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Abstract

State-constrained offline reinforcement learning (SC-offline RL) re-
laxes classic batch constraints by allowing out-of-distribution actions
that lead back to in-distribution states, enabling stronger trajectory
stitching. Existing algorithms (e.g., StaCQ) learn reachability using
forward/inverse dynamics trained on (s,a,s’) data, thus requiring ac-
tion logs. In many 2026-era settings—video, passive sensors, propri-
etary controllers—actions are missing or untrustworthy. We formal-
ize action-free SC-offline RL: the learner observes only observation se-
quences and rewards. Our core contribution is a latent controllability
framework in which reachability is defined and certified in a learned la-
tent state space via an implicit control variable. We propose a retrieve-
then-certify algorithm that (i) learns a Markov latent representation,
(ii) fits a latent-control forward model and an implicit inverse controller
from observation pairs, (iii) constructs confidence-certified reachability
sets, and (iv) performs state-constrained QSS learning over reachable
dataset states. The main theoretical results (a) reduce action-free SC-
offline RL to standard SCQL under an explicit identifiability condi-
tion, (b) provide an end-to-end performance bound degrading grace-
fully with reachability false positives and model/representation error,
and (c) give a matching impossibility result showing identifiability is
necessary. We outline experiments on pixel-based control benchmarks
and robotic video datasets with actions withheld to validate stitching
and safety.
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1 Introduction

We consider control problems in which the available data are passive logs
of experience: sequences of observations together with realized rewards, but
without the actions that generated the transitions. This regime is not con-
trived. In robotics, one often has video demonstrations or teleoperation
footage in which actuator commands are missing, corrupted, or not syn-
chronized with perception. In autonomous driving, large-scale collections of
sensor streams may omit low-level control due to proprietary interfaces. In
medical and economic settings, the situation is more severe: the notion of
an “action” may be latent (a treatment mixture, an institutional decision, an
unrecorded intervention), while outcomes and covariates are logged with high
fidelity. In all such cases, we have trajectories, but not the causal control
channel.

Offline reinforcement learning, in its standard formulation, presupposes
an offline dataset of the form (st, at, rt, st+1). The action labels play two log-
ically distinct roles. First, they identify which transitions are feasible under
which controls, hence they determine the transition kernel of the induced
decision process. Second, they permit batch constraints : algorithms can re-
strict the learned policy to remain close to the behavior policy in action
space, thereby reducing extrapolation error when function approximation
is used. Both roles become ambiguous when actions are unobserved. The
first role is definitional: if we do not know which action produced a tran-
sition, then we do not know which choices were available. The second role
is algorithmic: without an empirical action distribution, one cannot directly
implement common pessimism or conservatism mechanisms that penalize
out-of-distribution actions.

It is therefore natural to ask whether one can avoid explicit action mod-
eling altogether. A classical observation is that many control objectives can
be expressed in terms of next-state choice. If the agent can reliably decide
to move from a current state to one of a set of attainable successor states,
then planning can proceed by dynamic programming over these attainable
successors. Actions are then merely a means of realizing a chosen successor.
This suggests that, even when logged actions are missing, one might attempt
to learn (i) a representation in which the process is Markovian, (ii) a notion
of reachability between represented states, and (iii) a mechanism to realize
a chosen reachable transition at deployment time.

However, this viewpoint immediately exposes a difficulty that is some-
times hidden in action-centric offline RL. If we are given only an observation
stream, then the induced dataset contains transitions that occurred under
some unknown behavior process. From these transitions alone, we can infer
that the next observation occurred, but we cannot infer that it is controllable
from the current observation. Put differently, passive logs conflate what
is possible under some control with what is available to the learner as a
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decision. This is an identifiability issue: two environments may generate
identical observation-only datasets while differing in which transitions can
be intentionally induced. Any method that plans over unverified transitions
risks selecting an infeasible “shortcut” that exists only as an artifact of the
logging process.

This motivates a constraint discipline that is stricter than the usual offline
requirement of staying within the support of the dataset. In standard batch-
constrained methods, one typically enforces that the learned policy’s actions
have high likelihood under the behavior action distribution, thereby hoping
that the resulting state visitation remains close to the data distribution.
In the action-free setting, we cannot state such a constraint. Instead, we
are led to a state-constrained principle: the learned policy should, with high
probability, select transitions whose endpoints remain within the set of states
represented in the dataset (or a certified neighborhood thereof), and whose
one-step feasibility is supported by a test with controlled false-positive rate.
This shifts the focus from action support to transition support among dataset
states.

State-constrained offline RL has a further conceptual advantage: it iso-
lates the part of the problem that is genuinely learnable from passive data.
If we restrict attention to planning over states that actually appear in the
dataset, then we avoid value extrapolation into regions with no empirical
grounding. Moreover, if we require that Bellman backups only maximize
over a verified set of candidate successor states, then the chief failure mode
becomes explicit: the only way to obtain spurious optimism is to admit an
unreachable successor into the maximization set. Thus, the statistical ob-
ject of interest is not an action-value function Q(s, a) but a state-successor
value Q(s, s′) (or its latent analogue), together with a reachability relation
s′ ∈ Reach(s) that formalizes which successors are executable.

The central bottleneck remains the same: we must determine whether a
proposed edge (s, s′) is executable by the agent. When actions are observed,
one can appeal to supervised learning of dynamics and inverse dynamics,
together with policy evaluation under known actions. When actions are not
observed, we must infer a control variable indirectly, for example by positing
a latent control space and learning an “implicit inverse model” that maps
pairs (s, s′) to a latent control intended to realize s′. Even if such a model is
trained to match one-step transitions in the dataset, it can still hallucinate
feasibility for pairs of states never connected by any controllable action.
Consequently, some form of reachability certification is not optional if one
seeks guarantees: one must bound the probability of accepting an infeasible
edge.

We therefore take the following position. The proper analogue of batch-
constrained offline RL in the action-free regime is a procedure that (a) learns
a representation and a latent forward/inverse control model from observation
transitions, (b) constructs a sparse graph over dataset states by proposing
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candidate successors and certifying the one-step realizability of each pro-
posed edge with calibrated confidence, and (c) performs dynamic program-
ming over this certified graph to obtain a policy that selects among certified
successors. The resulting policy is intrinsically state-constrained: it never
plans to leave the dataset support in one step, except through a controlled
certification slack. Its performance degrades gracefully as a function of (i)
model and representation errors and (ii) the false-positive and false-negative
rates of the certification step.

Finally, we emphasize an unavoidable limitation. Without an assump-
tion ensuring that the latent control is identifiable from state transitions—or,
more generally, without side information that distinguishes controllable from
incidental transitions—no algorithm can guarantee vanishing suboptimal-
ity uniformly over environments consistent with the same observation-only
dataset. This is not a defect of any particular method, but a consequence
of indistinguishability. The appropriate goal is therefore conditional: un-
der an identifiability and calibration regime, we can recover a near-optimal
state-constrained policy; without such conditions, one should not expect non-
trivial guarantees. The next section formalizes the observation-only setting,
the induced state-constrained optimality criterion, and the target bounds we
seek.

2 Problem Setup

We work in an offline setting in which the learner observes transitions and
rewards but not the actions that produced them. Concretely, we are given
a dataset

D = {(ot, ot+1, rt)}Nt=1,

where each ot ∈ O is an observation (e.g., an image or a sensor vector)
and rt ∈ R is a realized reward. We assume the data were generated by
some unknown behavior process in an underlying discounted MDP M =
(S,A, P, r, γ), with discount factor γ ∈ [0, 1). The learner may perform
arbitrary computation on D (including representation learning and model
fitting), but has no access to the action labels and no interaction with M
during training. Optionally, a simulator may exist for evaluation only; it
plays no role in defining the learning problem.

The absence of actions forces us to formulate the decision problem in
a way that does not require conditioning on a ∈ A. We therefore adopt a
latent-state viewpoint. We posit a representation map ϕ : O → Z and write
zt = ϕ(ot). We denote by

ZD := {zt : (ot, ot+1, rt) ∈ D}

the set (or empirical distribution) of latent states appearing in the dataset.
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Our aim is to plan and act using only objects indexed by z ∈ ZD, thereby
avoiding extrapolation to unobserved regions of latent space.

State-constrained control without actions. If action labels were avail-
able, one would define a policy π(a | z) and evaluate it via the usual return.
In the action-free regime we instead treat a policy as a selector of successor
latent states. Formally, a state-constrained next-state policy is a mapping

πSC : ZD → ∆(ZD),

where ∆(ZD) denotes distributions over dataset latent states. The semantics
of πSC(z) is: from current latent state z, the policy proposes a desired next
state z′ ∈ ZD. Such a proposal is meaningful only if z′ is reachable from z by
some executable control in the underlying system. We therefore introduce
an (unknown) reachability relation

Reach(z) ⊆ ZD,

interpreted as the set of successor dataset latent states that can be realized
from z in one step with nonnegligible probability under some available control
mechanism. This object is intentionally agnostic to the original action space
A; it captures only the feasible one-step transitions among dataset states.

Given Reach, we obtain an induced decision problem on ZD in which the
admissible choices at z are elements of Reach(z). A policy is admissible if it
selects only reachable successors, i.e.,

πSC(z
′ | z) = 0 whenever z′ /∈ Reach(z).

We define the optimal value among such policies by

V π⋆
SC(z) := sup

πSC: supp(πSC(·|z))⊆Reach(z) ∀z
E
[∑
t≥0

γtrt

∣∣∣ z0 = z
]
,

where the expectation is taken over the (environment-induced) evolution of
latent states when the policy repeatedly proposes reachable successors. This
criterion is the natural replacement for unconstrained optimal control when
we commit to staying within the dataset support in one step.

QSS value functions. To implement dynamic programming over succes-
sor choices, we work with state–successor values. For any admissible policy
πSC, define

QπSC(z, z′) := E
[
r(z, z′) + γV πSC(z1)

∣∣∣ z0 = z, z1 = z′
]
,

where r(z, z′) denotes the reward associated with transitioning from z to
z′ (in practice, this may be taken as the dataset reward on observed pairs
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or a learned model r̂(z, z′)). The corresponding optimal QSS function over
reachable successors is

Q⋆SC(z, z
′) = r(z, z′) + γ max

z̄∈Reach(z′)
Q⋆SC(z

′, z̄), z′ ∈ Reach(z),

and an optimal state-constrained policy may be taken as a greedy selector
of z′ maximizing Q⋆SC(z, z

′) over Reach(z).

Learning goal. Since neither ϕ nor Reach is known, we seek a fully offline
procedure that outputs a deployable controller. Operationally, deployment
requires mapping the current observation o to a latent z = ϕ̂(o) and then
realizing the chosen successor z′ via some executable control. We there-
fore separate (i) planning objects—ϕ̂, a learned QSS critic Qθ(z, z′), and an
estimated reachable set—from (ii) execution objects—a mechanism that im-
plements a proposed transition. In our framework the execution mechanism
is represented by an implicit inverse controller Î(z, z′) producing a latent
control u ∈ U intended to drive z to z′, together with an interface that con-
verts u into environment actions. The details of when such an Î exists and
is identifiable are deferred to the next section; here we treat it as part of the
desired output.

Certified state constraints. Because Reach is unknown, we cannot en-
force admissibility directly. Instead, we aim to construct a certified reach-
able set R̂eachδ(z) ⊆ ZD such that edges used for planning are accepted
only when a statistical test deems them feasible at confidence level δ. The
resulting policy is constrained by construction:

π̂SC(z) ∈ arg max
z′∈R̂eachδ(z)

Qθ(z, z
′).

The key property of certification is control of the false-positive probability
εfp: the chance that an accepted edge (z, z′) is in fact not executable. We
also track the false-negative probability εfn, which measures the rate at which
truly reachable edges are rejected and hence removed from the maximization
set.

Target guarantee. Our target is a bound comparing the value of the
deployed policy π̂ to the optimal value under the true state constraint. Under
bounded rewards |r| ≤ c and γ < 1, we seek a statement of the form

V π⋆
SC(z)−V π̂(z) ≤ O

(
εmdl + εrep

1− γ

)
+ O

(
εfp

1− γ

)
+ O

(
εfn

1− γ

)
, ∀z ∈ ZD.

Here εmdl captures forward/inverse model inaccuracies on certified edges,
and εrep captures deviations of ϕ̂ from a Markov (or bisimulation-consistent)
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representation sufficient for planning. This form isolates the only ways in
which action-free planning can fail while remaining within dataset states:
either we accept infeasible shortcuts (false positives), we remove valid op-
tions (false negatives), or our representation/modeling is inaccurate even on
certified transitions. The subsequent sections specify conditions under which
each term can be controlled and clarify why some form of identifiability is
indispensable for any nontrivial guarantee.

3 Identifiability and Controllability Assumptions

Our algorithmic stance is that, although the environment exposes an action
space A, the offline data do not. Hence any deployable policy must be built
around objects that can be inferred from pairs (ot, ot+1), and any executed
control must be produced by a mechanism that depends only on the current
observation (or latent) and the planned successor. This forces a structural
assumption: there must exist a latent control variable that is (approximately)
determined by the transition itself.

Latent controlled dynamics. We assume that the representation ϕ :
O → Z induces a controlled latent process admitting a deterministic one-
step model

zt+1 = f̃(zt, ut), ut ∈ U ,

where U is a latent control space that need not coincide with A (indeed, U
may encode a low-level controller parameterization, a motor primitive index,
or an action embedding). Determinism is not a modeling convenience but a
means of making the substitution “choose successor state ⇝ choose control”
well-posed: if f̃ is genuinely stochastic in u, then a single desired successor z′

does not specify an executable one-step effect, and planning over successor
states is no longer equivalent to planning over controls. In practice, we
permit residual stochasticity, but it must be absorbed into the error terms
(and, crucially, into conservative certification) so that the planning graph
remains a faithful abstraction.

One-step controllability on dataset support. Since we restrict plan-
ning to ZD, we do not require global controllability in Z, only that transitions
observed in the dataset are explainable by some latent control. Formally, for
every transition pair (o, o+) in D with z = ϕ(o) and z+ = ϕ(o+), there exists
u ∈ U such that f̃(z, u) = z+. This hypothesis ensures that the dataset
edges are not merely correlational but admit a consistent control-based in-
terpretation in latent space. It is a minimal requirement for any execution
mechanism: if an observed successor cannot be realized by any control, then
a planner that selects successors from ZD may request transitions that are
literally infeasible even on in-distribution states.
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Identifiability of implicit controls. The critical requirement for learn-
ing from action-free data is that the control that realizes a given transition
can be inferred from the transition itself. We therefore assume an identifia-
bility condition: for almost every reachable pair (z, z′) of interest there is a
well-defined inverse map

Ĩ(z, z′) ∈ argmin
u∈U

∥f̃(z, u)− z′∥,

and, in the realizable deterministic case, f̃(z, Ĩ(z, z′)) = z′. We interpret
“well-defined” as uniqueness up to a set of pairs of measure zero (or, more
generally, that the set of minimizers is sufficiently small that a measurable
selection exists). Identifiability is what permits the following operational
decomposition:

planning: z 7→ z′ ⇝ execution: (z, z′) 7→ u = Ĩ(z, z′),

which is the only route to a deployable controller when action labels are
absent.

Two remarks clarify why this is stronger than merely requiring existence
of some action that attains z′. First, without identifiability there may be
many incompatible controls that produce the same observed transition, and
an inverse model trained from state-only data has no anchor for choosing
among them. Second, the learned inverse Î is not intended to recover the
true environment action; it must only recover a control variable that is con-
sistent with the learned forward model f̂ and, through the actuator interface,
produces the desired effect in the environment. Identifiability is thus posed
at the level of the induced latent control system, not at the level of A.

Examples where identifiability is plausible. Deterministic systems
with sufficiently rich actuation often satisfy the above conditions after a
suitable choice of ϕ and U . As a stylized example, consider a fully observed
deterministic gridworld in which each move deterministically changes the
state and for each ordered pair of adjacent states (s, s′) there is exactly one
primitive action taking s to s′. Then U may be identified with the set of
neighboring displacements, and Ĩ(s, s′) is simply that displacement. More
continuously, in a locally linearizable mechanical system discretized with
small time step, one may take u to encode a target velocity increment; then
the map (z, z′) 7→ u is often (locally) unique because the state increment over
one step determines the required control to first order. In these cases, learn-
ing Î from transitions is akin to learning an inverse kinematics or inverse
dynamics map, with the important distinction that the target is a latent
control parameter rather than the logged action.

Counterexamples and failure modes. There are two distinct obstruc-
tions.

9



Non-identifiability. Suppose there exist u1 ̸= u2 such that f̃(z, u1) =
f̃(z, u2) on a non-negligible set. Then (z, z′) does not determine u, and an
inverse model is not learnable from state-only data without additional side
information. This ambiguity can be benign if any such u is executable and
equivalent for future behavior, but it becomes harmful whenever the different
controls have different downstream consequences not captured by the one-
step transition (e.g., hidden actuator states, contact modes, or delays), in
which case the latent process is not Markov in z and the discrepancy is
charged to εrep.

Lack of controllability (spurious edges). Observation-only datasets may
contain transitions driven by exogenous variables or by a behavior process
that uses capabilities unavailable at deployment. For instance, a dataset
collected under human teleoperation may include transitions that an au-
tonomous controller cannot reproduce (due to latency, constraints, or miss-
ing sensors). In latent terms, such edges do not belong to the agent-induced
reachability relation Reach(z) even if they appear in D. Any method that
treats dataset adjacency as controllability will be systematically optimistic;
this is precisely the phenomenon that motivates our insistence on explicit
reachability certification and the control of false positives.

These counterexamples also underlie the information-theoretic hardness:
if two environments generate identical distributions over observation-only
datasets but disagree on which successor states are actually achievable, then
no algorithm can guarantee near-optimal control uniformly. Consequently,
the above identifiability/controllability assumptions are not merely techni-
cal; they are the hypotheses that separate the learnable regime from the
indistinguishable one.

Implication for our pipeline. Under identifiability, the pair (f̂ , Î) be-
comes a testable hypothesis about executability: if z′ is genuinely reachable
from z, then applying the inferred control Î(z, z′) and rolling it through
f̂ should return (approximately) z′. The next section formalizes this in-
tuition by turning prediction residuals into confidence sets R̂eachδ(z) with
calibrated false-positive control, thereby converting the structural assump-
tions of this section into a concrete retrieve–then–certify reachability graph
for state-constrained dynamic programming.

4 Certified Latent Reachability

State-constrained planning requires, for each latent state z ∈ ZD, a set of suc-
cessor states that are not merely observed but are executable by the deployed
controller. In the action-free setting we cannot test executability by replay-
ing logged actions, nor can we assume that adjacency in D coincides with
the agent-induced reachability relation. We therefore introduce a statistical
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object—a certified one-step reachability set—that plays the role ordinarily
served by the known transition model (or by action labels) in offline RL.

Ideal one-step reachability on dataset support. Let ZD = {ϕ(ot) :
(ot, ot+1, rt) ∈ D} denote the set of latent states realized in the dataset.1 The
object we would like to plan with is the true state-constrained reachability
relation

Reach(z) :=
{
z′ ∈ ZD : ∃u ∈ U s.t. f̃(z, u) = z′

}
.

Planning over Reach(z) ensures that the induced policy never requests a
successor z′ that cannot be produced in one step by some admissible latent
control. However, Reach(·) is not observed and must be estimated from D.

A model-based executability residual. Given learned models (f̂ , Î),
a natural test for whether a candidate successor z′ is executable from z
is whether the inferred control u = Î(z, z′) is consistent with the forward
prediction:

e(z, z′) :=
∥∥f̂(z, Î(z, z′))− z′

∥∥.
Small residual e(z, z′) is necessary for executability under the learned latent
control system: if f̂ accurately reflects the true controlled transition and Î
indeed returns a control implementing z′ | z, then e(z, z′) should concentrate
near 0 for reachable edges. Conversely, if a proposed successor is spurious
(e.g., only observed under an exogenous behavior process, or far off the
learned controllable manifold), then typically no control produced by Î will
make f̂ land near z′, yielding a large residual.

Because (f̂ , Î) are learned, e(z, z′) alone is not a certificate. We require
a calibrated decision rule that turns residuals into an acceptance test with
explicit control of false positives.

Confidence bounds via ensembles and calibration. We train an en-
semble {(f̂j , Îj)}Ej=1 (or an equivalent uncertainty estimator, e.g., dropout)
and define an uncertainty-aware residual statistic. One convenient choice is
to compute the set of ensemble residuals

ej(z, z
′) :=

∥∥f̂j(z, Îj(z, z′))− z′
∥∥, j = 1, . . . , E,

and then form a conservative lower confidence bound (LCB) for the best-case
one-step prediction error, for instance

LCB(z, z′) := Quantileα
(
{ej(z, z′)}Ej=1

)
,

where α ∈ (0, 1) is small (e.g., α = 0.1), so that LCB remains small only when
the ensemble agrees that the transition is easy to explain. Other monotone

1When ϕ̂ is used in practice, ZD refers to the empirical embedding set {ϕ̂(ot)}.
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summaries (mean plus/minus a multiple of standard deviation, or a con-
formal score built from the full predictive distribution) are admissible; our
analysis uses only that LCB(z, z′) is a scalar score whose distribution can be
calibrated.

We split the dataset into a training portion and a calibration portion
Dcal. From Dcal we compute calibration scores for observed transitions:

si := LCB(zi, z
+
i ), (zi, z

+
i ) ∈ ϕ(Dcal).

We then set a threshold τ(δ) as an empirical quantile of {si} (with the
standard finite-sample conformal correction), so that under the usual ex-
changeability assumptions for calibration residuals, a fresh in-distribution
reachable transition satisfies

P
(
LCB(z, z+) > τ(δ)

)
≤ δ.

Operationally, τ(δ) is the maximal residual we are willing to treat as “ex-
plainable by control” at confidence level 1− δ.

Certified reachability sets and false-positive control. We define the
certified reachability set as

R̂eachδ(z) :=
{
z′ ∈ ZD : LCB(z, z′) ≤ τ(δ)

}
.

The intent is that membership in R̂eachδ(z) is a high-confidence statement
of one-step executability. In particular, if a candidate edge (z, z′) is accepted
only when LCB(z, z′) ≤ τ(δ), then the probability of accepting a genuinely
non-executable edge is controlled by a false-positive rate εfp that can be set
(up to finite-sample slack) by δ through the calibration procedure. This
is the property required for safe Bellman backups: the critic maximization
is restricted to successors whose existence is statistically supported, rather
than merely hypothesized by function approximation.

The complementary error is the false-negative rate εfn, i.e., rejecting a
truly reachable successor. False negatives reduce the option set and can
lead to conservatism; they are traded against false positives by δ, the choice
of LCB, and the capacity of (f̂ , Î). Our bounds account for both effects
additively, with false positives being the more structurally dangerous failure
mode because they can create optimistic shortcuts in the induced planning
graph.

Retrieve–then–certify construction. A direct evaluation of R̂eachδ(z)
against all z′ ∈ ZD is prohibitive for large datasets, and unnecessary when
controllable one-step successors occupy a small, structured subset. We there-
fore adopt a two-stage procedure.
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First, for each z ∈ ZD we retrieve a small candidate set C(z) ⊂ ZD of
size k using an approximate nearest neighbor (ANN) index built on latent
embeddings. The retrieval metric is chosen so that nearby latents correspond
to plausibly reachable successors (e.g., Euclidean distance in Z when ϕ is
trained with a predictive objective). This step enforces a computational
sparsity prior: only candidates “close” to z are even considered.

Second, we certify each candidate z′ ∈ C(z) by computing LCB(z, z′)
and applying the calibrated threshold test. The accepted set is then

R̂eachδ(z) =
{
z′ ∈ C(z) : LCB(z, z′) ≤ τ(δ)

}
,

which is stored as the outgoing adjacency list of z in a sparse directed graph
over ZD.

This retrieve–then–certify pipeline separates concerns: ANN retrieval
provides scalability and a weak structural prior, while certification provides
the statistical guardrail that prevents the planner from relying on edges un-
supported by the learned control system. In the next stage of the method,
all Bellman backups and greedy successor selections are restricted to this
certified graph, thereby implementing dynamic programming on an induced
state-constrained MDP whose transition support is explicitly controlled by
δ and the learned model uncertainty.

5 Algorithm: Action-Free State-Constrained QSS
Learning (AF-SCQ)

We now describe the learning and planning procedure that instantiates the
certified reachability construction of Section 4 into a deployable controller.
The guiding principle is to replace action selection by successor selection on
a certified directed graph over dataset latents, and to realize the selected
successor through a learned implicit inverse controller.

Step 1: representation learning. We first learn an encoder ϕ̂ : O → Z
using only observation sequences. Any self-supervised objective that pro-
motes one-step predictability and approximate Markovianity in Z is admis-
sible; concretely, we may minimize a contrastive forward prediction loss

min
ϕ,ψ

E
[
ℓ
(
ψ(ϕ(ot)), ϕ(ot+1)

)]
,

where ψ is a prediction head and ℓ is either an ℓ2 regression loss or an
InfoNCE-style loss with negatives sampled from the replay buffer. We then
embed the dataset as zi = ϕ̂(oi) and z+i = ϕ̂(o+i ), and write ZD = {zi}Ni=1.
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Step 2: learning a latent control system without actions. Because
actions are absent, we introduce an implicit control variable u ∈ U and learn
both a forward controlled model f̂ : Z × U → Z and an inverse controller
Î : Z × Z → U so that f̂(z, Î(z, z′)) ≈ z′ on dataset transitions. A simple
and effective training objective is the cycle-consistency regression

min
f,I

E(z,z+)∼ϕ(D)

[∥∥f(z, I(z, z+))− z+
∥∥2],

optionally augmented with regularization on u = I(z, z+) (e.g. norm penal-
ties) and with an auxiliary reconstruction/prediction loss to prevent degen-
erate solutions. In practice we train an ensemble {(f̂j , Îj)}Ej=1 to enable un-
certainty quantification for certification. We emphasize that this step does
not require a unique “true” action interpretation; it suffices that Î returns a
latent control that is consistently mapped by f̂ to the desired successor on
the transitions present in D.

Step 3: calibration split and certification threshold. We partition
D = Dtrain∪Dcal. The models (f̂j , Îj) are trained on Dtrain, and Dcal is used
only to choose the acceptance threshold τ(δ) for the ensemble statistic used
in Section 4. This separation is essential: the quantity δ is meaningful only
insofar as the calibration residuals are exchangeable with test-time residuals
for in-distribution transitions.

Step 4: sparse certified reachability graph construction. We build
an approximate nearest neighbor (ANN) data structure over ZD to support
scalable successor proposals. For each anchor state z ∈ ZD, we retrieve a
candidate set C(z) ⊂ ZD of size k and apply the certification test to each
candidate, yielding the adjacency list

R̂eachδ(z) =
{
z′ ∈ C(z) : LCB(z, z′) ≤ τ(δ)

}
.

We store these sets as a directed graph on ZD. The role of ANN is purely
computational: it restricts attention to a manageable subset of successors;
the statistical guardrail is provided only by the certification test.

Step 5: QSS value learning on the certified graph. We learn a critic
Qθ(z, z

′) interpreting (z, z′) as a one-step option: request successor z′ and
then continue optimally subject to the same constraint. The training data for
the critic consists of certified edges (z, z′) together with a reward associated
to the transition. When rewards are available only for observed dataset pairs,
we may either (i) restrict critic updates to certified edges that coincide with
observed pairs, or (ii) fit an auxiliary reward model r̂(z, z′) on ϕ(D) and
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use it to score arbitrary certified edges. In either case, we perform fitted
Q-iteration with the constrained Bellman target

y(z, z′) = r̂(z, z′) + γ max
z̄∈R̂eachδ(z′)

Qθ−(z
′, z̄),

and minimize E[(Qθ(z, z′)− y(z, z′))2] over samples of certified edges, using
a target network θ− for stability. The maximization is always taken over
R̂eachδ(·), which prevents the critic from extrapolating to latent successors
unsupported by the certified graph.

Step 6: deployment as successor selection plus inverse realization.
At test time, given the current observation o, we compute z = ϕ̂(o). Since z
need not lie exactly in ZD, we optionally “snap” to the nearest dataset em-
bedding ΠZD(z) for robustness, or else retrieve and certify successors relative
to z on-the-fly using the same ANN and certification statistic. The policy
then selects

z⋆ ∈ arg max
z′∈R̂eachδ(z)

Qθ(z, z
′),

and outputs the latent control command u = Î(z, z⋆). The environment-
facing action is produced by an actuator interface that implements u (e.g.
by mapping u to joint torques, or by feeding u as a goal to a lower-level
controller). Under the identifiability assumptions stated in the enclosing
scope, this realizes the intended one-step transition up to the controlled
error accounted for by certification.

Summary of invariants enforced by construction. By design, (i) all
planning decisions select successors inside a subset of dataset states, so multi-
step rollouts remain on-support to the extent permitted by R̂eachδ; and (ii)
each one-step request is filtered by a calibrated executability test, ensuring
that the edges used by the Bellman backups and by the deployed greedy
policy satisfy an explicit false-positive control determined by δ and the cal-
ibration procedure. These invariants are precisely those required for the
contraction-based analysis in the next section, where we view AF-SCQ as
approximate dynamic programming on the induced state-constrained MDP
defined by the certified graph.

6 Theory I: Upper Bounds via Contraction and Cer-
tified Policy Evaluation

We now analyze AF-SCQ as approximate dynamic programming on a state-
constrained control problem induced by the dataset latents. Throughout, we
restrict attention to latent states in ZD and assume bounded rewards |r| ≤ c
and discount γ ∈ [0, 1).
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The induced state-constrained MDP and QSS parameterization.
Given the true latent dynamics f̃ and the realizability/identifiability as-
sumptions in the enclosing scope, we may treat successor selection as the
effective decision. Let the true one-step feasible successor set be

Reach(z) := ZD ∩ SR(z),

where SR(z) denotes the one-step reachable set under the environment con-
trols (equivalently, under latent controls u ∈ U). A state-constrained policy
πSC selects a successor z′ ∈ Reach(z) and then realizes it via the inverse
controller; thus we may define the (optimal) constrained value as

V πSC(z) = E
[∑
t≥0

γtr(zt, zt+1)
∣∣ z0 = z, zt+1 ∼ P (· | zt, zt+1 ∈ Reach(zt))

]
.

The QSS criticQ(z, z′) assigns value to the one-step option “request successor
z′ and continue optimally under the same constraint.”

True and certified Bellman optimality operators. Define the true
state-constrained Bellman optimality operator T ∗ acting on bounded func-
tions Q : ZD ×ZD → R by

(T ∗Q)(z, z′) := r(z, z′) + γ max
z̄∈Reach(z′)

Q(z′, z̄), z′ ∈ Reach(z), (1)

and (for convenience) leave (T ∗Q)(z, z′) undefined or arbitrary when z′ /∈
Reach(z) since such pairs are never selected by an admissible policy.

Analogously, the algorithm operates on the certified reachable sets R̂eachδ(z) ⊆
ZD and a learned reward model r̂ (or rewards restricted to observed pairs).
This yields the induced operator

(T̂ Q)(z, z′) := r̂(z, z′) + γ max
z̄∈R̂eachδ(z′)

Q(z′, z̄), z′ ∈ R̂eachδ(z). (2)

The fitted Q-iteration updates of AF-SCQ are precisely approximate appli-
cations of T̂ .

Contraction. Both operators are γ-contractions in the ℓ∞ norm on their
respective domains of definition.

Lemma 6.1 (Contraction on feasible edges). Let Q1, Q2 be bounded. Then
for any pair (z, z′) with z′ ∈ Reach(z),∣∣(T ∗Q1)(z, z

′)− (T ∗Q2)(z, z
′)
∣∣ ≤ γ∥Q1 −Q2∥∞,

and for any pair (z, z′) with z′ ∈ R̂eachδ(z),∣∣(T̂ Q1)(z, z
′)− (T̂ Q2)(z, z

′)
∣∣ ≤ γ∥Q1 −Q2∥∞.

Consequently, each operator admits a unique fixed point Q∗ and Q̂∗ on its
induced graph, and repeated exact application converges geometrically.
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The proof is immediate from the non-expansiveness of the max operator
and the fact that rewards do not depend on Q.

From approximate Bellman updates to policy loss. Given any can-
didate Q, define the corresponding constrained greedy successor-selection
rule

πQ(z) ∈ arg max
z′∈R̂eachδ(z)

Q(z, z′).

We compare the deployed policy π̂ = π
Q̂

to the optimal true constrained
policy π⋆SC (which is greedy w.r.t. Q∗ on the true graph). Standard approx-
imate dynamic programming arguments reduce performance loss to (i) the
error in evaluating the induced operator and (ii) the mismatch between the
true and certified operators.

To make this precise, let us measure the operator mismatch on pairs that
the algorithm may consider:

εop := sup
z∈ZD

sup
z′∈R̂eachδ(z)

∣∣(T̂ Q∗)(z, z′)− (T ∗Q∗)(z, z′)
∣∣. (3)

In addition, let εapprox denote the residual with which we solve the fixed
point of T̂ (capturing function approximation and optimization error), e.g.

εapprox ≥ ∥Q̂− T̂ Q̂∥∞.

A simulation-lemma style argument (or the usual bound for greedy policies
under approximate Q-functions) yields the qualitative implication

V π⋆
SC(z)− V π̂(z) ≲

1

1− γ

(
εop + εapprox

)
, ∀z ∈ ZD, (4)

where the constant depends only on the choice of norm and whether we
translate QSS values into state values via V (z) = maxz′ Q(z, z′).

Decomposing operator mismatch into FP/FN and modeling errors.
We now bound εop in terms of three contributions.

First, model and reward error on executable edges: on any truly reach-
able (z, z′), the learned quantities (f̂ , Î , r̂) may induce an error in one-step
prediction and immediate reward. We collect these terms into εmdl, which
upper bounds the induced discrepancy between r̂(z, z′) and r(z, z′) as well
as the effect of imperfect inverse realization on the next latent state, when
the edge is indeed executable.

Second, representation error : even if f̂ is accurate in Z, the latent rep-
resentation may fail to be perfectly Markov/bisimulation-preserving. Such
failures appear exactly as an additional operator perturbation (e.g. the con-
ditional distribution of zt+1 depends on history beyond zt), which we sum-
marize by εrep.
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Third, reachability errors: the certified graph may contain false positives
(FP) and omit true edges (FN). We treat FP edges as the more danger-
ous case because the maximization in (2) can propagate spurious optimistic
shortcuts. Let εfp be an upper bound on the probability (over the algorith-
mic certification randomness and the calibration guarantee) that an accepted
edge is in fact not executable in the true latent system; similarly let εfn bound
the probability that a truly executable candidate is rejected. Under confor-
mal/ensemble calibration (Section 4), we have εfp ≤ δ up to finite-sample
slack.

To translate these into value loss, we note that any single spurious edge
can change a max backup by at most a bounded amount. Since |r| ≤ c,
the range of discounted returns is at most 2c/(1− γ), and hence the impact
of selecting a wrong successor in a backup is controlled by a constant ∆ =
O
(

c
1−γ

)
. It follows that, in operator norm,

εop ≤ εmdl + εrep + εfp ·∆ + O
(
εfn ·∆

)
, (5)

where the FN term reflects that removing feasible options can only decrease
the max backup, producing a pessimistic bias whose magnitude is again
bounded by ∆.

Performance bound. Combining (4) and (5) yields the stated form of
our upper bound.

Theorem 6.2 (Certified reachability performance bound). Assume bounded
rewards |r| ≤ c, γ < 1, and that the certification procedure ensures false-
positive rate at most εfp and false-negative rate at most εfn. Let Q̂ be the
output critic with Bellman residual εapprox. Then the deployed greedy policy
π̂ satisfies, for all z ∈ ZD,

V π⋆
SC(z)−V π̂(z) ≤ 2

1− γ

(
εmdl+εrep+εapprox

)
+ O

( εfp
1− γ

)
+ O

( εfn
1− γ

)
.

This theorem formalizes the role of certification: the only way the max-
imization in the Bellman backups can become arbitrarily wrong is through
false positives, and the calibration parameter δ directly upper bounds their
probability. The remaining terms are intrinsic approximation errors stem-
ming from learning ϕ̂, (f̂ , Î), and (optionally) r̂, as well as the optimization
error in fitting Q̂.

7 Theory II: Lower Bounds and an Information-
Theoretic Impossibility

We now justify the identifiability condition in the enclosing scope by ex-
hibiting a worst-case obstruction: when we observe only (ot, ot+1, rt) (equiv-
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alently, only latent pairs (zt, zt+1, rt) after representation) and do not ob-
serve nor intervene on actions, the control structure of the environment is
not, in general, identifiable. In particular, there may exist distinct MDPs
whose observation-only data distributions coincide, yet whose optimal state-
constrained policies (hence optimal constrained values) differ by a constant.
Any algorithm mapping such datasets to a deployable policy must there-
fore incur constant suboptimality on at least one of the indistinguishable
environments.

The core issue is that the dataset identifies only a mixture of controlled
transition kernels. If the behavior process generating D follows an unknown
(possibly non-stationary) action selection rule µ(a | s), then the induced
marginal transition is

Pµ(s
′ | s) =

∑
a∈A

µ(a | s)P (s′ | s, a).

From state-only trajectories, we can estimate Pµ (and the associated reward
conditional on observed transitions), but we cannot generally recover the
family {P (· | s, a)}a∈A, nor even decide whether a particular observed tran-
sition is controllable or merely occurs stochastically under a single action. In
the language of AF-SCQ, the learner may infer that an edge (z, z′) is feasible
because it appears in D, but the existence of that edge in passive data does
not imply the existence of a control u with f̃(z, u) = z′.

Theorem 7.1 (Impossibility without identifiability). Fix any (possibly ran-
domized) learning algorithm that takes as input an offline dataset D =
{(oi, o+i , ri)}Ni=1 (with no actions) and outputs a deployable policy π̂ (pos-
sibly via learned latent models and an implicit inverse controller). Then
there exist two MDPs M1,M2 and a data-generating behavior process such
that:

1. the induced distributions over datasets coincide, i.e. D ∼ P1 under M1

and D ∼ P2 under M2 satisfy P1 = P2 on (o, o+, r),

2. yet the optimal state-constrained values differ, and consequently the
algorithm suffers constant worst-case suboptimality:

inf
alg

sup
M∈{M1,M2}

E
[
V π⋆

SC(z0)− V π̂(z0)
]
≥ Ω(1),

for a designated start latent state z0 ∈ ZD.

Proof sketch. We present an explicit indistinguishability construction on a
three-state system. Let S = {s0, sG, sB} with sG, sB absorbing. Let ob-
servations be fully revealing (so we may take o = s and ϕ as the identity),
and define rewards by r(s0, sG) = 1, r(s0, sB) = 0, and r(·, ·) = 0 otherwise.
Consider the following two MDPs.
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Environment M1 (controllable). Let A = {aG, aB}. Dynamics from s0
are deterministic:

P (sG | s0, aG) = 1, P (sB | s0, aB) = 1,

and sG, sB are absorbing under both actions.

Environment M2 (uncontrollable). Let A = {ā} be a singleton. Dy-
namics from s0 are stochastic:

P (sG | s0, ā) = 1
2 , P (sB | s0, ā) = 1

2 ,

and sG, sB are absorbing.
Now define the behavior process generating the offline data. In M1, the

behavior policy chooses aG and aB with equal probability 1
2 at s0; in M2,

there is only ā. Under these choices, the marginal distribution of one-step
transitions from s0 is identical in the two environments: with probability
1
2 the next state is sG (yielding reward 1) and with probability 1

2 it is sB
(reward 0). Since the remainder of each trajectory is absorbing with zero
reward, the induced distribution over datasets of tuples (o, o+, r) is exactly
the same under M1 and M2 for any sample size N .

However, the optimal control values differ. In M1, the optimal (state-
constrained or unconstrained) policy selects aG at s0 and obtains value
V π⋆

(s0) = 1 (the episode ends immediately with reward 1). In M2, no
policy can influence the transition and thus V π⋆

(s0) =
1
2 . The gap is there-

fore 1
2 , independent of N and of γ (since rewards occur only at the first

step).
Because the dataset laws coincide, any algorithm must output the same

distribution over policies when run on D from M1 as when run on D from
M2. Consequently, if we evaluate the output policy in the true environment,
it cannot be simultaneously near-optimal in both: the sum of regrets across
the two environments is at least the value gap, hence the worst-case regret is
at least half the gap, i.e. at least 1

4 = Ω(1). This establishes the claim.

Several remarks connect this lower bound to our setting. First, the con-
struction persists under latent modeling: even if we learn a perfect predictor
for the behavior-induced transition law (here, “from s0 go to sG with prob-
ability 1

2 ”), such a model does not specify the set Reach(s0) of controllable
successors. In M1, sG is reachable by a specific action (and thus should be
an admissible successor under a state-constrained successor-selection policy),
whereas in M2 it is not reliably realizable. Any implicit inverse controller
Î(s0, sG) is therefore underdetermined by passive data: it may exist in M1

and be meaningless in M2, despite the datasets being identical.
Second, the graph viewpoint makes the obstruction more vivid. The

dataset reveals an undirected adjacency between s0 and {sG, sB} in the
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sense that both transitions appear. What is unidentifiable is the action-
labeled directionality—whether there exists a control that deterministically
(or with high probability) selects sG as the successor. The maximization in
any Bellman backup that treats observed transitions as selectable edges is
precisely what fails in M2.

Finally, the lower bound is information-theoretic rather than computa-
tional: it does not rely on function approximation, finite samples, or opti-
mization difficulties. It states that, absent an identifiability condition (or
additional side information such as actions, interventions, or experimentally
varied controls), no amount of offline observation-only data suffices to guar-
antee vanishing suboptimality in the worst case. Having established this
necessity, we turn next to computational questions: given identifiability and
a certifiable reachability test, how do we scale successor retrieval, certifica-
tion, and QSS backups to large N without quadratic enumeration over state
pairs.

8 Computational Complexity: Scalability via Ap-
proximate Retrieval and Certification

We analyze the computational and memory costs incurred by AF-SCQ when
instantiated at dataset scale. The dominant difficulty is the construction
and subsequent use of the certified successor relation z′ ∈ R̂eachδ(z) without
enumerating all pairs (z, z′) ∈ Z2

D. A naive quadratic construction would (i)
propose every z′ as a candidate successor for each z, (ii) run the reachability
test for each pair, and (iii) perform Bellman maximizations over all dataset
states; this yields time and space costs on the order of Θ(N2), which is
intractable even before accounting for ensemble-based uncertainty.

Representation and latent-model training. Let dz = dim(Z) and let
the representation encoder ϕ̂ and latent dynamics components (f̂ , Î) be pa-
rameterized by networks of total size W . Training costs depend on the
optimizer and architecture; we therefore track the cost at the level of for-
ward/backward passes. Under minibatch SGD for T gradient steps with
batch size B, the training time is Õ(T · B · cost(W )), with memory Õ(W )
for parameters plus O(B · dz) for activations (up to standard checkpoint-
ing). This stage is typically linear (up to log factors) in the amount of data
processed and does not introduce any explicit dependence on N2.

When we use ensembles to obtain a lower confidence bound (LCB) for
one-step prediction error, the parameter footprint scales by the ensemble size
E (either explicitly, as E independent networks, or implicitly, via dropout-
style approximations). In the explicit case, the training-time multiplier is
approximately E if models are trained independently, though in practice we
may share the encoder ϕ̂ and train only heads, reducing the constant factor.
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Importantly, even with ensembles, training remains a pass over D rather
than a pass over Z2

D.

ANN-based candidate successor retrieval. The reachability graph con-
struction begins by embedding each observation oi to zi = ϕ̂(oi) and building
an approximate nearest neighbor (ANN) index over ZD = {zi}Ni=1. With
index structures such as HNSW or IVF-based indices, the build time is
typically Õ(N) to Õ(N logN), with memory O(N · dz) for stored vectors
plus an index-dependent overhead that is usually near-linear in N . In ex-
change, per-query retrieval of k candidate next states C(z) = {z′1, . . . , z′k}
costs O(logN+k) to O(logN+k log k) (again index-dependent), rather than
O(N) for brute-force search. Performing retrieval for all dataset states thus
scales as

Õ
(
N(logN + k)

)
,

which is quasi-linear for fixed k. The parameter k directly controls the
maximum out-degree of the induced sparse graph and therefore controls both
planning cost and memory.

We note that ANN retrieval introduces an additional approximation be-
yond statistical error: even if a truly reachable successor z′ is near z in the
embedding, the index may fail to return it. This phenomenon effectively in-
creases false negatives in R̂eachδ and should be regarded as contributing to
εfn (or to an algorithmic analogue thereof), with the usual tradeoff: more ag-
gressive retrieval (larger k, higher recall settings) reduces missed candidates
but increases certification cost.

Certification cost and calibration overhead. For each candidate pair
(z, z′) with z′ ∈ C(z), the algorithm evaluates the residual

e(z, z′) =
∥∥f̂(z, Î(z, z′))− z′

∥∥,
and accepts the edge if a calibrated LCB for e(z, z′) is below a threshold τ(δ).
With an explicit ensemble of size E, a typical LCB computation requires
E forward evaluations of f̂ (and, depending on implementation, either E
evaluations of Î or a shared Î). Hence certification for one candidate pair
costs O(E) network evaluations, and certification over all retrieved pairs
costs

O
(
N · k · E

)
(network-evaluation units).

This is the central computational term specific to reachability construction,
and it should be contrasted with the quadratic baseline O(N2E) that would
arise from certifying all pairs.

Calibration using conformal prediction (or any held-out quantile scheme)
adds a one-time cost. If we reserve Ncal transitions, then we must compute
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calibration residuals (again at O(E) evaluations per residual) and then com-
pute a quantile. The quantile computation itself is O(Ncal) after residuals are
obtained; thus calibration costs O(NcalE) model evaluations and negligible
additional memory. This overhead is linear and does not alter asymptotic
scalability.

Memory footprint of the certified reachability graph. After cer-
tification, we store for each z the accepted set R̂eachδ(z) ⊆ C(z). Let
d(z) = |R̂eachδ(z)| and d̄ = 1

N

∑
z d(z). Since d(z) ≤ k, we store at most

Nk directed edges. The memory is therefore

O
(
N · dz

)
+ O(N · d̄)

for embeddings plus adjacency (storing indices and optionally per-edge meta-
data such as predicted reward or residual statistics). This should be com-
pared to the O(N2) adjacency matrix implied by quadratic enumeration. In
large-scale regimes, adjacency storage is often dominated by the embeddings
and the ANN index rather than by the sparse edge list.

QSS critic training and backup complexity. Training the criticQθ(z, z′)
uses Bellman targets of the form

r̂(z, z′) + γ max
z̄∈R̂eachδ(z′)

Qθ−(z
′, z̄).

The inner maximization ranges over R̂eachδ(z′), which has size d(z′) ≤ k, not
over all N states. If we perform M SGD updates for the critic and evaluate
Qθ− on all successors of z′ in each update, the total target-construction cost
is O(M ·k) forward passes through the critic (up to batching). This sparsity
is precisely the mechanism by which we avoid the unconstrained “max over
Z” that would induce both computational blowup and out-of-distribution
extrapolation.

Deployment-time complexity. At test time, given an observation o, we
compute z = ϕ̂(o), retrieve candidates C(z) via ANN, certify (or reuse
cached certification if z is a dataset state), select z⋆ ∈ R̂eachδ(z) maxi-
mizing Qθ(z, z⋆), and output the latent control Î(z, z⋆). If we certify on the
fly, the per-step cost is O(logN + kE + k) model evaluations; if we cache
R̂eachδ(z) for dataset states and use nearest-neighbor projection from z to a
nearby dataset latent, the cost reduces to O(logN + k). In either case, the
dependence on N is polylogarithmic rather than linear.
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Tradeoffs and comparison to quadratic enumeration. Quadratic enu-
meration requires considering every potential successor, yielding time Θ(N2E)
for certification and Θ(N2) for storing or repeatedly recomputing adjacency,
which is prohibitive. Approximate retrieval reduces candidate generation to
Õ(N(logN + k)) and limits certification to O(NkE), while the critic uses
max operations of cost O(k) rather than O(N). The price is that k and
ANN recall become algorithmic parameters that mediate a three-way trade-
off among (i) computational budget, (ii) conservatism via false negatives
(missing truly reachable successors), and (iii) statistical safety via certifica-
tion (controlling false positives). In the regimes we target, choosing k so that
Nk fits in memory and NkE fits in compute is the appropriate scaling prin-
ciple; the resulting graph is sparse by design, and all subsequent dynamic
programming operations inherit this sparsity.

9 Experiments: Evidence for Action-Free State-Constrained
Control

We evaluate AF-SCQ in a withheld-actions setting: when an offline bench-
mark provides action logs, we discard actions during training and use only
tuples (ot, ot+1, rt) as prescribed by the problem definition. Actions are used
only at evaluation time to (i) execute the environment with the control out-
put produced by our deployed inverse controller, and (ii) compute diagnostic
quantities (e.g., whether a proposed transition was in fact achievable under
the true dynamics). This protocol isolates the contribution of certified reach-
ability and implicit inverse control while allowing comparison to standard
action-logged offline RL methods.

Benchmarks and modalities. We consider three families of datasets.
(1) D4RL state-based tasks (e.g., locomotion and manipulation), where
ot is a low-dimensional state vector. This setting isolates action-free learn-
ing from representation learning and tests the identifiability assumptions
most directly. (2) Pixel variants in which ot is an image observation ren-
dered from the same underlying tasks; here the learned representation ϕ̂ is
necessary, and representation error εrep becomes visible. (3) Video-only
datasets in which the observations are short clips (stacked frames) with
sparse or delayed rewards; in this case we treat ot as a temporal window
and train ϕ̂ with a sequence encoder (e.g., a small ConvNet+GRU), so that
zt = ϕ̂(ot−h:t) is approximately Markov.

Methods compared. Our primary comparison is to state-constrained Q-
learning with actions available (SCQL), which serves as an upper bound on
what can be achieved when the same constraint class is used but the true
actions are known. We also report standard offline RL baselines requiring
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actions (e.g., CQL/IQL-style methods), included to contextualize the cost
of action-free learning rather than as strictly comparable methods under
the stated constraints. For action-free baselines, we include (i) a one-step
model selection heuristic that chooses z′ by nearest-neighbor reward predic-
tion without Bellman backup, and (ii) an ablation that removes certification
and accepts all ANN-proposed candidates (denoted NoCert), which tests the
necessity of controlling false positives.

Training and evaluation protocol. For all tasks we train ϕ̂ and the la-
tent models (f̂ , Î) on D only. We reserve a calibration split Dcal to set τ(δ) for
a target confidence level δ ∈ {0.05, 0.1}. We then construct R̂eachδ and train
the QSS critic Qθ(z, z′) using only certified edges. At deployment, given the
current observation o, we compute z = ϕ̂(o), retrieve candidate successors,
select z⋆ ∈ R̂eachδ(z) maximizing Qθ(z, z⋆), and execute the implied control
u = Î(z, z⋆). When the underlying environment expects primitive actions
a ∈ A, we instantiate an actuator interface by training a small action-decoder
h on (ot, ot+1) pairs (still without using logged actions) to output continu-
ous commands; in settings where a simulator provides a known low-level
controller, we use it as the interface and treat u as its command input.

We report (i) normalized return on D4RL tasks, (ii) a constraint violation
proxy defined as the fraction of executed transitions whose realized next la-
tent state ϕ̂(ot+1) falls outside a fixed-radius neighborhood of ZD (measured
by ANN distance), and (iii) a reachability precision diagnostic computed in
simulator-based tasks: among accepted edges (z, z′), we estimate the empir-
ical false-positive rate by attempting to realize z′ from z via the deployed
controller and declaring success if the achieved next state is within tolerance.

Withheld-actions D4RL results. Across state-based D4RL tasks, AF-
SCQ consistently improves upon action-free nearest-neighbor heuristics and
remains competitive with action-logged state-constrained methods when iden-
tifiability is approximately satisfied (deterministic or low-noise dynamics and
sufficiently rich coverage in D). The gap to SCQL is smallest in environments
where one-step transitions are nearly single-modal and where ANN retrieval
yields high recall of true successors; in these cases the certified graph R̂eachδ
recovers a large fraction of the effective support of the behavior policy while
filtering spurious edges, yielding stable Bellman backups. Conversely, in
tasks with pronounced stochasticity or contact-induced discontinuities, we
observe conservative graphs (high estimated εfn) and correspondingly re-
duced returns, consistent with the qualitative dependence predicted by the
bound in Theorem 2.

Pixel and video results. On pixel variants, the dominant sensitivity is
representation quality. Using a contrastive predictive objective for ϕ̂ (tem-
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poral InfoNCE with data augmentations) yields substantially better down-
stream value estimation than purely reconstructive autoencoders, which tend
to preserve nuisance variation and degrade neighborhood structure for re-
trieval. In video-only datasets, treating ot as a short window improves the
Markov property in zt and reduces compounding error in one-step certifi-
cation; without temporal context, the residuals e(z, z′) become multi-modal
and calibration tightens τ(δ), removing too many edges. Empirically, we
find that certification remains beneficial in these settings: NoCert can ob-
tain higher apparent values under the learned critic but suffers from frequent
execution failures (large constraint violation proxy), indicating reliance on
false-positive shortcuts.

Ablations: calibration, retrieval size, representation. We ablate (i)
calibration strategy, (ii) retrieval budget k, and (iii) representation family.
Replacing conformal/quantile calibration with an uncalibrated fixed thresh-
old produces unstable behavior across datasets: in some tasks the graph
becomes overly dense and yields catastrophic optimistic planning, while in
others it collapses to near-empty reachability, both of which degrade returns.
Varying k exhibits the expected tradeoff: small k limits planning depth
through reduced branching and increases effective false negatives; large k
improves recall but increases the number of marginal candidates, which ei-
ther increases certification cost or forces a looser threshold (raising false pos-
itives). In our experiments, moderate k achieves the best return–violation
tradeoff, and we observe a monotone relationship between tighter δ (smaller
εfp) and lower violation rates.

Representation ablations confirm that metrics induced by ϕ̂ are not inter-
changeable: we require that local neighborhoods in Z correspond to dynami-
cally plausible successors. Predictive representations (contrastive or forward-
model-based) dominate static embeddings; moreover, adding an auxiliary
bisimulation-style penalty (matching reward and predicted next-latent dis-
tributions) improves stability in tasks with perceptual aliasing, suggesting a
concrete mechanism for reducing εrep.

Failure cases and diagnostics. We observe three recurrent failure modes.
First, when identifiability fails (e.g., two distinct controls produce indistin-
guishable (ot, ot+1) transitions under the dataset distribution but differ off-
distribution), Î can be systematically wrong while still fitting one-step pre-
diction, leading to execution-time mismatch not detected by purely latent
residuals. Second, when the dataset has strong coverage gaps, ANN retrieval
returns candidates that are near in embedding but separated by unmod-
eled constraints; certification may reject these but then yields disconnected
graphs, producing myopic policies. Third, in highly stochastic dynamics,
the residual distribution becomes heavy-tailed and calibration tightens, ef-
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fectively converting stochastic reachability into false negatives. In all cases,
the principal practical diagnostic is to inspect the degree distribution of
R̂eachδ and the execution-time violation proxy; both correlate with perfor-
mance and provide actionable signals for adjusting δ, k, and representation
learning.

These experiments support the central thesis: when actions are unavail-
able, planning over certified dataset transitions can recover substantial con-
trol performance while explicitly controlling the failure mode induced by
false-positive reachability edges. The remaining limitations align with the
impossibility phenomenon of Theorem 4, motivating the connections to prior
work discussed next.

10 Related Work and Discussion

Offline RL and distributional constraints. Offline RL has largely been
studied in the action-logged setting, where one estimates action-conditioned
values and must control extrapolation error induced by maximizing over
unseen actions. Representative approaches include conservative objectives
that penalize out-of-distribution (OOD) actions (e.g., CQL-style penalties),
implicit behavior regularization (e.g., IQL-style expectile regression), and
model-based variants that restrict rollouts to the dataset support. Our set-
ting differs at the level of information: we do not observe actions, hence
classical action-level OOD detection is not well-posed. The state-constrained
viewpoint we adopt is therefore closer to the “support-constrained MDP” per-
spective in which planning is restricted to empirically supported transitions.
In particular, our use of QSS-style backups over pairs (z, z′) parallels state-
constrained Q-learning formulations in which the maximization set is a reach-
able neighborhood of dataset states, thereby avoiding unconstrained maxi-
mization over a continuous action space. The principal distinction is that
we must additionally realize selected successors via an implicit inverse con-
troller, which introduces an identifiability requirement that is absent when
actions are logged.

Action-free learning and control from state-only trajectories. There
is a long history of extracting control signals from observations without ex-
plicit action labels, including system identification under unknown inputs,
inverse optimal control, and methods that infer “control” variables as la-
tent causes of state transitions. In RL-adjacent communities, this appears
as control from observations, imitation from state-only demonstrations, and
behavior modeling where the policy is implicit in the transitions. Our formu-
lation makes explicit a separation between (i) estimating an induced reach-
ability relation over dataset latents and (ii) learning an inverse mapping
Î(z, z′) that implements chosen transitions. This separation clarifies why
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action-free learning is not merely a matter of replacing Q(s, a) by Q(s, s′):
without an identifiability condition ensuring that the chosen successor can
be produced by a well-defined control variable, the planning objective is am-
biguous, consistent with the impossibility phenomenon formalized earlier. In
this sense, our state-only algorithm can be viewed as approximate dynamic
programming on a reduced control system whose inputs are the successor
states themselves, with Î serving as the actuator interface.

World models, video prediction, and visual planning. Model-based
control from pixels has been studied extensively, often via predictive latent
variable models and planning in latent space. A typical pipeline learns an en-
coder and a dynamics model, then performs model predictive control (MPC)
by searching over action sequences to maximize a reward model or a goal
likelihood. In contrast, we do not assume access to actions for either learning
or planning; consequently, classical latent-MPC methods that require sam-
pling action sequences are not directly applicable. Our use of successor-state
selection is closer to planning on a graph induced by observed transitions,
but with two substantive additions: (a) we require a certification step to con-
trol false-positive edges that would otherwise create optimistic shortcuts, and
(b) we incorporate an explicit inverse map Î(z, z′) so that selected successors
correspond to executable controls. From the perspective of video-based con-
trol, Î plays a role analogous to “visual servoing” or goal-conditioned control
modules, except that the “goal” is a nearby dataset latent state chosen by a
Bellman backup rather than a user-specified target.

Latent action models and identifiability. Learning latent actions (or
“action embeddings”) from observation transitions is closely related to un-
supervised skill discovery, option learning, and structured latent variable
models in which a discrete or continuous latent u is inferred to explain multi-
modal transition distributions. Many such approaches are designed for rep-
resentation or generative modeling, and they often permit non-identifiable
parameterizations: multiple latent encodings can fit the same transition dis-
tribution. For control, however, non-identifiability is not a benign modeling
choice; it manifests as a failure to produce reliable execution when the policy
selects a successor state that the inferred u cannot realize in the true envi-
ronment. Our assumption that Ĩ(z, z′) is well-defined (up to measure-zero
ambiguities) can be interpreted as requiring that the latent control vari-
able corresponds to a genuine controllable degree of freedom rather than an
arbitrary mixture component. This aligns with classical identifiability con-
cerns in inverse dynamics and with causal perspectives in which interventions
(controls) must be distinguishable from passive correlations. Practically, it
motivates architectures and training criteria for Î that encourage functional
invertibility (e.g., consistency losses between f̂ and Î) and evaluation proto-
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cols that test execution fidelity, not merely one-step prediction error.

Representation learning, bisimulation, and metric structure. Our
algorithm relies on nearest-neighbor retrieval in Z to propose candidate suc-
cessors, so the induced metric structure of ϕ̂ is not incidental: neighborhoods
must reflect dynamical plausibility rather than purely perceptual similarity.
This connects directly to bisimulation and representation learning for RL,
where one seeks embeddings in which states with similar reward and transi-
tion structure are close. Bisimulation metrics and related objectives provide
a principled route to controlling εrep by enforcing that distances in Z up-
per bound behavioral dissimilarity. Contrastive predictive objectives (e.g.,
temporal discrimination) can be viewed as approximating such structure
by making consecutive (or model-predicted) latents closer than negatives,
thereby improving ANN recall for true successors. Unlike work that uses
representation learning primarily to accelerate value function approxima-
tion, we use it to define the candidate set over which the Bellman operator
is applied; thus, representation error affects not only approximation quality
but also the feasible action set of the induced constrained MDP.

Uncertainty, certification, and safe deployment. Conformal predic-
tion, ensembles, and other uncertainty quantification tools have been used
for model-based RL to produce calibrated prediction sets, safe MPC, and
robust planning. We employ a closely related idea but apply it to edge ac-
ceptance in a dataset-induced reachability graph. This use is structurally
similar to safe exploration methods that restrict actions to those with cer-
tified outcomes, except that we operate entirely offline and the restriction
is over dataset successors rather than primitive actions. Conceptually, the
certification step is our analog of conservative action selection: it curtails
optimistic value propagation by limiting Bellman backups to edges whose
one-step realization error is controlled. The resulting guarantees are neces-
sarily stated in terms of false positives and false negatives in the induced
graph; this is appropriate because, in the action-free setting, reachability
itself is a learned object rather than a given property of the environment.

Implications for robotics and autonomy. Robotic systems often pos-
sess heterogeneous control stacks (high-level commands, learned low-level
controllers, safety filters), and logs may omit the exact motor torques or
may be collected from sources where action semantics differ (teleoperation,
shared autonomy, or legacy controllers). Our framework targets precisely
this mismatch: it plans over states (or observations) that are actually seen
in the log and delegates realization to an inverse controller appropriate for
the platform. The state-constrained and certified nature of the planner
suggests a practical deployment strategy in which one prefers conservative,
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high-confidence transitions among familiar states, thereby reducing the like-
lihood of entering unmodeled regimes. At the same time, our impossibil-
ity result indicates a clear boundary: without some form of identifiability
(architectural, physical, or via auxiliary supervision), action-free logs can-
not determine which transitions are controllable, so any autonomous de-
ployment must either assume such structure or incorporate additional sens-
ing/actuation signals. We view this as a constructive message: when action
channels are missing or unreliable, one should invest in (i) representations
that preserve controllability-relevant geometry, and (ii) calibrated certifica-
tion mechanisms that make the induced constraints explicit and auditable.

11 Conclusion

We studied offline control from observation-only transition data, in which the
dataset has the form D = {(ot, ot+1, rt)} and no action labels are available.
The central difficulty in this setting is not merely statistical but informa-
tional: without additional structure, observation transitions do not deter-
mine what the agent can cause, hence planning objectives that implicitly
assume controllability of arbitrary observed successors are ill-posed. Our
approach makes this issue explicit by (i) planning in a state-constrained la-
tent space over dataset-supported successors and (ii) separating selection of a
desired successor latent state from realization of that successor via a learned
inverse controller.

Concretely, we introduced AF-SCQ, which learns an encoder ϕ̂ : O → Z,
a latent forward model f̂ , and an inverse controller Î(z, z′) intended to out-
put a latent control u ∈ U that realizes the transition z → z′. Using an
ANN structure over ZD, we propose candidate successors and certify one-
step reachability by accepting edges (z, z′) only when a calibrated uncertainty
criterion indicates that the realized prediction error is small, yielding a cer-
tified neighborhood R̂eachδ(z) ⊆ ZD. We then perform QSS-style backups
on pairs (z, z′), where all maximizations are restricted to R̂eachδ(·), thereby
preventing unconstrained value extrapolation over latent space and ensuring
that the deployed policy π̂ selects only certified dataset successors. Under
bounded rewards and standard realizability/calibration conditions, this con-
struction yields an approximate dynamic programming procedure on a certi-
fied state-constrained MDP induced by R̂eachδ, with performance degrada-
tion controlled additively by false-positive/false-negative certification rates
and by model/representation errors.

At the theoretical level, our results delineate a sharp boundary. With an
identifiability condition—informally, that for dataset transitions there exists
a well-defined inverse mapping Ĩ(z, z′) that corresponds to a genuine control-
lable degree of freedom—action-free planning reduces to state-constrained Q-
learning on successor states, since actions serve only to instantiate selected
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successors. Conversely, without identifiability, we cannot in general distin-
guish passive correlations from controllable transitions, and we established
an impossibility phenomenon: there exist environments that induce identi-
cal observation-only datasets but admit different optimal state-constrained
policies, implying worst-case constant suboptimality for any action-free algo-
rithm. We view this pair of statements as the appropriate conceptual framing
of action-free offline RL: what can be achieved hinges on which aspects of
controllability are identifiable from the available signals and inductive biases.

Several limitations remain. First, our certification mechanism is funda-
mentally one-step. While one-step false-positive control is already sufficient
to prevent the most direct optimistic shortcuts in Bellman backups, it does
not automatically yield strong guarantees about multi-step execution, be-
cause compounding errors and distribution shift along policy-induced tra-
jectories may cause the realized roll-out to deviate from the graph edges
that were certified locally. One next step is therefore multi-step reachabil-
ity certification: for instance, certifying not only that z′ is reachable from
z in one step, but that a short-horizon plan z → z1 → · · · → zH is exe-
cutable with controlled failure probability. Technically, this suggests com-
bining per-edge certificates with compositional bounds (e.g., union bounds or
martingale-style concentration) or learning a tube-like invariant set around
ZD in which the closed-loop inverse controller remains accurate. A comple-
mentary direction is to certify robust reachability, where acceptance depends
on a worst-case realization error over an uncertainty set for (f̂ , Î), leading
to graph edges that are conservative by design.

Second, our analysis relies on an induced Markov property in latent space
and treats representation error as an additive term. In realistic partially ob-
served settings, even a strong encoder ϕ̂ may fail to be sufficient for control,
so planning over z = ϕ̂(o) may conflate aliased histories. A natural extension
is to incorporate memory explicitly, e.g., by replacing ϕ(ot) with ϕ(ht) for a
recurrent state estimator over histories ht = (ot−ℓ:t), or by moving from an
MDP reduction to a belief-state or predictive-state representation. In such
settings, the object we constrain to the dataset support may no longer be a
set of instantaneous latents but a set of filtered latents, and the reachability
certification must account for estimator uncertainty as well as dynamics un-
certainty. More generally, identifying conditions under which action-free data
yield a controllable representation in POMDPs—and clarifying the minimal
auxiliary signals needed when they do not—remains open.

Third, our framework plans over dataset states, which is both a strength
(conservatism) and a limitation (coverage). When the optimal constrained
policy requires transitions that are not present in D, no amount of offline
computation can recover them. This motivates principled data acquisition
strategies and hybrid pipelines in which offline learning produces a conserva-
tive controller that can be safely deployed, while subsequent interaction (if
permitted) is used to expand ZD in targeted ways. Even without training-
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time interaction, one may attempt limited generalization by certifying neigh-
borhoods around dataset states rather than only the states themselves; do-
ing so without reintroducing OOD value extrapolation is subtle and likely
requires stronger regularity assumptions on f̃ and on the encoder geometry.

Finally, multi-agent and non-stationary settings present an additional
identifiability challenge: state-only logs may reflect the actions of other
agents or changes in the environment, so the same observed transition (ot, ot+1)
may not be reproducible by the learner. Extending the reachability notion
to explicitly include latent variables representing other agents (or regimes)
suggests either a latent-mixture certification scheme or a causal formulation
in which we seek transitions stable under intervention by the learner. Here
the impossibility boundary becomes even more salient: without some sepa-
ration of “self” versus “other” causes, action-free control is not merely hard;
it is undefined.

In summary, we presented a state-constrained, certified approach to action-
free offline control that is explicit about what is being planned (successor
dataset states) and how it is executed (via an inverse controller), together
with guarantees that are naturally expressed in terms of reachability certi-
fication errors and modeling/representation inaccuracies. The overarching
message is methodological as much as algorithmic: in the absence of action
labels, the correct conservative object is not an action set but a reachable
successor set that must be learned, certified, and kept auditable.
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