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Abstract

Diffusion models are increasingly deployed under hard constraints:
safety, policy compliance, distribution shift limits, and domain-validity
checks. Building on recent work that formulates reward-directed dif-
fusion as continuous-time reinforcement learning by treating the un-
known score as the control action, we introduce a constrained version of
this framework. Our objective maximizes a terminal reward while regu-
larizing deviation from the unknown true score (a KL /path-divergence
proxy) and enforcing explicit constraints on the generated samples,
such as bounded unsafe content probability or bounded feature-space
shift. Since the running reward depends on the unknown score, we
retain the data-driven score-signal construction via a ratio estima-
tor, producing a reinforcement signal without learning the score func-
tion. We then develop a primal-dual actor—critic little g-learning al-
gorithm: the critic learns a Lagrangian value via martingale residual
minimization, the actor learns the Gaussian policy mean, and dual
variables adaptively tune constraint penalties. For linear function ap-
proximation, we provide (i) almost-sure convergence to a projected
saddle point under standard stochastic approximation conditions and
(ii) finite-episode bounds on suboptimality and constraint violation,
with an explicit decomposition into (a) function approximation error,
(b) score-signal noise, and (c) discretization error. In an LQG diffu-
sion special case we also show matching lower bounds of order Q(e~2)
episodes under noisy terminal feedback. Experiments (recommended)
on conditional image generation with modern safety reward models
would validate constraint satisfaction and the reward—fidelity trade-off
without relying on pretrained reference diffusion models.
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1 Introduction and Motivation

By 2026, the dominant failure modes of generative models are no longer pri-
marily those of distributional mismatch or insufficient capacity, but rather
those of misalignment between what a user or downstream system intends
and what the model produces under deployment constraints. In many do-
mains, we do not merely seek samples from a learned data distribution; we
seek samples that optimize a task-dependent terminal objective while satis-
fying explicit safety, compliance, and resource constraints. Typical examples
include: meeting specification thresholds (e.g. toxicity, privacy leakage, wa-
termark detectability), respecting fairness or demographic parity limits, en-
forcing physical feasibility in design problems, and adhering to strict failure-
probability budgets in planning. These constraints are naturally expressed
as expectation constraints of the form E[¢;(Y)] < 7; over the generated out-
put Y, rather than as hard per-sample filters, since both the constraints and
their evaluations are noisy and may only be accessible through expensive
black-box tests.

Existing alignment mechanisms for diffusion models tend to fall into two
broad categories, each with structural limitations in the constrained setting.
The first category is guidance (e.g. classifier guidance or reward-model guid-
ance), which modifies sampling by adding a gradient term derived from an
auxiliary model. While guidance can be effective when the auxiliary gradient
is accurate and well-calibrated, it is intrinsically an unconstrained method:
it trades off reward and sample quality through a scalar guidance weight
without offering certificates of feasibility for multiple constraints. Moreover,
when the terminal feedback is obtained from black-box evaluators (human
preference, simulator-based scoring, proprietary APIs), guidance is unavail-
able because gradients are not accessible. Even when a differentiable sur-
rogate is trained, distribution shift arises because the guided sampler visits
states far from those seen during surrogate training, and the resulting feed-
back gradients can be systematically biased.

The second category is pretrain-then-finetune. Here one first trains an
unconditional diffusion model to approximate the data distribution, and then
finetunes either the score network or an auxiliary policy using preference
optimization or reinforcement learning objectives. This paradigm inherits
the classical difficulties of offline-to-online transfer: finetuning typically relies
on samples from an evolving policy and thus departs from the pretraining
distribution, but offline objectives do not directly control the induced state
distribution. For constrained problems, one additionally requires a principled
mechanism for trading off reward against multiple constraints. In practice,
scalarization heuristics are used (weighted sums of penalty terms), which
are brittle: the correct penalty weights depend on unknown sensitivity of
constraint satisfaction to policy changes, and there is no reason to expect a
fixed set of weights to simultaneously ensure feasibility and near-optimality.



Finally, both guidance and finetuning approaches commonly assume access
to global surrogates (a global reward model, a global constraint model, or
a global score model), yet in many applications the only reliable signal is a
local, query-based evaluation on generated samples.

We therefore adopt a viewpoint in which reward-directed diffusion sam-
pling is treated as an instance of constrained, entropy-regularized continuous-
time reinforcement learning with partial observability of the true running
reward. The essential modeling choice is to interpret the substitute score
in the reverse-time drift as the control action. This yields a controlled dif-
fusion whose terminal state yp is the generated sample, with an objective
that combines (i) a terminal reward h(yr) accessible only through noisy
black-box queries and (ii) a running penalty that measures deviation from
the (unknown) optimal score. The constraints are imposed on terminal costs
¢i(yr), each observed with noise at the end of an episode. The resulting prob-
lem is formally a constrained stochastic control problem in continuous time,
but its structure is not generic: the control enters linearly in the drift, the
exploration distribution is naturally Gaussian due to entropy regularization,
and the running reward is quadratic in the control with a time-dependent
weight induced by the diffusion coefficients.

This structure suggests that we should not attempt to learn a global
score function V log p; as an intermediate object. Instead, we exploit the fact
that the diffusion forward process admits tractable conditionals pyo(- | xo)
and that we have sample access to pyg. From these, one can construct local
ratio estimators that provide a noisy proxy for the score value at the visited
states, thereby producing a per-step reward signal # without fitting a global
score network. The algorithmic consequence is that training can proceed on-
policy, with data access only through minibatch-based ratio computations
at the encountered states, and without requiring gradients of the terminal
reward or constraints.

Our first contribution is a precise constrained optimization formulation
for reward-directed diffusion sampling under this information pattern. We
use a Lagrangian relaxation with dual variables A € R’!" and incorporate the
terminal constraints into a shaped terminal reward. The resulting entropy-
regularized control problem admits a particularly simple optimal policy class:
for each fixed A, the optimal exploratory policy is Gaussian with a covari-
ance determined by the diffusion coefficient and the entropy temperature,
and with a mean equal to the object that must be learned. This reduction
converts policy optimization into learning a mean function u(t,y), rather
than learning an arbitrary action distribution, and it clarifies the role of en-
tropy as fixing exploration at a scale compatible with the diffusion dynamics.

Our second contribution is an on-policy primal-dual algorithm, PD-
CTQL, which combines (i) a martingale characterization of optimality for
continuous-time g¢-learning with (ii) projected stochastic dual ascent. The
critic is trained to satisfy an orthogonality condition derived from the Doob—



Meyer decomposition of the controlled process, implemented through a dis-
cretized residual loss over rollouts. The actor update is coupled to the critic
through the entropy-regularized relation between the ¢-function and the pol-
icy, which yields a tractable gradient update for the Gaussian mean. Con-
straints are handled by dual variables updated using terminal observations
only; projection ensures dual feasibility and provides stability under noise.
Our third contribution is a set of guarantees that match the operational
requirements of constrained alignment: we aim simultaneously for near-
optimality and approximate feasibility under noisy terminal feedback and
noisy running signals. In the linear function approximation setting (linear
actor mean and linear critic), and under standard bounded-moment and
bounded-noise conditions, we show that the coupled primal-dual stochastic
approximation converges almost surely to a stationary point of the projected
Lagrangian saddle system. The proof follows the two-timescale method: on
the fast timescale, the primal iterates track the solution of the martingale-
based fixed-point conditions for a quasi-static dual vector; on the slow timescale,
the dual variables perform projected ascent on the empirical constraint vio-
lations. The projection radius plays the usual role of enforcing compactness
and enabling uniform bounds required by stochastic approximation theory.
Beyond asymptotic convergence, we provide finite-episode performance
bounds in the same linear setting. With constant stepsizes tuned as ©(N~1/2)
over N episodes, the averaged iterates achieve a primal-dual gap and an ex-
pected constraint violation that decay as O(N -1/ 2), up to additive terms
that isolate three sources of unavoidable error: (i) approximation error due
to function class restriction, (ii) signal error due to ratio-estimator noise and
terminal oracle noise, and (iii) discretization error due to the time grid used
for simulation (e.g. Euler-Maruyama). This decomposition is essential for
practice: it separates what can be improved by more training episodes from
what requires better estimators, richer function classes, or smaller time steps.
Finally, we address the question of whether these rates are intrinsic. In a
special linear—quadratic—Gaussian diffusion instance with a single noisy ter-
minal constraint, we prove a minimax lower bound: any algorithm that
only observes terminal reward and constraint samples must use at least
Q(e7?) episodes to reach e-optimality and e-feasibility with constant prob-
ability. The reduction embeds a constrained mean-estimation problem into
the terminal-time decision, and standard information-theoretic arguments
show that one cannot beat the e~2 scaling under sub-Gaussian noise. This
lower bound indicates that, even before accounting for score-signal estima-
tion or discretization, the episodic sample complexity of constrained terminal
feedback imposes a fundamental limit; consequently, the O(N~1/2) guaran-
tees obtained by PD-CTQL are rate-optimal in the relevant regime.
In summary, we propose a framework in which constrained alignment
for diffusion sampling is treated as a principled constrained control prob-
lem with a clear information model, an on-policy algorithm that does not



require global surrogate training, and provable convergence and finite-time
behavior under standard assumptions. The remainder of the paper develops
the necessary background on score-based diffusions and entropy-regularized
continuous-time reinforcement learning, establishes the martingale charac-
terization that underlies our critic update, introduces the ratio-based score-
signal estimator used to form running rewards, and then presents the primal—
dual analysis culminating in the aforementioned upper and lower bounds.

2 Background: diffusions, entropy-regularized con-
trol, and local score signals

Forward diffusion and tractable conditionals. We consider a forward
diffusion (z¢)sc(o,r) on RY defined by the linear SDE

dry = f(t)zedt + g(t) dWy, Ty ~ Po, (1)

where f, g are known scalar functions (the standard VP/OU setting; exten-
sions to matrix-valued coefficients are routine). Let p; denote the marginal
law of ;. A key structural feature is that the transition density pyo(- | 7o)
is Gaussian and known in closed form. Writing the (scalar) fundamen-
tal solution as «(t) := exp( fg f(s)ds) and the accumulated variance as

o2(t) == fg a(t)?a(s)"2g(s)? ds, we have

o)z ~ Mat)zo, *B)),  pilz) = / pro( | 20) poldra).  (2)
Rd

We emphasize that pg is unknown and is accessed only through i.i.d. samples;
nonetheless, (26) gives an explicit likelihood model ¢ > pyjo(x | zo) which
will later be exploited to construct local score signals.

Reverse-time dynamics and the score. The time-reversed process as-
sociated with admits the classical (Haussmann—Pardoux) reverse SDE

dy = (F(T—t)y — g(T—t)* Viogpr_i(w)) dt + g(T—t) Wi, yo ~ pr,
) 3)

where W; is a Brownian motion in reverse time. The unknown object is
the score Vlog p:(+), which is typically approximated by a neural network
trained by denoising score matching. In contrast, our development treats the
score value as an implicit quantity that may be queried locally (with noise)
rather than globally approximated.

For completeness, we record the corresponding probability flow ODE,
obtained by removing diffusion while preserving marginals:

d

a0 = fT -ty — %Q(T—t)QWngT_t(yt% (4)



which motivates deterministic samplers. Our subsequent algorithmic and
analytical statements are phrased for SDE sampling, but discretized ODE
samplers may be handled analogously, with modified discretization error
terms.

Score-as-action: controlled reverse dynamics. We now introduce the
central modeling step: we interpret a substitute score a; as a control input,
and we consider the controlled reverse-time diffusion

dys = (F(T =ty + g(T—t)a)dt + g(T —t)dW;,  yo~v, (5)

where v is a Gaussian reference distribution approximating pr (or otherwise
chosen to initialize sampling). Comparing (5)) with , we see that the choice

a;(y) = —Vlogpr—«(y) (6)

recovers the true reverse drift. Hence, learning to sample from the data dis-
tribution can be framed as learning a feedback control law a; ~ a}, without
committing to a global parametric estimator of V log p;.

This viewpoint becomes particularly convenient once we introduce re-
ward shaping: we penalize deviations from the optimal action @ through a
quadratic running reward

r(t,y,a) == —g(T —)?||Viogpr_i(y) — a|%, (7)

which is maximal (equal to 0) when a matches the true score. In later
sections, this running term is combined with an application-dependent ter-
minal reward; for the present background discussion, merely provides the
canonical continuous-time signal that ties control to diffusion fidelity.

Entropy-regularized continuous-time RL and Gaussian policies. We
adopt an entropy-regularized control formulation in which exploration is en-
couraged through a temperature parameter § > 0. For a Markov policy
7(- | t,y) over actions a € R? we may view the objective as maximizing ex-
pected cumulative reward augmented by (negative) relative entropy at each
time. In the present linear-in-drift, quadratic-in-action setting, the entropy-
regularized instantaneous optimization induces a Gaussian form. Concretely,
suppose we seek policies that maximize, at each state (¢,y), an entropy-
regularized Hamiltonian of the schematic form

sup {Bons (0T =0, 9, (00) + 7ty )] + M|t s ©)
m(-t,y

where J is a value function, H is differential entropy, and 7 contains terms
quadratic in a. Completing the square shows that the optimizer is Gaussian



with mean proportional to the gradient term and covariance proportional to 6
divided by the quadratic weight. In our case, this yields the parametrization

molal t) = N (el 5=l ). 0

which is the policy class used throughout: the diffusion coefficients dictate
the exploration scale, while learning is reduced to estimating the mean func-
tion fiy.

Martingale characterization and the g-function. A distinctive aspect
of continuous-time RL is that Bellman equations are naturally expressed via
martingale properties. Let J(¢,y) denote a candidate value function for (/5|
under a given policy, and let ¢(¢,y,a) denote the corresponding (entropy-
regularized) g-function, normalized so that 7 = exp(q/#) (up to the log-
partition function). For sufficiently smooth J, It6’s formula implies that
along a controlled trajectory (v, at),

dJ(t,ye) = (8tJ(t7yt) + (F(T—t)yetg(T—t)%ar, VI (t,ye)) + %Q(T—t)zAJ(t,yt)) dt + g(T—t){VJ(
(10)

The martingale characterization used by continuous-time g-learning (in the

spirit of Doob—Meyer decompositions) asserts that, at optimality and with

an appropriate definition of ¢, the drift part of the compensated process

vanishes. Operationally, this yields an orthogonality (zero-mean residual)

condition of the form

E |:J(t + At, yt+At> — J(t, yt) + ?”‘(t, Y, at) At — Q(t, Yt, at) At ’ ]I’t] ~ O,

(11)
with an additional terminal term when ¢ is the final grid point. This is
precisely the type of condition that can be enforced by a squared-residual
loss over rollouts, avoiding the need to estimate the infinitesimal generator
terms in explicitly. In discretized implementations, we simulate by
Euler—-Maruyama,

Y1 = Yk + (F(T—te)yetg(T—tp)2ar) At + g(T—t)VALE, & ~N(0,1),
(12)

and we regress parameters so that the empirical counterpart of (|11 is small.

Local ratio estimators for score values. The running reward de-
pends on Vlogpr_¢(y), which is unknown. We therefore require a mecha-
nism that, given a queried point (¢,y), returns a noisy but informative proxy
for the score value at that point, using only samples from py and knowledge
of pyjo. From , we can differentiate under the integral sign to obtain the



identity

Vpi(y) [ Vypyo(y | 2o) poldro) [ pyoly | w0) Vylogpyo(y | 20) po(do)

Viogpi(y) = pe@) [ pooy | wo)poldag) I pyo(y | z0) po(dao)

(13)
Thus Vlogpi(y) is an expectation of V, logpyo(y | Xo) under the posterior

density proportional to pyo(y | zo)po(zo). Given a minibatch {xéj)}jzl of
i.i.d. samples from pg, we form self-normalized weights

wjt,y) = ]ﬁt'(’(y“”“’gﬁ)(@ C Swtwe1 )
Zz:1 pt\o(y | z”) j=1

and define the ratio (self-normalized importance sampling) estimator

M

Viogpi(y) = > wjlt,y) Vylogpyoly | x). (15)
=1

In the OU/VP case, V, log pyjo(y | o) is explicit, since pyo(- | zo) is Gaussian
with mean a(t)zo and covariance o (¢)I:

Vi logpo(y | 50) = ~ 505 (v alt)ro). (16)

Substituting nto yields a computable running signal 7(¢,y,a) =
—g(T—1)?|V1og pr—i(y) —a|*. The estimator is generally biased due to
self-normalization, but its bias and conditional second moments can be con-
trolled under standard effective-sample-size conditions; our later convergence
and finite-time analyses assume precisely such bounded-bias / bounded-
variance properties for 7 along the on-policy state distribution.

The overarching point is that provides local score information only
at states that the current policy visits. This is aligned with the on-policy
nature of the control problem: rather than learning Vlogp; on the entire
space-time domain, we obtain an online reward signal sufficient to drive
actor—critic updates through the martingale residual condition ({11).

3 Constrained problem formulation: terminal and
pathwise requirements

We now formalize the reward-directed sampling problem as a constrained,
entropy-regularized control task posed on the controlled reverse dynamics
(5). The control variable a; plays the role of a substitute score, and the
running reward enforces diffusion fidelity by penalizing deviation from
the (unknown) score. On top of this fidelity term, we introduce application-
dependent terminal objectives and constraints that encode semantic or safety
requirements on the generated sample yr.



Terminal reward and expectation constraints. Let h : R? — R be
a measurable terminal reward function, which may be non-smooth and is
accessed only through noisy evaluations at sampled terminal states.ﬂ For
m > 1, let ¢; : R* — R be measurable terminal cost functions with thresholds
7; € R. We seek a policy 7 (equivalently, a mean function p within the
Gaussian class @) that solves

T
max x| ghr) + [ r(tna)d]

st. Exlai(yr)] < m, i=1,...,m,

(17)

where 79 ~ v and the expectation is taken over trajectories induced by
and a; ~ m(- | t,y¢). The constraints in are expectation constraints.
This choice is deliberate: it accommodates stochastic terminal observations,
admits a tractable Lagrangian relaxation, and aligns with the fact that many
generation constraints are naturally expressed in terms of population aver-
ages (e.g., average risk, average shift in a feature statistic, average rate of
unsafe content).

Optional path constraints. In some applications, terminal feasibility
alone is insufficient: one may wish to regulate intermediate states of the re-
verse diffusion, or penalize excessive control magnitude, or enforce temporal
safety requirements. We therefore record an optional extension in which we
introduce measurable running constraint costs ¢; : [0, 7] x R? x R¢ — R and
require

T
EW |:/ &(t,yt,at) dt] S Tis 7 = 1,...,mpath. (18)
0

The subsequent algorithmic development is simplest in the purely terminal
case , because constraint feedback arrives once per episode and therefore
couples naturally to a dual ascent update. Nonetheless, ([18]) fits the same
primal-dual template (one merely replaces ¢;(yr) by fOT ¢;dt in the dual
update), and the distinction is primarily notational at the level of the saddle-
point formulation.

Fidelity regularization versus explicit constraints. It is important to
separate the role of the diffusion-fidelity term 7(¢, %, a) = —g(T—t)?||V log pr_¢(y)—
al|? from the role of the constraint set. The running reward r is not an appli-
cation constraint; rather, it regularizes the control so that the induced termi-
nal law remains close to the data-generating reverse dynamics. In particular,
since < 0 with maximum 0, maximizing fOT rdt discourages policies that

'We allow h to be a black-box metric such as a proxy for perceptual quality, a classifier
score, or a downstream utility; smoothness is not assumed since our updates will be driven
by martingale residuals rather than direct differentiation of h.

10



“cheat” by steering y; to satisfy h or the constraints while departing drasti-
cally from the reverse-time flow implied by py. The constraints, by contrast,
encode what we want at terminal time and may in general conflict with strict
fidelity to po (e.g., filtering out unsafe generations necessarily alters the dis-
tribution). The parameter 5 and the constraint thresholds 7; govern this
trade-off: large 5 pushes toward terminal utility; tight 7 enforces feasibility;
the fidelity term resists degenerate solutions by imposing a control-theoretic
notion of proximity to the score-driven dynamics.

Lagrangian relaxation and projected dual variables. We handle the
constraints in via a Lagrangian saddle-point formulation. For A € R"?,
define the (terminal-shaped) Lagrangian objective

T m
L(m,A) = Er / r(t, Yy, ar) dt + Bh(yr) — ZAi(Ci(yT)_Ti) - (19)
0 i=1
The constrained problem may be viewed (formally) as
inf A 2
sup inf, L(m, ), (20)

with the understanding that strong duality may require additional regular-
ity beyond our black-box setting; in the algorithmic development we instead
target a stationary point of the projected saddle dynamics in the function-
approximation class. In implementation and analysis, we maintain a pro-
jection A € [0, A]™ for some A < oo. This compactness plays two roles: it
enforces stability of the stochastic approximation iterates, and it provides
a meaningful certificate of constraint tightness (large ); indicates persistent
difficulty in satisfying constraint 7). We emphasize that the dual shaping
affects only the terminal signal in ; the diffusion-fidelity term remains
unchanged, hence the quadratic-in-action structure that yields Gaussian op-
timal policies is preserved (cf. Theorem 1).

Constraint examples in generative modeling. We briefly list canoni-
cal constraints that fit (17).

(i) Unsafe content probability (chance-type constraint). Suppose a black-
box detector outputs an unsafe indicator u(y) € {0,1} (or a calibrated prob-
ability in [0,1]). A natural requirement is that the rate of unsafe generations
is at most 0 € (0,1):

Exfu(yr)] < o (21)
This is an expectation constraint on an indicator, hence a form of chance
constraint. When w is discontinuous or noisy, we may replace it by a measur-
able surrogate score @(y) € [0, 1] (e.g., a sigmoid-transformed classifier logit),
yielding the same mathematical form while improving statistical efficiency.

11



(i) Coverage or diversity constraints. To prevent mode collapse toward
high-reward but narrow regions, one may enforce a coverage constraint rel-
ative to a reference distribution p on a feature space. For a feature map
¢ : R4 — RP, consider constraints on feature moments such as

|Exlp(yr)] = Ez~ple(2)]]| < e (22)

which can be encoded as two-sided expectation constraints by introducing
costs ¢j+(y) = ¢;(y) and ¢; _(y) = —¢;(y) with appropriate thresholds.
Alternatively, coverage over a finite set of prompts or categories can be en-
forced by defining ¢;(y) as the negative indicator of membership in a desired
subset, or as a distance-to-set penalty. The common feature is that coverage
constraints are naturally statistical and are therefore well aligned with the
expectation form.

(iii) Feature shift / distribution matching constraints. In conditional
generation or dataset editing, one may wish to constrain the deviation of
certain attributes from a baseline (e.g., demographic or style statistics). Let
¢ : R? — R measure an attribute. One may enforce bounds on mean shift,

Er[o(yr)] < T, (23)

or on second moments E[¢(yr)?] < 7/, or on a collection of linear func-
tionals of an embedding representation. These constraints are particularly
compatible with the primal-dual scheme because the dual update reduces to

tracking empirical averages of ¢;(yr).

Entropy regularization and the constrained max-ent objective. Al-
though our policy class is fixed to the Gaussian family @D, it is conceptually
helpful to view the control problem as entropy-regularized: exploration is
controlled by the temperature 8, and the induced g-function normalization
m = exp(q/f) provides an analytic bridge between the actor mean j,, and
critic quantities. In the constrained setting, entropy plays an additional sta-
bilizing role: by preventing overly concentrated policies early in training, it
reduces variance in terminal constraint estimation and mitigates premature
collapse to a potentially infeasible deterministic control.

Information pattern and oracle access. Problem is defined under
a restricted information pattern: the score V log p; is unknown, and both
h(yr) and ¢;(yr) may be observed only through noise. Consequently, the
Lagrangian cannot be evaluated exactly, and the running reward term
cannot be computed without an estimator. Our algorithm will therefore rely
on two kinds of signals: (a) a local score-based proxy used to construct a run-
ning reward estimate 7(¢, y, a) along visited states, and (b) episodic terminal
observations of h(yr) and ¢;(yr) used to form unbiased (or bounded-bias)
estimates of the Lagrangian terminal term and the constraint violations.

12



We make these oracle models explicit next, since they are the only inter-
face through which the learning dynamics interacts with the unknown data
distribution and the black-box objectives.

4 Score-signal and constraint-signal oracles

Our learning dynamics interacts with the unknown data distribution and
with the black-box terminal objectives only through stochastic signals. In
this section we specify (i) a score-signal oracle used to construct a running
reward estimate along visited states, and (ii) terminal reward/constraint
oracles returning noisy episode-end observations. We state these oracles at
a level of generality sufficient for the stochastic-approximation analysis in
later sections.

A ratio-based score signal from the dataset. Fix t € [0,7]. Under
the forward SDE, the marginal at time ¢ satisfies the mixture representation

p) = [ pioly] @) i) da, (24)

where pyo(- | ) is known and Gaussian. Differentiating under the
integral and using Bayes’ rule yields the classical conditional-score identity

Vylogpi(y) = E[Vylogpyo(y | Xo) | X =] (25)

Since pyo(- | x) is Gaussian, V, log pyo(y | @) is affine in (y, z) and is available
in closed form. Concretely, for each ¢ there exist a matrix M; € R%? and a
positive definite covariance ¥; € R%*? (both known from f, g) such that

pioly | 2) = N(Myz,r),  Vylogpyo(y | 2) = —7 (y — Myz). (26)

Substituting into shows that the unknown score V logp:(y) is de-
termined by the unknown posterior mean E[X, | X; = y]:

Viegpi(y) = 37! (y— MiE[Xo | X = y]). (27)

We approximate the posterior expectation in using only i.i.d. samples
{2l )}?:1 ~ po. For a given query point y and time ¢, define unnormalized
importance weights

wilt.y) = pply [2Y),  j=1,....n, (28)

and normalized weights @;(t,y) := w;(t,y)/ > y_; we(t,y) (with the conven-
tion that we add a small numerical £4¢, > 0 to the denominator if needed).
Then the self-normalized ratio estimator of the posterior mean is

Mu(y) = > wi(t,y)a¥) ~ E[Xo | X; =y]. (29)
j=1

13



Plugging into produces our score signal
Si(y) = =37 (y — Mymu(y)). (30)

Equivalently, using and linearity of expectation, one may write $;(y) =
Z?Zl w;(t,y) Vylogpyo(y | 20)), emphasizing that we are estimating the
conditional expectation in by a weighted empirical average.

In practice we do not take n to be the full dataset size; instead we evaluate
on a fresh minibatch B = {zU )}?‘:“5’ drawn i.i.d. from the dataset each
time a score signal is required. We denote the resulting estimator by s;(y; B)
to make the randomness explicit. This “local” estimator is only queried at
states (t,y) visited by the current policy and is not intended as a global score
model.

Running reward signal. Recall that the ideal running reward at reverse
time t depends on V log pr_:

r(ty,a) = —g(T —)?||Viogpri(y) — af”

We define the on-trajectory reward signal by replacing the unknown score

with :
Ft,y,a;B) == —g(T — t)?|[3r—e(y; B) — a||*. (31)

Two remarks are important.

First, even if sp_;(y; B) were unbiased for Vlogpr_¢(y), the quadratic
map u — —g?|lu — al|? would introduce Jensen-type bias in 7. Our subse-
quent algorithm and analysis therefore treat 7 as a generic noisy signal with
controlled moments rather than as an unbiased reward.

Second, because pyg is Gaussian, w;(t,y) can underflow in high dimen-
sion or at small noise levels. Numerically stable evaluation uses log-weights
logw;(t,y) and the log-sum-exp trick. To avoid rare but extreme weight
concentration (which inflates variance in ), one may apply standard sta-
bilizers such as weight clipping w; < min{w;, wmax} followed by renormal-
ization, or a tempered likelihood wy with k € (0,1]. These modifications
alter the bias/variance trade-off but fit our signal model below as long as the
induced second moments remain bounded.

Signal model and bounded-moment assumptions. We now state the
oracle properties required later. Along a policy-induced trajectory (v, a),
let F; denote the filtration generated by the rollout up to time ¢ together with
the internal randomness used to form previous minibatches. We postulate:

e Score-signal error control: there exist constants by > 0 and 02 < oo
such that for all ¢ € [0, 7] and all states y encountered under all iterates,

|E[B:(y; B)-Viogpi(y) | || < bs.  E[[I5e(y: B)~E[S:(y; B) !y](llg)ly] < ol
32
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This accommodates both unbiased estimation (bs = 0) and controlled
bias (e.g., due to minibatching, clipping, or tempering).

e Running reward signal control: there exist b, > 0 and 02 < oo such
that, for all visited (¢,y,a),

[E[F(t,y,a;B)—r(t,y,a) | y,a]| < by,  E[(7(t,y,a;B)-E[F(t,y,a:B) | y,a])* | y,a] < o

(33)
A sufficient condition for is together with uniform second-
moment bounds on the action and the score (ensured by the fixed
policy covariance and the moment-control assumption on trajectories).

We emphasize that f are local conditions: they are required only
along the state distribution generated by the iterates, not uniformly over all
y € RY,

Terminal reward and terminal constraint oracles. At the end of each
episode, upon observing yr, we obtain noisy samples of the terminal reward
and constraint costs. We model this as

h = h’(yT)+§ha /C\l - Ci(yT)+§C,i7 1= ]-a"'ama (34)
where (£, &c1, - - -5 &e,m) are conditionally zero-mean given yz (or, more gen-

erally, have bounded conditional bias) and have bounded conditional second
moments:

|E[& | yr]| < br,  E[& | yr] < op, |ElEei | yr)| < bey E[Eii | yr] < Uii-

(35)
This oracle captures measurement noise (e.g., stochastic downstream eval-
uation), Monte Carlo estimation error internal to h or ¢;, or randomized
detectors. It also permits deterministic but unknown h, ¢; by setting £ = 0.

Surrogate choices for practical objectives and constraints. The
framework requires only that h and ¢; be measurable and observable through
. In applications, one typically chooses surrogates that trade semantic
relevance against statistical efficiency.

(i) FID-like or distributional-quality surrogates. While the Fréchet Incep-
tion Distance is not naturally a single-sample terminal function (it is a two-
sample functional of distributions), one can introduce episodic surrogates by
comparing a generated sample yp to a running estimate of reference feature
statistics. Let ¢ : R? — R? be an embedding (e.g., an Inception feature).
Maintaining reference mean .o and covariance Y..f, one may define

hy) = —llo) — metll® or c(y) = lo(y) — pet]l®,

15
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or use mini-batch episodes in which the terminal feedback aggregates across
the B trajectories to estimate a distributional discrepancy. Such choices fit
our oracle model because the resulting terminal signal is still a noisy scalar
evaluation per episode (possibly computed from the episode batch).

(i1) Classifier risk or attribute constraints. Given a classifier producing a
logit ¢(y) for an undesired attribute, a hard indicator cost ¢(y) = 1{¢(y) > 0}
yields a chance-type expectation constraint, but it can be statistically noisy.
A common alternative is a bounded surrogate, e.g.,

c(y) = a(f(y)) € (0,1),

with o a sigmoid, or a hinge-type penalty. The expectation constraint
Elc(yr)] < 7 then controls average risk while producing lower-variance feed-
back.

(iii) CLIP-based safety or alignment scores. If one has a similarity model
producing a scalar score scip(y, prompt), then a terminal reward h(y) =
Sclip (Y, prompt) encourages alignment with the prompt, while safety con-
straints may take the form c(y) = max{0, sunsafe(y) — K} for a detector score
Sunsafe and threshold k. Again, these are measurable terminal functions with
noisy evaluations due to model stochasticity or prompt variability.

Summary of the interface. To emphasize the information pattern: dur-
ing rollout we have access to (¢, Yk, ax) and can call the score-signal oracle
(hence the running reward signal ) using only a minibatch from the
dataset and the known kernel p;o. At the end of the episode we receive
terminal samples . The next section shows how to combine these in-
gredients into a primal-dual martingale g-learning procedure whose updates
remain well-defined despite the absence of exact scores and despite noisy
terminal constraint feedback.

5 Primal-Dual Martingale ¢-Learning

We now combine the signal interface of Section[d with an entropy-regularized
control formulation to obtain an on-policy primal-dual actor—critic proce-
dure. The algorithm is a continuous-time analogue of g-learning based on
martingale orthogonality conditions, augmented with a projected dual ascent
for terminal expectation constraints.

Lagrangian shaping for terminal constraints. Let A € R be dual
variables. For a fixed A\, we consider the Lagrangian-shaped objective

m

T
/0 rtgan)dt + Bhiyr) — S Nileilyr) — ) |, (36)

=1

j(ﬁ;)\) = Er
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where the expectation is over trajectories of the controlled reverse SDE under
m. Since the constraints enter only through the terminal term, the running
control structure is unchanged; only the terminal condition is modified. At
the level of episode-end samples, we form the noisy Lagrangian terminal
signal

Ru o= 06— > M@ 7). (37
using the noisy terminal oracles ﬁ, ¢; from (34]).

Gaussian policy structure and actor parameterization. We work
with entropy-regularized exploratory control with temperature 6 > 0, and
we restrict attention to Gaussian policies with fixed covariance

mole110) = N (wolteo), oort = ) (38)

This family is natural for two reasons. First, the controlled reverse drift is
affine in the action a¢, so Gaussian exploration yields tractable dynamics.
Second, the running reward is (up to an additive term independent of a)
quadratic in a:

r(t,y,a) = —g(T—1)*||a|>+29(T—t)*(V log pr—(y), a)—g(T—t)?(|V log pr—+(y) ||,

and the entropy regularizer contributes a concave term in (- | ¢,y), so the
pointwise maximization over 7 yields a Gibbs distribution which, under a
quadratic g-structure, is Gaussian. Concretely, for any parameter ¢ and any

(t,y), the log-density of is

g(T —t)?
togmo(a ] £.) =~ X ()P 4 constr),  (39)

so learning reduces to learning the mean map py. In the linear setting
used later, we take pu(t,y) = ®(t,y) "9 for a feature map ®; however, the
algorithmic construction below does not require linearity.

Critic parameterization and the martingale residual. Let Jg(¢,y)
denote a parametric approximation to the value function associated with the
shaped objective (36) at the current dual iterate, and let gy (t,y,a) denote
the policy-induced ¢-function (the “soft” advantage) satisfying the standard
entropy-consistency identity

1
mulal t) o oxp gas(tna). (40)
For the Gaussian family , a convenient compatible choice is

qu(t,y,a) = _g(T_t)QHCL_:u@ZJ(t?y)HZ + b¢(t,y), (41)
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where by (t,y) is an (optional) scalar baseline absorbed by normalization; one
may take by = 0 without changing the policy.

The martingale approach proceeds as follows. In continuous time, apply-
ing Ito’s formula to J(¢,y;) and rearranging terms yields an identity of the
form

T
J(T,yr) = J(0,90) +/ (r(t,ye, ar) — a(t, ye, ar)) dt + (terminal term)
0

is a martingale under the policy when J, ¢ satisfy the appropriate soft HJB
relations. Discretizing on a grid t; = kAt and using Euler—-Maruyama to
simulate yg11 from (tg, Y, ar) suggests the per-step residual

Gr = Jo(tka1, Ykt1)—Jo (tk, Yr) +7(tk, Yk ar; Be) At—qy (tr, Yk, ax) At+1g— g1y
(42)

Heuristically, if (©,) were exact and 7 were replaced by 7, then (Gk){::_ol

would have conditional mean approximately zero given the past. We there-

fore fit (©, ) by driving the empirical residuals toward zero.

Primal updates (actor—critic via residual minimization). Given a
batch of trajectories {(y,(gb), ag)))}m generated on-policy from and sim-
ulated dynamics, we minimize the squared residual loss
B K-1 2
b
(@) (43)
b=1 k=0

@l =

‘C((_)a sz)) =

where G,ib) is defined by on trajectory b. We then perform stochastic
gradient steps

©<«+ 06— a@v@‘c(@aw)v Y= — O‘tbviﬁ[:(@a ¢)7 (44>

using automatic differentiation through Je and p,; (hence through gy via
(41))). Since the rollouts are on-policy, no importance weights are required.
In the linear regime, becomes a stochastic approximation scheme for
a system of orthogonality conditions; this is the viewpoint we adopt in the
next section.

Dual update (projected ascent). The dual variables are updated by
projected stochastic ascent on the constraint violations. With batch terminal

)

observations c;

B
L ) L
)\i<_H[O,A]<)‘i+77/\ <BZCZ —Ti)>, 1=1,...,m, (45)

b=1

, we set

where IIjy o} denotes projection onto [0, A] and A < oo is a chosen radius.
Projection is both a stability device and an analytical requirement for com-
pactness in the stochastic approximation arguments.
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Algorithmic summary. We summarize the procedure.

PD-CTQL (Primal-Dual Continuous-Time ¢-Learning).
Fix (T, At, K), temperature 6, reward weight (3, projection radius
A, and stepsizes (a@, ayp,ny). Initialize (©,4) and A = 0. For
episodes n =1,...,N:

1. Roll out B trajectories on the grid ¢, = kAt: sample yg ~ v,
thenfor k =0, ..., K—1sample ar, ~ N (py (ti, Yr), WI),
simulate yg+1, and compute 7(tx, Yk, ar; Br) using a fresh
minibatch B from the dataset.

2. Observe terminal signals (B,El,...,/c\m) and form hy via
137)-

3. Compute residuals Gy, via and update (©,1) by (44).
4. Update A by .

Return 7y, (and A as a dual certificate).

Stabilization and practical modifications. Although the core algo-
rithm is conceptually simple, several stabilizers improve numerical behavior
without changing the information pattern.

(i) Dual clipping and conservative ascent. Projection already clips the
dual variables, but in addition one may (a) use a smaller dual stepsize 1 than
primal stepsizes (a two-timescale choice), and (b) apply Polyak averaging
to the empirical constraint violations before the ascent step. Both reduce
oscillations when terminal feedback is noisy.

(i1) Entropy annealing. The fixed-covariance policy enforces exploration
level 6. In early training, larger 6 can improve coverage of visited states and
hence reduce the risk of weight degeneracy in the score-signal oracle; later,
decreasing 6 sharpens the policy around the learned mean. A simple sched-
ule is 0, = max{fmin, Gop"} with p € (0,1), while keeping the covariance
consistent with 6,,.

(iii) Critic reqularization. The residual loss (43 can admit near-degenerate
solutions when function classes are rich. Standard remedies include weight
decay on ©, spectral normalization (for neural critics), and gradient clipping
on VeL. In the linear regime, an explicit ridge term £|©|? yields strong
monotonicity of the expected update map, which simplifies finite-time anal-
ysis.

(iv) Truncated backpropagation through time. Because Gy, depends on Jg (tx+1, Yk+1),
full-trajectory differentiation is possible but can be memory-intensive for
large K. One may treat (yx) as a stop-gradient in the critic update (semi-
gradient) and still retain a valid stochastic approximation interpretation in
the linear setting.
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Transition to theory. The next section specializes to linear actor/critic
parameterizations and imposes bounded-moment conditions on the signal
noise and rollouts. In that setting, the primal updates (44)) and the projected
dual ascent form a two-timescale stochastic approximation scheme for
a projected saddle-point system, enabling almost sure convergence and finite-
episode bounds with explicit decompositions into approximation, score-signal,
terminal-noise, and discretization errors.

6 Lower Bounds and Hardness

We complement the upper bounds of the linear theory with an information-
theoretic obstruction: with only noisy terminal feedback, no algorithm can,
in general, reach simultaneous e-optimality and e-feasibility in o(¢~2) episodes.
The point is not that diffusion control is intrinsically hard, but that black-
box terminal oracles reduce the problem to constrained mean estimation, for
which 72 is minimax-optimal.

Terminal-feedback-only protocols. We consider an episodic protocol in
which, in each episode, an algorithm selects a (possibly history-dependent)
policy 7(™ to generate a trajectory (Yt)te[o, 7], and then observes only termi-
nal noisy samples

7

R = hyi) + 67, @Y = i) + €,

with € sub-Gaussian (or merely bounded second moment) noise. The al-
gorithm may, of course, have full access to the simulated state y; during
rollout; the restriction is that the reward/constraint feedback is available
only through the terminal oracles. This is precisely the regime in which
terminal constraints are most challenging, and it is the regime addressed by
the lower bound below. (In our full framework, one additionally has access
to a running score-signal 7; the lower bound isolates the irreducible diffi-
culty contributed by terminal feedback, and therefore applies a fortiori to
any method that does not extract extra information about h, ¢; beyond their
terminal noisy evaluations.)

Embedding a constrained bandit into a controlled diffusion. We
exhibit a reduction from a two-armed constrained stochastic bandit. Fix
d = 1, choose any T' > 0, and take a constant-diffusion controlled reverse
dynamics of the form

dy; = g*ay dt + gdWy, yo =0, (46)

with known g > 0. Consider the restricted policy class of open-loop constant
controls a; = a with action set A = {—A,+A} for some constant A > 0.
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Under , the terminal state satisfies
yr ~ N($*AT, g°T) or yr ~ N(=¢°AT, ¢°T),

depending on the chosen arm. Choosing A sufficiently large (as a con-
stant, independent of ¢) ensures that the two terminal distributions are well-
separated, so that the event {yr > 0} acts as a near-deterministic indicator
of the chosen armF]

We now define terminal reward/constraint functions that are essentially
arm-dependent constants. Let ¢ : R — [0,1] be a smooth step function
such that ¢(y) =1 for y > 1 and ¢(y) = 0 for y < —1, and define an “arm-
indicator” x(y) := ¢(y). For two scalars (r_,ry) € [0,1)? and (k_, k4 ) € R?,
set

h(y) ==r—+ (ry —r-)x(v),  c(y) =k + (5Kt — £-)x(y). (47)

When A is large, choosing a = +A makes x(yr) =~ 1, whereas choosing
a = —A makes x(yr) = 0, so the episode produces (up to an A-controlled
approximation error) a noisy sample from one of two mean pairs (74, k)
or (r—,k_). In other words, the diffusion control problem restricted to A
simulates a two-armed bandit with reward mean r+ and constraint mean s4.

A pair of hard instances. Fix a feasibility threshold 7 € R and noise
level 02 for the sub-Gaussian terminal noises. For a target accuracy € €
(0,1/8), consider two instances | and 12 defined by (46)—(47) with the
same dynamics but different terminal oracle parameters:

| . (r+’r_):<%—|—5, %), (K+,H_):<T+6,T—6>;

1@ (ry,r) = (%, %Jre), (Fg, ko) = (7'76, T+6>.

In IV, arm “47 is (slightly) higher reward but violates the constraint in
expectation, while arm “—” is feasible and only ¢ worse in reward. In 1)
the roles are swapped. Thus, in either instance, an e-optimal and e-feasible
algorithm must identify which arm is feasible (up to the e slack), which is
exactly a constrained identification/mean-estimation task.

Theorem 6.1 (Minimax lower bound via constrained bandit reduction).
Consider the one-dimensional controlled diffusion with action set A =
{=A,+A} and terminal reward/constraint oracles , with additive inde-
pendent sub-Gaussian terminal noises of variance proxy at most o®. There

2If one prefers an exact embedding, one may instead define the oracles to depend on
the chosen action as well as yr; however, the near-deterministic separation suffices for the
minimax argument and keeps the embedding within our terminal-oracle model.
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exists a constant ¢ > 0 (depending only on fized separation parameters such
as A, g,T and the step function @) such that the following holds.

For any (possibly adaptive) algorithm that, after N episodes, outputs a
policy T which with probability at least 2/3 is simultaneously e-feasible and
e-optimal for both instances 1V and |, we must have

0.2

N > c—.
FEquivalently, the minimaz episode complexity for achieving (e-optimality, e-feasibility)
under noisy terminal feedback is Q(e72).

Proof sketch. We reduce to Le Cam’s two-point method. Under the restric-
tion A = {—A,+A}, each episode consists of choosing an arm and observ-
ing a noisy scalar reward and a noisy scalar constraint value. Because the
oracles are (approximately) constant on the high-probability terminal
regions induced by each arm, the conditional distribution of the observed
terminal pair (h,¢) given the chosen arm is (up to a fixed, e-independent
approximation error that can be absorbed into constants) a product of two
sub-Gaussian observations with means (r4, k).

For any fixed adaptive algorithm, let P; and Py denote the laws of the
full interaction transcript (actions and observations) under 11) and 1), The
per-episode KL divergence between the conditional observation distributions
under the same chosen arm is O(g2?/0?), since the means differ by ©(¢) and
the noise is sub-Gaussian with proxy ¢2. By the chain rule for KL and

adaptivity, we obtain
2

KL(P, [|Py) < CN S5
g

for a constant C independent of N,e. If N < co?/e? with ¢ small, then
KL(P; || P2) is bounded by an absolute constant, implying that the total
variation distance between Py and P, is bounded away from 1. Consequently,
no decision rule based on the transcript can distinguish 1) from 1% with
probability exceeding (say) 2/3.

However, the identity of the instance determines which arm is (approxi-
mately) feasible and hence which arm any e-optimal and e-feasible solution
must favor. Therefore, any algorithm that cannot reliably distinguish the
instances must, with probability at least 1/3 on one of them, either choose
the infeasible arm often enough to incur constraint violation exceeding €, or
choose the safe arm when it is suboptimal by more than €. This yields the
stated lower bound. O

Implications for upper bounds. Theorem shows that the O(N~1/2)
rates obtained by stochastic approximation analyses are unimprovable in
the episode count, even in a highly benign LQG diffusion with a two-action
policy class and with perfect knowledge of the dynamics. In particular, any
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improvement beyond N~1/2 would contradict the Q(¢7?) minimax episode
complexity for terminal-feedback constrained mean estimation.

Multiple constraints. The above construction extends to m > 1 con-
straints by taking m independent constraint oracles whose means differ by
O(e) across instances, yielding a worst-case lower bound Q(me~2) when one
requires uniform e-feasibility across all constraints. Formally, one constructs
2™ instances indexed by a sign vector in {£1}™, applies a standard multi-
hypothesis testing reduction (Fano), and obtains that at least one constraint
coordinate remains insufficiently estimated unless N = Q(me~2).

Discussion. We emphasize what the lower bound does and does not say.
It does not preclude faster rates in regimes where (a) the terminal oracles are
known analytically, (b) one can query gradients of E[h(yr)] and Elc;(yr)],
or (c) additional side information is available beyond noisy terminal evalu-
ations. Rather, it asserts that, under the black-box model where h and ¢;
are accessed only through noisy terminal samples, the episode complexity
is dominated by the need to estimate means accurately enough to certify
feasibility and near-optimality. This obstruction persists regardless of com-
putational power, function approximation capacity (including overparame-
terized or NTK-like regimes), or the availability of accurate simulation of
the controlled diffusion.

7 Implementation Notes and Recommended Exper-
iments

We collect here practical remarks for implementing PD-CTQL and a set of
experiments that, in our view, exercise the distinctive aspects of the model:
(i) terminal-only black-box reward/constraints, (ii) on-policy training in a
controlled reverse diffusion, and (iii) primal-dual updates with projected
multipliers. Throughout, we assume that the reverse-time controlled dy-
namics are simulated on a grid t; = kAt, k =0,..., K, and that the policy
is the Gaussian family prescribed by the entropy-regularized quadratic con-
trol structure,

0 0
Ty (- | £,y) :./\/'<u1/,(t,y), 29@7_”207 ag = pup (B, Y )14 | mﬁm Gk ~ N(0,1).

We recommend implementing action sampling via the above reparameteriza-
tion so that actor gradients propagate cleanly through su,,. For the controlled
sampler, Euler—-Maruyama suffices for the theory-aligned baseline:

ka1 = Ykt [F(T—te)yet9(T—t)?ar| At+g(T—t,) VAL &, & ~N(0,1),
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with the understanding that higher-order solvers (or predictor—corrector vari-
ants) can be substituted to reduce discretization error in the integral reward
surrogate.

Score-signal computation and numerical stability. The running re-
ward depends on ||V log pr—_¢(y) — al|?, where the score is unavailable. In our
interaction model we replace this by a ratio-estimator-based signal 7(t, y, a) =
—g(T —)?||3(t,y) — al|?>. In practice, the dominant numerical issue is eval-
uating S(¢,y) stably for small ¢ and large d. A robust implementation uses
log-sum-exp normalization when estimating quantities of the form

M
~ 1 j ~ ~
Piy) = 57 > paoly |2, 3(ty) =V, logpily),
j=1

with xé] ) drawn from the dataset minibatch. We recommend (i) evaluating
log pyjo(y | :cé] )) and normalizing by subtracting the maximum log-density
across 7, (ii) computing gradients analytically using the Gaussian form of Pijos
and (iii) clipping ||5(¢,y)|| to a moderate threshold to prevent rare large ratios
from destabilizing the critic loss. Since 7 is only used as a stochastic signal
inside a stochastic approximation scheme, mild clipping typically improves
performance without changing qualitative behavior.

Critic loss and trajectory storage. The martingale-residual objective
requires correlating successive states along each trajectory. If memory per-
mits, we store (yg,ag, ;) for k=0,..., K —1 and compute the residuals

Gr = Jo(ths1, Ukr1) — Jo (trs Yr) + A+ 1{k = K =1} hp — gy (tr, yr, ar) AL,

then minimize Y, G3 over the batch. When K is large (as in image dif-
fusion), one may instead use truncated backpropagation through time or a
sliding window, at the cost of some bias. We also found it helpful to nor-
malize the residuals by an estimate of their running standard deviation, to
avoid the terminal term dominating early in training.

Dual update and two-timescale tuning. The practical role of the dual
update is to trade off constraint satisfaction against reward. The projected
ascent step

i — H[07A] <>\Z + 7 (E[Cz(yTﬂ - Tl))

is sensitive to 1, and A. We recommend the following protocol. First, fix
A large enough that projection is inactive at the eventual solution (this can
be checked post hoc by monitoring how often A hits the boundary). Second,
tune 7y so that multipliers evolve noticeably slower than the actor—critic
parameters; concretely, if o denotes the actor/critic learning rate, we often
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choose 1y € [1073a, 107 '] depending on the noise level in ¢;. Third, report
the final A as a certificate of how hard the constraints are: persistent large
multipliers indicate an inherently tight feasible set for the chosen policy class.

Experiment 1: Constrained Swiss-roll with terminal property con-
straints. A minimal continuous experiment is a d = 2 synthetic dataset
(Swiss-roll or mixtures of Gaussians) with a terminal reward that encourages
a property not aligned with the data likelihood. For instance, let pg be Swiss-
roll in R?, let h(y) reward landing in a target region (e.g. h(y) = 1{y € R}
smoothed, or h(y) = —dist(y,R)?), and impose a constraint on a differ-
ent terminal attribute, e.g. c¢(y) = ||y||> with 7 controlling radial spread, or
c(y) = 1{y1 > 0} with a target proportion. The point is to force a nontrivial
tradeoff between reward shaping via the terminal oracle and plausibility via
the diffusion score penalty. We recommend sweeping 8 and reporting Pareto
curves of (estimated) E[h(yr)] versus constraint violation (Elc(yr)] — 7) "
Baselines include (i) unconstrained PD-CTQL with A = 0, (ii) a penalty
method replacing A by a fixed scalar tuned on a validation set, and (iii) post
hoc rejection sampling (which typically degrades sample efficiency sharply
when 7 is tight).

Experiment 2: Synthetic LQG with known optimum (sanity check).
To separate algorithmic issues from representation and score-signal approxi-
mation, we recommend an LQG instance where an analytic solution is avail-
able. Take linear dynamics with constant g and choose a quadratic ter-
minal reward h(y) = —3y' Qy and linear/quadratic constraints ¢;(y) (e.g.
c(y) = u'y or c(y) = %|lyl[?). In this setting, for linear actor/critic, one
can compute the optimal feasible control (or at least the optimal control
for a fixed A\) and use it to validate: (i) convergence of A to a stabilizing
value, (ii) scaling of suboptimality and violation with N, and (iii) sensitivity
to discretization K. This experiment also allows one to inject controlled
noise into h, ¢ and empirically confirm the anticipated e~2 scaling in episode
complexity by plotting the number of episodes needed to reach fixed target
tolerances.

Experiment 3: Image generation with safety-classifier constraints.
For images, we interpret y; as a latent (or pixel) variable in a pre-trained
diffusion model whose forward SDE coeflicients f,g are fixed. Terminal
reward and constraints are provided by black-box evaluators on decoded im-
ages. A representative configuration is: reward h(yr) is an aesthetic score
or text-image alignment score (e.g. CLIP similarity), and constraints ¢;(yr)
are safety-related (e.g. NSFW probability, toxicity score, or a content pol-
icy classifier). Thresholds 7; encode desired safety levels, and the algorithm
learns a control that improves the reward while keeping expected unsafe
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scores below 7;. We recommend evaluating against: (i) classifier guidance
(which does not directly enforce expectation constraints), (ii) simple con-
strained sampling via rejection (which may be infeasible at high resolution),
and (iii) Lagrangian-guidance heuristics that tune a penalty weight offline
rather than via dual ascent. In addition to standard sample-quality metrics,
we must report constraint metrics with confidence intervals, since constraints
are expectations under a stochastic generator.

Ablations: dual stepsize, projection radius, temperature, and solver
order. We recommend four ablations that directly probe the design choices
in PD-CTQL. (i) Dual stepsize ny: too large yields oscillatory feasibility; too
small yields slow constraint enforcement. Plot trajectories of A; and the run-
ning estimate of E[¢;(yr)] — 7. (ii) Projection radius A: vary A over orders
of magnitude; if A is too small, constraints may remain violated even at
convergence due to dual clipping. (iii) Temperature 0: higher 6 increases
exploration (and variance) via the fixed policy covariance; we recommend
reporting how 6 affects constraint satisfaction and sample diversity. (iv)
Discretization/solver: compare Euler-Maruyama with a higher-order sam-
pler at matched compute; quantify the change in reward and violation at
equal N to illustrate discretization effects.

Evaluation metrics and reporting. We recommend reporting (a) esti-
mated terminal reward E[h(yr)] and constraint violation max;(E[c;(yr)] —
7i)+ using an independent set of rollouts (not reused for training updates),
(b) the empirical distribution of ¢;(yr) (not only its mean) to expose heavy
tails, and (c) the final dual variables A together with the fraction of iterations
at which projection is active. For image generation, we additionally report
FID (or KID) and a diversity statistic (e.g. LPIPS diversity) alongside safety
violation rates. Since our constraints are in expectation, it is essential to in-
clude confidence intervals: for each i, report E[c;(yr)] + 1.96 ¢, and declare
feasibility only when the upper confidence bound is below 7; (or adopt a
deliberately conservative margin). This reporting discipline aligns empirical
practice with the theoretical interpretation of feasibility as an expectation
constraint under the learned policy.

8 Implementation Notes and Recommended Exper-
iments

We record here implementation details that materially affect the stabil-
ity of PD-CTQL, together with experiments that isolate (i) terminal-only
black-box reward /constraints, (ii) on-policy interaction with a controlled re-
verse diffusion, and (iii) the projected primal-dual mechanism. We assume
throughout a uniform grid ¢t = kAt for £k =0, ..., K and a Gaussian policy
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with fixed covariance prescribed by the entropy-regularized quadratic struc-
ture,

0 / 0
7%(‘ ‘ t,y) :N<:u¢’(tvy)7 WI); a = Mw(tlmyk)+ m@; Ck NN(OJ)-

We implement action sampling via this reparameterization so that gradients
propagate only through p, and not through sampling. For the controlled
sampler, Euler-Maruyama provides the theory-aligned baseline,

ki1 = Yt [F(T—te)yut9(T—t)2ar| At+g(T—t,) VAL &, & ~N(0,1),

and all reported quantities (objective and constraints) should be interpreted
as approximations to the continuous-time quantities up to discretization er-
ror of order O(At) (or better if a higher-order solver is used).

Computing the score-based running signal. The running reward in-
volves ||V logpr_¢(y) — a||? and thus requires a score surrogate. In our in-
teraction model this appears only as a stochastic signal, so we implement

M
A ~ ~ ~ ~ 1 ‘
Flt,y,a) = —g(T-07|[3ty)=al’,  S(ty) = Vyloghroy),  Pily) = 12 > puoly | 25).
j=1

with {:c(()] )}j:1 drawn ii.d. from the dataset minibatch. Numerically, the
relevant object is a mixture of Gaussians; the dominant failure mode is un-
derflow/overflow when d is large or ¢ is small. We therefore recommend im-
plementing log p;(y) by log-sum-exp stabilization: compute £; = log py|o(y |

x(()j))’ set gmax = max; £j7 and evaluate

M M
10g Pi(y) = Lmaxtlog (ﬁ Do) S(ty) = Y wVylogpi(y | ).
j=1 j=1
where w; oc eli—tmax  Since Pyjo 1s Gaussian, Vy logpy|g is available in closed
form and should be coded analytically rather than by automatic differen-
tiation through a density routine. Two practical heuristics are consistently
beneficial: (i) clipping ||5(¢,y)|| (or equivalently clipping 7) to control rare
large ratios, and (ii) using a moderately large M early in training (to reduce
signal variance), then reducing M once the policy concentrates. Because the
critic loss involves squared residuals, heavy-tailed 7 can dominate updates;
clipping typically improves optimization without changing the qualitative
fixed point.
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Critic residuals, parameterization, and variance control. PD-CTQL
uses martingale orthogonality via a squared residual loss along sampled tra-
jectories. Concretely, for each trajectory we form

Gy = Jo(ths1, Uks1)—Jo (tr, yr) Tk At+1{k = K—1} hy,—qy (tr, Yk, a) At,

and minimize Z,If;ol Gi over a batch. When K is modest, storing the full
trajectory (yg,ak,Tx) is simplest. When K is large, we recommend either
(i) truncating the residual loss to a sliding window (introducing a controlled
bias) or (ii) accumulating residuals online and discarding intermediate states.
In either case, gradient clipping for (©,1)) is usually necessary once hy, has
high variance.

The g-term may be implemented in several equivalent ways. If we explic-
itly enforce the Gaussian form of 7y, with fixed covariance, then logmy(a |
t,y) is available in closed form and we may set g, = 6log my up to an addi-
tive constant independent of a (which cancels in policy normalization). This
avoids learning an additional network for g, and often stabilizes training;
alternatively, one may learn Jg and p, only and treat g, as implied by
the Gaussian policy. Independently of the parameterization, we recommend
normalizing residuals by an empirical running scale estimate (e.g. dividing
G by a moving standard deviation) so that the terminal term does not
overwhelm the early-time residuals.

Dual ascent and timescale separation. The projected update

Ai < Tl A] </\i + (E[Cz‘(yTﬂ - 7@))

is the mechanism enforcing expectation constraints. Empirically, stability
depends more on timescale separation than on the absolute value of 1,. We
thus tune 7, relative to the actor—critic learning rate « so that A changes
slowly compared to (1, ©). A practical protocol is: choose A so that projec-
tion is inactive at the apparent solution (monitored by the fraction of updates
hitting the boundary), then set 7, € [10~3, 10~ a] depending on the noise
of ¢;. If constraints oscillate (alternating over- and under-satisfaction), we
decrease 1) and/or increase the batch size for terminal estimates. We in-
terpret persistently large A; as a diagnostic: either the constraint is tight
for the chosen policy class, or the horizon/temperature prevents sufficiently
targeted control.

Experiment A: constrained Swiss-roll (or mixtures) with terminal
property constraints. We begin with a low-dimensional (d = 2) dataset
(Swiss-roll, rings, or Gaussian mixtures) to visualize trajectories and directly
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inspect constraint effects. We choose a terminal reward h that induces a dis-
tributional shift (e.g. attraction to a designated region R), and a terminal
constraint ¢ that competes with this shift. Examples that are easy to inter-
pret are

h(y) = —dist(y, R)?, c(y) = |ly||* with threshold T, or c(y) = 1{y1 > 0} with threshold -

We recommend sweeping /3 and 7 to obtain a Pareto front, reporting (E[h(y7)], (E[c(yr)]—
7)+) and also the empirical distribution of ¢(yr) to reveal whether feasibility

is achieved via tail suppression or via a global shift. Baselines should include:

(i) the unconstrained variant with A = 0, (ii) a fixed-penalty method where A

is tuned offline (which typically underperforms when noise or nonstationarity

is present), and (iii) rejection sampling at terminal time (which becomes in-

efficient as 7 tightens). In this setting we can additionally plot the evolution

of A\ and the running estimate of constraint violation across training, which

serves as an operational check of the intended primal-dual behavior.

Experiment B: synthetic LQG instance with known optimum. To
disentangle representational issues from the algorithmic mechanism, we rec-
ommend a linear—quadratic instance where (for fixed \) the optimal policy
can be computed, and where feasibility /optimality can be measured pre-
cisely. A typical choice is constant g, linear drift, quadratic terminal reward
h(y) = —%yTQy, and a linear or quadratic constraint such as c(y) = u'y
or c(y) = 3|ly|[%. With a linear actor/critic, we can verify: (i) convergence
of X\ to a stabilizing value, (i) the N —1/2 scaling by plotting suboptimality
and violation versus number of episodes on log—log axes, and (iii) sensitivity
to discretization by varying K at fixed wall-clock compute. This experiment
is also the natural place to inject controlled additive noise into h and @ and
empirically confirm the =2 episode scaling predicted by the lower bound:
fix target tolerances (Eopt, €feas) and measure the number of episodes needed

for both to be met with a prescribed confidence level.

Experiment C: image generation with safety-classifier constraints.
For images we treat the diffusion backbone (and thus f,g) as fixed and
use PD-CTQL to learn a control that changes the sampling distribution
at terminal time. The terminal reward h(yr) is provided by a black-box
evaluator (e.g. a text-image alignment model), while constraints ¢;(yr) are
safety-related (e.g. NSF'W probability, policy violation score). Thresholds 7;
encode acceptable expected risk. We emphasize two implementation points.
First, training must be on-policy: constraint satisfaction is a property of
the current generator, and stale rollouts can mislead dual ascent. Second,
constraint metrics should be estimated using an independent evaluation set
of rollouts (not reused in updates), since otherwise the same terminal noise
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that drives learning can bias reported feasibility. Baselines include classi-
fier guidance (which lacks expectation-constraint enforcement), rejection at
terminal time (often infeasible computationally at scale), and offline-tuned
penalty guidance (which fails to adapt as the policy changes). In addition
to quality metrics, we report safety metrics with confidence intervals; since
constraints are expectations, it is methodologically appropriate to declare
feasibility only when an upper confidence bound is below 7;.

Ablations and reporting discipline. We recommend four ablations that
directly interrogate the algorithmic design: (i) 7y (dual timescale), (ii) A
(dual clipping), (iii) @ (exploration through fixed covariance), and (iv) solver
order / At (discretization). For each ablation we report the induced changes
in reward and constraint violation at fixed compute. For images we addi-
tionally report FID (or KID) and a diversity statistic (e.g. LPIPS diversity)
alongside maxi(IE[ci(yT)] — 7i)+. Finally, we report the terminal constraint
distribution (not only its mean) and the final \ together with the frequency
of projection activity; these quantities are essential for interpreting whether
feasibility is achieved robustly or by exploiting tails.

9 Extensions

Conditional diffusion and contextual control. Many applications re-
quire sampling from a conditional data law po(- | C') given a context vari-
able C' (class labels, text embeddings, or other side information). The for-
ward SDE and its Gaussian transition kernel naturally extend by condition-
ing: for each realized C, we run the same forward OU/VP dynamics from
ro ~ po(- | C), yielding marginals p;(- | C) and conditionals py(- | zo,C)
(the latter often independent of C' for OU/VP coefficients). The reverse-time
controlled dynamics become

dy, = [f(T — )y + g(T — t)2a]dt + g(T —t) dW;,  yo ~v(-| C),

with a contextual policy my(a | t,y,C) = N(puy(t,y,C), ﬁ]). The
running reward is replaced by the conditional score mismatch,

re(t,y,a) = —g(T — 1)?||Viogpr_i(y | C) — %,

and terminal feedback may also be context-dependent, h(yr, C') and ¢;(yr, C),
with constraints imposed either per-context (harder) or in expectation over
the context distribution (simpler):

Elei(yr, C)] < 7, or Elei(yr,C) | C) < 7(C) for all C.

Algorithmically, the only substantive change is that the ratio-estimator signal
for Vlog pi(- | C) should draw minibatches from the conditional dataset (or
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reweight a pooled dataset by a learned propensity model for C'). When C' is
high-dimensional (e.g. text embeddings), a pragmatic alternative is to treat
the score surrogate as 5(t,y,C) = Vylogpi(y | C') where py(- | C) is a kernel
mixture over training samples whose contexts lie in a neighborhood of C.
The convergence and finite-sample statements carry through with the same
structure, with constants depending on the conditional moment bounds and
the conditional signal quality (the latter entering the SignalErr term).

ODE samplers and deterministic controlled flows. While our inter-
action model is phrased as a controlled reverse SDE, it is often computa-
tionally advantageous to replace stochastic sampling with an ODE solver.
In score-based diffusion this corresponds to the probability-flow ODE; in our
notation the uncontrolled reverse drift is typically of the form f(7T — ¢)y; —
g(T — t)®>V1ogpr_¢(y:), and we have replaced the score by an action aj.
The corresponding controlled probability-flow dynamics therefore take the
deterministic form

U = f(T — )y + g(T — t)?ay, Yo ~ v,

with terminal-time feedback Bh(yr) — >, Ai(ci(yr) — ) as before. Two
issues then arise. First, exploration no longer arises from Brownian noise,
so an entropy-regularized Gaussian policy should be interpreted as injecting
policy noise into the control channel, i.e. sampling a; ~ 7y (- | t,y;) while the
state evolves deterministically given the sampled control. This preserves the
variational structure of Theorem 1 (quadratic action penalty yields Gaussian
optimality) while enabling deterministic integration schemes (Runge-Kutta,
adaptive step sizes) for the state. Second, the discretization error changes
character: for a p-th order ODE solver the analogue of DiscErr becomes
O(AtP) under standard smoothness assumptions on f, g and on the learned
mean map fis. In practice, when g(7' — t) becomes small near terminal
time, the ODE is often stiff; adaptive solvers reduce error but also intro-
duce nonuniform computational budgets across trajectories. One convenient
compromise is a hybrid scheme: early time steps use an SDE integrator to
maintain exploration when noise is large, and late time steps switch to an
ODE solver once the policy has concentrated and stochasticity primarily
increases estimator variance.

Multiple constraints, continuation, and empirical Pareto fronts.
Our formulation already allows m > 1 constraints with a dual vector A € R,
but in applications we typically require a family of tradeoffs rather than a sin-
gle feasible point. We may view the thresholds 7 € R and reward weight
as knobs defining a family of constrained problems; running PD-CTQL across
a grid yields an empirical Pareto front in the plane of (E[h(yr)], E[c(yr)])
(or its higher-dimensional analogue). To reduce the cost of sweeping, we rec-
ommend a continuation strategy: start from an “easy” constraint vector 7(©)
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(loose feasibility) and gradually tighten 7(5) | 7* warm-starting (¥, ©, \)
at each stage. Formally, if the saddle point mapping 7 — (*(7), A*(7)) is
locally Lipschitz (as in strongly monotone linear settings), then continuation
reduces transient oscillations by tracking the solution path. A similar con-
tinuation may be used in § to trade terminal reward against score-matching
regularization, which is useful when h is very noisy: begin with small 8 (pri-
oritizing score-consistency) and increase [ once the generator stabilizes. We
also note that multiple constraints with heterogeneous noise levels benefit
from constraint-specific dual stepsizes 7, ; and from constraint normaliza-
tion. Since the dual ascent uses estimates of E[c;(yr)] — 7, rescaling ¢; to
comparable magnitudes reduces ill-conditioning and improves the practical
validity of timescale separation.

Robust constraints under distribution shift and risk-sensitive vari-
ants. Expectation constraints are brittle when the terminal cost oracle
drifts (e.g. a safety classifier whose calibration changes) or when the deploy-
ment context differs from the training context. A robust extension is to
impose constraints uniformly over an ambiguity set of environments Q:

sup Eqr, [ci(yr)] < 7,
QeQ

where () may index perturbations of the terminal cost functional, the initial
prior v, or even mild misspecification of the forward coefficients used in the
score signal. One tractable choice is an f-divergence ball around a nominal
environment Qo, which leads (by convex duality) to a risk-sensitive penalty
of the form p(c;(yr)) such as an entropic risk or a variance-regularized surro-
gate. Another practically useful variant is CVaR-type constraints, replacing
Elci(yr)] by CVaRq(c;i(yr)) to explicitly control tails; this is particularly
relevant when c¢; measures a rare but severe violation. In both cases the
primal-dual mechanism remains natural: we introduce additional dual vari-
ables for the robustified constraints and estimate the corresponding gradients
from terminal samples. What changes in the analysis is not the stochastic
approximation skeleton but the concentration behavior of the terminal statis-
tics: robust objectives typically amplify tail noise, and thus the constants
hidden in O(N~'/2) may become large unless one uses larger batches or ex-
plicit variance reduction (e.g. control variates based on cheap proxies for ¢;).
Empirically, robust constraints also interact with the projection radius A:
if A is too small, the algorithm cannot express the required robustness and
will settle at a point with persistent violation; if A is too large, dual-driven
nonstationarity can destabilize the actor unless the dual stepsize is reduced
accordingly.

Privacy-preserving score signals and constrained access to data.
Our interaction model accesses the dataset only through minibatch computa-
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tions of p;(y) and 5(t,y) = V, log D (y), which suggests privacy mechanisms
localized to the score-signal pathway. A simple approach is to make the ra-
tio estimator differentially private by (i) clipping per-sample contributions
to the mixture score and (ii) adding calibrated Gaussian noise. Concretely,
writing s(t,y) = Z]M:1 wju; with u; = Vy log pyo(y | :L‘(()J)), we may clip u;
to ||lu;|| < S and release

M
Spp(t,y) = Y wjclip(uj; S) +opp ¢, (~N(0,1),
i=1

with opp set by a privacy accountant for subsampled Gaussian mechanisms.
This produces a private running signal 7pp(¢,y,a) = —g(T —t)?||spp(t,y) —
al|?>. From the viewpoint of our bounds, this modification simply increases
SignalErr by an additive variance term proportional to 0']2:)1;,7 and introduces a
bias term if clipping is active. Hence the same convergence statements apply
provided the second moments remain bounded; however, the achievable ¢ for
a fixed privacy budget is limited by the unavoidable noise floor in spp. More
structured mechanisms are possible: one may precompute privatized suffi-
cient statistics for Gaussian mixtures, use random-feature approximations to
privatize density evaluation, or train a privatized conditional density model
for pp and use it as a drop-in replacement for dataset minibatches. The
common theme is that PD-CTQL does not require learning a globally ac-
curate score, only sufficiently informative local signals along the on-policy
state distribution; this locality can be exploited to concentrate the privacy
budget on regions the policy actually visits.

Limitations and open problems. Our main theoretical guarantees are
stated for linear actor—critic parametrizations (or, equivalently, for settings in
which the induced stochastic approximation (SA) dynamics are effectively
linear after feature lifting). This leaves open the regime most relevant to
modern diffusion models, namely deep nonlinear parametrizations of i, and
Jo with nonconvex objectives and potentially unstable coupled updates.
While one may hope to import arguments from the neural tangent kernel
(NTK) literature or from overparameterized actor—critic analyses, two ob-
stacles are specific to our setting: (i) the running signal 7 is itself a learned,
on-the-fly functional of the dataset through the ratio estimator, and thus its
error distribution depends on the visited states; (ii) the dual variables induce
an additional slow nonstationarity which is benign in two-timescale linear SA
but can amplify instabilities in nonlinear training. A principled extension
would require a stability theory for primal-dual martingale-residual learn-
ing with state-dependent reward noise and biased score surrogates, ideally
yielding conditions under which the iterates remain in a compact set without
imposing explicit projections on ¥, ©. Even in the NTK limit, it is not imme-
diate that the induced kernel regression viewpoint respects the constrained
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saddle-point structure, because the critic loss is not a standard supervised
objective but enforces martingale orthogonality under the evolving policy.

A second limitation concerns the modeling of constraints and, more
broadly, the gap between a terminal expectation constraint and practical
notions of safety. Our basic constraints take the form Elc;(yr)] < i, esti-
mated from noisy terminal observations. This is statistically convenient but
may be inadequate when violations are rare yet catastrophic, or when ¢; is
itself a proxy produced by a misspecified classifier. Although robust and
tail-sensitive variants (e.g. CVaR, entropic risk) can be incorporated at the
level of the Lagrangian, the analysis becomes sensitive to higher moments
and to the calibration of the oracle. A concrete open problem is to design
constraint surrogates that (a) admit unbiased (or controlled-bias) stochastic
gradients from black-box terminal samples, (b) preserve a tractable saddle-
point structure, and (c) yield interpretable guarantees such as

P(ci(yr) > 7) <6 or CVaRa(ci(yr)) <7

with finite-episode bounds that do not scale poorly in 1/§ or 1/(1 — ).
One promising direction is to combine primal-dual updates with calibration
of the constraint oracle (e.g. conformalized classifiers) so that the learned
multiplier A\ certifies a constraint with respect to a statistically valid upper
confidence bound on ¢;. This would shift the burden from assuming cor-
rect ¢; to estimating it conservatively, but it requires integrating uncertainty
quantification into the policy-induced sampling distribution, which is itself
changing during training.

A third open issue is the on-policy nature of the algorithm. The mar-
tingale residual construction is naturally compatible with online rollouts,
yet the sample complexity of diffusion generation is dominated by simulator
steps, making off-policy reuse appealing. Off-policy learning in controlled
diffusions raises nontrivial measure-change questions: trajectories generated
under an earlier policy my are distributed according to a different path
measure than those under 7y, and importance weighting must account for
continuous-time likelihood ratios (Girsanov transforms). In discretized form,
one can write a product of Gaussian action likelihood ratios, but this can
have high variance over long horizons K. An open problem is to develop a
replay scheme with provable variance control, for example by (i) truncating
the horizon and using multi-step objectives, (ii) employing pathwise control
variates linked to the quadratic structure in a, or (iii) learning a density ra-
tio model for the state—action occupancy measure. The constrained setting
further complicates matters because off-policy estimates of E[c;(yr)] can be
biased if replay trajectories come from policies with systematically different
terminal distributions. KEstablishing that replay buffers preserve feasibility
(even approximately) appears to require new arguments beyond standard
off-policy actor—critic analyses.
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Fourth, our discretization model is intentionally simple: we assume a
fixed step size At and treat the induced error as an additive DiscErr term.
This is unsatisfactory in regimes where g(T' — t) varies by orders of magni-
tude or where the dynamics are stiff, as is common in variance-preserving
diffusions near t =~ T'. Adaptive step-size solvers are then practically neces-
sary, but they introduce two conceptual difficulties. First, the effective time
grid becomes random and policy-dependent, which interacts with SA since
the update noise is no longer identically distributed across steps. Second, if
one switches between SDE and ODE modes or uses higher-order solvers, one
must specify which objective is being optimized: the continuous-time con-
trol problem, the discretized controlled Markov chain, or a solver-dependent
approximation. A precise theory would treat the solver as part of the en-
vironment and quantify the bias in the estimated martingale residuals as
a function of local truncation error. It remains open to obtain end-to-end
bounds of the form

primal-dual gap < O(N~Y2) + O(E[solver error]),

where the solver error is controlled adaptively per trajectory under a fixed
compute budget.

Fifth, the restriction to a Gaussian policy with fixed covariance is both
a strength and a limitation. It is a strength because it yields a closed-form
variational structure (Theorem 1) and prevents degeneracy in exploration
by maintaining a minimum-entropy behavior proportional to 8. However, it
limits expressivity: the optimal surrogate score a; may be multimodal given
(t,y) (e.g. when the conditional score is itself multimodal under ambigu-
ous contexts), and a unimodal Gaussian may be an inefficient parametriza-
tion. Moreover, fixing the covariance to ﬁ[ hard-codes an exploration
schedule that may be mismatched to the local geometry of pr_; and to
the noise level of the score signal. Natural extensions include (i) learning a
state-dependent covariance ¥y(t,y), (ii) using mixture-of-Gaussians policies,
or (iii) employing normalizing-flow policies in a to capture heavy tails and
skew. The challenge is that the quadratic running penalty —g?||V log p — a||?
interacts favorably with Gaussian entropy regularization; once we depart
from this family, the identity 7 o exp(gy/6) may no longer yield tractable
sampling or stable gradients. A key open problem is to identify alterna-
tive regularizers (e.g. f-divergences or Wasserstein penalties) that preserve
computability and admit a comparable martingale-residual learning rule.

Sixth, the quality of the ratio-based score signal remains a practical and
theoretical bottleneck in high dimension. Our assumptions treat 7 as a noisy
but controlled approximation of the true running reward. Yet the ratio es-
timator relies on finite minibatches from py and on evaluating pyo(y | o),
which can concentrate sharply as d grows. This raises a question of infor-
mational sufficiency: for which classes of pg and time horizons T does an
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on-policy, local score signal contain enough information to guide the policy
toward high terminal reward while respecting constraints? Conversely, can
one prove impossibility results showing that, even ignoring terminal noise,
any algorithm that only accesses py through such local ratios requires expo-
nentially many samples in d to achieve a nontrivial approximation? Clarify-
ing this would help delineate when reward-directed diffusion via local score
surrogates is viable and when one must fall back to globally learned score
networks.

Finally, there is a conceptual open problem regarding certificates and
stopping criteria. In constrained optimization one often desires a posteriori
guarantees (upper bounds on constraint violation and primal suboptimality)
at finite V. Our primal-dual iterates provide a natural certificate in the
form of A, but turning this into a quantitative bound requires estimating
the primal-dual gap, which in turn depends on quantities (true scores, true
constraint expectations) that are not directly observable. Developing data-
dependent confidence intervals for feasibility and performance, based solely
on terminal samples and score-signal diagnostics collected along trajectories,
would substantially improve practical reliability. We view such certification
as essential for deploying constrained diffusion samplers in safety-critical
settings and as a natural next step in the theory.
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