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Abstract

Model-based offline RL trains policies using an offline dataset and
synthetic rollouts from a learned dynamics model, but performance
degrades under distribution shift induced by both model bias (model
vs environment dynamics) and policy shift (learned policy vs behavior
policy). Recent work derives a shifts-aware reward (SAR) that aug-
ments the reward with log-likelihood ratio corrections for these shifts,
but practical success depends on manually tuned coefficients control-
ling the strength of model-bias and policy-shift penalties. We pro-
pose Dual-SAR, which reframes SAR as the Lagrangian of an explicit
constrained offline RL problem with mismatch budgets, and learns
the SAR coefficients automatically as dual variables via primal-dual
optimization. Dual-SAR alternates between (i) off-policy actor—critic
updates on a corrected reward (drop-in for SAMBO-style pipelines)
and (ii) stochastic dual updates that target user-specified budgets
on dynamics mismatch and behavior deviation, using discriminative
density-ratio estimators. We provide clean formulations and tight
finite-sample guarantees in tabular/linear MDPs: Dual-SAR achieves
near-feasibility and near-optimality among feasible policies with rates
matching known offline RL lower bounds up to logarithmic factors, and
we isolate the additional price of density-ratio error. Empirically, we
recommend validating Dual-SAR on D4RL/NeoRL with stress tests
where model error varies over training to demonstrate automatic con-
servatism and reduced tuning burden.
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1 Introduction

Offline reinforcement learning seeks to optimize a policy using a fixed dataset
of interactions, without additional queries to the environment. In model-
based offline RL, we additionally fit a dynamics model from the dataset and
use it to generate synthetic transitions that enlarge the training distribu-
tion. This approach is attractive because it can reduce the variance of purely
model-free offline updates and can improve sample efficiency by reusing the
learned model to explore counterfactual futures. At the same time, it intro-
duces a distinctive and often dominating failure mode: the policy we train
is shaped by distributions that are not those of the true environment, but
those induced by a learned model and by actions that may not be supported
by the data. The resulting distribution shift manifests as a mismatch be-
tween the training objective (computed on data and model rollouts) and the
deployment objective (real return in the environment).

We distinguish two sources of shift that must be controlled simultane-
ously. First, there is model shift: even if the policy remains close to the
behavior policy that collected the data, multi-step rollouts under the learned
model may deviate from the true environment, and the deviation typically
compounds with rollout horizon. A short-horizon model may be accurate
on the dataset distribution but still produce biased returns when the policy
changes, since the state—action occupancy induced by the new policy differs
from that of the dataset. Second, there is policy shift: even if we were to
train purely on real data, optimizing an unconstrained policy can drive the
learned policy toward regions of the action space that are underrepresented
or absent in the dataset, where value estimates and model predictions are
not statistically identifiable. In practice these effects interact: policy shift
pushes the learner into regions where the model is weak, and model bias in
turn supplies apparently favorable synthetic evidence that further encourages
the shift.

Existing methods address these issues by imposing pessimism, restrict-
ing policy updates, or penalizing model rollouts. A particularly direct ap-
proach is to modify the reward of transitions by an additive correction term
derived from a density ratio or a classifier logit, thereby discouraging syn-
thetic transitions that appear unlikely under the real data and discouraging
actions that appear unlikely under the behavior policy. Such “shift-aware
reward” (SAR) schemes are operationally simple: one trains a discriminator
to distinguish environment transitions from model transitions (or behavior
actions from current-policy actions), interprets the discriminator output as
an estimated log-ratio, and adds a penalty or bonus to the reward before
performing standard off-policy actor—critic updates. However, in their basic
form these methods require manual tuning of the penalty weights that trade
off return maximization against conservatism. The appropriate magnitude
depends on reward scale, discounting, model class, discriminator calibration,



rollout horizon, and dataset coverage, and it can vary substantially across
tasks. Consequently, a fixed penalty weight is either too small to prevent
exploitation of model errors, or too large to prevent any improvement over
the behavior policy.

We view this tuning problem as an algorithmic symptom of a missing
constraint-handling mechanism. Penalized objectives are Lagrangian relax-
ations of constrained problems, but a fixed penalty corresponds to selecting
dual variables a priori rather than solving for them. In offline RL, where the
relevant divergences and ratios are only estimable from finite data (and often
only on a restricted support), it is rarely clear how to select these multipliers
in a way that both enforces safety-like budgets and permits improvement.
This observation motivates our central design choice: we explicitly formu-
late model-based offline RL as a constrained optimization problem with two
budgets, one controlling average model mismatch along the learned policy
and one controlling average deviation of the learned policy from the behav-
ior policy, and we solve the resulting saddle-point problem by stochastic
primal-dual updates.

Concretely, we propose Dual-SAR, a shift-aware reward method in which
the correction weights are dual variables updated online from estimated con-
straint violations. The algorithm alternates between (i) generating short
synthetic rollouts from the learned model starting from states drawn from
the offline dataset, (ii) training discriminators to estimate the relevant log-
ratios between true and model dynamics and between current and behavior
policies, (iii) performing off-policy RL updates on a mixed replay buffer using
a corrected reward of the form

Fas(s,a,8) = u(r(s,a)) + alogp,(s,a,s') + Blogps(s,a),

with optional clipping for stability, and (iv) updating the dual variables by
projected ascent so as to enforce the user-specified budgets. The presence
of the utility transform u accommodates variational representations of di-
vergences and ensures that the reward shaping aligns with the Lagrangian
form; in the simplest instantiation one may take u(r) = r, while in settings
where a logarithmic transformation is required we use the assumption that
rewards are uniformly positive.

This primal-dual viewpoint yields three practical benefits. First, it re-
places per-task penalty tuning by interpretable budgets on model mismatch
and policy shift, which are typically easier to specify and can be monitored
during training. Second, it decouples conservatism across the two failure
modes: the dual variable associated with model mismatch increases only
when model bias is detected along the current policy, and the dual variable
associated with policy shift increases only when the policy departs too far
from the behavior distribution. Third, the dual iterates provide diagnostics:
persistent growth of a dual variable indicates that the corresponding budget



is infeasible under the current policy class or that the estimators are unreli-
able in the visited region, which can be acted upon by shortening rollouts,
improving the model, or restricting the policy class.

Our theoretical analysis formalizes these claims in a tabular (and, by
standard extension, linear) setting under conventional coverage and realiz-
ability assumptions. We show that the corrected reward used by Dual-SAR
is exactly the per-transition decomposition of the Lagrangian of the con-
strained problem for divergences admitting variational forms, justifying the
algorithm as principled rather than heuristic reward shaping. We then estab-
lish that stochastic primal-dual updates converge to an approximate saddle
point when applied in the occupancy-measure formulation, and we translate
the resulting primal-dual gap into a bound on suboptimality relative to the
best feasible policy in the class. Importantly, we isolate the contribution of
discriminator error as an additive term proportional to the effective horizon,
reflecting the fact that systematic log-ratio error accumulates through the
discounted sum. Finally, we complement the upper bounds with matching-
rate lower bounds showing that the statistical term is unimprovable (up
to logarithmic factors) under the same information constraints, and we re-
call the fundamental impossibility of nontrivial guarantees without adequate
support overlap.

In summary, Dual-SAR is designed to preserve the computational con-
venience of model-based synthetic rollouts and classifier-based correction,
while providing an explicit mechanism to control the two dominant sources
of distribution shift in offline model-based RL. The remainder of the pa-
per develops the method and analysis, and situates it relative to prior pes-
simistic model-based approaches, ratio-estimation-based correction methods,
and primal-dual constrained RL.

2 Related Work

Shift-aware reward shaping and SAMBO/SAR. A line of work most
directly connected to our algorithmic template modifies the reward by addi-
tive terms derived from distribution shift signals, so that standard off-policy
RL updates become conservative with respect to model error or dataset
support. We refer to this family as shift-aware reward (SAR) methods: a
discriminator is trained to separate environment transitions from model-
generated transitions (or behavior actions from current-policy actions), and
its calibrated logit is interpreted as an estimate of a log density ratio, which
is then added to the reward with a user-chosen weight. Recent model-based
offline variants (e.g., SAMBO and related approaches) instantiate this idea
in an MBPO-style loop with short model rollouts and policy updates under a
corrected reward ?. Empirically, such methods can curb model exploitation
and reduce the tendency of the policy to drift toward unsupported actions,



but the choice of correction weights is typically task-dependent and sensitive
to reward scaling, rollout horizon, and discriminator calibration. Our con-
tribution is to treat these weights as dual variables associated with explicit
budgets, thereby replacing hand-tuned penalties by a primal-dual mecha-
nism that adapts conservatism online.

Classifier-based density-ratio estimation. The use of discriminators
to obtain density ratios is classical and admits a precise variational inter-
pretation. For many divergences (including KL and broader f-divergences),
one can represent divergence functionals via a supremum over test functions,
yielding an optimal discriminator whose logit recovers a log ratio ?7?7. This
observation has been exploited in off-policy evaluation, domain adaptation
under covariate shift, and model-based RL, where the goal is to quantify
mismatch between the model rollout distribution and the real data distri-
bution. Our setting requires two ratios of distinct types: a transition ratio
p/m to diagnose model mismatch along the current occupancy, and a pol-
icy ratio 7/m, to diagnose action shift. The latter is more delicate offline
because m, is unknown and must be inferred indirectly from data, often via
behavior cloning proxies or action discriminators. We emphasize that our
method does not require the ratios to be perfectly estimated; rather, our
analysis isolates the effect of bounded log-ratio error as an additive term
in the feasibility and near-optimality bounds, consistent with the fact that
systematic ratio bias accumulates over the effective horizon.

Conservative model-based offline RL: MOPO, MOReLL, COMBO,
MOBILE. A second closely related literature addresses model bias in of-
fline model-based RL via pessimism. MOPO penalizes model rollouts accord-
ing to an uncertainty estimate (often ensemble disagreement), discouraging
trajectories that are likely to be out-of-distribution for the learned model 7.
MOReL constructs an explicit “unknown” absorbing state and trains poli-
cies that avoid leaving the trusted region of the model, yielding conservative
improvement guarantees under suitable conditions 7. COMBO combines
conservative value regularization with model-based rollouts, coupling a pes-
simistic Q-learning objective with synthetic data generation 7. MOBILE
and related methods similarly incorporate uncertainty-aware penalties or
pessimistic objectives to prevent exploitation of model errors. These ap-
proaches share the principle that safe model usage requires down-weighting
or penalizing uncertain rollouts; they differ in the proxy used (uncertainty,
conservative Q-regularization, absorbing states) and in whether they explic-
itly constrain policy shift relative to the behavior distribution. Our formu-
lation separates model mismatch and policy shift as two constraints, each
with its own budget and dual variable, which allows the algorithm to be
conservative only along the failure mode that is empirically active.



Constrained RL and primal-dual methods. Primal-dual methods are
standard for constrained RL in online settings, where one optimizes return

gorithmic pattern—a Lagrangian with dual ascent on constraint violations—
is well understood, and convergence can be shown in tabular or convex
settings via occupancy-measure formulations and stochastic approximation.
Our work reuses this classical mechanism but adapts it to the offline, model-
based regime where constraints must be estimated from fixed data and model
rollouts, and where the relevant constraints are not costs observed in the en-
vironment but divergences quantifying distribution shift. In particular, the
transition constraint depends on the mismatch between p and m along d™,
and the policy constraint depends on 7, which is unknown. Thus, the key
technical issue is not the primal-dual update per se, but the interaction
between dual dynamics and imperfect classifier-based estimators, which we
make explicit in our feasibility and near-optimality guarantees.

Pessimism, confidence bounds, and PEVI-style analyses. From a
theoretical perspective, offline RL guarantees are frequently obtained by con-
structing pessimistic value estimates (or lower confidence bounds) that hold
uniformly over a function class, often via variants of pessimistic value itera-
tion (PEVI) and concentrability assumptions. Such analyses yield minimax-
optimal statistical rates (up to logarithmic factors) and clarify the necessity
of coverage/overlap conditions for any nontrivial guarantee. Our bounds are
consistent with this literature in that the dominant statistical term scales as
O(H/+/n) in the finite-horizon view, and we explicitly include an additional
O(HJ) term capturing discriminator log-ratio error. Rather than designing
an explicit confidence interval, we impose budgets on divergences that op-
erationalize a similar principle: avoid regions where either the model or the
policy extrapolates beyond what the dataset can support.

Domain adaptation and reward correction (DARC). Finally, our
transition-ratio correction is conceptually related to domain adaptation meth-
ods that reweight samples by density ratios, as well as to reward-correction
approaches such as DARC, which adjust rewards using classifier-based esti-
mates of mismatch between source and target dynamics 7. DARC can be
interpreted as shaping reward so that optimizing in an approximate dynam-
ics model better matches performance in the true environment under certain
assumptions. Our approach differs in two ways. First, we simultaneously
address dynamics mismatch and policy shift, since in offline RL the learned
policy itself induces the shift that renders model error consequential. Second,
we treat correction magnitudes as dual variables driven by explicit budgets,
rather than fixed hyperparameters, which aligns the correction with the La-
grangian of a constrained optimization problem and provides a mechanism



for automatic conservatism adjustment.

3 Clean Problem Formulation: Constrained Shift-
Robust Offline RL

We formalize the objective of learning a deployable policy from a fixed offline
dataset while controlling two distinct failure modes: (i) exploitation of dy-
namics model bias when using synthetic rollouts, and (ii) extrapolation to ac-
tions insufficiently supported by the behavior data. Throughout, we consider
a discounted MDP M = (S, A, p,r, po,y) with bounded rewards r(s,a) €
[Tmins Tmax) and mmin > 0, an offline dataset Deny = {(si, @i, 74, ;)1 col-
lected under an unknown behavior policy 7, and a learned dynamics model
m(- | s,a) trained on Deyy.

Discounted occupancy and evaluation target. For a policy «, let p™
denote the trajectory distribution induced by p and 7, and define the dis-
counted occupancy measure over state—action pairs by

d"(s,a) == (1—7) Z’yt Pr(s; = s,a; = a).
>0 7

Our true performance objective is the discounted return

Ipm(m) = ETNPW[Z’ytr(St,at)}.

t>0

We will occasionally use the effective horizon H = (1 —~)~! as a shorthand
for the scale at which per-step perturbations (e.g., reward shaping or ratio
errors) accumulate into value differences.

Two constraints: dynamics mismatch and policy shift. We restrict
attention to policies that remain within user-specified budgets for (a) model
mismatch and (b) policy shift. Fix divergences Dy and D, acting on condi-
tional distributions, and define

en(7) = Egsayear | Dy (p(- | 5,0) [ m(- | 5,0))].
ex(7) 1= By [ Dy (n(- | 5) | mo(- | 9)) .
Given budgets e, > 0 and &, > 0, we define the feasible set
feas(Em, ex) = {7? €ll: cp(m) <em, cx(m) < Eﬂ—},
and the constrained offline RL problem

max Jnm ().
71—enfeas(‘E'myaﬂ) M( )

8



The first constraint is explicitly shift-weighted: it measures model error along
the occupancy induced by 7 in the true environment, rather than along the
behavior occupancy. This choice is deliberate, since model exploitation is
only harmful insofar as 7 visits state—action pairs where m is inaccurate. The
second constraint similarly measures shift where it matters for deployment,
namely under d".

Choice of divergences and interpretation. The formulation permits
several natural instantiations. For Dy = Dy, = KL, the constraints become
expectations of conditional KL divergences, which admit variational and
density-ratio interpretations and connect directly to additive log-ratio reward
shaping. If one instead uses total variation, D(v||u) = ||[v—p||Tv, then ¢, ()
upper-bounds discrepancies in one-step transition expectations of bounded
test functions, and c,(m) enforces a form of action support overlap. More
generally, one may take D or Dy to be an integral probability metric (IPM)
induced by a critic class F, yielding constraints of the form

sup Emwu[f(x)] - ExNM[f(x)]
ferF

IPM choices are attractive when likelihood ratios are ill-conditioned, whereas
KL is attractive when calibrated log-ratios are available and one seeks a
direct Lagrangian decomposition into per-transition penalties.

Measurability from offline data: what can be estimated. The con-
strained problem is stated in terms of p and m, neither of which is known.
Our access is limited to (i) samples from the joint distribution induced by 7
and p (namely Degyy), and (ii) samples from model rollouts under m and the
current policy 7 (namely D,,,). Consequently, we require divergence choices
that admit estimators from these sample sources.

For the dynamics constraint, note that Dy, provides samples of (s, a, s”)
distributed approximately as (s,a) ~ d™ and s’ ~ p(- | s,a), whereas D,,
provides samples with s’ ~ m(- | s,a) for (s,a) encountered along rollouts
that start from dataset states and then follow 7 under m. When Dy is
an f-divergence (including KL), D¢(p(- | s,a)||m(- | s,a)) admits a varia-
tional representation that can be optimized by a classifier separating samples
from p(- | s,a) and m(- | s,a). In the KL case, the optimal logit recovers

log pp(s,a,s’) = log :; ((iJISS’(Z)) on the region where both densities are posi-

tive, enabling an empirical proxy for ¢, () by averaging a surrogate loss (or
an explicit plug-in KL estimate) over (s,a) encountered under the current
policy.

For the policy-shift constraint, m(- | s) is unknown, but Dy, contains
action samples drawn from it. When D, is KL, we may rewrite
m(a | s)

Dt (7(- | (- | )) = Eanr(yo [log - 175,



m(als)
m(als)
obtained via an action discriminator trained to distinguish (s, a) pairs pro-

duced by sampling a ~ 7(- | s) (with s drawn from an appropriate state
marginal) from those in Depny. For IPM-style Dg, an analogous critic can
be trained to maximize discrepancy between 7(- | s) samples and dataset
actions.

so that estimating log pr(s,a) = log

suffices. This log-ratio can be

Support and absolute continuity. Both constraints implicitly encode a
requirement of overlap. For ratio-based instantiations (notably KL), p, and
pr are defined only when p is absolutely continuous with respect to m (con-
ditionally) and 7 is absolutely continuous with respect to 7, (conditionally).
If mp(a | s) = 0 while 7(a | s) > 0, then Dy(n(- | s)||m(- | s)) = +oo for
KL, excluding such policies from Ilj,s regardless of budget. This is not an
artifact but a formal expression of the offline identifiability barrier: leaving
dataset support cannot be certified without additional assumptions.

Discounted-to-finite-horizon translation. Finally, we remark that the
above discounted constraints and objective admit the standard conversion to
a finite-horizon viewpoint by interpreting (1—-)d™ as a normalized visitation
distribution and using H =~ (1 —v)~! to track accumulation. In particular,
per-step estimation errors in the discriminators that are uniformly bounded
in logit translate into O(HJ) perturbations in the induced shaped objective
and, correspondingly, into additive O(H¢) terms in feasibility and subopti-
mality bounds. This correspondence will be used implicitly when we state
rates in either discounted or finite-horizon forms.

4 4. Clean Problem Formulation (Constrained Shift-
Robust Offline RL): define feasible set via model-
bias and policy-shift constraints; discuss choices
of D¢, D, (KL/TV /IPM) and measurability from
data.

Beyond serving as a formal safety specification, the pair of constraints in-
duces a geometry on the policy class that we will exploit algorithmically. In
particular, &, and e, control two different directions in which offline opti-
mization can fail: the first limits the degree to which the optimized policy
may rely on regions where the learned simulator is inaccurate, while the
second limits extrapolation in action space relative to the (unknown) data-
generating policy. We emphasize that neither constraint is purely a property
of the dataset; both are policy dependent through d™, and hence must be
enforced adaptively as 7 changes.

10



A basic modeling choice is whether Dy and D, should be likelihood-based
divergences (e.g. KL) or IPM-type discrepancies. When Dy = Dy, = KL, the
constraints can be written as expectations of log density ratios:

cm () = E(s a)mdr {Es’Np(‘\s,a) [log WH ; (1)
o) = Bomar [Baagr [0 el 3]]. ©)

The appeal of f is twofold: (i) the quantities admit direct estimation
via calibrated classifiers, and (ii) they decompose into per-transition and per-
decision additive terms, which will later allow us to rewrite the Lagrangian
as an RL objective with a shaped reward. The drawback is the implicit
absolute-continuity requirement: whenever m(s’' | s,a) =0 < p(s’ | s,a) or
mp(a | s) =0 < mw(a| s), the corresponding KL is infinite. In offline RL this is
conceptually appropriate—it excludes policies whose value is unidentifiable
from the available support—but it also means that practical implementations
must take care that policy parameterizations and constraint surrogates do
not silently step outside support.
If one instead takes total variation (TV), then the constraints become

em(m) = E(sayear [[IP( | 5,0)=m(- | s,a)llrv],  en(m) = Eanar [[I7(- | )= (- | 5)ll7v],

which enforce a stronger form of distributional proximity that does not re-
quire density ratios to be well-conditioned. TV admits the variational rep-
resentation

1
v =iy = s 5 (Eevs /()] = Banylf(@)]).

and hence can be estimated via a critic class that approximates the supre-
mum. More generally, we may use an integral probability metric induced by
a function class F, giving

D]:(VHM) = JSclelg Eu[.ﬂ - Eu[f]a

which interpolates between TV (via bounded F) and weaker moment-matching
constraints (via restricted F). The price paid by IPM-style choices is that
they typically do not yield an exact log-ratio decomposition; consequently,
the corresponding Lagrangian penalties will be representable as learned crit-
ics rather than explicit ratio terms.

The estimability of ¢, (7) from (Deny, Dyy,) hinges on a sampleable con-
trast between p and m at comparable (s,a). Concretely, Deyy provides con-
ditionally real next-states s’ ~ p(- | s,a) paired with the dataset (s,a),
whereas D, provides synthetic s’ ~ m(- | s,a) along rollouts initiated from

11



dataset states and then propagated under (m, ). This is not an innocuous
detail: the distribution over (s,a) in D,, depends on both the rollout hori-
zon and the policy, so any learned discriminator is implicitly trained on the
policy-induced region that we aim to constrain. For f-divergences, and in
particular KL, we may train a binary classifier Cy(s, a,s’) € (0,1) to distin-
guish labeled samples (s,a, s") ~ Deyy from (s,a,s") ~ Dy,. Under standard
calibration assumptions, the logit

-~ Cy(s,a,s")
¢ ') o= log ——
o(,a,) = log 1 —Cy(s,a,s)

p(s'|s.a)
m(s']s,a)

butions place mass. Averaging Zcb over the appropriate (s,a,s’) distribution
then yields a computable surrogate for . The key point is that, because the
constraint is weighted by d™, the relevant average is not over Dgy, alone, but
over the state—action pairs that = would visit. In practice, we approximate
this weighting by sampling (s, a) from rollouts (under m) starting at dataset
states; this corresponds to the standard MBPO-style approximation of d™
and will be the source of a controlled modeling bias term in later bounds.
An analogous construction applies to ¢(m). Since 7, is unknown, we
cannot evaluate logmy(a | s) directly; however, we can estimate the ratio
pr(s,a) = w(a | s)/mp(a | s) by discriminating between (i) action samples
drawn from the current policy and (ii) action samples in the dataset. Con-
cretely, for a chosen state marginal v (often taken to be the empirical state
distribution from Dg,,, or a mixture of dataset states and model rollout
states), we draw (s,a) ~ (s ~ v, a ~ 7(- | s)) and label them as policy-
generated, and label (s,a) pairs from Deny as behavior-generated. Train-
ing a classifier Cy (s, a) yields a logit £,(s,a) that approximates log pr (s, a),

approximates log pp(s, a, s’) = log on the support where both distri-

and we may then estimate by averaging l% over (s,a) sampled from
(s ~v, a~m(-|s)). Here again the weighting matters: the constraint is
stated under s ~ d”, not under the dataset marginal, so the choice of v is
an approximation device whose adequacy depends on how well it tracks the
deployed state distribution.

Finally, we record the operational role of the budgets. If g, is small, then
any feasible policy must remain close to regions where the learned model is
empirically indistinguishable from the environment under the discriminator
family; if e; is small, then any feasible policy must remain close to the
action choices supported by the dataset. These trade-offs will manifest in the
dual variables of the Lagrangian: tightening a budget increases the marginal
penalty for violating the associated constraint. In the next section we make
this relationship explicit by passing from the constrained formulation to a
shift-aware shaped reward whose coefficients are precisely the dual variables.

12



4.1 From constraints to shift-aware rewards

We pass from the constrained formulation to an unconstrained saddle prob-
lem by introducing dual variables a, 8 > 0. Writing ¢,,(7) and ¢, () for the
two constraint functionals, we consider the Lagrangian

L(m,a,B) == Ipm(m) — a(cm(ﬂ') — Em) — B(Cﬂ(w) — 577). (3)

The constant offset ag,, + Be, affects only the dual objective and will be
ignored in the primal update; the essential term is the per-policy penalization
—acm () — Bex(m). When Dy = D, = KL, the KL expressions (1)-(2)
suggest that £ should admit a decomposition into additive contributions
along trajectories. Our implementation, however, does not optimize £ by
explicitly computing inner expectations under p(- | s,a) and 7(- | s); instead,
we rewrite these terms so that they can be estimated from samples drawn
from the two sources we actually have, namely model rollouts and behavior
data. This is precisely where the “shift-aware reward” interpretation emerges.
To make the per-transition structure explicit, we introduce a utility trans-
formation w, with the canonical choice u(r) = logr, which is well-defined
because ryin > 0. We view the algorithm as optimizing the utility-return

Ju(m) = Erpr [thu(r(st, at))] ,

t>0

and we later translate utility guarantees back to Jaq(m) using standard in-
equalities (for instance, by Jensen and the bounds on r). The utility form
is not cosmetic: it allows likelihood ratios to enter additively as log-ratios,
matching the form produced by calibrated discriminators.

We now derive the corrected reward terms from a variational change-
of-measure bound of the SAR type. Let ¢ be any trajectory distribution
absolutely continuous with respect to p™. The Gibbs variational principle
yields

Erp|F(7)] 2 Erng F(7)| = KLap7), (4)

for any bounded measurable F. Taking F(7) = > ,oq7'u(r(ss, a:)) and
choosing ¢ as a distribution we can sample from yields a lower bound on
Ju(m) in which KL(q||p™) appears as a penalty. We choose ¢ to be induced
by the learned simulator m rather than the true dynamics, i.e., ¢ = m™ (the
distribution of trajectories obtained by rolling out 7 under m, starting from
Lo or, in practice, from dataset states). The log-likelihood ratio between m™
and p™ decomposes as a sum of one-step log ratios:

lo mﬂ'(T) _ ZIO m(st_H | st,at)

p™(7) 0 p(Seg1 | st.ai)

13



Consequently,

m(s 5¢, 0
KL(m™([p"™) = Ernmn {Z log W = —Erumn [Z log pp(st, at, 5t+1)]
>0 P(St+1 | St,at =0
(5)

Plugging into yields the SAR-style bound

Ju(m) > Eropr [Z*yt (u(r(st, at)) + « log pp(se, az, st+1)>} — « - (slack),

>0

(6)
where o > 0 plays the role of a Lagrange multiplier weighting the mismatch
term. Importantly, the expectation in @ is under m™, the distribution we
can sample via synthetic rollouts, and the correction log p, = log 2 appears
additively inside the sum. Since Ey,~[log pp] = —KL(m™||p™) < 0, the added
term acts as a pessimistic penalty whenever the simulator deviates from the
environment.

A completely analogous device produces the policy-shift correction with-
out requiring access to m,. Consider the per-state action distributions. If
we take ¢ to be the behavior-induced action choice at visited states and ()”
to be the current policy action choice, the log ratio log p(s,a) = log ;;(&“?)
again enters additively. Operationally, we place the expectation over (s,a)
under the behavior distribution (dataset samples), obtaining

E(S’G)Ndwb[log pﬂ(s,a)] = fIESNdﬂb[KL(ﬂ'b(' | s)||7(- | s))] <0, (7)

so that adding 4+ log p, on dataset transitions also produces a conservative
correction. This expectation placement is the reason we can treat the behav-
ior samples as “anchors” while still penalizing action extrapolation: although
KL(7(- | s)|lm(- | s)) is the conceptual budget, the surrogate term we can
stably estimate from data is the reverse-KL form induced by sampling from
mp,, which suffices to discourage leaving the dataset support.

Collecting the two pieces, we obtain a shaped reward of the form

Fag(s,a,8") = u(r(s,a)) + alogpy(s,a,s) + Blogps(s,a),  (8)

with the understanding that lgg\pp is trained on (Depy, Dy,) and used on

model-generated transitions, whereas lgg\p7r is trained on policy-vs-behavior
action samples and used on dataset transitions. Equation is exactly
the SAR correction, with coefficients «, 8 now interpreted as dual variables
enforcing the two budgets. In particular, when the learned policy attempts
to exploit regions where the discriminator suggests m is optimistic (small
p/m), or selects actions rarely supported by the dataset (small 7/m, on
behavior samples), the corresponding log-ratio becomes strongly negative
and decreases 7, g, mimicking pessimism-style penalties used in model-based
offline RL. The present derivation differs from ad hoc pessimism in that the
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penalty magnitudes are not tuned by hand: they are the multipliers of an
explicit constrained problem and will be updated online to match the desired
budgets.

Finally, we note that if one replaces KL by an IPM-type divergence,
then lgé\p in is replaced by a learned critic f € F realizing the varia-
tional supremum, and the same primal interpretation holds: for fixed dual
variables, maximizing the Lagrangian reduces to standard RL on a modified
per-transition reward. This is the precise sense in which the constraints in-
duce shift-aware reward shaping, and it is the quantity on which we perform
actor—critic updates in the algorithm that follows.

4.2 Dual-SAR: model rollouts, corrected-reward RL, and dual
adaptation

We now specify the procedure by which we (i) construct training data that
reflects the current policy while remaining anchored to the offline dataset, (ii)
compute the shift-aware corrected reward used for policy improvement, and
(iii) update the dual variables so as to target the budgets (,,,e,) without
manual tuning. The implementation is deliberately MBPO-style: we alter-
nate between short synthetic rollouts under the learned model and off-policy
actor—critic updates on a mixture of real and synthetic transitions.

Rollout generation (MBPO-style). At iteration k, we sample a mini-
batch of states from the empirical state marginal in Dep, (equivalently, we
sample transitions and take their s-components). From each sampled state
s, we roll out the current policy 7 in the learned dynamics m for a short
horizon h, producing synthetic transitions (s, at, ¢, S¢+1) where a; ~ (- |
s¢) and sg41 ~ m(- | s¢,ar). We store these transitions in a synthetic replay
buffer D,,. The restriction to short A is not merely computational: it limits
compounding model bias and ensures that the distribution of D,, remains
close to the dataset support in early iterations. In practice, we either fix h
to a small constant or use an increasing schedule hj, (as in MBPO) once the
discriminators indicate reduced mismatch.

Discriminators and log-ratio surrogates. We maintain two classifiers.
The transition discriminator Cy(s,a,s’) € (0,1) is trained to distinguish
environment transitions from model transitions, with binary cross-entropy
objective

mgx E(s,,5)~Denv [log Cy(s,a, s’)] + E(s,a,8)~Dum [log(l — Cy(s,a, s’))].
When the discriminator is calibrated, the logit yields an estimate of the one-

step log dynamics ratio (up to an additive constant that cancels in policy
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improvement),

— p(s' | s,a)

C’ /
logpp(s,a,sl) ~ log = log o(s,a,s)

m(s' | s,a) 1 —Cy(s,a,s)

Similarly, the action discriminator Cy (s, a) € (0,1) is trained to distinguish
state—action pairs proposed by the current policy from those in the dataset:

mﬁx E(s.a)~Dx, [log Cy(s,a)] + E(s,0)~Deny [log(1 — Cy(s,a))],

where Dy, denotes state-action samples obtained by pairing dataset states
s with actions a ~ 7i(- | s). The calibrated logit yields lgg\pﬁ(s,a) A~
Tolals) - We emphasize that these estimators are only used on the distri-
butions on which the corresponding discriminator is trained; this restriction
is essential for both stability and the high-probability error control invoked
later in the tabular analysis.

Corrected reward and actor—critic update. Given the current dual
variables (ay, ), we label transitions with the corrected reward 7, g,
as in , but applied in a source-aware manner: on synthetic transitions
(s,a,s') € D,, we include the model-mismatch term oy lgg\pp(s, a, s'), while
on real transitions (s, a) € Degyy we include the policy-shift term [ 1gg\p7r(s, a).
We then run an off-policy actor—critic update (e.g., SAC) on minibatches
drawn from Deny U Dy, treating 7, g, as the reward. This step is a stan-
dard RL update with a nonstationary reward function; the only algorithmic
novelty is that the reward is shaped by discriminator outputs and dual vari-
ables, and that the data distribution is a controlled mixture of real and model
transitions.

Constraint monitoring and dual ascent. To adapt («, ) to the user
budgets, we compute empirical surrogates ¢,,(mx+1) and ¢ (mg11) from dis-
criminator outputs, for instance by using sample averages of negative log-
ratios (reverse-KL surrogates) or by using the corresponding variational di-
vergences associated with the discriminator training objective. We then
perform projected dual ascent,

apy1 = [+ 00 (Cn(Thi1) —em)] s Berr = [Br+n5(Cx(Ths1) —ex)] -

Thus, persistent constraint violation increases the multiplier, thereby strength-
ening the pessimistic correction in subsequent policy updates; conversely,
when the constraint is satisfied with slack, the multiplier decreases toward
0, reducing conservatism. In deployments where oscillations are undesirable,
we may use a damped or proximal dual update (e.g., replacing ||+ by pro-
jection onto [0, amax| and [0, Bmax], or adding a quadratic penalty) without
changing the conceptual role of the multipliers.
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Stabilization: projection, clipping, and logit certification. Three
practical mechanisms are required to make the above loop numerically sta-
ble. First, we always project dual iterates to enforce ay, S > 0, and we
optionally cap them by known bounds to prevent excessively large reward
perturbations. Second, because discriminator logits can be heavy-tailed early
in training, we clip the additive correction terms:

€93 Ingp € [_L7L]7 /Bk Ingﬂ S [_L7L]7

so that Bellman backups remain well-conditioned and the corrected rewards
are uniformly bounded. Third, we maintain a simple calibration/certification
routine: we reserve held-out splits from Dgy,, and D,,, and we monitor dis-
criminator calibration error; when the held-out logit error exceeds a tol-
erance, we (temporarily) reduce rollout horizon h, increase discriminator
training, or downweight the offending correction term. This operationally
enforces the bounded log-ratio error regime assumed in the theory and pre-
vents the algorithm from reacting to discriminator artifacts.

The output of Dual-SAR is either the final iterate mx or an average of
iterates, together with feasibility diagnostics reporting ¢,,(mx) and ¢ (7x)
and the corresponding multipliers. In the next section we analyze this pro-
cedure in the tabular setting by decomposing performance into (i) statistical
error from finite Deyy, (ii) optimization error from approximate actor—critic
and finite iterations, and (iii) ratio-estimation error from imperfect discrim-
inators.

4.3 Theory I (Tabular MDPs): feasibility and near-optimality
with matching lower bounds

We analyze Dual-SAR in the finite (tabular) setting, where |S| < oo, |A| <
00, rewards are bounded with rpi, > 0, and policies are arbitrary distribu-
tions over A for each s. We adopt the discounted occupancy measure

d"(s,a) := (1—17) Z’Yt 571:(815 =s,a; = a),
>0 ’

so that Jy(m) = ﬁ E(s,a)~dr[r(s,a)]. The constraints are functionals of d™
and the one-step transition kernels, and in the tabular case the occupancy-
measure formulation makes explicit the convex—concave saddle structure that
motivates primal-dual updates.

Assumptions (coverage and bounded estimation error). We require
standard overlap/coverage conditions ensuring that the feasible set is statis-
tically identifiable from Dgy,,. Concretely, we assume a concentrability-type
bound: there exists C' < oo such that for all 7 considered (in particular for
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T, and the iterates of Dual-SAR),

dﬂ'
wp )

b
D o (5.a) < C on the support where d"™(s,a) > 0,

and the constraints are only enforced /evaluated on this support. We further
assume discriminator-based log-ratio surrogates satisfy uniform (or high-
probability) bounds on the training distributions:

log p,(5,a,8") —log py(s,a,s")| < &y, [log py(s,a) — log pa(s,a)| < dr,

and we denote ¢ := max(dp,dr). Finally, we isolate optimization error by
allowing the primal RL update (actor—critic) and the discriminator updates
to be approximate, summarized by a residual ep¢ (for instance, a bound
on the achieved primal-dual gap relative to an ideal saddle point for the
empirical problem).

From constrained control to a saddle-point problem. Using a varia-
tional representation for the chosen divergences (e.g., KL) and the occupancy-
measure constraints, the constrained objective

max Jp(w) st ep(m) <ém, cx(m) <eéex
s

admits a Lagrangian L£(m, o, 3) that is concave in (a, 8) and (in the tabular
occupancy parameterization) convex in the primal variable. The essential
identity for Dual-SAR is that, up to constants independent of 7, the La-
grangian corresponds to an RL problem with per-transition reward

p(s' | s,a) m(a]s)

1
m(s'| s, a) Flog

T8 u(r(s,a)) + alog m@ls)
with the understanding that in the algorithm we substitute discriminator
logits for log-ratios and apply the terms on the sources where they are es-
timable. Thus, primal improvement corresponds to maximizing E[Y, 7'74 4],
while dual ascent increases a or 8 when the associated constraint surrogate
exceeds its budget.

Feasibility with imperfect ratios. Let (ﬁ,d,B) denote the output of
Dual-SAR after T iterations (or an average iterate), and let ¢,,,¢, denote
the empirical constraint surrogates used for dual updates. Under bounded
reward shaping (via clipping) and bounded logit error §, the divergence func-
tionals are Lipschitz with respect to log-ratio perturbations on the relevant
supports. Consequently, if ¢,,(7) and ¢, (7) are £A accurate uniformly over
the iterates (with probability at least 1 — &), then complementary slackness
for an approximate saddle point yields

em(7) < em+O(A+6,),  cn(f) < ex+ O(A+5y),
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with constants depending on the effective horizon H =~ 1% and on the

clipping level used to keep 7, g bounded. In particular, feasibility degrades
additively with ratio-estimation error: even if the primal-dual loop con-
verges perfectly on the empirical problem, the true constraints can only be
satisfied up to the error with which we can estimate the relevant log-ratios
on-distribution.

Near-optimality among feasible policies and an explicit error de-
composition. Let 73 be an optimal policy among those satisfying the
true budgets. The performance bound we target has the form

Inriae) = In() < O( ) 4 OUI) - (0)
vn —_—— —~
N——— ratio-estimation optimization
statistical
The first term is the intrinsic offline statistical error: even with exact models
and exact ratios, n transitions limit how well we can evaluate and opti-
mize policies under distribution shift. The second term isolates the effect
of imperfect discriminators (or, more generally, misspecified ratio estima-
tors), which enters linearly in horizon due to the accumulation of per-step
reward perturbations in ), 4'7. The third term captures finite-iteration and
function-approximation artifacts in the actor—critic and discriminator train-
ing, and can be driven down with additional computation in the tabular case
(e.g., exact dynamic programming as the primal update).

A proof proceeds by (i) relating the achieved primal-dual gap to a value
gap in the occupancy formulation, (ii) controlling empirical process error for
the objectives and constraints via concentration (vielding the O(H/+/n) term
under coverage), and (iii) perturbation analysis translating ¢, logit error
bounds into additive deviations in the shaped return and in the constraint
estimates (yielding O(H¢)). The only role of model rollouts in this argument
is algorithmic: they change the sampling distribution used by the primal
update but do not bypass the information limit imposed by Deps-

Matching-rate lower bounds and the necessity of coverage. The
rate O(H/y/n) in (9) is unimprovable in the worst case (up to logarith-
mic factors) under the same offline access model. A standard reduction
embeds a contextual bandit as an H = 1 MDP; any algorithm achieving
o(1/4/n) suboptimality uniformly would contradict minimax lower bounds
for offline policy optimization/off-policy evaluation with bounded rewards
and limited overlap. Extending this reduction along a finite-horizon chain
yields an Q(H/y/n) lower bound.

Moreover, without overlap the problem is ill-posed: if a state—action pair
has positive occupancy under 7z, . but zero probability under the data distri-
bution induced by 7, then two environments can be constructed that agree
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on the dataset support yet assign arbitrarily different outcomes off-support.
No algorithm using only Dey, (and models trained on it) can then guaran-
tee nontrivial improvement. In this sense, Dual-SAR does not eliminate the
need for coverage assumptions; rather, the budgets (e, e-) and their dual
adaptation provide an operational mechanism to remain within the regime
where offline generalization is statistically controlled.

4.4 Theory II (Linear MDPs / Function Approximation):
realizability, concentrability, and what fails beyond the
linear regime

We next summarize how the preceding feasibility and near-optimality state-
ments extend when we replace the tabular parameterization by a linear func-
tion class. The purpose of this section is not to optimize constants, but to
separate (i) the statistical terms that follow from finite-sample identification
under coverage and realizability from (ii) the genuinely algorithmic aspects
of Dual-SAR (model rollouts, discriminators, and dual updates). Through-
out we retain the discounted setting and write H =< (1—+)~! for the effective
horizon.

Linear MDP / linear value realizability. Fix a feature map ¢ : S x
A — R? with ||¢(s,a)|2 < 1. We assume the reward is linear,

T‘(S,CL) = <¢)(5,a),0r>, ”97“||2 < B,

and the transition kernel is linear in the standard “linear MDP” sense: there
exist signed measures {P;(-)}¢_, such that

d
p(' ’ s,a) = Z(bl(sva)PZ()v

TV

Under these assumptions, for any policy 7 the Bellman equations admit a Q™
that is linear in ¢ (or, more generally, lies in a linear class that is Bellman-
complete). This is the realizability condition that allows us to import known
offline RL rates for fitted value iteration / least-squares temporal difference
methods, and it is the precise point at which we depart from general nonlinear
approximation.

Coverage in linear feature space. The tabular overlap condition is re-
placed by a feature-covariance condition on the data distribution induced
by mp. Let X = E(sq)dm [(s,a)p(s,a)T]. We assume a nondegeneracy
condition

)\min(z) 2 )\D > O’
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and a concentrability-type bound ensuring that, for all policies m under con-
sideration, feature second moments under d™ are controlled by those under
d™. One convenient sufficient form is: there exists k < oo such that for all
vectors w € R?,

IE(s,a)wd’" [<’LU, (25(87 a)>2] < K IE(s,a)~d7rb [<w7 ¢(S7 CL)>2] :

In linear problems, such an assumption is the direct analogue of bounding
density ratios in tabular problems; it is also what allows empirical least-
squares objectives computed on Den, to control errors under the shifted
occupancy d”.

Near-optimality with linear statistical rates. Under linear realizabil-
ity and the above covariance/concentrability assumptions, one obtains a
value suboptimality guarantee whose statistical term scales with the fea-
ture dimension. In particular, for an appropriate implementation of the
primal update (e.g., a pessimistic or regularized fitted @Q-iteration in the lin-
ear class, driven by the corrected reward 7 3), we can bound the gap to the
best feasible policy 7, . by
Tit(Tins) — Tna() < O (Hf

) + O(H(;) + Eopt + Eapprox- (10)

Here e,pprox is identically zero under exact linear realizability /Bellman com-
pleteness, but we keep it explicit because it is the term that dominates when
the linear model is misspecified. The O(H\/d/n) rate is representative of
least-squares-based offline control bounds in linear MDPs; alternative analy-
ses yield O(H?2d/n) or O(y/H?3d/n) depending on the algorithmic template
and on whether one targets evaluation or control. For our purposes, the
salient point is that Dual-SAR does not change the dimension dependence:
the role of the dual correction is to restrict optimization to a region where
such linear generalization bounds apply (via the budgets), not to evade the
need for coverage.

Feasibility bounds with function approximation. The feasibility ar-
gument carries over provided the constraint surrogates remain Lipschitz with
respect to the estimated log-ratios on the relevant support and provided the
policy /value learning procedure does not drive the iterates into regions where
the discriminators are unconstrained. Concretely, under the same uniform
logit error bounds [log p, — log p,| < 0, and [log p, — log pr| < dr on the
data and model rollout distributions, and assuming the empirical constraint
estimates are accurate up to A, we obtain with probability at least 1 — &,

em(7) S em+O(A+3,),  en(F) < en+ O(A +6y),
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with constants depending on H and the clipping used for 7, g. The only ad-
ditional subtlety in the linear setting is that the primal update typically uses
function approximation and thus introduces a controlled bias term; this bias
is absorbed into eqpt (algorithmic inexactness) and €approx (model/class mis-
specification), and it impacts feasibility indirectly by changing the realized
occupancy d”.

Why the analysis breaks in general nonlinear settings. Beyond
linear/Bellman-complete classes, two distinct failure modes appear. First,
approximation bias becomes structural: if the value class is not closed un-
der the Bellman operator, then even with infinite data the primal update
may converge to a fixed point with nonzero Bellman error, which manifests
as a nonvanishing e,pprox term in . In offline control, such bias inter-
acts adversely with distribution shift because errors concentrate precisely on
state—action regions that the learned policy visits but the dataset does not
cover. Second, optimization and saddle-point pathologies emerge: the pri-
mal problem is no longer convex in an occupancy parameterization induced
by the function class, and the discriminator/policy training objectives are
nonconvex—nonconcave. In that regime, projected primal-dual updates need
not converge to any meaningful saddle point, and complementary slackness
cannot be invoked without additional regularity assumptions (e.g., two-time-
scale stability, PL conditions, or specific network architectures). Thus, while
Dual-SAR remains a sensible algorithmic template in nonlinear domains,
the clean separation into statistical error O(-), ratio-estimation error O(HJ),
and optimization/approximation errors becomes only a heuristic unless one
imposes stronger conditions (such as realizability of both critics and discrim-
inators and a form of smoothness guaranteeing stable dual dynamics).

Takeaway. In the linear regime, the tabular theory transfers with the
usual replacement “|S||A|” — d and “exact dynamic programming” +— “least-
squares Bellman methods”, while the role of the budgets and dual variables
is unchanged: they restrict the learned policy to remain in the identifiable
region determined by De,, and by the accuracy of the ratio estimators. In
the absence of linear realizability (or an alternative completeness property),
the dominant obstruction is not the particular form of Dual-SAR but the
unidentifiable nature of off-support generalization under nonlinear approxi-
mation.

4.5 Complexity and Implementation Notes

Compute and memory costs. Dual-SAR adds two discriminator up-
dates and two scalar dual updates to an otherwise standard model-based
offline RL loop. Let b denote the number of model rollouts per iteration, h
the model rollout horizon, Uy the number of discriminator gradient steps per
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iteration, U, the number of actor—critic gradient steps per iteration, and let
Cm, Cq, Cye denote the per-sample forward/backward costs of the dynam-
ics model, discriminators, and actor—critic networks, respectively. Then the
dominant per-iteration time complexity is

O(bhCp) + OUsBCy) + O(Uae BCa),

where B is the minibatch size used for learning. The dual updates for (o, 3)
and the computation of corrected rewards are O(B) and are negligible. Rel-
ative to MBPO-style training, Dual-SAR’s overhead is essentially the cost
of training the two classifiers (and optionally calibrating them). In our ex-
perience, this overhead is comparable to training an additional critic and is
typically dominated by actor—critic updates when U, is large. The princi-
pal knob for controlling wall-clock time is h: increasing h increases synthetic
data throughput linearly, but also increases the frequency with which the
policy is exposed to long-horizon model errors, which interacts with e,,.

Memory usage is O(|Deny| + |Dm| + P), where P is the total parameter
count of m, critics, m, and discriminators. We emphasize that D,, need not
be stored indefinitely: one can maintain a sliding-window buffer of recent
model rollouts (as in standard model-based RL) since the discriminators and
the policy are trained on the current induced distributions. If an ensemble
of models is used, memory grows linearly in the ensemble size, but this is
optional for Dual-SAR.

Estimating constraint values from classifiers. The constraints involve
divergences of the form D¢(p(- | s,a)||m(- | s,a)) and Dy(7(- | s)||7s(- | 5)),
averaged under the discounted occupancy of the current policy. In practice
we estimate these quantities through variational surrogates induced by bi-
nary classification, and we use the resulting scores both (i) as per-sample
reward corrections and (ii) as empirical estimates ¢, (7), ¢ (7) for the dual
updates.

For the model-mismatch constraint, we train a transition discriminator
Cy(s,a,s’) € (0,1) to separate real transitions (s,a,s’) from Dy, (label
y = 1) and synthetic transitions from D,, (label y = 0) using logistic loss.
Under standard density-ratio arguments, the logit

approximates log %, where geny and g, are the joint transition distri-

butions induced by the respective replay buffers. When the two buffers share
the same (s, a)-marginal (e.g., via conditioning on the same (s, a) samples or
via careful rollout initialization), this recovers a conditional ratio estimate of

p(s']s,a) .
m(s']s,a)’

log

otherwise it is best interpreted as an integral-probability-metric
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surrogate controlling the discrepancy between the two induced transition
distributions, which is sufficient for the role of the dual update as a con-
servatism controller. We then form the empirical constraint estimate by
averaging scores on the distribution induced by =, e.g.,

tnlm) = Y clip(By(s,a,8),~L, L),
|Bm| (s,a,8")EBm

where B, is a minibatch from D,, and clipping stabilizes the dual dynamics
(and bounds the shaped reward).

For the policy-shift constraint, we train an action discriminator Cy (s, a) €
(0,1) to separate actions drawn from the current policy at dataset states
(label y = 1) from actions appearing in Dey,, (label y = 0). Concretely, we
sample s from Deyy, draw a ~ 7(- | s), and treat (s,a) as a policy sample;
we treat (s,a) from Depy, as a behavior sample. The corresponding logit

) Cl/)(saa)
14 = log ————
o) = g U
approximates log :b((‘fl'fs)) when the state marginals match by construction

(which they do if both classes use the same s-samples). We estimate

Cr(m) = Z clip(@r(s,a),—L,L),

|B7T ‘ (s,a)€EBxr

with B obtained by sampling s from Dey, and a ~ (- | s). If one prefers a
specific divergence (e.g., KL), then one can convert classifier outputs into an
explicit f-divergence estimate via the corresponding variational representa-
tion; however, for the purposes of dual control, the clipped logit average is
often a robust surrogate.

Since the dual updates are sensitive to score scale, we recommend cali-
brating Cyg, Cy (e.g., temperature scaling on held-out splits) and monitoring
calibration error; in particular, discriminator AUC near 1 coupled with poor
calibration can cause unstable (o, 3) growth without improving constraint
satisfaction.

Budgets as knobs (as opposed to tuned penalties). The user-facing
hyperparameters are €, and e€;, which directly encode how much model
mismatch and policy shift we are willing to tolerate under the learned occu-
pancy. Unlike fixed penalty coefficients, these budgets have an operational
meaning: they target the average allowed discrepancy (under the induced
state visitation), not a particular reward scale. The dual variables («, 3) are
then adjusted automatically to satisfy the budgets. In practice, we set &,
and e, on a coarse grid (often logarithmic), and we find that performance is
less brittle than tuning a single static penalty weight, because o and 8 adapt
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across training phases (e.g., early iterations may require large  to prevent
leaving the dataset support, while later iterations may allow 8 to decrease
once the policy stabilizes). Additional stability knobs include: (i) clipping
level L for logits added to rewards, (ii) dual step sizes 714,73, (iii) a delayed
dual warm-up (updating (a, 3) only after discriminators reach a minimum
accuracy), and (iv) limiting model rollout horizon h early in training.

Recommended diagnostics. We recommend logging: (1) ¢,,(7) and ¢, ()
together with their target budgets; (2) dual iterates oy, S and their update
increments; (3) summary statistics of correction terms a ¢, on D,, and 3¢,
on Degyy (mean, quantiles, and fraction clipped); (4) discriminator separa-
tion metrics (AUC/accuracy) and calibration metrics on held-out splits; (5)
an estimate of shift severity such as effective sample size under exp(¢,) (for
debugging extreme policy drift); and (6) model-error proxies on a validation
subset of Depy (e.g., negative log-likelihood or one-step prediction error),
since rapidly worsening model fit under the induced policy is often visible
before return collapses. These diagnostics typically suffice to distinguish
(i) overly aggressive policy updates (rising ¢, and /), (ii) excessive reliance
on model rollouts (rising ¢,, and «), and (iii) discriminator misspecification
(high training accuracy but unstable or non-monotone constraint estimates).

4.6 Experimental Plan

We evaluate Dual-SAR on standard offline benchmarks with heterogeneous
behavior coverage and reward scales, with the goal of isolating (i) the ben-
efit of dual adaptation relative to fixed penalties, (ii) the practical meaning
of the budgets (em,ex), and (iii) failure modes stemming from ratio esti-
mation and calibration. Our primary benchmark suite is D4RL (MuJoCo
locomotion tasks across random, medium, medium-replay, medium-expert,
and expert datasets), complemented by NeoRL, which provides multiple
dataset generation regimes and permits controlled shifts in behavior pol-
icy and environment stochasticity. We report D4RL normalized scores as
customary, but we additionally report feasibility diagnostics aligned with
our constraints: empirical model-mismatch scores ¢, (), policy-shift scores
¢ (), the dual iterates (a, 3), and the fraction of samples affected by logit
clipping. We run all methods with multiple seeds and report mean and stan-
dard error; unless otherwise stated, we fix total gradient steps and wall-clock
budgets so that comparisons are not confounded by additional compute.

Baselines and controlled comparisons. We compare against represen-
tative model-free offline RL methods (e.g., CQL, IQL, TD3+BC) and model-
based offline RL methods (e.g., MOPO/MOReL-style pessimism, MBPO-

style rollouts with conservative tuning), using published hyperparameter
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ranges and selecting via offline validation when possible. The key compari-
son, however, is to a tuned SAR-style penalty method in which the correction
terms appear with fixed coefficients (@&, 3) (or a single tuned penalty weight),
chosen by an oracle sweep per task. This isolates the value of the primal—
dual mechanism: Dual-SAR should match or exceed the performance of the
best tuned penalty on average while eliminating per-task tuning. To avoid
an unfair advantage, we allow the tuned baselines the same discriminator
architecture, the same replay mixture of Dgyny U Dy, and the same clipping
level L; the only difference is whether («, ) are adapted online to satisfy
budgets.

Budgets as interpretable control knobs. We design experiments to
test whether (g,,,£;) behave monotonically and predictably. For each en-
vironment /dataset, we run a small grid over ¢, and ¢, (log-spaced), and
we examine: (i) the resulting learned rollout horizon effectively used by
the algorithm (as measured by the proportion of updates coming from D,,
before constraints tighten), (ii) the induced dual variables («, /), and (iii)
the realized constraint values ¢, (7), ¢ (7) at convergence. We expect that
tightening e, prevents destructive extrapolation on low-coverage datasets
(e.g., random, medium-replay), while loosening e, enables gains on higher-
coverage datasets. Analogously, tightening e, should reduce reliance on
long-horizon synthetic rollouts, approaching a model-free offline algorithm
in the limit. We explicitly check that the empirical violations track the bud-
gets, i.e., () = &5, and ¢ (7) & €, when the corresponding dual is active,
consistent with complementary slackness at approximate saddle points.

Ablations. We perform ablations to identify which components are nec-
essary for stability and which primarily affect sample efficiency:

e Dual adaptation vs. fized penalties: replace the dual updates by fixed
(@, B) chosen either (a) by a global setting across tasks or (b) by per-
task tuning. This quantifies the value of automatic adaptation and
the extent to which a single penalty weight is brittle across tasks and

datasets.

o Model-rollout dependence: vary rollout horizon h and the ratio of syn-
thetic to real samples. We test whether Dual-SAR can safely leverage
larger h when ¢, is sufficiently small (forcing o upward and penaliz-
ing mismatch), and whether it recovers MBPO-like benefits on well-
modeled regimes.

o Clipping and reward transform: remove clipping or vary L, and op-
tionally compare u(r) = r versus u(r) = logr (when ryin > 0) to
test sensitivity of training dynamics to heavy-tailed logits and reward
scaling.
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e Discriminator architecture and capacity: reduce capacity to induce un-
derfitting and increase capacity to induce near-separation, measuring
how each affects feasibility and return.

Each ablation is evaluated not only by return but also by the evolution of
(a, B) and the stability of ¢,,, ¢y, since we view constraint tracking as the
primary operational objective.

Stress tests via controlled model degradation. To probe robustness
to model misspecification, we construct synthetic degradations of the learned
dynamics: (i) injecting Gaussian noise into model outputs, (ii) training m
on a reduced subset of Dep, to simulate data scarcity, and (iii) using in-
tentionally mis-specified architectures. For each degradation level, we rerun
Dual-SAR and fixed-penalty baselines while holding all other hyperparam-
eters constant. Our hypothesis is that dual adaptation will respond by in-
creasing « (tightening the effective trust region in model space), reducing
the contribution of D,, to policy improvement, and thereby degrading per-
formance gracefully rather than catastrophically. We additionally test a
multi-stage training regime in which we deliberately increase h over time
(e.g., h=1— 5 — 15), mimicking common model-based practice; we check
whether « rises at the stage transitions and whether feasibility diagnostics
anticipate performance drops.

Calibration and ratio-estimation reliability. Because our feasibility
and reward corrections depend on discriminator logits, we directly test cal-
ibration effects. Concretely, we compare (i) no calibration, (ii) temperature
scaling on held-out splits, and (iii) isotonic regression (when feasible), and
we report standard calibration diagnostics (e.g., expected calibration error)
alongside RL outcomes. We also test whether enforcing mild regularization
on logits (weight decay, label smoothing) improves dual stability by prevent-
ing spurious extreme ? values. Finally, we quantify “near-separation” regimes
by reporting discriminator AUC and the empirical distribution of Zp, EW, we
expect that high AUC without calibration correlates with overly aggressive
growth of («, 8) and overly conservative policies, whereas calibrated logits
yield smoother dual dynamics and better budget tracking.

Reporting and reproducibility. For each benchmark, we provide (i)
performance profiles versus (em,€x), (i) learning curves with dual trajecto-
ries, and (iii) sensitivity to h and L. We also report the final replay mixture
proportions and the realized constraint estimates, so that performance im-
provements can be interpreted as either true exploitation of model rollouts
within budget or as artifacts of uncontrolled shift. This experimental plan
is designed to make explicit whether Dual-SAR is functioning as intended:
namely, as an automatically adapting conservatism controller that trades off
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synthetic rollouts and policy shift in a manner consistent with the specified
budgets.

4.7 Discussion and Limitations

Dual-SAR reduces offline model-based RL to a constrained optimization
whose Lagrangian induces the corrected reward 7, g. This formulation clari-
fies what the method can and cannot guarantee: when the constraints can be
estimated reliably on the relevant occupancy measure, the dual mechanism
provides an operational procedure for trading off model rollouts against dis-
tribution shift; when they cannot, the algorithm may either become overly
conservative (duals diverge) or overly aggressive (constraints are spuriously
underestimated). We summarize several limitations and open directions that
are intrinsic to this approach rather than artifacts of a particular implemen-
tation.

Dependence on density-ratio (logit) estimation. Our guarantees and

the practical behavior of Dual-SAR depend on estimating log p,(s,a,s’) =

log TI;L((ZJEZ)) and log pr(s,a) = log ;;((‘Z‘;))

ples from Deyy, Dy, and D,. This introduces several coupled failure modes.
First, support mismatch remains decisive: if m or m induces transitions/actions
outside the support of the corresponding training distributions, then neither
pp nor pr is identifiable, and discriminator outputs can extrapolate arbi-
trarily. This is not merely a technicality; it is the operational content of
impossibility results such as Theorem 5. Second, even on-support, ratio
estimation is statistically hard in high dimension: small absolute classifica-
tion error can translate into large log-ratio error on rare events, which then
enters 7, g additively and can dominate Bellman backups. Third, discrim-
inator misspecification matters: if the discriminator class cannot represent
the Bayes-optimal logit, then the induced surrogate divergences may under-
penalize precisely the regions where model bias or policy shift is most harm-
ful, producing apparent constraint satisfaction without real safety. Finally,
calibration is essential because the corrected reward uses logits rather than
only a ranking statistic; uncalibrated near-separation can produce extreme
log p values, causing instability in both primal learning and dual ascent.
Clipping alleviates this but turns the constraints into a truncated surrogate,
which complicates interpretation.

from discriminators trained on sam-

Positivity and the role of the reward transform. We assumed rpyi, >
0 to permit optional use of u(r) = logr in variational manipulations and to
improve numerical conditioning when raw rewards vary widely. This assump-
tion is restrictive for many benchmarks with sparse rewards, signed costs, or
terminal bonuses. A straightforward workaround is to use u(r) = r (which
removes the positivity requirement), or to shift and scale rewards to enforce
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positivity. However, reward shifting interacts subtly with the Lagrangian
shaping: while adding a constant per step does not change the optimal pol-
icy in an infinite-horizon discounted MDP (up to an additive constant in
value), it does change the relative magnitude of the correction terms com-
pared to the base reward during learning, and hence affects optimization
dynamics for a fixed clipping level L. More generally, if one wishes to in-
terpret 7, g as arising from a utility-regularized objective, then the choice
of u determines which risk/scale properties are being optimized. An open
technical point is to develop a principled selection of u that preserves the
variational identities used for divergences while accommodating common re-
ward conventions (including zeros and negatives) without introducing brittle
hyperparameters.

How should one pick budgets (¢,,,67)? The budgets are intended to
be interpretable trust-region radii: &, limits how far # may move from m
in action space under the induced state distribution, and &,, limits how
much synthetic rollouts may rely on regions where m deviates from p. That
said, selecting budgets remains a modeling choice that encodes the user’s
tolerance for extrapolation and model bias. We see three practical princi-
ples. (i) Feasibility first: since cr(mp) = 0 for standard divergences, any
ex > 0 admits mp; in contrast, &, should be large enough that at least a
conservative policy (often near 7p) does not immediately violate the model
mismatch constraint under its occupancy. (ii) Data-driven anchoring: one
may estimate baseline mismatch statistics on Depy (€.g., using the transition
discriminator on one-step samples) and choose &, as a quantile or multiple
of this baseline, reflecting the desired allowance beyond observed transitions.
(iii) Stability-driven tuning without oracle sweeps: because («, 3) adapt on-
line, the budgets can often be tuned coarsely by monitoring whether the
dual iterates saturate (budgets too tight) or collapse (budgets too loose),
with the goal of achieving nontrivial but bounded dual values and consis-
tent constraint tracking. A more principled alternative is to treat (e,,,er)
as high-level safety parameters set by domain constraints (e.g., maximum
allowable policy KL per state) rather than by return-based selection.

Open problems and extensions. Several directions are natural and, in
our view, necessary for broad applicability. Likelihood-free or implicit-model
settings: when m is implicit (e.g., diffusion-based dynamics) or when p is
only accessible through samples, the ratio p, cannot be evaluated but may
still be estimated adversarially. Extending the theory to integral proba-
bility metrics or f-divergences implemented purely via critics, with finite-
sample calibration guarantees, would better match modern generative mod-
els. Multi-source and multi-budget formulations: in many offline regimes
é{)v with different behavior policies 7r(j)

we have multiple datasets D and
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different reliability. One would like separate shift budgets 57(3 ) (and pos-
sibly model budgets conditioned on source), together with a mechanism that
learns how much to rely on each source. This suggests vector-valued dual
variables and a resource-allocation view of conservative offline RL. Beyond
average comstraints: our constraints are occupancy-weighted averages; they
do not prevent rare but catastrophic violations. Risk-sensitive variants (e.g.,
CVaR constraints on per-trajectory mismatch) and state-wise constraints
(e.g., KL(7(- | 8)||mp(- | s)) < &(s)) are conceptually aligned with Dual-SAR
but require new estimators and more delicate dual dynamics.

In summary, Dual-SAR provides a coherent mechanism for controlling
model bias and policy shift via explicit budgets, but its reliability is funda-
mentally tied to (i) overlap/coverage, (ii) calibrated ratio estimation, and
(iii) meaningful budget selection. The central theoretical bounds isolate
these dependencies, and the most impactful future work is to weaken them
without reverting to per-task tuning or untestable assumptions.
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