
Reachability at Scale for State-Constrained Offline
RL: Retrieve-then-Certify Graphs with

End-to-End Guarantees

Liz Lemma Future Detective

January 20, 2026

Abstract

State-constrained offline RL replaces batch constraints on (s, a)
with constraints on states: policies may take out-of-distribution ac-
tions so long as they land in in-distribution states. The practical bot-
tleneck is reachability estimation—naively checking which of N dataset
states are reachable from each state is quadratic. Building on the state-
constrained framework and StaCQ’s model-based reachability witness,
we propose Retrieve-then-Certify (RTC): a two-stage pipeline that (1)
retrieves a small candidate set of next states per state using approxi-
mate nearest-neighbor search in a learned reachability embedding, and
(2) certifies each candidate edge with a calibrated model-consistency
test that yields a probabilistic certificate of approximate executabil-
ity. RTC produces a sparse reachability graph enabling graph-based
SCQL/StaCQ training with sublinear query time and GPU-friendly
batching. We provide (i) tight time/space complexity bounds (match-
ing an Ω(Nk) output-size lower bound), (ii) a high-probability guar-
antee that no spurious edges are admitted under a uniform error cer-
tificate, and (iii) an end-to-end value degradation bound for state-
constrained offline RL driven by the certified edge tolerance ε. Experi-
ments (to strengthen the claims) would demonstrate scaling to tens of
millions of transitions on robotics/driving logs and pixel observations,
with ablations isolating retrieval recall, certification tightness, and RL
performance.

Table of Contents

1. 1. Introduction: state-constrained offline RL, why reachability is the
scaling bottleneck, limitations of quadratic reachability and prior heuris-
tics (e.g., R-tree pruning), and overview of Retrieve-then-Certify (RTC).

2. 2. Preliminaries and Setup: MDP/offline RL notation; state-constrained
policies; reachability witness via forward/inverse models; definition

1

of approximate executability; statement of computational goals (sub-
quadratic reachability construction).

3. 3. Problem Formulation: Certified Reachability Graph Construction:
formal input/output; admissible edge semantics; certification risk pa-
rameter α; embedding and retrieval assumptions; output sparsity pa-
rameter k.

4. 4. Algorithm: Retrieve-then-Certify (RTC): (i) learn reachability em-
bedding; (ii) ANN retrieval; (iii) calibration step for forward-model er-
ror bounds; (iv) batch certification; (v) caching/incremental updates;
integration into graph-SCQL/StaCQ.

5. 5. Theoretical Guarantees I — Certification: conditions under which
RTC certifies approximate executability; union bounds across all queried
pairs; discussion of calibration methods (split conformal / empirical
Bernstein) and what they do and do not guarantee.

6. 6. Theoretical Guarantees II — End-to-End RL Impact: value loss
bounds for graph-based SCQL under approximate executability and
Lipschitz value; robustness to missing edges (false negatives) vs extra
edges; optional pessimistic variant to mitigate residual uncertainty.

7. 7. Complexity Landscape: time and memory of RTC; output-size lower
bound Ω(Nk); conditional lower bounds for exact neighborhood graph
construction in high dimension; why approximation/retrieval is neces-
sary.

8. 8. Experimental Plan (Implementation-Strengthening Section): scal-
ing benchmarks; large-log robotics/driving; pixel observations; through-
put/memory; end-to-end returns vs baselines; ablations (k, embedding
dimension, certification thresholds, caching).

9. 9. Related Work: offline RL (BCQ/TD3+BC/IQL), model-based un-
certainty and conformal prediction, ANN search and graph construc-
tion, state similarity/bisimulation, and trajectory stitching.

10. 10. Discussion and Limitations: when certificates fail (OOD queries,
representation collapse), what assumptions are needed for correctness,
and future directions (state-only datasets, multi-step reachability).

11. 11. Conclusion: summary of RTC and what it enables for 2026-scale
state-constrained offline RL.

2

1 Introduction

Offline reinforcement learning (offline RL) seeks to compute a policy using
only a fixed dataset of logged transitions, without further interaction with
the environment. In many safety- or compliance-critical deployments, it is
natural to impose an additional state constraint : the learned policy should
remain within the support of the dataset, or at least within a controlled
neighborhood thereof. A convenient formalization is to restrict decision-
making to the set of dataset states and to allow transitions only along edges
that are (approximately) executable by some action available in the environ-
ment. This viewpoint reduces a large portion of the offline RL problem to
(i) constructing a directed reachability graph on dataset states and then (ii)
optimizing a standard discounted control objective on that graph, as is done
by graph-based variants of conservative or state-constrained Q-learning.

The dominant obstacle is that reachability is, at scale, a graph construc-
tion problem. Given n unique dataset states, an exact approach that tests all
ordered pairs (s, s′) for executability incurs Θ(n2) candidate edges before any
sparsification. This quadratic barrier is not a constant-factor nuisance: even
when certification of a single candidate edge is moderately cheap, n2 quickly
becomes prohibitive for datasets of modern size. The difficulty is structural:
executability is not purely a geometric property of states, but a property of
existence of an action that induces a transition from s to (near) s′. Conse-
quently, the naive fallback “connect each state to its nearest neighbors under
a metric” is neither sufficient nor necessary, and exact reachability cannot
be reduced to a single kNN query without additional modeling assumptions.

Prior work has therefore relied on a mixture of heuristics for prun-
ing candidates. Typical strategies include distance-threshold graphs in raw
state space, approximate kNN over hand-crafted features, tree-based spa-
tial indices (e.g., R-tree variants) to avoid a full scan, and various forms
of local connectivity expansion (grow the graph outward from observed
transitions). Such methods can reduce wall-clock time in favorable low-
dimensional regimes, but they do not directly address the core bottleneck:
the need to identify, for each source state, a small set of plausible target
states that might be reachable by some action, and then to validate these
candidates. Moreover, purely geometric pruning can fail catastrophically in
high-dimensional observations (images, proprioception histories) or when the
environment dynamics are highly non-Euclidean; conversely, using a learned
representation without a principled acceptance test tends to produce graphs
with spurious edges, which in turn invalidates any downstream policy guar-
antee.

We adopt a two-stage design that separates candidate generation from
correctness: Retrieve-then-Certify (RTC). The guiding principle is that re-
trieval should be fast and permissive, while certification should be slow(er)
but reliable. Concretely, we first build an approximate nearest-neighbor

3

(ANN) index over a learned embedding ϕ(s) of dataset states. For each
source state s, we retrieve at most k ≪ n candidate targets s′ ∈ SD by a sin-
gle ANN query. This stage enforces the sublinear access pattern we require
for scalability: no full scan over SD is permitted when forming adjacency
lists. Retrieval alone, however, is not a correctness mechanism; it is merely
a proposal distribution over potential next states that is intended to have
high recall for truly executable transitions.

The second stage certifies approximate executability by leveraging learned
forward/inverse dynamics models. Given a proposed edge (s → s′), we use an
inverse model to propose an action â = Î(s, s′), and then we check whether
the forward prediction f̂(s, â) lands close to s′ according to a metric d. This
yields a reachability witness residual

ŵ(s, s′) := d
(
f̂(s, Î(s, s′)), s′

)
,

which is then combined with a calibrated predictive error bound for f̂ to
obtain a sufficient condition for the true transition to land within a toler-
ance ε. The key point is that certification is global : we allocate a failure
probability budget α across all tested edges and demand that, with proba-
bility at least 1−α, every accepted edge is ε-approximately executable in the
environment. In this way, retrieval errors affect only recall (which edges we
consider), whereas certification controls precision (which edges we accept).

This decomposition yields both computational and algorithmic benefits.
Computationally, RTC constructs a sparse directed graph with out-degree at
most k per state, hence at most nk total candidates and at most nk certifica-
tions; its running time is essentially the cost of n ANN queries plus nk model-
based checks, which is the best we can hope for up to logarithmic factors
given that writing down nk edges already requires Ω(nk) time. Algorithmi-
cally, the resulting graph is a drop-in substrate for state-constrained offline
RL methods: we can optimize a discounted objective on the graph, interpret
each accepted edge as an approximately executable option, and then relate
the performance of the learned policy to that of an oracle constrained policy
under mild regularity (e.g., Lipschitz) conditions. The remainder of the pa-
per formalizes this construction, states the certification event precisely, and
quantifies both the end-to-end value degradation induced by ε-approximate
executability and the tightness of the resulting construction-time guarantees.

2 Preliminaries and Setup

We work with a discounted Markov decision process (MDP) M = (S,A, P, r, γ),
where S is the state space, A is the action space, P (· | s, a) is the transi-
tion kernel, r(s, a) ∈ R is the one-step reward, and γ ∈ (0, 1) is the dis-
count factor. For notational clarity we will often consider the determinis-
tic case, in which there exists a transition function T : S × A → S such

4

that s+ = T (s, a); all definitions below are stated in terms of a metric and
therefore extend verbatim to stochastic transitions by interpreting T (s, a) as
a suitable representative (e.g., mean next state) or by working with high-
probability neighborhoods.

In offline RL we are given a fixed dataset of transitions

D = {(si, ai, ri, s′i)}Ni=1,

collected by some (unknown) behavior policy. We denote by

SD := { s : ∃(s, a, r, s′′) ∈ D }

the set of unique dataset states, and write n := |SD|. Our primary goal
is to compute a policy with high discounted return while respecting a state
constraint tied to the empirical support SD. We treat the dataset as read-
only: in particular, our constructions may preprocess D and train auxiliary
models, but they do not query the environment.

To formalize the state constraint, we equip S with a metric d(·, ·) (de-
faulting to ℓ2 on a chosen representation). Fix a tolerance ε ≥ 0. For
s, s′ ∈ SD, we say that s′ is ε-approximately executable from s if there exists
an action a ∈ A such that

d
(
T (s, a), s′

)
≤ ε. (1)

When ε = 0 this reduces to exact executability. This notion induces a (gen-
erally unknown) directed relation on SD, and it is convenient to view it as a
directed graph G∗ on vertex set SD with edge s → s′ whenever (1) holds. A
state-constrained policy is then any policy that, when started at a dataset
state, selects actions so that its realized state sequence remains within (or
near, up to ε) the dataset support. In this work we operationalize the con-
straint via edges on SD: downstream algorithms will only be permitted to
attempt transitions from s to states s′ that are certified to satisfy (1).

Since the environment dynamics are unknown, executability cannot be
tested directly. We therefore introduce learned dynamics models: a forward
model f̂ that predicts the next state from a state–action pair, and an inverse
model Î that proposes an action intended to realize a desired state transition.
Concretely, f̂ : S × A → S and Î : S × S → A are trained from D (or
from a replay buffer derived from D) using standard supervised objectives;
the details of training are orthogonal to the subsequent graph construction,
provided we can later calibrate predictive error. Given a candidate pair
(s, s′), we form the reachability witness residual

ŵ(s, s′) := d
(
f̂(s, Î(s, s′)), s′

)
. (2)

Intuitively, ŵ(s, s′) is small when (i) Î can identify an action that should
move s toward s′ and (ii) f̂ agrees that executing that action lands near

5

s′. Crucially, ŵ alone is not a guarantee of true executability; it must be
combined with a forward-model error certificate to control the probability
of accepting spurious edges. We will phrase this certificate as a bound of
the form d(f̂(s, a), T (s, a)) ≤ U(s, a) holding simultaneously over all queried
pairs (s, a), where U is obtained by calibration on held-out data and a global
risk budget α ∈ (0, 1).

The preceding definitions clarify the computational bottleneck. If we
attempted to construct G∗ (or even its ε-approximate variant) by enumer-
ating all ordered pairs (s, s′) ∈ SD × SD and testing (1) via model-based
certification, then we would incur Θ(n2) candidate checks, which is infeasi-
ble for modern offline datasets. At the same time, purely geometric graphs
(e.g., connecting each s to its nearest neighbors under d) are not semantics-
preserving: proximity in d is neither sufficient nor necessary for the existence
of an action realizing the transition. Our aim is therefore to separate candi-
date generation from acceptance: we seek a procedure that (a) proposes, for
each s ∈ SD, a small set of plausible targets without scanning all of SD, and
(b) certifies that any accepted proposal is ε-approximately executable with
a controlled global failure probability.

Formally, we will construct a sparse directed graph Ĝ on vertex set SD

with out-degree at most k ≪ n per state. Candidate generation must be sub-
linear in n per source state, typically implemented via approximate nearest-
neighbor retrieval in a learned embedding. Certification may be more ex-
pensive but is applied only to the O(nk) proposed edges. The ensuing sec-
tions make these input–output requirements explicit, specify the admissible
semantics of an edge in Ĝ (as an ε-approximate executability claim), and
introduce the risk parameter α governing simultaneous correctness of all ac-
cepted edges.

3 Problem Formulation: Certified Reachability Graph
Construction

We now formalize the intermediate problem solved prior to planning or value
optimization: from the finite set of dataset states SD and learned models
(f̂ , Î), we wish to construct a sparse directed graph whose edges have an
explicit, certifiable semantics in the underlying MDP. The construction must
avoid the Θ(n2) cost of enumerating all ordered pairs of vertices, and it
must control the probability of admitting any spurious edge across the entire
output.

Inputs and outputs. The input consists of (i) the vertex set SD =
{s(1), . . . , s(n)} (and optionally the full transition dataset D, used only for
training/calibration of auxiliary models), (ii) a tolerance ε ≥ 0 defining ap-
proximate executability, (iii) learned models f̂ and Î defining the witness

6

residual ŵ in (2), (iv) a learned embedding map ϕ : S → Rm together
with an approximate nearest-neighbor (ANN) data structure I built over
{ϕ(s) : s ∈ SD}, (v) an out-degree budget k ∈ N, and (vi) a global risk
budget α ∈ (0, 1) for certification. The output is a directed graph

Ĝ = (SD, E(Ĝ)), R̂each(s) := { s′ ∈ SD : (s → s′) ∈ E(Ĝ) },

such that |R̂each(s)| ≤ k for all s ∈ SD. We emphasize that Ĝ is a constructed
object: it is not assumed to coincide with the (unknown) true executability
graph G∗, but its edges must carry a certified meaning.

Admissible edge semantics. An edge (s → s′) in Ĝ is intended to assert
that s′ is ε-approximately executable from s in the sense of (1). Since we
cannot evaluate T directly, we restrict attention to edges whose executability
is witnessed by the inverse model action proposal

â(s, s′) := Î(s, s′) ∈ A.

Accordingly, we say that an edge (s → s′) is model-witnessed ε-executable if

d
(
T (s, â(s, s′)), s′

)
≤ ε. (3)

This definition is asymmetric in (s, s′) and is consistent with our downstream
use: planning algorithms will interpret (s → s′) as permission to attempt
the action â(s, s′) when at s, with the promise that the resulting next state
lies within ε of s′.

Certification with a global risk budget. The witness residual ŵ(s, s′)
in (2) measures agreement between f̂ and Î but does not alone imply (3).
We therefore introduce a calibrated forward-model error bound U(s, a) such
that, over a specified set of queried pairs (s, a), the event

E :=
{
∀(s, a) ∈ Q : d(f̂(s, a), T (s, a)) ≤ U(s, a)

}
(4)

holds with probability at least 1 − α. Here Q denotes the (random, data-
dependent) set of state–action pairs on which we will ever invoke certification
during graph construction; in our setting Q is induced by retrieval (defined
below) and inverse-model proposals. Under E , triangle inequality yields the
soundness implication

ŵ(s, s′) + U
(
s, â(s, s′)

)
≤ ε =⇒ d

(
T (s, â(s, s′)), s′

)
≤ ε,

and thus motivates the certification rule used by our algorithm. The key
point is that α is global : it bounds the probability that any accepted edge
fails to satisfy (3), rather than providing a per-edge guarantee. Opera-
tionally, E may be obtained either by a simultaneous calibration procedure
designed for a known upper bound on |Q| (e.g., |Q| ≤ nk), or by a union
bound over per-query bounds that allocate risk α/|Q|; our subsequent anal-
ysis is agnostic to the particular calibration mechanism provided (6) holds.

7

Embedding-based candidate generation and retrieval assumptions.
To avoid exhaustive pairwise testing, we enforce that candidate next-states
are generated by sublinear retrieval in a learned embedding. For each source
state s ∈ SD, the candidate set is defined as

C(s) := ANNk(I, ϕ(s), k) ⊆ SD, |C(s)| ≤ k,

where ANNk returns up to k approximate nearest neighbors of ϕ(s) among
{ϕ(s̃) : s̃ ∈ SD}. We do not assume that Euclidean proximity under d
suffices for executability; rather, ϕ is intended to organize SD so that truly
executable targets are retrieved with high probability/recall. The only hard
computational constraint we impose is that building I is near-linear in n
(up to logarithmic factors) and that each query runs in time Cann = Õ(1)
or Õ(logn), so that all candidate generation across SD is Õ(nCann) rather
than Θ(n2).

Sparsity parameter k and the certified graph construction objec-
tive. The out-degree budget k simultaneously controls (i) the memory foot-
print O(nk) of adjacency lists and (ii) the number of certification checks,
which is at most nk. The problem is therefore to design a procedure that,
for each s, uses a single ANN query to obtain C(s), and then selects a subset
R̂each(s) ⊆ C(s) such that every accepted edge is sound under the global
risk budget α. Subject to these constraints, we seek to maximize the inclu-
sion of truly ε-executable targets (recall) while keeping the construction cost
dominated by n retrievals and at most nk certifications. The next section
instantiates this formulation via a concrete Retrieve-then-Certify algorithm
and specifies how the calibration step realizes (6) in practice.

4 Algorithm: Retrieve-then-Certify (RTC)

We now instantiate the construction objective of the previous section via a
concrete two-stage routine, Retrieve-then-Certify (RTC). RTC takes as input
the dataset vertex set SD, a retrieval budget k, learned models (f̂ , Î) defining
the witness residual ŵ, an embedding ϕ equipped with an ANN index I,
and calibration parameters (α, ε). It outputs adjacency lists R̂each(s) that
are sparse by construction and amenable to downstream graph-constrained
planning and value optimization.

Stage A: learning representations and models. RTC presumes that
we have trained three auxiliary components from D: (i) a forward model
f̂(s, a), (ii) an inverse model Î(s, s′) (interpreted as an action proposal that
intends to move s toward s′), and (iii) an embedding ϕ(s) ∈ Rm used only
for retrieval. The learning objective for ϕ is not required to coincide with

8

the metric d used in certification; rather, ϕ is a statistical device for con-
centrating truly executable targets among the top-k retrieved candidates.
Concretely, we may train ϕ by a temporal-contrastive objective on transi-
tions in D (making s close to s′ when (s, ·, ·, s′) ∈ D and far from negatives),
by goal-conditioned imitation signals, or by any representation that empir-
ically improves candidate recall under ANN queries. Since the certification
step ultimately gates edges, the role of ϕ is to reduce the number of pairs we
ever test.

Stage B: building the ANN index and performing candidate re-
trieval. Given ϕ and SD, we build an ANN index I over {ϕ(s) : s ∈ SD}.
For each source state s ∈ SD, we generate a candidate set

C(s) = ANNk(I, ϕ(s), k) ⊆ SD, |C(s)| ≤ k,

using a single ANN query. This step enforces the sublinear candidate-
generation constraint: we never scan all n potential targets for a given s. We
also allow implementation-dependent filters at retrieval time (e.g., excluding
s itself, enforcing diversity among candidates, or restricting to candidates
within a coarse embedding radius), provided |C(s)| ≤ k remains intact.

Stage C: calibration of a forward-model error certificate. Before
certifying any candidate edges, RTC computes a predictive error bound
U(s, a) for the forward model that is valid simultaneously over the set of
queried pairs Q in (6) with failure probability at most α. Algorithmically,
we treat calibration as a black box:

Calibrate(f̂ , α, data) −→ U(·, ·),

where the calibration data is disjoint from any data used to fit f̂ (e.g., a
held-out split of D). In the simplest uniform form, U(s, a) ≡ U is a scalar
chosen so that d(f̂(s, a), T (s, a)) ≤ U holds for all (s, a) ∈ Q with probability
≥ 1−α. More refined variants let U depend on (s, a) through stratification,
quantile regression, or uncertainty estimates, but RTC only requires that the
resulting U satisfies the simultaneous guarantee (6). The next section details
concrete calibration mechanisms and their guarantees; here we only record
that calibration is performed once per graph build (or once per refresh, if
models are updated).

Stage D: batched certification and graph assembly. For each s ∈ SD

and each candidate s′ ∈ C(s), we compute the proposed action and the
witness residual

â(s, s′) = Î(s, s′), rhat(s, s
′) = d

(
f̂(s, â(s, s′)), s′

)
= ŵ(s, s′).

9

We accept (s → s′) into Ĝ if and only if

rhat(s, s
′) + U

(
s, â(s, s′)

)
≤ ε. (5)

The resulting adjacency list is

R̂each(s) =
{
s′ ∈ C(s) : (5) holds

}
,

which automatically satisfies |R̂each(s)| ≤ |C(s)| ≤ k. In practice, we im-
plement this loop in batches: we query ANN for a batch of sources, form all
candidate pairs (s, s′) in that batch, run Î and f̂ as large batched forward
passes (GPU), and then apply the scalar test (5). Batching does not change
the semantics of acceptance; it only reduces the amortized constant in Ccert.

Caching and incremental refresh. RTC admits a natural caching strat-
egy. For each accepted edge we may store (s, s′, â, rhat), and optionally also
store the full candidate list C(s). If (f̂ , Î , ϕ) are frozen, the graph is built
once. If these components are trained jointly with downstream RL, we may
refresh the graph periodically: every R gradient steps, rebuild I (or update
it incrementally), re-retrieve C(s), and re-certify. When only f̂ changes, one
may keep cached C(s) and re-run certification; when ϕ changes, one must at
least re-run retrieval.

Integration into graph-constrained offline RL. The output Ĝ is con-
sumed by graph-based state-constrained methods (e.g., graph-SCQL / StaCQ)
by restricting the policy’s feasible next-state choices at s to R̂each(s). Op-
erationally, choosing an outgoing edge (s → s′) corresponds to executing the
recovered action â(s, s′). In offline value optimization, backups are likewise
restricted to successors in R̂each(s), ensuring that value propagation occurs
only along edges that have passed the certification test. Thus RTC provides
a computationally efficient interface between continuous-control dynamics
(handled by (f̂ , Î) and calibration) and discrete graph planning (handled by
Ĝ).

5 Theoretical Guarantees I: Certification

We formalize the sense in which RTC is a sound graph-construction routine:
whenever it accepts an edge, that edge is guaranteed (with high probability)
to be ε-approximately executable in the environment. The key point is that
soundness is achieved by a simultaneous predictive error certificate for the
forward model f̂ , combined with a union bound (or an equivalent multiple-
testing control) over all state–action pairs that RTC ever evaluates.

10

Queried set and the simultaneous event. Fix the learned components
(f̂ , Î , ϕ) and the retrieved candidate sets {C(s)}s∈SD

. RTC evaluates f̂ only
on the finite set of pairs

Q :=
{
(s, Î(s, s′)) : s ∈ SD, s

′ ∈ C(s)
}
. (6)

In particular, |Q| ≤ nk. We say that a function U(s, a) is a simultaneous
error certificate on Q at level α if

P
(
∀(s, a) ∈ Q : d

(
f̂(s, a), T (s, a)

)
≤ U(s, a)

)
≥ 1− α,

where the probability is over the calibration sample used to compute U (and
any algorithmic randomness), while conditioning on the trained models and
the retrieved candidates.

Soundness of the RTC acceptance test. Assume deterministic transi-
tions T . For any candidate edge (s → s′) we form â = Î(s, s′) and compute
the residual rhat(s, s′) = d(f̂(s, â), s′). If the test

rhat(s, s
′) + U(s, â) ≤ ε

accepts the edge, then on the simultaneous event we have, by the triangle
inequality,

d
(
T (s, â), s′

)
≤ d

(
T (s, â), f̂(s, â)

)
+d

(
f̂(s, â), s′

)
≤ U(s, â)+rhat(s, s

′) ≤ ε.

Thus, conditional on the certificate holding on all queried pairs, every ac-
cepted edge is ε-approximately executable. The entire question of correct-
ness therefore reduces to constructing U so that this simultaneous event
holds with probability at least 1− α.

Union bounds and global risk allocation. A simple way to obtain the
simultaneous guarantee is to enforce a per-query failure probability δ and
apply a union bound. Concretely, if we ensure that for each fixed (s, a) ∈ Q,

P
(
d(f̂(s, a), T (s, a)) > U(s, a)

)
≤ δ,

then

P
(
∃(s, a) ∈ Q : d(f̂(s, a), T (s, a)) > U(s, a)

)
≤ |Q|δ ≤ α

whenever δ = α/|Q| (or any smaller choice). This accounting makes explicit
why RTC isolates candidate generation: we may set δ using |Q| ≤ nk rather
than n2, thereby avoiding a catastrophic multiple-testing penalty.

11

Split conformal calibration (distribution-free, marginal). One prac-
tically robust mechanism is split conformal calibration on a held-out set
Dcal = {(sj , aj , s′j)}

Ncal
j=1 , disjoint from the data used to fit f̂ . Define calibra-

tion scores
ej := d

(
f̂(sj , aj), s

′
j

)
,

and let q̂1−δ be the empirical (1−δ)-quantile of {ej}. Under exchangeability
of the calibration triples with future test triples, split conformal yields

P
(
d(f̂(s, a), T (s, a)) ≤ q̂1−δ

)
≥ 1− δ

for a fresh (s, a) drawn from the same distribution. Setting U(s, a) ≡ q̂1−δ

and choosing δ = α/|Q| gives a global 1− α guarantee by the union bound
above. We emphasize what is (and is not) obtained here: the guarantee
is marginal over the calibration/test sampling distribution and is only as
credible as the assumption that queried pairs resemble the calibration dis-
tribution.

Empirical Bernstein-style bounds (model-based, potentially tighter).
When we are willing to assume bounded or sub-Gaussian errors, we may re-
place quantile calibration by concentration bounds that exploit empirical
variance. For example, if the scores ej are almost surely bounded by b and
approximately i.i.d., an empirical Bernstein inequality yields an upper con-
fidence bound on the mean error of the form

ē +

√
2σ̂2 log(2/δ)

Ncal
+

3b log(2/δ)

Ncal
,

and analogous constructions can be applied to conservative upper bounds on
high quantiles via tail-modeling assumptions. Such bounds can be substan-
tially less conservative than worst-case or high-quantile conformal bounds,
but they are correspondingly less assumption-free.

Limitations and non-guarantees. First, certification controls false pos-
itives (unsound edges), not false negatives: RTC may reject executable edges
if Î fails to propose a suitable action, if retrieval omits the true target, or if U
is overly conservative. Second, the guarantee is tied to the metric d and the
tolerance ε; it does not imply semantic equivalence of states beyond d(·, ·).
Third, distribution shift matters: if the queried pairs Q are atypical relative
to calibration data, split conformal guarantees may degrade. Finally, if the
environment is stochastic, the deterministic statement must be replaced by
a probabilistic one (e.g., bounding d(s′env, s

′) in high probability), and the
certificate must account for both model error and inherent transition noise.

12

6 Theoretical Guarantees II: End-to-End RL Im-
pact

We now quantify how ε-approximate executability of graph edges translates
into end-to-end performance guarantees for any offline RL procedure that
plans or optimizes over the constructed graph Ĝ. The guiding observation is
that, once the policy is constrained to select edges that can be realized up to
d-error at most ε, the induced mismatch between the intended dataset-state
successor and the actual environment successor can be propagated through
the value function by a Lipschitz continuity assumption.

Oracle graph and graph-constrained policies. Let G⋆ denote the di-
rected graph on vertex set SD containing exactly the executable dataset
edges: (s → s′) ∈ E(G⋆) if and only if there exists an action a such that
T (s, a) = s′ (or d(T (s, a), s′) = 0 under our metric). A graph-constrained
policy is any mapping π that, at state s ∈ SD, selects an outgoing edge
(equivalently, a target dataset successor) among the available adjacency list,
and then executes the recovered action Î(s, s′). We write π

Ĝ
for the policy

returned by graph-SCQL (or any other graph-optimizing method) when re-
stricted to Ĝ, and πG⋆ for the corresponding oracle policy when restricted
to G⋆.

Value loss under approximate executability. Assume that every edge
(s → s′) ∈ E(Ĝ) is ε-approximately executable in the sense that execut-
ing â = Î(s, s′) yields an environment successor s̃′ satisfying d(s̃′, s′) ≤ ε.
Assume further that the oracle value function is L-Lipschitz:

|V πG⋆ (s)− V πG⋆ (s̃)| ≤ Ld(s, s̃) for all s, s̃ ∈ S.

Then the performance degradation due solely to approximate landing can be
bounded uniformly over dataset states.

Theorem 6.1 (Value loss from approximate executability). Under the as-
sumptions above, for all s ∈ SD,

V πG⋆ (s)− V π
Ĝ(s) ≤ γLε

1− γ
.

Proof sketch (coupling). We couple two trajectories, both starting at
the same s ∈ SD. The oracle trajectory follows πG⋆ and lands exactly at
the intended next dataset state s⋆1. The approximate trajectory follows π

Ĝ
and intends some s1 but lands at s̃1 with d(s̃1, s1) ≤ ε. Writing Bellman
recursions and subtracting, the immediate rewards cancel under the standard
modeling choice that rewards are evaluated at the pre-transition state (or
are otherwise Lipschitz and can be treated similarly), leaving a one-step

13

discrepancy bounded by γ|V πG⋆ (s1)− V πG⋆ (s̃1)| ≤ γLε. Iterating along the
coupled rollouts yields a geometric series

∑
t≥1 γ

tLε = γLε/(1− γ).

False negatives versus extra edges. Theorem 6.1 isolates the effect of
edge imprecision (approximate executability) and does not require Ĝ to con-
tain all edges of G⋆. Missing edges (false negatives) are therefore qualitatively
different from extra edges (false positives):

• Missing edges shrink the feasible action set and can only reduce the
optimal achievable value under a graph constraint, even if every re-
tained edge is sound. Any bound must therefore depend on a coverage
condition describing how well Ĝ approximates the oracle reachable set.

• Extra edges are benign provided they are sound : enlarging the feasible
set cannot hurt the optimal value of the constrained planning problem.
Thus, once certification ensures that accepted edges are ε-executable,
adding more such edges can only help optimization (though it may
increase variance or computation in practice).

A simple sufficient condition for robustness to false negatives is an ap-
proximate successor coverage property: for each s ∈ SD and each oracle edge
(s → s⋆) ∈ E(G⋆), there exists ŝ ∈ R̂each(s) such that d(s⋆, ŝ) ≤ εcov. Un-
der the same Lipschitz assumption, repeating the coupling argument with ε
replaced by ε+ εcov yields the bound

V πG⋆ (s)− V π
Ĝ(s) ≤ γL(ε+ εcov)

1− γ
,

where ε accounts for approximate execution and εcov accounts for approxi-
mating the oracle successor by a nearby available node.

A pessimistic variant for residual uncertainty. If we are unwilling to
treat ε as fully deterministic (e.g., because certificates are conservative but
not absolute, or because transitions are mildly stochastic), we may incorpo-
rate pessimism directly into graph-based backups. Concretely, for an edge
intending successor s′, the next state is known only to lie in the ball B(s′, ε),
so the worst-case continuation value is at least

inf
s̃∈B(s′,ε)

V (s̃) ≥ V (s′)− Lε.

Thus, a conservative Bellman backup may subtract γLε per step (or use edge-
dependent radii ε(s, s′) when available). This modification preserves the
same functional form of the bound while reducing sensitivity to occasional
miscalibration, at the cost of additional pessimism when ε is large.

14

7 Complexity Landscape: what RTC can and can-
not do at scale

We now isolate the computational bottlenecks of Retrieve–then–Certify (RTC)
and place them in a broader landscape of lower bounds which explain why
subquadratic graph construction requires approximation or additional struc-
ture.

Bookkeeping and dominant operations. Let n := |SD| denote the
number of unique dataset states, let m be the embedding dimension for
ϕ, and let k be the out-degree budget per state. RTC consists of three
primitive operations: (i) building an ANN index I over {ϕ(s) : s ∈ SD}, (ii)
performing n ANN queries to retrieve k candidate successors per state, and
(iii) certifying up to nk candidate edges via a constant number of evaluations
of (f̂ , Î) plus a distance computation in d. Denoting by Cann the amortized
cost of one ANN query and by Ccert the amortized cost of certifying one
candidate edge, we obtain the construction time

Õ(nCann + nk Ccert) , (7)

where Õ(·) suppresses polylogarithmic factors from index maintenance, batch-
ing overheads, and (when applicable) approximate search parameters such
as (1 + η)-approximation.

The quantity Ccert is model-dependent but conceptually constant with
respect to n: certification requires computing ahat = Î(s, s′), then f̂(s, ahat),
then the residual ŵ(s, s′) = d(f̂(s, ahat), s

′), and finally evaluating the accep-
tance test against ε after accounting for the calibration bound. In practice,
nk Ccert is highly parallelizable across candidate edges and typically domi-
nates wall-clock time once n is large.

Memory footprint. RTC stores (a) the ANN index and embeddings, (b)
the adjacency lists, and (c) model parameters. The index requires Õ(nm)
memory in typical implementations (e.g., graph-based ANN or IVF variants)
plus any auxiliary quantization tables. The output graph occupies O(nk)
memory (up to constant factors for storing integer vertex ids and, optionally,
edge metadata such as ŵ(s, s′) or the recovered action). Hence the overall
memory is

Õ(nm) + O(nk) + size(f̂ , Î), (8)

which should be contrasted with the O(n2) adjacency representation implic-
itly targeted by exact all-pairs scanning.

Output-size lower bound and tightness. The upper bound (7) is es-
sentially optimal once we insist on explicitly outputting k outgoing edges

15

per state. Indeed, in the word-RAM model, writing down nk edges al-
ready forces Ω(nk) time, irrespective of how candidates are generated or
verified. Formally, any algorithm that outputs adjacency lists R̂each(s) with
|R̂each(s)| = k for all s ∈ SD must write Θ(nk) machine words (vertex ids),
implying a time lower bound

Ω(nk). (9)

Consequently, when Ccert = Θ(1) (or bounded independently of n via constant-
depth networks and fixed-precision arithmetic), RTC matches the output-size
lower bound up to logarithmic factors and any additional constant overhead
from approximate retrieval.

Why exact neighborhood construction is conditionally quadratic.
One might ask whether the ANN stage is merely an implementation choice,
and whether we could instead compute, for every s ∈ SD, the exact set of
dataset successors within a geometric tolerance, e.g.,

{s′ ∈ SD : d(s′, T (s, a)) ≤ ε for some a},

or even the exact ε-neighborhood graph of the embedded points {ϕ(s)}. In
high ambient dimension m, such exact constructions are widely believed
to require essentially quadratic time in the worst case. A representative
conditional statement is that for m = ω(log n), deciding all pairs (i, j) with
∥ϕ(si) − ϕ(sj)∥2 ≤ ε (the exact ε-graph) cannot be done in n2−o(1) time
under fine-grained conjectures such as SETH via reductions from Orthogonal
Vectors. While the reductions are geometric and do not use RL structure,
they serve as a computational barrier: if we demand worst-case exactness in
high dimension, we should not expect to beat exhaustive pairwise checks by
more than subpolynomial factors.

Necessity of approximation and retrieval assumptions. The preced-
ing considerations justify the architectural separation in RTC:

• Candidate generation must be sublinear in n per state. ANN retrieval
provides this by exploiting empirical structure (e.g., low intrinsic di-
mension of ϕ(SD) or favorable clusterability), yielding Cann ≪ n in
regimes of interest.

• Correctness must not depend on retrieval being perfect. Since high-
dimensional exact neighborhood queries are hard, we treat retrieval
as a recall mechanism and place all soundness requirements in the
certification stage. In particular, missed neighbors (false negatives)
affect coverage but do not invalidate any accepted edge.

• Certification should be constant-time per candidate. This is precisely
what makes the overall time essentially proportional to the number of
tested edges, nk, which is unavoidable by (9).

16

In this sense, approximation is not a superficial optimization but a prereq-
uisite for scalability: without approximate near-neighbor search (or strong
additional assumptions on the geometry of SD), any method that even iden-
tifies a useful set of candidate successors for each of n states risks reverting
to Ω(n2) probing in the worst case. RTC expends its computational budget
where it matters—on certifying a small, explicitly represented set of edges—
and thereby remains compatible with modern large-scale offline RL datasets.

8 Experimental Plan (Implementation-Strengthening)

We design experiments to validate RTC along three axes: (i) scaling of
graph construction time and memory as a function of n, m, and k; (ii)
soundness/coverage tradeoffs induced by certification and retrieval; and (iii)
end-to-end offline RL performance when graph-SCQL optimizes over the
certified graph Ĝ.

Benchmarks and data regimes. We select domains that expose both
low-level control and long-horizon stitching needs. Concretely, we consider
(a) standard continuous-control offline RL suites with state observations
(e.g., locomotion and manipulation) at multiple dataset sizes; (b) large-log
robotics and driving regimes in which n is large and trajectory diversity is
high (e.g., multi-task manipulation logs and logged driving trajectories with
diverse initial conditions); and (c) pixel-observation variants where s is an
image (or image-history) and ϕ must be learned. For each domain we con-
struct SD by deduplicating states up to an application-appropriate tolerance
(exact equality for discrete/quantized states; clustering for continuous states
when raw logs contain near-duplicates), and we report both N and n = |SD|.

Implementation of retrieval and certification. We implement ϕ as
either (i) an MLP encoder for state vectors, (ii) a convolutional encoder for
pixels, or (iii) a frozen pretrained encoder (when available) followed by a
learned projection to Rm. We instantiate I with at least two ANN back-
ends (e.g., HNSW and IVF-PQ) to separate algorithmic effects from index
engineering, and we record build time, query time Cann, and peak memory.
Certification uses learned (f̂ , Î) trained on D with held-out calibration to
obtain a simultaneous error bound U at risk budget α. We ensure that cal-
ibration and evaluation splits are disjoint at the trajectory level to avoid
temporal leakage. We batch certification over candidate edges to saturate
GPU throughput and treat Ccert as an empirically measured quantity (in-
cluding model forward passes and metric computation).

Scaling benchmarks: time and memory. To test the predicted scal-
ing Õ(nCann + nkCcert), we sweep n by subsampling trajectories and/or

17

taking prefixes of large logs, and we sweep k ∈ {4, 8, 16, 32, 64} and m ∈
{16, 32, 64, 128, 256}. For each configuration we report: index build time,
total retrieval time (all n queries), total certification time (all tested edges),
and total wall-clock time with fixed hardware. We also report memory us-
age decomposed into index memory Õ(nm), adjacency memory O(nk), and
model parameters. As a sanity check, we include a naive baseline that scans
all s′ ∈ SD for a small subset of source states (due to cost) to illustrate the
empirical gap to quadratic construction.

Soundness and coverage diagnostics. We evaluate the certification
layer independently of policy learning by sampling accepted edges (s →
s′) ∈ Ĝ and executing the recovered action â = Î(s, s′) in the environment
(or a trusted simulator) to measure realized deviation d(s̃′, s′). We report
the empirical violation rate of the ε-executability condition and compare it
to the target risk budget α (with confidence intervals). Separately, we esti-
mate coverage/recall by defining a set of “ground-truth” executable targets
for a manageable subset of sources using extensive action sampling or short-
horizon planning, and measuring what fraction appear in C(s) and what
fraction are ultimately certified. This separates retrieval failures (false neg-
atives in C(s)) from certification conservatism (false negatives due to U or
ε).

End-to-end offline RL evaluation. We compare graph-SCQL using Ĝ
against strong offline RL baselines that do not explicitly construct reach-
ability graphs (e.g., value-based and actor-critic methods with behavioral
regularization), using standardized evaluation protocols and reporting nor-
malized return and median over multiple random seeds. We also include
internal baselines to isolate contributions: (i) graph-SCQL with retrieval-
only (no certification), (ii) graph-SCQL with certification but using a non-
learned embedding (e.g., raw state or PCA), and (iii) graph-SCQL with a
dense candidate set for small n (approximating full scan) to estimate an
upper envelope. For long-horizon tasks we additionally report success rates
and trajectory-level constraint violations when applicable.

Ablations and engineering choices. We perform targeted ablations to
quantify sensitivity and guide deployment: (a) out-degree budget k (compute–
coverage tradeoff); (b) embedding dimension m (index cost vs retrieval qual-
ity); (c) certification threshold parameters, including ε and the calibration
risk allocation α (soundness–acceptance tradeoff); (d) choice of metric d (raw
ℓ2 in state space versus latent-space distances); and (e) caching strategies.
For caching, we evaluate (i) memoizing Î(s, s′) for repeated candidate pairs
across index refreshes, (ii) caching ϕ(s) and batched ANN queries, and (iii)
storing per-edge metadata (e.g., ŵ(s, s′) and U(s, â)) to avoid recomputation

18

during RL updates. We report the resulting changes in throughput (edges
certified per second), peak memory, and final return, thereby clarifying which
costs are one-time preprocessing versus iterative training overhead.

Reporting. Across all experiments we log acceptance rates |R̂each(s)|/k,
degree distributions, and the empirical distribution of ŵ(s, s′) for candidates
and accepted edges. These diagnostics allow us to attribute performance dif-
ferences to retrieval, certification, or downstream optimization, rather than
to incidental hyperparameter choices.

Offline RL with behavioral regularization. A large fraction of of-
fline RL work addresses the distribution-shift pathology by constraining the
learned policy toward the dataset behavior. Representative methods include
BCQ ? (implicit action constraints via a generative model), TD3+BC ?
(explicit behavior cloning regularization in actor updates), and IQL ? (im-
plicitly conservative policy improvement via expectile regression). Closely
related are CQL-style conservative value learning ? and advantage-weighted
regression variants (e.g., AWAC ?). These methods typically avoid explicit
combinatorial reasoning over dataset states; instead, they control extrap-
olation in action space or in the value function. Our construction is or-
thogonal: we build an explicit sparse directed graph over dataset states and
enforce state-constraint structure through certified approximate executabil-
ity of edges. In particular, the key distinction is that our guarantee is stated
on state reachability for accepted edges, rather than on policy divergence
from the behavior distribution.

Model-based offline RL and uncertainty. Model-based offline RL meth-
ods such as MOPO ?, MOReL ?, and COMBO ? use a learned dynamics
model together with uncertainty penalties or pessimism to mitigate com-
pounding model error. The common thread is to restrict planning to regions
where the model is believed to be accurate, typically by penalizing high-
uncertainty rollouts (often estimated by ensembles). Our use of a learned
forward model f̂ is more narrowly scoped: we do not attempt long-horizon
rollout under f̂ ; rather, we use f̂ only to certify one-step approximate ex-
ecutability of candidate edges (s → s′) proposed by an inverse model Î.
This design reduces the certificate target to a one-step statement of the form
d(T (s, Î(s, s′)), s′) ≤ ε, and it allows us to allocate a global risk budget α
across a finite queried set Q of state-action pairs. In this sense, our certifi-
cate layer is compatible with pessimism-based model learning, but it requires
a different calibration object: a simultaneous bound on one-step prediction
error over the queried set, rather than an uncertainty heuristic integrated
into multi-step planning.

19

Conformal prediction and calibration for certificates. The statisti-
cal structure of our certification step is aligned with conformal prediction
and post-hoc calibration, which provide finite-sample, distribution-free cov-
erage guarantees under exchangeability assumptions ??. Recent work has
applied conformal ideas to dynamics models and safe decision-making by
calibrating prediction sets or error radii, yielding guarantees that hold with
a user-specified failure probability. In our setting, we require a bound U(s, a)
such that d(f̂(s, a), T (s, a)) ≤ U(s, a) holds simultaneously over all queried
(s, a) ∈ Q with probability at least 1 − α. While a union bound over in-
dividually calibrated pairs is conceptually sufficient, it is often loose; more
refined simultaneous calibration techniques (e.g., split-conformal with max-
residual calibration over the query set) can yield tighter thresholds at the
same α. Our contribution here is not a new conformal method per se, but
an algorithmic placement of such calibration within a retrieve-then-certify
pipeline whose output is a sparse reachability graph used by downstream
state-constrained optimization.

Approximate nearest neighbor search and graph construction. Our
candidate generation stage is an instance of approximate nearest neigh-
bor (ANN) retrieval in an embedding space, using index structures such
as HNSW, IVF-PQ, or LSH ???. ANN has been extensively used to ac-
celerate kNN classification, retrieval-augmented models, and approximate
geometric graph construction. From the perspective of graph algorithms,
our procedure resembles building a directed kNN graph on SD in ϕ-space,
except that we do not interpret proximity as reachability; instead, proximity
is only a heuristic to propose candidates that are then filtered by a dynamics-
based certificate. This separation is essential: exact ε-neighborhood graphs
in high-dimensional ℓ2 are known to be computationally expensive in the
worst case, and ANN methods trade worst-case exactness for practical sub-
linear queries. Our analysis accordingly treats retrieval quality (recall) as an
empirical factor affecting coverage, while the correctness of accepted edges
is delegated to certification.

State similarity, representation learning, and bisimulation. A re-
lated line of work studies state abstractions and similarity metrics (including
bisimulation metrics) that preserve value-relevant structure ??. These meth-
ods aim to learn representations in which metric proximity implies similarity
of transition and reward structure, enabling generalization and compression.
Our embedding ϕ serves a different purpose: it is a computational instru-
ment for retrieving a small candidate set C(s) from a large discrete set SD.
We do not assume that ϕ induces a bisimulation metric, nor do we require
that d(ϕ(s), ϕ(s′)) upper bound true one-step reachability. Indeed, any such
assumption would be fragile under representation collapse or task mismatch;

20

instead, the role of ϕ is to improve candidate recall under a fixed budget k,
while certification enforces the reachability condition in the original metric
d(·, ·) (or another explicitly chosen metric).

Trajectory stitching, planning over datasets, and skill composition.
Finally, our graph perspective connects to trajectory stitching and dataset-
based planning, where one seeks to compose short behavioral fragments into
long-horizon behavior by selecting intermediate states that are “connectable”
??. Prior approaches often use learned models, goal-conditioned policies, or
nearest-neighbor heuristics to link states across trajectories, sometimes with-
out formal executability guarantees. Our retrieve-then-certify construction
can be viewed as providing a principled substrate for stitching: the certi-
fied edges define admissible one-step connectors between dataset states, and
graph-SCQL (or other graph-based methods) can then optimize long-horizon
objectives under these admissibility constraints. The novelty is the combi-
nation of (i) sublinear candidate generation at scale, (ii) explicit global risk
control via calibration, and (iii) a value-loss guarantee that depends only on
ε and a Lipschitz constant, rather than on unrolled model accuracy.

9 Discussion and Limitations

When and why certificates can fail. Our executability guarantee is
conditional: it holds on the event that the forward-model error bound is
simultaneously valid over the queried set Q = {(s, Î(s, s′)) : s ∈ SD, s′ ∈
C(s)}. If the calibration procedure underestimates the worst-case residual
on Q, then the test ŵ(s, s′) + U(s, Î(s, s′)) ≤ ε may accept an edge whose
true landing state T (s, Î(s, s′)) is farther than ε from s′. This is the only
failure mode relevant to the stated correctness statement: retrieval errors or
inverse-model errors affect which edges are considered or accepted, but they
do not, by themselves, invalidate an accepted edge unless they push Q into
regions where the certificate is miscalibrated.

Out-of-distribution (OOD) queries and risk allocation. The simul-
taneous guarantee is strongest when the calibration residuals and the queried
residuals are exchangeable (or when the calibration scheme explicitly targets
worst-case coverage on a specified query family). In practice, Q is induced by
the learned inverse model and by the ANN retrieval policy; both can drift
during training, and both can generate state–action pairs that are poorly
represented in the calibration split. This creates an OOD problem in action
space even if the states remain within SD: Î(s, s′) may propose actions out-
side the dataset support at s, and f̂ may be least accurate precisely there. A
second, more prosaic issue is risk allocation: even if each query were individ-
ually controlled at level α/|Q|, the resulting bound can be too loose to admit

21

useful edges. Thus the empirical utility of RTC depends on simultaneously
(i) keeping Q within the regime where f̂ is accurate and (ii) calibrating U
tightly enough to permit nontrivial out-degree.

Representation collapse and retrieval-induced blind spots. The
ANN stage is deliberately heuristic: ϕ need only be useful for candidate
recall under a fixed budget k. If ϕ collapses (e.g., maps many states to
near-identical embeddings) or becomes misaligned with one-step controlla-
bility, then C(s) will omit most truly executable neighbors. In this case the
method remains sound—certification can still reject false positives—but it
becomes incomplete, yielding a graph Ĝ with small or disconnected compo-
nents. This incompleteness is not repaired by calibration, since calibration
controls false acceptance rather than false rejection. Consequently, RTC in-
herits an implicit coverage assumption: for each s of interest there exist exe-
cutable successors in SD that are retrieved with non-negligible probability by
ANN at budget k. When this assumption fails, the downstream optimizer
is constrained by an impoverished feasible set regardless of value-function
accuracy.

Assumptions needed for the stated correctness statements. The-
orems that assert d(T (s, Î(s, s′)), s′) ≤ ε for accepted edges require (a) a
deterministic transition map T (or an explicitly chosen notion of stochas-
tic executability), (b) a metric d on states (or latent states) for which ε-
closeness is semantically meaningful for control, and (c) a valid simultaneous
prediction-error certificate for f̂ on Q at global level 1 − α. None of these
is innocuous. In partially observed settings, d in observation space can be
misleading; in such cases one must specify a representation in which one-step
control closeness implies downstream value closeness, or else the Lipschitz
assumption used in value-loss bounds is not justified. Likewise, for stochastic
dynamics, a pointwise bound d(f̂(s, a), T (s, a)) ≤ U(s, a) is not well-posed
unless T (s, a) is interpreted as a conditional mean; a more appropriate target
is a high-probability statement P(d(S′, s′) ≤ ε | s, a) ≥ 1− δ, which changes
both calibration and downstream guarantees.

Practical limitations at 2026 scale. While construction is subquadratic,
the constant factors can be material: certification entails forward passes
through f̂ and Î for up to nk candidates, and memory must accommodate
the index and adjacency lists. Moreover, the graph is only as good as the
state set SD: if the dataset provides sparse coverage of the reachable mani-
fold, then even perfect retrieval and perfect certification yield a graph whose
best paths are long detours or do not exist. Finally, if the environment
admits action constraints or discontinuities (e.g., contact dynamics), small
forward-model residuals may not correlate with true executability unless the

22

model class is sufficiently expressive and trained with appropriate objectives;
RTC does not remove the need for careful model learning.

Future directions: state-only datasets and multi-step reachability.
A natural extension is to settings where the dataset records only states (or
observations) without actions. One approach is to replace Î with an action
proposal module trained from additional interaction, from a simulator, or
from weakly supervised signals (e.g., temporal adjacency and controllability
priors), and to reinterpret certification as verifying the existence of an action
achieving s → s′ within ε. Another direction is to move beyond one-step
edges. Multi-step reachability can be handled by composing certified edges,
but naive composition accumulates slack: a path of length H can incur
O(Hε) deviation without additional structure. Tight multi-step guarantees
likely require contraction or incremental re-anchoring to dataset states (e.g.,
re-projecting to the nearest certified node at each step), as well as calibra-
tion procedures that control error over adaptively chosen query sequences
rather than a fixed finite set. These extensions preserve the same organizing
principle: retrieve a small candidate set, certify with explicit risk control,
and expose a sparse combinatorial object that downstream optimization can
exploit.

10 Conclusion

We have presented a Retrieve–then–Certify (RTC) construction for turning
a large offline dataset D into a sparse directed reachability graph Ĝ over
the unique dataset states SD. The construction is deliberately modular: an
embedding ϕ and ANN index I provide a sublinear candidate-generation
mechanism, while learned dynamics surrogates (f̂ , Î) supply a quantitative
witness of one-step executability,

ŵ(s, s′) := d
(
f̂(s, Î(s, s′)), s′

)
,

that can be combined with an explicit prediction-error certificate U to decide
edge acceptance. The resulting object Ĝ is a combinatorial surrogate for
one-step controllability on the support of the data, and it is precisely this
surrogate that enables state-constrained planning and optimization at scales
where an all-pairs construction is infeasible.

The core technical point is that the soundness of accepted edges is sepa-
rated from the heuristic nature of retrieval. RTC is permitted to be incomplete—
it may miss many executable neighbors when k is small—yet it can still
be correct in the sense that every accepted edge comes with a global risk-
controlled certificate. Concretely, under a simultaneous forward-model error
event over the queried set

Q = {(s, Î(s, s′′)) : s ∈ SD, s′′ ∈ C(s)},

23

the acceptance test ŵ(s, s′′)+U(s, Î(s, s′′)) ≤ ε implies d(T (s, Î(s, s′′)), s′′) ≤
ε for all edges (s → s′′) ∈ Ĝ, with overall failure probability at most α. Thus
RTC provides a simple interface: any improvement to retrieval quality affects
recall and downstream performance, but it does not alter the meaning of an
accepted edge so long as the certificate remains valid on Q.

This certificate-centric view makes the graph useful for downstream state-
constrained offline RL. Once we restrict attention to policies that move along
edges of Ĝ, dynamic programming or Q-learning variants (such as graph-
SCQL) can optimize over an explicit feasible set of state transitions, rather
than relying on unconstrained action selection that may leave the dataset
support. Moreover, when the oracle value function is L-Lipschitz in the
metric d, approximate executability of edges translates directly into an end-
to-end value-loss bound of order γLε

1−γ . In this way, the parameter ε plays
a transparent algorithmic role: it is the tolerance at which we trade off
graph connectivity against conservative soundness, and it enters the final
performance guarantee in a quantitatively interpretable manner.

From a systems perspective, RTC is designed to match the computational
realities of 2026-scale datasets. The construction cost decomposes into an
index build over {ϕ(s) : s ∈ SD}, n ANN queries to obtain candidate sets
C(s) of size at most k, and at most nk certifications. This yields total
expected time Õ(nCann+nk Ccert) and space Õ(nm+nk), with the expensive
component—evaluation of (f̂ , Î) during certification—being embarrassingly
parallel. In particular, the method avoids the quadratic barrier inherent in
any exact all-pairs neighborhood construction in high dimension. At the
same time, the output is a graph with O(nk) edges, which is the correct
size for a downstream optimizer that must, at minimum, read and write nk
adjacency entries.

Indeed, the construction time is tight in the natural word-RAM model:
any procedure that produces k outgoing edges for each of n states must spend
Ω(nk) time simply to materialize the output, irrespective of how candidates
are generated. RTC therefore attains the optimal scaling up to logarithmic
factors when the amortized certification cost is constant (or dominated by
a constant number of model forward passes). This tightness is not merely
aesthetic; it clarifies where further improvements can and cannot come from.
Speedups must target constant factors (better batching, cheaper witnesses,
lighter models) or problem structure (smaller effective k, shared candidates,
intrinsic low dimension), rather than hoping for an asymptotic improvement
over the nk term.

More broadly, RTC formalizes a pathway from continuous control to
tractable combinatorial optimization on dataset support. By exposing a
sparse, certified reachability structure, we can decouple concerns that are
typically entangled in offline RL: representation learning affects retrieval,
model learning affects witness quality and certification slack, and policy
learning operates on a constrained graph whose edges have an explicit op-

24

erational meaning. This decoupling is what makes the approach adaptable:
one may swap ANN backends, refine ϕ to improve recall, replace the witness
with alternative consistency checks, or allocate risk α differently, without
changing the basic retrieve–certify–optimize loop.

We view the principal contribution as providing a scalable and analyzable
primitive for state-constrained offline RL: construct Ĝ subquadratically, cer-
tify its edges with explicit risk control, and optimize on the resulting sparse
object with performance guarantees parameterized by (ε, α, L, γ). In regimes
where datasets are large but not dense enough to support unconstrained ac-
tion optimization, this primitive supplies an actionable middle ground: it
preserves the computational advantages of graph-based planning while re-
taining a clear, probabilistic notion of executability tied to the environment
dynamics.

25

	Introduction
	Preliminaries and Setup
	Problem Formulation: Certified Reachability Graph Construction
	Algorithm: Retrieve-then-Certify (RTC)
	Theoretical Guarantees I: Certification
	Theoretical Guarantees II: End-to-End RL Impact
	Complexity Landscape: what RTC can and cannot do at scale
	Experimental Plan (Implementation-Strengthening)
	Discussion and Limitations
	Conclusion

