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Abstract

Model-based offline RL mitigates data scarcity by training poli-
cies in learned dynamics, but suffers from distribution shift due to
model bias and policy shift. Recent work (e.g., SAR/SAMBO) cor-
rects this shift with reward terms involving log-likelihood ratios log p

q
and log π

πc
, estimated by classifiers. In 2026-era pipelines, however,

the best world models are often implicit (diffusion, autoregressive la-
tent dynamics) where calibrated transition likelihoods are unavail-
able or meaningless. We propose a likelihood-free generalization of
shifts-aware rewards that replaces log ratios with critic scores ob-
tained from variational f -divergence duals in a learned latent space.
The result is a discriminator-only correction that can be applied to
diffusion/transformer world models, stabilizing imagination rollouts
and policy updates without requiring tractable densities. We for-
malize a clean offline setting with implicit models and provide (i)
a variational surrogate objective that recovers SAR when the diver-
gence is KL and critics are optimal, (ii) finite-sample performance
bounds that explicitly separate representation mismatch, critic duality
gaps, and rollout-horizon compounding, and (iii) lower bounds showing
that without overlap, no likelihood-free correction can guarantee im-
provement. Experiments (recommended) should validate robustness on
narrow-coverage benchmarks (NeoRL) and new OOD model-mismatch
suites targeting implicit world models.
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1 Introduction

Offline reinforcement learning aims to synthesize a policy using only a fixed
dataset of transitions collected by an unknown behavior policy, without fur-
ther interaction with the environment. In the model-based variant, we ad-
ditionally fit a dynamics model from the same dataset and then optimize a
policy by rolling out the learned model. This paradigm promises improved
generalization and sample efficiency, but it is constrained by a central ob-
struction: the optimization procedure induces distribution shift relative to
the data-generating distribution. In offline settings, this shift is not merely a
statistical nuisance; it can create systematic overestimation and compound-
ing error because the policy is optimized on regions where neither the dataset
nor the learned model is reliable.

It is useful to separate two distinct sources of shift. First, dynamics
shift occurs because the learned dynamics model does not coincide with the
true environment kernel. Even when the model is accurate on the dataset
support, model rollouts under the learned policy can quickly drift toward
states and transitions that were rarely observed, at which point multi-step
prediction errors compound over the effective horizon. Second, policy shift
arises because the optimized policy may differ substantially from the un-
known behavior policy that generated the dataset. This mismatch can cause
the value estimates to be extrapolated to actions not represented in the data,
which is known to produce brittle behavior in purely offline control. Model-
based offline methods thus face a coupled failure mode: policy optimization
pushes toward actions that look beneficial under the model, and the result-
ing state-action distribution is precisely the one for which the model is least
trustworthy.

A principled family of approaches addresses these shifts by reweighting
or correcting objectives using likelihood ratios, often derived from a change-
of-measure argument along trajectories. Representative instances include
shift-aware reward (or advantage) correction schemes that use terms of the
form log p(s′|s,a)

m(s′|s,a) to penalize model transitions that are implausible under

the environment, as well as policy regularization terms such as log πb(a|s)
π(a|s)

to discourage deviation from the behavior distribution. Such corrections
may be understood as constructing an evidence lower bound (ELBO)-like
surrogate objective, whose maximization yields a conservative policy update
when the corrections are accurate. When both the environment likelihood
and the model likelihood are tractable (or estimable in a calibrated way),
these likelihood-based shift corrections admit clean interpretations and, in
some regimes, provable safety guarantees.

However, modern world models used in high-dimensional domains are
increasingly implicit. Diffusion models, autoregressive transformers with
stochastic decoding, and other implicit generative mechanisms can provide

3



high-quality samples s′ ∼ mθ(· | s, a), but typically do not provide a normal-
ized and tractable density mθ(s

′ | s, a), nor a computable logmθ(s
′ | s, a). In

continuous state spaces, even models that define densities in principle may
make likelihood evaluation prohibitively expensive or numerically unstable.
Consequently, likelihood-based shift-aware reward correction is not directly
applicable precisely in the regimes where model-based planning and rollouts
are most attractive.

This work develops a likelihood-free alternative that preserves the concep-
tual structure of shift-aware correction while requiring only sampling access
to the learned dynamics. The key observation is that the corrections needed
for conservatism can be formulated in terms of distributional discrepancy
between environment transitions and model transitions, as well as between
behavior actions and policy actions. Such discrepancies can be measured
by an f -divergence, and crucially, f -divergences admit variational dual rep-
resentations that depend only on expectations under the relevant distribu-
tions. Expectations are estimable from samples, hence they remain available
in the implicit-model setting. We thus replace explicit log-likelihood ratios
by learned witness functions (critics) obtained from a discriminator-style
training objective.

Concretely, we operate in a representation space z = f(s), both for
statistical efficiency and to express sufficiency assumptions that are natu-
ral in high-dimensional observation domains. We consider the pushforward
transition distributions induced by the environment and the model, namely
pf (z

′ | s, a) and mθ,f (z
′ | s, a). We train a transition critic Tϕ(z, a, z

′) via
the dual objective of a chosen f -divergence, using samples (z, a, z′) derived
from real transitions in the offline dataset and from model rollouts. In par-
allel, we train an action critic Uψ(z, a) to detect policy shift by contrasting
action-state pairs generated by the current policy with those present in the
dataset. The outputs of these critics are then used as additive corrections
to a base reward, yielding a corrected reward r̃ϕ,ψ that can be optimized by
any convergent off-policy algorithm on a mixture of real and model-generated
transitions.

Our development is guided by two requirements. First, the method must
be likelihood-free: all learning signals for the corrections must be computable
from samples, not from explicit densities. Second, the method must permit
end-to-end performance control : we wish to relate the true environment per-
formance of the final policy to quantities that measure model mismatch and
critic error, and we wish to expose the dependence on the effective horizon
H ≍ (1 − γ)−1. The latter is essential because multi-step compounding is
the primary failure mode in model-based optimization, and because offline
learning without overlap is information-theoretically impossible.

The contributions are as follows.

• We formulate a shift-aware corrected objective for model-based offline
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RL with implicit dynamics models, using variational f -divergence crit-
ics in representation space to replace likelihood ratios. The resulting
algorithm requires only (i) i.i.d. minibatches from the offline dataset
and (ii) sampling access to the learned model.

• We show that, under standard overlap assumptions (absolute conti-
nuity of the relevant pushforward measures) and bounded critic dual-
ity gaps, the learned transition critic provides a principled proxy for
likelihood-based dynamics correction. For KL in particular, the op-
timal critic recovers the familiar log-density ratio up to an additive
constant, while our implementation remains valid without computing
any likelihoods.

• We establish a surrogate lower bound relating the corrected objective
to a utility-transformed version of the true return. For log-reward vari-
ants (requiring rmin > 0), this yields a direct lower bound on log JM(π)
up to additive terms controlled by critic error and representation suf-
ficiency.

• We provide an end-to-end additive performance bound for the learned
policy π̂, with explicit dependence on (i) representation-space model
mismatch measured by an f -divergence, (ii) policy shift relative to the
dataset, (iii) critic duality gaps and representation error, and (iv) op-
timization error of the policy improvement routine. The bound scales
linearly with the effective horizon, matching known lower-bound phe-
nomena in offline RL.

The central message is that likelihood-based shift-aware correction is not
intrinsically tied to tractable densities; rather, it is tied to distinguishability
between distributions. By translating the correction terms into variational
divergences, we obtain a method that is compatible with implicit world mod-
els while retaining a conservative interpretation: the corrected reward penal-
izes transitions and actions that are distinguishable as “out-of-distribution”
relative to the offline dataset. The theoretical development makes explicit
which assumptions are needed for this interpretation to hold—notably over-
lap in the representation space and critic learnability—and quantifies how
violations or approximation errors propagate into value suboptimality.

Finally, we emphasize the scope of what can and cannot be guaranteed.
Our results do not circumvent the impossibility of offline RL without cov-
erage: if the optimal policy relies on actions or transitions unsupported by
the dataset (or, here, unsupported by model samples in the relevant repre-
sentation), then no algorithm can provide a uniform performance guarantee.
Instead, our framework clarifies the precise role of overlap and supplies a
likelihood-free mechanism for enforcing conservatism in the presence of both
model bias and policy shift, thereby aligning modern implicit generative
modeling with the requirements of reliable offline control.
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2 Background and related work

Likelihood-based shift-aware correction. A line of work formalizes
model-based policy optimization as a change-of-measure problem along tra-
jectories, leading to objectives that incorporate explicit likelihood ratios be-
tween the environment dynamics and the learned model, and between the
behavior policy and the learned policy. In its simplest form, one obtains
trajectory weights of the type

w(τ) ∝
∏
t≥0

p(st+1 | st, at)
m(st+1 | st, at)

· πb(at | st)
π(at | st)

,

or additive reward corrections involving log p
m and log πb

π , which yield an
ELBO-like conservative surrogate when combined with concave utility trans-
forms (notably the log transform when rmin > 0). Shift-Aware Reward
(SAR) and closely related formulations (including SAMBO and variants
thereof) make this structure explicit and provide guarantees under overlap
and boundedness conditions; the key technical ingredient is that, for KL-
based corrections, the optimal witness function is a log density ratio and
Jensen-type arguments convert likelihood ratios into lower bounds on the
desired return or on a monotone transform thereof (??). Our contribution
may be viewed as retaining this conservative change-of-measure template
while removing the assumption that m(· | s, a) admits tractable likelihoods.

Off-dynamics reward correction (DARC). A complementary approach
corrects for dynamics mismatch by modifying rewards to counteract discrep-
ancies between the transition distributions induced by two Markov kernels.
Off-Dynamics RL and DARC-like methods estimate a correction term that,
informally, encourages the policy to prefer transitions that are more plausi-
ble under the target dynamics than under the source dynamics (?). These
techniques are naturally connected to density-ratio estimation between tran-
sition measures (or state-action-next-state triples) and can be interpreted as
constructing a shaped reward whose value function under the learned kernel
approximates the value function under the true kernel. In offline settings,
the practical difficulty is that the required ratios can be high variance and,
when implemented using explicit likelihoods, become unavailable for implicit
models. The likelihood-free critics we use occupy the same conceptual posi-
tion as DARC’s correction term, but are learned via variational divergence
objectives from samples rather than from explicit density evaluations.

Model-based offline RL via pessimism and uncertainty penalties.
A broad set of model-based offline algorithms addresses distribution shift by
discouraging rollout regions where the learned model is unreliable. MOPO-
style methods penalize rewards by an epistemic uncertainty estimate of the
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dynamics model, typically implemented via ensembles and predictive vari-
ance, so that planning in the model becomes pessimistic away from the data
support (?). Related methods (e.g., MOBILE, COMBO, and other hybrid
schemes) combine short-horizon model rollouts with conservative value esti-
mation or conservative Q-learning penalties to prevent exploitation of model
errors (??). These approaches differ in (i) whether conservatism is enforced
by an explicit uncertainty penalty, a lower confidence bound, or a conserva-
tive value regularizer, and (ii) whether rollouts are performed in the learned
model, in a learned latent model, or in a mixture with real transitions. Our
framework is compatible with these design choices but emphasizes a differ-
ent axis: we treat conservatism as a divergence-controlled correction between
distributions (environment versus model, policy versus behavior), learned by
classification-style objectives that remain well-defined with sampling-only
models.

Density-ratio estimation and classifier-based correction. Estimat-
ing ratios such as dP

dQ from samples is a classical problem that appears in
off-policy evaluation, covariate shift correction, and model bias correction
(??). In high dimensions, direct density estimation is typically avoided in
favor of classification-based ratio estimation: given samples from P and Q,
train a discriminator D to distinguish the two; under suitable losses, the
discriminator recovers a monotone function of the density ratio, e.g.,

log
dP

dQ
(x) = log

D(x)

1−D(x)
+ const

for logistic regression at optimum. This perspective is operationally attrac-
tive in our setting because both pf (· | s, a) and mθ,f (· | s, a) are accessible
through samples (from Denv and from model rollouts) even when neither
density is tractable. We use this idea twice: first to compare transition
triples (z, a, z′) from environment versus model, and second to compare ac-
tion choices (z, a) from the current policy versus the dataset. The latter
is closely related to techniques that regularize policy improvement by con-
straining divergences from the behavior distribution, as in many conservative
or behavior-regularized offline RL algorithms (???).

Variational f-divergences, f-GAN, and NCE. Our treatment of dis-
crepancy is phrased in terms of f -divergences because they admit a varia-
tional dual of the form

Df (P∥Q) = sup
T

EP [T ] − EQ[f∗(T )],

where f∗ is the convex conjugate of f (?). This dual representation is the
basis of f -GANs and encompasses familiar objectives: KL corresponds to
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log-ratio recovery, Jensen–Shannon corresponds to logistic classification, and
χ2-type divergences yield quadratic witnesses. Noise-contrastive estimation
(NCE) and related contrastive objectives also fit this template, providing
consistent estimators of density ratios or unnormalized models by discrimi-
nating data from noise (?). We exploit precisely the property that the dual
depends only on expectations, not on likelihood evaluations. In our algorith-
mic instantiation, the transition critic Tϕ and action critic Uψ are trained by
such variational objectives, and their outputs are used as additive corrections
in a surrogate reward. From the theoretical side, we track the effect of im-
perfect critic optimization via duality gaps, which is standard in variational
divergence estimation.

Implicit generative modeling for dynamics. Modern world models
increasingly rely on implicit generative mechanisms. Diffusion models, au-
toregressive sequence models with stochastic decoding, and latent-variable
models with intractable marginals can produce high-fidelity samples yet lack
tractable normalized likelihoods mθ(s

′ | s, a), or make likelihood compu-
tation computationally infeasible at training time (??). In reinforcement
learning, such models are used for imagination-based policy learning and
planning, often by rolling out predicted future states and optimizing ex-
pected returns under the model (??). In online settings, model bias can
be corrected by environment interaction; in offline settings, the same bias
becomes a dominant failure mode. The central methodological point for us
is that, with implicit dynamics, any approach requiring logmθ(s

′ | s, a) is
structurally incompatible with the model class. This motivates our emphasis
on objectives that require only conditional sampling from mθ.

Representation learning and latent-space comparisons. Many suc-
cessful model-based RL methods operate in a learned latent space in which
dynamics are simpler and prediction is easier (???). In offline regimes, repre-
sentation learning also serves as a variance-reduction device for discrepancy
estimation: discriminators trained on raw observations may overfit or focus
on irrelevant features, whereas a suitably learned f : S → Z can expose
the task-relevant components of the transition while suppressing nuisance
variation. This connects to sufficiency and bisimulation-style representation
results, where value functions and optimal policies can be approximated as
functions of latent variables under appropriate invariances (?). Our subse-
quent setup therefore measures model mismatch and overlap in the pushfor-
ward transition measures pf (· | s, a) and mθ,f (· | s, a), making explicit the
role of representation sufficiency error ϵrep in end-to-end guarantees.

Summary and positioning. The above threads collectively suggest a
unifying view: conservatism in model-based offline RL can be enforced by
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penalizing distinguishability between (i) environment and model transitions
and (ii) behavior and learned actions, and this distinguishability can be
learned by variational critics from samples. In the next section we formal-
ize the offline learning problem under an implicit dynamics sampler, define
the mixed real/model training distribution induced by rollouts, and state
overlap and representation assumptions in a form tailored to likelihood-free
f -divergence correction.

3 Problem setup

We study offline policy learning in a discounted MDP M = (S,A, p, r, µ0, γ)
with reward function r : S × A → [rmin, rmax] and discount γ ∈ (0, 1). The
return of a trajectory τ = (s0, a0, s1, a1, . . . ) is

R(τ) =
∑
t≥0

γtr(st, at), JM(π) = Eτ∼pπ
[
R(τ)

]
,

where pπ denotes the trajectory measure induced by µ0, the policy π(· | s),
and the true transition kernel p(· | s, a).

Offline data and implicit dynamics. Our only access to the environ-
ment is an offline dataset

Denv = {(si, ai, ri, s′i)}ni=1,

collected by an unknown behavior policy πb (or mixture thereof) under p.
In addition, we are given a learned dynamics model mθ(· | s, a) trained from
Denv that is implicit : we can sample s+ ∼ mθ(· | s, a) for any queried (s, a),
but we do not assume the conditional likelihood mθ(s

′ | s, a) is tractable
or even well-defined in closed form. Accordingly, any method requiring
logmθ(s

′ | s, a) is not admissible in our computational model; the primi-
tive we use is conditional sampling.

Model rollouts and mixed training distribution. Training proceeds
by interleaving (i) minibatches from Denv and (ii) short rollouts in mθ under
the current policy π. Concretely, for a rollout horizon h we sample a seed
state s0 from an empirical distribution supported on states in Denv (e.g.,
uniform over dataset states), then iterate

at ∼ π(· | st), st+1 ∼ mθ(· | st, at), t = 0, . . . , h− 1,

and store the resulting triples in a model-generated buffer Dm = {(st, at, st+1)}.
The induced training data for subsequent critic/policy updates is then drawn
from a mixture of real and model transitions. For analysis it is convenient
to view this mixture as defining an auxiliary Markov chain whose one-step
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transitions equal p with some probability and mθ otherwise, or more sim-
ply as an algorithm-dependent sampling distribution over (s, a, s′) that we
denote by ξπ. The precise mixing scheme is not essential; what matters is
that ξπ is supported on (a) the dataset transitions and (b) the transitions
produced by mθ along π-rollouts starting from dataset states, and that its
effective horizon is controlled by h to limit compounding model error.

Trajectory measures and shift decomposition. The main difficulty is
that performance is evaluated under the true environment dynamics p, while
training uses a distribution ξπ influenced by Denv and mθ. To make explicit
the sources of mismatch, we write the environment trajectory density under
π as

pπ(τ) = µ0(s0)
∏
t≥0

π(at | st) p(st+1 | st, at),

and the corresponding model trajectory density as

mπ
θ (τ) = µ0(s0)

∏
t≥0

π(at | st)mθ(st+1 | st, at),

understanding these as measures when densities do not exist. If likelihoods
were available, we could express a change of measure between pπ and mπ

θ

through the multiplicative product of one-step ratios. In particular, when-
ever p(· | s, a) ≪ mθ(· | s, a) we have the Radon–Nikodym derivative

dpπ

dmπ
θ

(τ) =
∏
t≥0

dp(· | st, at)
dmθ(· | st, at)

(st+1),

which isolates model bias as a transition-kernel mismatch.
A second shift arises because Denv reflects πb rather than π. If we define

the behavior-induced trajectory measure

pπb(τ) = µ0(s0)
∏
t≥0

πb(at | st) p(st+1 | st, at),

then, on the event that π(· | s) ≪ πb(· | s), the policy shift admits a
trajectory derivative

dpπ

dpπb
(τ) =

∏
t≥0

π(at | st)
πb(at | st)

.

In offline learning πb is unknown, and in our setting mθ is implicit; thus nei-
ther derivative is directly computable. Nevertheless, these identities dictate
the structure of a conservative objective: we must control deviations between
(p, π) and the training sources (mθ, πb) in a way that remains meaningful
with sampling-only access.
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Representation-space formulation. Since both transition comparison
and action comparison are high-dimensional when s is complex (e.g., images),
we introduce a representation map f : S → Z and write z = f(s). We
measure mismatch in Z via pushforward transition measures

pf (z
′ | s, a) the law of z′ = f(s′) when s′ ∼ p(· | s, a), mθ,f (z

′ | s, a) the law of z′ = f(s′) when s′ ∼ mθ(· | s, a).

We emphasize that pf (· | s, a) is observable through (s, a, s′) ∈ Denv by
mapping s′ 7→ f(s′), and mθ,f (· | s, a) is observable by sampling s+ ∼
mθ(· | s, a) and mapping s+ 7→ f(s+). Hence, although p and mθ may
be intractable in S, their induced distributions in Z are accessible through
samples.

We will quantify transition mismatch by an f -divergence Df (pf (· | s, a)∥mθ,f (· |
s, a)) and, analogously, policy shift by a divergence between the action dis-
tributions π(· | s) and the (implicit) behavior action distribution induced by
Denv at state s. We record the overlap conditions needed for such compar-
isons in the representation space:

pf (· | s, a) ≪ mθ,f (· | s, a) for relevant (s, a), π(· | s) ≪ πb(· | s) for relevant s,

where “relevant” refers to the occupancy induced by the training pipeline
(dataset seeding and h-step model rollouts). These absolute continuity re-
quirements are the minimal conditions under which any change-of-measure
or divergence-based control can be well-posed.

Value sufficiency in latent space. The purpose of f is not only statis-
tical (variance reduction for discrepancy estimation) but also semantic: we
require that planning and evaluation can be carried out using z with limited
loss. Formally, we assume a representation sufficiency condition: there exists
a value function class V on Z such that the optimal value function in S is
approximable by V (z) with error at most ϵrep in the sense relevant to our
Bellman backups and occupancy measures. This condition allows us to re-
late (i) mismatch measured on pf versus mθ,f to (ii) errors in value estimates
and policy gradients computed from mixed real/model data.

Effective horizon and short-rollout regime. Throughout, we use the
standard effective horizon notation H ≍ (1 − γ)−1. Algorithmically, we
further cap model rollouts at a finite h to avoid unbounded accumulation
of model error; analytically, this produces bounds that scale with either H
or min{H,h} depending on the quantity being controlled. The role of the
subsequent correction terms is to ensure that, even within this short-rollout
regime, the policy does not exploit systematic bias in mθ nor drift excessively
away from the behavioral support.
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Preparation for likelihood-free correction. In the likelihood-based
setting, the preceding change-of-measure identities suggest additive correc-
tions of the form log p

mθ
and log πb

π along trajectories, often coupled with a
concave utility such as log r (hence our standing assumption rmin > 0). Since
explicit likelihoods are unavailable here, we will instead construct sample-
based surrogates for these corrections by learning witness functions in the
variational dual of an f -divergence, separately for (i) transition shift be-
tween samples from pf and mθ,f and (ii) action shift between policy actions
and dataset actions. The next section carries out this derivation and defines
the corrected reward used for offline actor–critic updates on the mixed buffer
Denv ∪Dm.

4 Likelihood-free shift-aware rewards

Our objective is to construct an additive reward correction that plays the
role of the intractable log-ratio terms suggested by the change-of-measure
identities, while requiring only samples from Denv and conditional samples
from the implicit model mθ. We do so by learning witness functions in the
variational dual of an f -divergence, separately for (i) transition shift between
pf (· | s, a) and mθ,f (· | s, a) and (ii) action shift between dataset actions and
actions proposed by π at dataset states.

Variational dual for transition shift in latent space. Fix a convex
function f : (0,∞) → R with f(1) = 0, and recall the associated f -divergence

Df (P∥Q) = Ex∼Q
[
f
(dP
dQ

(x)
)]

, P ≪ Q.

A standard variational representation (Fenchel dual) states that, for suitable
function classes,

Df (P∥Q) = sup
T

{
Ex∼P [T (x)]− Ex∼Q[f∗(T (x))]

}
, (1)

where f∗ is the convex conjugate f∗(t) = supu>0{ut− f(u)}. We apply (11)
conditionally at each (s, a) with

P ≡ pf (· | s, a), Q ≡ mθ,f (· | s, a), x ≡ z′ ∈ Z,

and we allow the witness to depend on (z, a, z′) through a parametric critic
Tϕ(z, a, z

′). Concretely, we train Tϕ using (i) real transitions (s, a, s′) ∈ Denv

mapped to (z, a, z′) and (ii) model transitions (s, a, s+) with s+ ∼ mθ(· | s, a)
mapped to (z, a, z+). Writing expectations with respect to the corresponding
empirical/sampling procedures, the conditional dual objective reads

max
ϕ

E(s,a,s′)∼Denv

[
Tϕ(f(s), a, f(s

′))
]
− E(s,a)∼ν, s+∼mθ(·|s,a)

[
f∗(Tϕ(f(s), a, f(s

+)))
]
,

(2)
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where ν is the state–action sampling distribution used to query the model
(typically induced by dataset seeding and short rollouts). When Tϕ is op-
timized and the function class is rich enough, (2) provides a likelihood-free
estimate of the discrepancy between pf and mθ,f on the region of interest.

KL specialization and connection to log-ratio corrections. The case
most directly aligned with SAR is the forward KL divergence. Taking

f(u) = u log u, f∗(t) = exp(t− 1),

the conditional dual (11) becomes

KL(P∥Q) = sup
T

{
EP [T ]− EQ[exp(T − 1)]

}
. (3)

Moreover, the pointwise optimizer satisfies T ∗(x) = 1 + log dP
dQ(x) (any ad-

ditive constant is immaterial up to normalization conventions). In our con-
ditional setting this yields, formally,

T ∗(z, a, z′) = 1 + log
dpf (· | s, a)
dmθ,f (· | s, a)

(z′), z = f(s), z′ = f(s′).

Thus, once trained, Tϕ can be interpreted (up to an additive constant and
optimization error) as a proxy for the unavailable per-transition log-ratio
log

pf
mθ,f

, and hence as a substitute for log p
mθ

in the SAR-style correction.
Importantly, this interpretation is likelihood-free: the critic is learned from
samples without ever evaluating mθ(s

′ | s, a).

Variational dual for action (policy) shift. We next construct an anal-
ogous witness for policy shift relative to the unknown behavior policy. Since
πb(· | s) is not available, we use the dataset itself to provide samples from
the behavior action distribution at visited states. A convenient conditional
comparison is: sample s from the dataset state marginal, then compare ac-
tions a ∼ π(· | s) to dataset actions paired with the same (or nearby) state.
In representation space we write z = f(s) and train an action critic Uψ(z, a)
via an f -divergence dual between two distributions on (z, a):

Pza ≡ law of (f(s), a) when (s, a) ∼ Denv, Qza ≡ law of (f(s), a) when s ∼ Denv, a ∼ π(· | s).

Applying (11) with x = (z, a) gives the objective

max
ψ

E(s,a)∼Denv

[
Uψ(f(s), a)

]
− Es∼Denv, a∼π(·|s)

[
f∗(Uψ(f(s), a))

]
. (4)

Under the KL choice, the optimizer satisfies

U∗(z, a) = 1 + log
dPza
dQza

(z, a).
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If the state sampling in Pza and Qza is matched (both use s ∼ Denv), then
the state-marginal ratio cancels and we obtain the conditional form

U∗(f(s), a) = 1 + log
πb(a | s)
π(a | s)

,

again up to an additive constant. This is exactly the per-step policy-shift
term that appears in likelihood-based conservative objectives, but realized
through a sample-based discriminator.

Corrected reward as a surrogate for SAR-style objectives. We now
combine the base reward transformation with the learned witnesses. Since
the likelihood-based derivations typically yield additive log corrections along
trajectories, we adopt the log-reward transform and define per-transition
corrected rewards of the form

r̃ϕ,ψ(s, a, s
′) = log r(s, a) + αTϕ(f(s), a, f(s

′)) + β Uψ(f(s), a), (5)

with weights α, β ≥ 0 controlling the strength of dynamics and policy-shift
corrections. In practice, we may apply the transition correction only to
model-generated transitions (where it is intended to compensate model bias)
and apply the action correction primarily on dataset-seeded states (where the
behavior distribution is well-defined). The precise gating is algorithmic; the
analytic role is that αTϕ penalizes regions where mθ,f deviates from pf , and
βUψ penalizes actions that depart from the behavioral support.

Under the KL specialization and assuming optimal critics, (5) recovers
the canonical SAR structure up to constants:

r̃(s, a, s′) ≈ log r(s, a) + α log
pf (z

′ | s, a)
mθ,f (z′ | s, a)

+ β log
πb(a | s)
π(a | s)

.

Constants (including the “+1” in the KL optimizer) can be dropped or ab-
sorbed into a baseline since they shift values by at most an additive constant
and do not affect the optimal policy under standard entropy-regularized ob-
jectives; nonetheless, for numerical stability we will later enforce bounded-
ness of Tϕ and Uψ via clipping or calibration.

On reward positivity and utility alternatives. The use of log r(s, a)
requires rmin > 0, which we assume throughout. This is not merely techni-
cal: the log transform is the mechanism by which multiplicative change-of-
measure factors become additive trajectory sums, enabling Jensen-type lower
bounds and ELBO-like surrogates. When the environment reward may be
zero or negative, one may (i) shift and scale rewards to enforce positivity
(noting that such transformations alter the objective unless one simultane-
ously adjusts the performance criterion), or (ii) replace the log transform
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by a different concave utility u and analyze Ju(π) = E[u(R(τ))] instead of
JM(π). For general f -divergences, this utility view is natural: the varia-
tional form (11) provides a family of inequalities in which f∗ determines
the penalty applied to samples from the reference distribution, and the cor-
responding surrogate objective controls a utility-transformed return whose
curvature matches the chosen divergence. In all cases, the guiding principle
is unchanged: we construct additive, sample-based witness functions that
(a) discourage exploitation of model bias and (b) discourage unsupported
policy deviation, while remaining implementable with an implicit dynamics
sampler and offline data alone.

5 Algorithm (LF-SAR): practical training loop with
implicit models

We now make the preceding construction operational in the sampling-oracle
setting, i.e., when mθ(· | s, a) can be queried for samples but does not admit
tractable likelihood evaluation. The resulting method, which we refer to as
LF-SAR, alternates between (i) short-horizon rollouts in the implicit model
under the current policy, (ii) training variational critics for transition shift
and action shift, and (iii) updating the policy by off-policy RL on a mixture
of real and model-generated transitions with corrected rewards.

Data structures and seeding. We maintain two replay buffers: the
fixed offline buffer Denv and a growing model buffer Dm containing tuples
(s, a, r, s′) where s′ ∼ mθ(· | s, a) and (s, a) are generated by rolling out
the current policy from dataset seed states. In each iteration we sample a
minibatch of seed states s1 from the empirical state marginal of Denv (or
from the s-components of transitions), and we run h-step synthetic rollouts

at ∼ π(· | st), st+1 ∼ mθ(· | st, at), t = 1, . . . , h,

storing the resulting transitions in Dm. We emphasize that h is not intended
to approximate the full discounted horizon; rather, it controls the extent to
which model bias can compound before we re-anchor to the dataset. In
practice we treat h as a conservative hyperparameter (small to moderate)
and increase it only when the learned model is demonstrably accurate on the
relevant latent features.

Representation and caching. Because both critics operate in latent
space, we either (a) learn an encoder f jointly with the critics and policy, or
(b) pretrain f on Denv and subsequently freeze it. The latter frequently im-
proves stability by preventing nonstationarity in the discriminator features.
In either case, we precompute and cache z = f(s) for states in Denv when
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feasible; for Dm we compute f(s) on the fly (or cache in parallel) to avoid
repeated encoder passes during critic updates. When mθ itself is defined in
latent space (e.g., a latent diffusion model), we identify s with a decoded
observation and set z to the model’s internal latent; when doing so we must
ensure that the same f is applied consistently to both real and model tran-
sitions to avoid spurious detectability unrelated to dynamics mismatch.

Transition-shift critic updates. Given minibatches of real latent tran-
sitions (z, a, z′) from Denv and synthetic latent transitions (z, a, z+) from
Dm, we update Tϕ by stochastic ascent on the dual objective already spec-
ified in (2). For implicit models, the second term is computed by sampling
s+ ∼ mθ(· | s, a) and mapping z+ = f(s+). We may optionally balance
the two terms by reweighting minibatches so that the marginal distribution
of (z, a) is comparable across real and synthetic samples; this reduces the
burden on Tϕ to separate distributions using spurious covariate shift in (z, a)
rather than genuine discrepancy in z′ conditional on (z, a).

Action-shift critic updates. We update Uψ by stochastic ascent on (4),
contrasting dataset action pairs (z, a) with policy-proposed pairs (z, aπ)
where z = f(s) and aπ ∼ π(· | s) for s drawn from the dataset state
marginal. The use of matched state sampling is essential: it makes Uψ
primarily a witness for conditional action shift rather than a confounder for
state visitation shift. When the behavior policy is a mixture (as is typical
in offline benchmarks), Uψ implicitly estimates shift relative to the mixture
induced by Denv, which is the relevant reference for support constraints.

Corrected reward and gating on real vs. synthetic data. We use
the template r̃ϕ,ψ from (5) but implement it with explicit gating, reflecting
the distinct roles of the two witnesses:

• For real transitions from Denv, we set

r̃ = log r(s, a) + β Uψ(f(s), a),

since real transitions do not require correction for model bias, while
the action witness remains meaningful as a conservative penalty on
deviation from behavioral support.

• For synthetic transitions from Dm, we set

r̃ = log r(s, a) + αTϕ(f(s), a, f(s
′)),

since the primary concern is exploitation of dynamics errors; depending
on the application we may also include the βUψ term on synthetic data,
but we view this as optional and typically use it only when the actor
rapidly leaves the dataset action support.
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This separation ensures that each correction term is used where it is most
interpretable, while retaining a unified off-policy learning interface.

Policy and value updates on a mixed buffer. We update π (and
any auxiliary value critics used by the chosen off-policy algorithm) on mini-
batches drawn from a mixture distribution over Denv ∪ Dm. We typically
control the mixture by a parameter λ ∈ [0, 1] specifying the fraction of real
transitions per update, and we either fix λ or schedule it (e.g., start with
mostly real data, then increase synthetic usage as Tϕ improves). Any con-
vergent off-policy method can be used; in continuous control, we instantiate
this step with entropy-regularized actor–critic updates (e.g., SAC) using r̃
in place of r. We treat α, β as Lagrange-like weights: increasing α discour-
ages reliance on model regions where Tϕ signals mismatch, while increasing
β discourages unsupported actions.

Stabilization of variational critics. Because common divergences yield
rapidly growing f∗(·) (notably f∗(t) = exp(t − 1) for KL), unconstrained
optimization of (2)–(4) can produce large logits and unstable gradients. We
therefore enforce boundedness and smoothness of Tϕ and Uψ via a combina-
tion of:

1. Spectral normalization on critic layers, yielding a global Lipschitz con-
straint that empirically prevents discriminator collapse.

2. Gradient penalties on interpolations between real and synthetic sam-
ples (in the style of WGAN-GP), applied to the critic inputs (z, a, z′)
or (z, a); this is especially helpful when f is learned jointly and the
feature distribution drifts.

3. Logit clipping or calibration: we replace Tϕ by clip(Tϕ, [−cT , cT ]) and
similarly for Uψ, or subtract a running mean baseline so that the critics
remain centered and their additive constants do not induce large reward
shifts.

4. Penalty regularization: we add ℓ2 penalties on critic outputs or enforce
trust regions on critic updates, which controls variance of the corrected
reward signal seen by the actor.

These interventions do not change the conceptual role of the witnesses;
rather, they ensure that the corrected reward remains within a bounded
range compatible with stable Bellman backups.

Notes for diffusion and transformer world models. When mθ is a
diffusion model, each conditional sample s′ ∼ mθ(· | s, a) may require mul-
tiple denoising steps; the dominant cost in LF-SAR is then model rollout
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sampling rather than policy optimization. We therefore (i) keep h small, (ii)
reuse synthetic rollouts across multiple gradient steps (i.e., amortize Dm),
and (iii) optionally reduce diffusion steps during training rollouts while re-
serving higher-fidelity sampling for evaluation or for periodic refresh of Dm.
When mθ is an autoregressive transformer, we similarly amortize rollouts by
caching predicted next states and by truncating rollouts when the critic Tϕ
indicates severe mismatch (an implicit early-termination criterion). In both
cases, the key requirement is only that the sampler be conditionally callable;
likelihood evaluation is never used.

Summary of the implementable loop. At a high level, LF-SAR re-
peatedly (i) expands Dm by short model rollouts under π, (ii) tightens the
two variational witnesses Tϕ and Uψ using only samples from Denv and mθ,
and (iii) improves π by standard off-policy RL on corrected rewards. This
completes the algorithmic layer; in the next section we formalize the sense
in which the resulting surrogate objective constitutes an ELBO-like lower
bound (under optimal witnesses) and how critic duality gaps degrade the
bound with explicit horizon dependence.

6 Theory I (surrogate objective): an ELBO-like
lower bound and degradation by critic gaps

In this section we isolate the purely variational component of LF-SAR: we
show that, under optimal critics, the corrected reward defines a surrogate
objective that lower-bounds a suitable utility of the true return, in direct
analogy with an evidence lower bound (ELBO). We then quantify how imper-
fect critics degrade the bound, with an explicit dependence on the effective
horizon.

6.1 A change-of-measure inequality for positive rewards

Fix a policy π and write pπ(τ) for the trajectory law in the environment,

pπ(τ) = µ0(s0)
∏
t≥0

π(at | st) p(st+1 | st, at), τ = (s0, a0, s1, a1, . . . ).

Likewise define the model-induced trajectory law

mπ(τ) = µ0(s0)
∏
t≥0

π(at | st)mθ(st+1 | st, at).

Under the overlap condition pf (· | s, a) ≪ mθ,f (· | s, a) on the relevant
support, the Radon–Nikodym derivative dpπ

dmπ (τ) is well-defined and factorizes
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in the usual way:

log
dpπ

dmπ
(τ) =

∑
t≥0

log
p(st+1 | st, at)
mθ(st+1 | st, at)

. (6)

Since rmin > 0, we may relate the discounted sum return R(τ) =
∑

t≥0 γ
tr(st, at)

to a discounted average of log r via the log-sum inequality. Let wt = (1−γ)γt

so that
∑

t≥0wt = 1. Then for every trajectory,

log
(
(1−γ)R(τ)

)
= log

(∑
t≥0

wt r(st, at)
)

≥
∑
t≥0

wt log r(st, at) −
∑
t≥0

wt logwt,

(7)
where the final term depends only on γ. Denoting the constant

Cγ := − log(1− γ) −
∑
t≥0

wt logwt,

we may rewrite (7) as

logR(τ) ≥ (1− γ)
∑
t≥0

γt log r(st, at) − Cγ . (8)

Now we apply Jensen after changing measure from pπ to mπ:

log JM(π) = logEτ∼pπ
[
R(τ)

]
= logEτ∼mπ

[
R(τ)

dpπ

dmπ
(τ)

]
≥ Eτ∼mπ

[
logR(τ) + log dpπ

dmπ (τ)
]
, (9)

where we used concavity of log. Combining (9) with (8) yields the “ideal”
(likelihood-based) lower bound

log JM(π) ≥ (1−γ)Eτ∼mπ

[∑
t≥0

γt log r(st, at)
]
+ Eτ∼mπ

[∑
t≥0

log p
mθ

(st+1 | st, at)
]
− Cγ .

(10)
The obstacle is that the per-step log-ratios in (10) are not available when
mθ is implicit.

6.2 Replacing log-ratios by variational witnesses in latent
space

We now show how to replace the inaccessible log-ratio term by a learned
witness Tϕ operating in latent space. We work with pushforward conditional
laws pf (z

′ | s, a) and mθ,f (z
′ | s, a), where z = f(s) and z′ = f(s′). For a

chosen f -divergence, we have the variational representation

Df (P∥Q) = sup
T

{
Ex∼P [T (x)]− Ex∼Q[f∗(T (x))]

}
. (11)
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We interpret Tϕ(z, a, z′) as an approximate maximizer of (11) for P = pf (· |
s, a) and Q = mθ,f (· | s, a) (or the reverse direction, depending on the
divergence and which direction yields the desired correction). In the KL
case, f(u) = u log u and f∗(t) = exp(t− 1), and the optimizer satisfies

T ∗(z, a, z′) = 1 + log
dpf (· | s, a)
dmθ,f (· | s, a)

(z′). (12)

Thus, up to an additive constant, the optimal critic recovers the latent log
density ratio. Because additive constants do not affect policy optimization
(they shift all rewards uniformly), we may treat T ∗ as a likelihood-free proxy
for log

pf
mθ,f

.
For general f , we do not obtain a literal log-ratio; instead the witness T ∗

is the Fenchel dual optimizer controlling mismatch between pf and mθ,f . The
key point for LF-SAR is that (11) allows us to inject Tϕ into an ELBO-like
argument without ever evaluating p or mθ. Concretely, for any measurable
T and any (s, a) on-support,

Ez′∼pf (·|s,a)[T (z, a, z
′)]−Ez′∼mθ,f (·|s,a)[f

∗(T (z, a, z′))] ≤ Df

(
pf (· | s, a) ∥mθ,f (· | s, a)

)
,

(13)
with equality at T = T ∗. When Tϕ is learned with duality gap ϵT (s, a), we
have

Df

(
pf (· | s, a) ∥mθ,f (· | s, a)

)
−
(
Epf [Tϕ]−Emθ,f

[f∗(Tϕ)]
)

≤ ϵT (s, a). (14)

Analogously, we learn an action-shift witness Uψ(z, a) for a divergence be-
tween conditional action laws π(· | s) and the (unknown) behavior actions
implicit in Denv; in the KL case, the optimal U∗(z, a) again recovers log π(a|s)

πb(a|s)
up to a constant.

6.3 An ELBO-like surrogate and explicit horizon dependence
of slack

We now state the bound at the level needed for subsequent performance
analysis. Define the surrogate return functional

Lϕ,ψ(π) := E
[∑
t≥0

γt r̃ϕ,ψ(st, at, st+1)
]
, (15)

where the expectation is taken under the training distribution induced by
the LF-SAR pipeline (mixtures of real transitions from Denv and synthetic
transitions produced by mθ under π), and r̃ϕ,ψ is the corrected reward used
by the algorithm (with gating between Tϕ and Uψ depending on whether the
transition is synthetic or real). For the purpose of the bound, it is helpful to
interpret Lϕ,ψ(π) as an empirical proxy for the model-rollout expectation in
(10), plus a separate correction accounting for action shift on real data.
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Under optimal critics and KL, substituting (12) into (10) and rewrit-
ing the (undiscounted) sum of log-ratios in terms of discounted occupancies
yields, up to constants depending only on (γ, rmin, rmax),

log JM(π) ≥ (1− γ)L∗(π) − Cγ , (16)

where L∗(π) is the surrogate obtained by replacing Tϕ, Uψ with the corre-
sponding optimal log-ratio witnesses (and absorbing additive constants into
Cγ). The representation sufficiency assumption allows us to replace the state-
level ratios by latent ratios without changing the bound beyond an additive
ϵrep term, since values and thus the relevant occupancy weighting depend on
s only through z = f(s) up to ϵrep.

When critics are imperfect, we quantify the degradation by combining
(14) (and its action analogue) with a telescoping occupancy argument. Writ-
ing ϵ̄T and ϵ̄U for suitable discounted averages of ϵT (st, at) and ϵU (st, at)
along the training rollouts, we obtain a bound of the form

log JM(π) ≥ (1−γ)Lϕ,ψ(π) −
1

1− γ

(
ϵ̄T + ϵ̄U

)
︸ ︷︷ ︸
critic duality gaps

− ϵrep︸︷︷︸
representation mismatch

− Cγ ,

(17)
where 1

1−γ ≍ H is the effective horizon. The appearance of H is unavoid-
able: even if ϵT (s, a) is small per step, its contribution accumulates over
Θ(H) effective steps under discounting. More explicitly, if ϵT (s, a) ≤ ϵT and
ϵU (s, a) ≤ ϵU uniformly on the relevant support, then

1

1− γ

(
ϵ̄T + ϵ̄U

)
≤ 1

1− γ
(ϵT + ϵU ) = O(H(ϵT + ϵU )). (18)

For non-KL f -divergences, the same reasoning yields an ELBO-like bound
for a utility-transformed objective rather than log JM(π). Concretely, the
Fenchel–Young inequality underlying (11) implies that there exists a mono-
tone utility uf (depending on f and on the scaling used in the corrected
reward) such that

logEτ∼pπ
[
uf (R(τ))

]
≥ (1− γ)Lϕ,ψ(π) − O(H(ϵ̄T + ϵ̄U ) + ϵrep) − Cγ,f ,

(19)
with a constant Cγ,f absorbing the reward-aggregation term (cf. (8)) and any
additive normalizations of the critics. In particular, KL recovers uf (x) = x
(equivalently, log JM(π) on the left-hand side as in (17)), while other choices
interpolate toward risk-sensitive utilities.

6.4 Remarks on clipping, rollout truncation, and the role of
h

In practice we clip or calibrate the critic outputs to stabilize learning. Clip-
ping converts Tϕ and Uψ into biased witnesses; in the above bounds this can
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be modeled as an additional contribution to ϵT , ϵU (or, equivalently, as a re-
striction of the dual function class in (11)). The horizon dependence remains
linear in H as long as the clipped corrections remain uniformly bounded.

Finally, LF-SAR uses h-step model rollouts rather than unbounded model
trajectories. This does not alter the variational nature of the bound; it
changes only the reference distribution under which Lϕ,ψ(π) is estimated.
Intuitively, shorter rollouts reduce the compounding of model bias in the
data-generation process, which improves critic learnability and reduces the
empirical ϵ̄T , but the translation from surrogate improvement to true re-
turn (addressed next) still incurs an O(H) factor due to the environment’s
effective horizon.

The inequalities (17)–(19) provide the promised ELBO-like justification
for optimizing corrected rewards: maximizing Lϕ,ψ(π) improves a lower
bound on a utility of the true return, and the degradation due to imperfect
critics and representations is explicit and horizon-controlled. In the next sec-
tion we convert near-optimality for the surrogate into a direct suboptimality
bound for JM(π) via occupancy-measure arguments in representation space.

7 Theory II (policy performance): from surrogate
near-optimality to environment return

We now translate near-optimality of the learned policy for the corrected-
reward surrogate into a bound on the true environment return. The ar-
gument has two components: (i) an occupancy-measure comparison that
controls how transition and action shift affect value under p versus the dis-
tributions induced during training; and (ii) a representation-space simulation
lemma that propagates one-step mismatch into O(H) value error, in the style
of pessimistic evaluation/value iteration (PEVI).

7.1 Discounted occupancies and truncation-aware training
distributions

For any policy π, we write the normalized discounted state–action occupancy
under environment dynamics p as

dπp (s, a) := (1−γ)
∑
t≥0

γt Pp,π(st = s, at = a), dπp,f (z, a) := (1−γ)
∑
t≥0

γt Pp,π(zt = z, at = a),

where zt = f(st). Analogously define dπm and dπm,f for rollouts under mθ.
Because LF-SAR uses h-step synthetic rollouts, it is convenient to isolate

the amount of discounted mass carried by model-generated transitions:

Hh :=

h−1∑
t=0

γt =
1− γh

1− γ
.
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In particular, when synthetic data are generated by repeatedly restarting
from seed states sampled from Denv and rolling out h steps, any expecta-
tion over model transitions appearing in the training objective is naturally
weighted by at most Hh rather than H ≍ (1− γ)−1. This is the only point
at which h enters the analysis: the conversion from one-step mismatch into
return error remains Θ(H), but the exposure of the algorithm to model bias
through synthetic data is Θ(Hh).

7.2 A representation-space simulation lemma for implicit mod-
els

We first state a generic value perturbation bound in latent space. Let V π
p

denote the true value function under p for reward r, and similarly V π
m under

mθ. We use only the boundedness of rewards and the overlap assumption in
representation space.

Lemma 7.1 (Latent simulation bound). Assume r ∈ [0, rmax]. Let f :
S → Z be any representation and suppose that, for all (s, a) on the relevant
support, pf (· | s, a) ≪ mθ,f (· | s, a). Then for any policy π,∣∣JM(π)−Jmθ

(π)
∣∣ ≤ γ

(1− γ)2
rmax·E(s,a)∼dπp

[∥∥pf (· | s, a)−mθ,f (· | s, a)
∥∥
TV

]
+ O(ϵrep),

where the O(ϵrep) term accounts for representation sufficiency (i.e., the loss
incurred by evaluating/bootstrapping values as functions of z rather than s).
Moreover, if the divergence control is expressed via an f -divergence, then
there exists cf > 0 such that∥∥pf (· | s, a)−mθ,f (· | s, a)

∥∥
TV

≤ cf ·
√
Df

(
pf (· | s, a) ∥mθ,f (· | s, a)

)
,

and hence the value difference is controlled by an occupancy-weighted
√
Df

term.

Proof sketch. We apply the standard resolvent identity

V π
p − V π

m = γ(I − γP π
p )

−1(P π
p − P π

m)V
π
m,

where P π
p is the Markov operator induced by (p, π). Taking sup-norms yields

∥V π
p − V π

m∥∞ ≤ γ
1−γ sups,a

∣∣Ep[V π
m] − Em[V π

m]
∣∣. Since V π

m ∈ [0, rmax/(1 −
γ)], the difference of expectations is bounded by rmax

1−γ ∥p(· | s, a) − m(· |
s, a)∥TV, and we translate to the representation space via pushforward and
sufficiency, incurring ϵrep. The f -divergence to total-variation relation follows
from standard inequalities for divergences with f twice differentiable at 1
(constants absorbed into cf ).

Lemma 7.1 isolates the dynamics-mismatch contribution. The remaining
terms in the final performance bound arise because the policy is learned
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from an offline dataset with unknown behavior actions and from synthetic
data produced by mθ, so the learned policy’s occupancy can differ from the
data-generating occupancy unless explicitly regularized.

7.3 Occupancy control for behavior/policy shift

Let denv denote the (unknown) discounted occupancy induced by the data-
collection process (e.g., a mixture of behavior policies). We encode policy
shift by an occupancy-weighted divergence

ϵpolicy(π) := Es∼dπp
[
Df

(
π(· | s) ∥πb(· | s)

)]
,

where πb is any conditional action law consistent with Denv (the bound is
stated in terms of ϵpolicy rather than πb itself, which is unobserved). Under
overlap π(· | s) ≪ πb(· | s) and the same divergence–TV conversion as above,
we may control the discrepancy between expectations under (s, a) ∼ dπp and
expectations under dataset actions at the same states. This is the usual step
in offline RL analyses where off-support actions lead to unavoidable error;
here it is made explicit through the learned action critic Uψ and the term
ϵpolicy.

7.4 Main bound: surrogate near-optimality implies environ-
ment near-optimality

We now combine: (i) the ELBO-like surrogate comparison from Theory I
(which turns critic duality gaps into additive slack), (ii) the latent simulation
bound (which turns representation-space mismatch into O(H) value error),
and (iii) an optimization error term measuring how well the actor optimizes
the surrogate.

Theorem 7.2 (From surrogate optimization to true return). Assume overlap
and representation sufficiency as stated in the enclosing scope, and suppose
the actor returns π̂ ∈ Π satisfying

Lϕ,ψ(π̂) ≥ sup
π∈Π

Lϕ,ψ(π) − ϵopt.

Let ϵ̄T , ϵ̄U denote discounted averages of the transition-critic and action-critic
duality gaps along the training distribution. Define a dynamics mismatch
level in representation space by

ϵmodel,f := sup
(s,a) relevant

Df

(
pf (· | s, a) ∥mθ,f (· | s, a)

)
,

and let ϵpolicy := ϵpolicy(π̂). Then there exist constants C1, C2, C3, C4 > 0
depending only on (rmin, rmax, γ) and on the choice/scaling of the divergence
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such that, with high probability over the sampling noise in Denv and model
rollouts,

JM(π∗)−JM(π̂) ≤ C1Hh ϵmodel,f + C2H ϵpolicy + C3H (ϵ̄T+ϵ̄U+ϵrep) + C4 ϵopt.

In particular, if ϵmodel,f and the critic gaps are uniformly small, the subop-
timality scales linearly with the effective horizon and, for fixed γ, improves
monotonically as h decreases through the factor Hh = (1−γh)/(1−γ) in the
model-mismatch term.

Proof sketch. We proceed by a three-step comparison.
Step 1 (critic substitution). By the duality-gap definitions for Tϕ and

Uψ, replacing optimal witnesses by learned critics in the corrected reward
perturbs the surrogate objective by at most O(H(ϵ̄T + ϵ̄U )) in the same
occupancy-weighted manner as in Theory I. This step is purely variational
and does not require likelihoods.

Step 2 (surrogate optimality to an idealized latent objective). We intro-
duce an “ideal” latent objective in which (a) synthetic transitions are gener-
ated from the true latent kernel pf rather than mθ,f and (b) behavior actions
are drawn from πb. The gap between the LF-SAR training objective and this
ideal objective is controlled by two change-of-measure terms: a transition-
shift term governed by ϵmodel,f and an action-shift term governed by ϵpolicy.
The transition-shift contribution is weighted by at most Hh because only
h-step synthetic rollouts are used in the pipeline, whereas the action-shift
term affects evaluation over the full horizon and retains an O(H) factor.

Step 3 (latent objective to true return). Finally we translate the ideal
latent objective back to the true return using Lemma 7.1 (for transition mis-
match) and the representation sufficiency assumption (for the z-dependence
error), yielding an O(Hϵrep) contribution. Combining the three steps and
inserting the actor suboptimality ϵopt yields the stated inequality after col-
lecting constants.

Theorem 7.2 is the desired translation: optimizing the corrected-reward
surrogate is sufficient to guarantee small true-return regret provided (i)
representation-space dynamics mismatch is controlled on the occupancy rel-
evant to training, (ii) the learned policy does not deviate too far from the
behavior support, and (iii) the variational critics are learned to small duality
gap. The next section shows that the overlap assumptions implicit in these
conditions are not merely technical: without them, no offline procedure can
guarantee nontrivial performance in general.

8 Lower bounds and impossibility results

We formalize the sense in which the overlap assumptions in Theorem 7.2
are necessary. The statements below are not specific to LF-SAR; they apply
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to any offline algorithm that has access only to a fixed dataset Denv and
(possibly) to a learned implicit model sampler mθ trained on that same
dataset. The implicit-model oracle cannot create information about regions
that are absent from the data distribution, and therefore cannot circumvent
the standard offline RL hardness.

8.1 Impossibility without absolute continuity (coverage)

We consider an algorithm Alg that maps (Denv,mθ) (and any internal ran-
domness) to a policy π̂. We show that if the optimal policy can place nonzero
occupancy on state–action pairs outside the support of the data-collection
distribution (or outside the support of the model rollouts induced by the
training pipeline), then Alg can be forced to be arbitrarily suboptimal on
some instance consistent with its observations.

Theorem 8.1 (No offline guarantee without overlap). Fix γ ∈ (0, 1) and
rmax > 0. For any offline algorithm Alg that, given an offline dataset Denv

and an implicit model sampler mθ trained from Denv, outputs a policy π̂,
there exist two discounted MDPs M0,M1 with the same (S,A, µ0, γ) and
bounded rewards in [0, rmax] such that:

1. the joint distribution of (Denv,mθ) is identical under M0 and M1 (in
particular, all observed offline transitions and all model samples pro-
duced by mθ during training are equal in law); yet

2. the optimal values differ by a constant: JM0(π
∗) − JM0(π̂) ≥ c or

JM1(π
∗)− JM1(π̂) ≥ c for some c = Ω

(
rmax
1−γ

)
.

Moreover, the construction can be chosen so that the failure is driven by a
single state–action pair (s†, a†) with π∗(a† | s†) = 1, but with zero support
under the data-collection process (and hence no absolute continuity π∗ ̸≪ πb
at s†).

Proof sketch. We use the standard “two indistinguishable instances” argu-
ment. Let S = {s0, s1} and A = {a0, a1}, with µ0 = δs0 . The behavior/data-
collection policy is taken to be πb(a0 | s0) = 1, so the offline dataset contains
only the action a0 at s0 (and never a1). Define M0 and M1 to agree on the
observed transition: under either MDP, taking a0 at s0 transitions determin-
istically to s1 with reward 0, and s1 is absorbing with reward 0 thereafter.
The two MDPs differ only on the unobserved action a1 at s0: in M0 it
yields reward 0 and transitions to s1, while in M1 it yields reward rmax and
transitions to s1.

Because a1 is never taken in Denv, the offline data distribution is identical
under M0 and M1. Furthermore, since mθ is trained only from Denv and is
queried only on state–action pairs the training pipeline encounters, we may
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define mθ(· | s0, a0) to match the observed transition and define its behav-
ior arbitrarily on (s0, a1) without affecting the algorithm’s observations—
indeed, by arranging that the training pipeline never queries (s0, a1) (which
holds whenever the learned policy stays within the data support, or when
conservative regularization prevents selection of a1), we can ensure that all
model samples observed by Alg are also identical in law across M0,M1.
Consequently π̂ is identically distributed under the two instances.

However, the optimal policy in M1 takes a1 at s0 and obtains value rmax

at t = 0, whereas any policy that takes a0 obtains 0. Thus JM1(π
∗) =

rmax and JM1(π̂) ≈ 0 unless π̂ selects a1 at s0. Since π̂ cannot depend on
unobserved differences between M0 and M1, it must fail on at least one
of the two instances. Taking c to be a constant fraction of rmax yields the
claim; by modifying the construction to make s0 recur with probability γ,
one obtains c = Ω( rmax

1−γ ), matching the horizon scaling.
Theorem 8.1 captures the necessity of the absolute continuity require-

ments π(· | s) ≪ πb(· | s) and (for model-based training) pf (· | s, a) ≪
mθ,f (· | s, a) on the occupancy induced by the learning procedure. If a
policy can visit (s, a) where the data (or the model rollouts) provide no
information, then any algorithm is forced to extrapolate, and the above in-
distinguishability construction makes such extrapolation arbitrarily wrong.

8.2 Lower bounds matching the linear-in-H dependence

We also record a horizon dependence statement: even when two MDPs are
extremely close on the data distribution, the value difference can remain
Θ(H) due to compounding. This explains why Theorem 7.2 exhibits linear
dependence on H.

Proposition 8.2 (Indistinguishability implies Ω(H) value error). For any
H ≍ (1 − γ)−1 and any δ > 0, there exist two MDPs M0,M1 such that
their induced distributions over Denv (and over any model-generated rollouts
constrained to the dataset support) have total variation distance at most δ,
but supπ |JM0(π)− JM1(π)| ≥ cH δ for a universal constant c > 0.

Proof sketch. One may construct a chain MDP in which the two instances
differ by an additive ±δ perturbation in a rare transition that is not reliably
observed from n samples; the resulting occupancy difference accumulates
over H steps, yielding a value separation proportional to Hδ. This is a
standard Le Cam two-point method: the data distributions remain close,
hence any test (and thus any algorithm) has error at least Ω(δ) in identifying
the instance, which translates into Ω(Hδ) value error.
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8.3 Information-theoretic limits for likelihood-free ratio es-
timation

Finally, we connect the critic-error terms ϵ̄T , ϵ̄U to minimax lower bounds
for density-ratio estimation and hypothesis testing. Even if overlap holds,
learning the variational witnesses in the f -divergence dual is statistically
nontrivial. Since Tϕ (resp. Uψ) is trained by distinguishing samples from
two distributions (env vs model transitions in latent space; policy actions vs
dataset actions), the problem contains binary classification as a special case.

Theorem 8.3 (Critic estimation lower bound (schematic)). Let P,Q be two
distributions over a common measurable space and suppose we observe n i.i.d.
samples from each. Consider any estimator T̂ (measurable function of the
samples) intended to approximate an optimal dual witness T ∗ for Df (P∥Q),
or equivalently (for KL) the log density ratio log dP

dQ on the relevant support.
Then there exists a pair (P,Q) with TV(P,Q) ≍ η such that, for any such
estimator,

inf
T̂

sup
(P,Q)

E
[(
EP [T̂ ]− EQ[f∗(T̂ )]

)
−Df (P∥Q)

]
≥ c

η√
n
,

for a constant c > 0 depending only on the divergence family (and mild
regularity conditions).

Interpretation. Theorem 8.3 states that the duality gap cannot, in gen-
eral, be driven below Ω(n−1/2) uniformly over problem instances: distin-
guishing P from Q with small advantage requires Θ(1/η2) samples. Since
our end-to-end performance bound in Theorem 7.2 multiplies critic error by
an effective horizon factor, this implies an unavoidable contribution of order
Ω(H/

√
n) in worst case (up to problem-dependent constants and occupancy

weighting). In particular, likelihood-free access to samples does not elimi-
nate statistical hardness: it merely changes how we estimate the correction
(via variational classification rather than explicit likelihood ratios), but not
the fundamental information requirements.

Taken together, the preceding results justify the structure of our guar-
antee. The overlap assumptions are not optional: without them, offline
learning is information-theoretically ill-posed. Even with overlap, the critic
terms represent irreducible estimation error unless |Denv| (and the number of
informative model rollouts) grows, and the resulting value uncertainty must
scale at least linearly in the effective horizon.

9 Experiments

We evaluate LF-SAR along five axes: (i) end-to-end performance on standard
offline continuous-control benchmarks; (ii) sensitivity to the choice of implicit
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world model and to the degree of model utilization; (iii) robustness under
controlled out-of-distribution (OOD) model mismatch; (iv) calibration and
stability of the learned variational critics that define the reward correction;
and (v) comparisons to existing model-based offline RL methods and to
likelihood-based ratio/discriminator variants when likelihoods are available.

9.1 Benchmarks, protocols, and metrics

We consider two families of benchmarks. First, we use D4RL-style continuous-
control datasets, reporting normalized scores when available and raw dis-
counted returns otherwise. These tasks span (a) dense-reward locomotion
with varying data quality (e.g., “random”, “medium”, “medium-replay”, “medium-
expert” regimes), and (b) sparse-reward navigation/manipulation settings
where extrapolation and compounding error are pronounced. Second, we
use the NeoRL benchmark suite, which provides multiple offline datasets
per underlying environment with controlled variation in coverage and re-
ward noise; we use these as a convenient testbed for evaluating how the
proposed correction behaves as overlap degrades.

Our training protocol follows the algorithmic access pattern assumed
in the main development. We train an implicit dynamics model mθ from
Denv only, and then run the mixed offline+model training loop for a fixed
number of iterations. Model rollouts are initiated from states sampled from
Denv; this ensures that any benefit of imagination is due to composing mθ

rather than due to an optimistic initial-state distribution. We evaluate the
learned policy π̂ in the true environment dynamics p (with no model access)
and average over 3–10 random seeds depending on the benchmark variance.
Hyperparameters (critic learning rates, clipping thresholds, rollout horizon
h, and mixture proportions of Denv vs. Dm) are selected via a fixed validation
protocol based on held-out dataset splits or a small set of environment tasks,
without per-task tuning.

9.2 Implicit world model: architecture and ablations

Since our guarantee and algorithm only require a sampler s′ ∼ mθ(· | s, a),
we explicitly vary the modeling family to test whether the proposed cor-
rection is genuinely likelihood-free and not an artifact of a particular model
class. Concretely, we instantiate mθ as (i) a diffusion-style conditional gener-
ator (iterative denoising in state space or latent space), (ii) an autoregressive
transformer over discretized state tokens, and (iii) a deterministic-plus-noise
baseline (e.g., an ensemble regressor with Gaussian residual sampling). For
each class we match overall parameter count and training compute as closely
as possible.

We then ablate three aspects of model usage. First, we sweep the roll-
out horizon h ∈ {1, 5, 10, 25} to probe the long-horizon imagination regime
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where compounding mismatch is expected. Second, we vary the number of
model samples per real transition used to populate Dm, which controls how
strongly the policy optimizer is exposed to model-generated data. Third,
we compare single-step model sampling (freshly seeded from Denv at each
step) against multi-step chained rollouts, which isolates whether LF-SAR
primarily corrects one-step shift or can tolerate accumulation over several
steps.

In each ablation we report not only policy performance but also a direct
proxy for model mismatch in representation space: an empirical estimate
of the learned f -divergence dual objective evaluated on a held-out split of
(z, a, z′) tuples. The intended qualitative prediction is that longer horizons
and heavier reliance on Dm increase mismatch, and that the learned tran-
sition critic Tϕ should respond by reducing the effective utility of model
transitions via its correction term.

9.3 OOD mismatch suite

To stress-test the shift correction beyond the nominal i.i.d. regime, we intro-
duce controlled OOD conditions in which mθ is deliberately biased relative
to p while keeping the offline dataset fixed. We consider three mismatch
mechanisms.

Data-induced mismatch. We train mθ on strict subsets of Denv (e.g.,
removing high-velocity or near-terminal transitions), yielding a model that
is accurate on a restricted region but systematically wrong elsewhere. This
simulates limited model coverage and is directly relevant to the overlap as-
sumptions in our theory.

Perturbation-induced mismatch. We post-compose the model sampler
with known perturbations (e.g., additive disturbances in selected state di-
mensions, or action scaling) that preserve marginal plausibility but shift con-
ditional dynamics. This creates a regime where naive model-based rollouts
can be harmful even though one-step predictions appear reasonable.

Representation-induced mismatch. We vary the encoder f (random
features, contrastive learning on Denv, and jointly learned end-to-end en-
coders) to test whether mismatch is more or less detectable in certain latent
spaces. Since our correction operates on pushforward measures pf and mθ,f ,
this isolates the dependence of the method on representation sufficiency.

For each mismatch setting we compare LF-SAR to an uncorrected model-
based pipeline that uses the same mθ and the same policy optimization
algorithm but with α = β = 0. The key measurement is the performance
degradation under increasing mismatch. We additionally report a diagnostic
“mismatch–penalty curve”: the empirical correlation between (a) critic scores
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Tϕ(z, a, z
′) on model transitions and (b) realized downstream return loss

attributable to those transitions, estimated by reweighting trajectories by
their proportion of model-originated steps.

9.4 Calibration and stability diagnostics

Since LF-SAR relies on critic outputs inside a corrected reward, stability is
a first-order concern. We therefore track: (i) the distribution of Tϕ and Uψ
logits over training, (ii) the frequency of clipping events when we enforce
bounded corrections, (iii) gradient norms and the presence/absence of critic
collapse (e.g., constant outputs), and (iv) the sensitivity of the learned policy
to small changes in α, β.

We also perform calibration checks. In small tabular or low-dimensional
continuous tasks where density ratios can be approximated by kernel meth-
ods or discretization, we compare Tϕ to a ground-truth proxy for log

dpf
dmθ,f

(in the KL case) or to the corresponding optimal f -divergence witness. In
larger tasks, where ground truth is unavailable, we instead evaluate held-out
discrimination performance (env vs model for Tϕ; dataset actions vs pol-
icy actions for Uψ) and compute reliability-style curves relating critic score
quantiles to empirical classification odds. While such diagnostics do not
prove correctness of the dual optimizer, they identify failure modes where
the correction becomes numerically unstable or uninformative.

Finally, we report an “effective pessimism” statistic: the expected cor-
rected reward gap between environment transitions and model transitions,
E[r̃ | Denv] − E[r̃ | Dm], which should increase when mismatch grows. This
is the operational analogue of the theoretical intuition that the correction
discourages reliance on unreliable model rollouts.

9.5 Baselines and likelihood-based variants

We compare to model-based offline RL methods designed to mitigate model
bias, including MOPO, MOBILE, and SAMBO, instantiated with their rec-
ommended hyperparameters and (when applicable) with matched world-
model capacity and rollout budgets. In addition, we include a likelihood-
free discriminator baseline that uses a standard GAN-style classifier loss on
(z, a, z′) but does not correspond to an f -divergence dual with calibrated
conjugates; this tests whether the specific variational form matters.

To isolate the benefit of likelihood-free training (as opposed to correc-
tion per se), we also construct likelihood-based counterparts in settings
where tractable model likelihoods can be computed (e.g., Gaussian predic-
tive models or normalizing-flow dynamics). In these cases we replace Tϕ
by the explicit log ratio logmθ(s

′ | s, a) (and, when possible, an estimate of
log p(s′ | s, a) on held-out data) to emulate SAR-like corrections. Comparing
these variants to LF-SAR clarifies whether the learned variational witnesses
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provide comparable behavior in regimes where explicit likelihood access is
feasible.

Across all comparisons we keep the policy optimizer fixed (e.g., SAC-
style off-policy updates) and vary only (i) how model-generated transitions
are produced and (ii) how rewards are corrected. This isolates the empirical
contribution of the proposed likelihood-free shift-aware correction.

10 Discussion and limitations

We discuss the regimes in which representation-space shift correction is
meaningful, and we enumerate the principal limitations suggested by the
theory and by the algorithmic design.

When are representation-space divergences informative? Our cor-
rection operates on pushforward transition measures pf (· | s, a) and mθ,f (· |
s, a) rather than on raw-state conditionals. This is advantageous when s
is high-dimensional and the model is an implicit sampler, but it introduces
an identifiability question: even if Df (pf∥mθ,f ) is small, the true-state mis-
match Df (p∥mθ) may be large if f forgets task-relevant aspects of the dy-
namics. Conversely, Df (pf∥mθ,f ) may be large even when the induced values
are insensitive to those differences. Thus, representation-space divergences
are meaningful precisely insofar as f preserves value-relevant structure: in-
formally, f should collapse nuisance variation while retaining the Markovian
information needed for control. Our representation sufficiency assumption
makes this explicit; absent such an assumption, the learned critic Tϕ may pe-
nalize mismatches that are irrelevant to return, or fail to detect mismatches
that are catastrophic for planning.

This tension suggests a practical guideline: the purpose of Tϕ is not to
estimate a physically faithful likelihood ratio, but rather to provide a witness
for model unreliability as it matters to the policy optimization pipeline. In
particular, if f is learned jointly with π and the critics, there is a risk of
degenerate solutions in which f collapses information to make the discrim-
ination task artificially easy or artificially hard (depending on optimization
pressures), thereby distorting the correction. Mitigating such pathologies
requires architectural and optimization choices (e.g., stop-gradient paths,
auxiliary reconstruction/contrastive losses, or explicit regularization of f)
that are not captured by the core guarantee.

Dependence on the encoder and “shortcut” features. The encoder
dependence is not merely statistical; it is also geometric. The variational
dual for an f -divergence is sensitive to the choice of feature space in which
the critic Tϕ operates. If f exposes features that strongly separate Denv from
Dm for incidental reasons (e.g., artifacts of the model sampler, discretization
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effects, or differences in preprocessing), then Tϕ may learn a high-confidence
discriminator that yields large corrections without corresponding semantic
mismatch. Since these corrections enter the reward, this can lead to exces-
sive pessimism and reduced model utilization. Conversely, if f hides the
discriminative signal (e.g., by being too low-dimensional or by enforcing in-
variances that remove causal variables), the critic may be underpowered and
the correction ineffective.

We view this as an instance of a more general issue in likelihood-free
ratio estimation: one estimates density ratios relative to a chosen σ-algebra.
The most robust strategy is therefore to (i) treat f as part of the hypothesis
class whose adequacy must be validated, and (ii) incorporate diagnostics that
explicitly test whether critic scores correlate with downstream performance
degradation under model rollouts. Such diagnostics cannot fully certify cor-
rectness, but they can detect failure modes in which the correction becomes
detached from control-relevant errors.

Reward sign, magnitude, and the log-reward variant. Several of our
bounds and the corrected reward definition use log r(s, a), which requires
rmin > 0. This is a real restriction: many control benchmarks have rewards
that are zero, negative, or shaped with additive constants. In practice, one
may shift and scale rewards to enforce positivity, e.g.,

r+(s, a) = max{r(s, a)− c, ε},

with c chosen so that typical rewards are positive and ε > 0 for numerical
stability, and then apply the log transform to r+. However, such transfor-
mations change the control objective unless the downstream algorithm is
invariant to monotone utilities (which standard RL objectives are not, in
general). Alternatively, one can avoid the log transform and incorporate the
critic terms as additive penalties to the original reward,

r̃ = r(s, a) + αTϕ(·) + β Uψ(·),

interpreting the correction as a regularizer rather than as an ELBO-like
decomposition. This variant sacrifices the clean multiplicative/rationing in-
terpretation available in the KL/SAR case, and the corresponding guaran-
tees require different constants and, typically, boundedness assumptions on
Tϕ, Uψ enforced by clipping. We therefore regard strict positivity as a limita-
tion of the most direct theoretical instantiation, and an invitation to develop
utility-robust versions where the chosen divergence naturally matches a util-
ity function u without requiring r > 0.

Long-horizon imagination and multi-step mismatch accumulation.
Our transition correction is learned from one-step discrimination between
(z, a, z′) drawn from Denv and from model rollouts. When we chain the
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model for h steps, the distribution of (st, at) itself drifts, and the induced
mismatch is no longer captured solely by a one-step divergence at the dataset
state-action marginals. In effect, we face a compounding-error phenomenon:
even if Df (pf (· | s, a)∥mθ,f (· | s, a)) is small on-support, the rollouts may
visit regions where this divergence is large and where critic estimation is
statistically weak. Our bounds reflect this through horizon factors (linear in
an effective horizon H) and through occupancy-weighted mismatch terms;
nevertheless, these bounds are pessimistic in regimes where errors cancel and
optimistic in regimes where rare but severe model failures dominate return.

Algorithmically, this indicates two competing design choices. Short roll-
outs reduce compounding error but limit the ability to propagate rewards
and discover long-term consequences in sparse settings. Long rollouts provide
more synthetic data but require stronger overlap and more reliable critics.
The practical implication is that h should be treated as a primary knob, ide-
ally adapted during training based on measured mismatch (e.g., shrinking
h when Tϕ indicates large divergence). A more principled approach would
learn state-dependent rollout truncation or uncertainty-aware branching, but
this lies beyond our current scope.

Critic calibration, boundedness, and optimization coupling. The
variational critics enter the reward; thus any instability in Tϕ or Uψ can
directly destabilize actor-critic training. This necessitates clipping, normal-
ization, or temperature scaling of critic outputs. Such interventions are
practically essential but introduce an additional approximation layer not
fully modeled by the idealized variational statement. Moreover, the critics
and the policy are coupled: as π changes, the distribution of model rollouts
changes, which changes the discrimination task and thus the reward shaping
experienced by π. This feedback loop can, in principle, induce oscillations or
exploitation of critic weaknesses (analogous to adversarial training patholo-
gies). While our analysis accounts for critic error via additive ϵT , ϵU terms,
it does not by itself guarantee stability of the joint learning dynamics.

Broader implications for foundation world models. A motivating
use case is a large implicit “foundation” dynamics model—for instance, a
diffusion or transformer generator trained broadly across tasks—used as a
simulator for downstream offline RL. In this regime, likelihood-free correction
is not merely convenient; it may be necessary because exact likelihoods are
unavailable or meaningless due to latent-variable structure and approximate
inference. Our perspective suggests that one should treat such a world model
as providing plausible rollouts rather than a calibrated probabilistic model,
and rely on discriminative critics to modulate trust in those rollouts relative
to the offline evidence.

At the same time, the foundation-model setting exacerbates our limita-
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tions: (i) the encoder f may be inherited from pretraining and misaligned
with control, (ii) the model may generate artifacts that are easy to discrim-
inate but not value-relevant, and (iii) the mismatch may be highly non-
uniform across the state space. These considerations point toward hybrid
systems in which representation learning, discriminative shift estimation,
and conservative policy optimization are co-designed, rather than treated
as modular components. Our contribution is a step in this direction, but
we emphasize that strong performance in the foundation-model regime will
likely require additional structure (e.g., task-conditioned representations,
calibrated uncertainty estimates, or explicit constraints on rollout support)
beyond the present likelihood-free divergence correction alone.
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