (by averaging multiple neighbors) and
reduce bias (by improving local fit), but it can also introduce selection bias if
the retrieval distribution depends sharply on y in a way not modeled by the
estimator class. From an off-policy perspective, retrieval can be implemented
without changing the replay interface; however, it changes the stationarity
of 7 if the retrieval index is updated online. In that case one should either (i)
store enough metadata in replay to recompute 7, under the current retrieval
model, or (ii) treat the reward non-stationarity as additional noise and rely
on small step sizes and frequent replay refresh. The former is preferable
when 7 is used as a regression target for the critic.

8.4 Constrained and safe objectives

Preference maximization in generative models is often accompanied by con-
straints: fidelity constraints (stay close to data), safety constraints (avoid
disallowed content), or resource constraints (e.g. inference-time budgets).
Our framework already enforces a soft “stay close” effect through the run-
ning quadratic penalty and the entropy term, but one may wish to impose
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explicit constraints of the form

E[c(yT)] < K or E[/OTﬁ(t,yt,at)dt} < K,

where ¢ is an observable terminal cost and ¢ an observable running cost. A
standard approach is Lagrangian relaxation: introduce a multiplier A > 0
and optimize

T
IE[/O (r(t,yt,at)—)\ﬁ(t,yt,at)—elog m(ay | t,yt)) dt—i—ﬁh(yT)—)\c(yT)} + k.

For fixed A, this is again an entropy-regularized control problem with mod-
ified rewards; hence the same residual equations apply with 7, < 7, — )\ék
and terminal reward Sh(yr) — Ac(yr). One may then update A by stochastic
dual ascent using samples from rollouts, reusing replay to reduce variance.
Off-policy correction remains necessary because the state—action visitation
induced by the constrained optimum can differ materially from that of the
behavior sampler.

Beyond expectations, risk-sensitive criteria (e.g. CVaR) can be incor-
porated by augmenting the state with an auxiliary variable and defining a
Markovian objective in an expanded space; likewise, hard constraints can be
approximated via barrier penalties in A or via rejection sampling at termi-
nal time. The practical lesson is that constrained objectives intensify the
need for weight control: as constraints activate, optimal policies can become
sharply peaked, which increases the mismatch with exploratory behavior
policies and can inflate importance weights. Consequently, conservative up-
dates (clipping, trust regions, or explicit mixtures b = amy + (1 — @) Thase)
are not merely stabilizers but plausibly necessary for consistent learning in
constrained regimes.

Taken together, these extensions suggest that the off-policy martingale
residual is best viewed as a modular interface between (i) a controlled sampler
(SDE/ODE, conditional/unconditional) and (ii) an objective specified via
observable running and terminal signals (possibly augmented by retrieval
and constraints). The main limitations remain those already highlighted by
the theory: coverage, bounded effective importance weights, and control of
bias in the score-derived reward surrogates.
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