
Calibrated Reachability for State-Constrained
Offline RL in Stochastic MDPs

Liz Lemma Future Detective

January 20, 2026

Abstract

Offline RL methods typically avoid distribution shift by constrain-
ing optimization to the dataset’s state–action support (batch con-
straints), which can be overly restrictive when optimal actions are
absent from the dataset. Recent work proposed *state-constrained*
offline RL in deterministic MDPs, enabling out-of-distribution actions
so long as they lead to in-distribution states via a reachability re-
lation, and proved dominance over batch-constrained baselines. We
push this paradigm to the modern (2026) regime where environments
are stochastic and reachability must be learned with imperfect mod-
els. We introduce a probabilistic notion of reachability certification
based on lower confidence bounds (LCBs) over target-reaching success
probabilities, yielding a single tunable knob: a reachability confidence
threshold δ. We define a pessimistic state-constrained Bellman opera-
tor that backs up only through certified reachable dataset states and is
robust to model errors by pessimistically accounting for failure proba-
bility. Our main results show (i) contraction and unique fixed points
for the certified operator, (ii) a performance guarantee: compared to
any batch-constrained baseline that remains within the dataset state
set, the certified state-constrained policy is never substantially worse,
with value degradation scaling as O(ε/(1 − γ)) in the false-positive
(miscalibration) rate ε, and (iii) a matching lower bound demonstrat-
ing this dependence is unavoidable. We propose a practical algorithm
using ensembles plus conformal calibration on model residuals to ob-
tain certified reachability sets, and we outline experiments on D4RL
under injected stochasticity (noisy dynamics / domain randomization)
to validate the theory and quantify the tightness of the bounds.
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1 Introduction

Offline reinforcement learning (offline RL) asks us to compute a high-performing
decision rule from a fixed dataset of transitions, without additional interac-
tion. The central obstacle is distribution shift: the learned policy may select
actions or visit states that are poorly represented in the dataset, in which
case value estimation becomes unreliable and, in the worst case, arbitrarily
wrong. A common practical response is to impose batch constraints, i.e., to
restrict the learned policy to choose actions that are “close” to those observed
in the data. This paradigm underlies a range of algorithms that limit the
actor to a dataset-supported action set, penalize out-of-distribution actions,
or otherwise enforce conservatism.

We adopt a different viewpoint: rather than constraining actions directly,
we constrain next states. The dataset induces a set of observed states, and we
treat this set as a region in which learning and evaluation are comparatively
trustworthy. The basic desideratum is then not that the action itself resem-
bles the behavior action, but that the resulting transition remains within the
dataset-supported region with high probability. This leads to what we call a
state-constrained policy class: from any dataset state, the policy must select
a control whose one-step transition remains within the dataset state set with
a specified success probability. The constraint is therefore formulated in the
state space, but it is enforced via a controller that maps a desired next state
(a “target”) to an action.

This shift from batch constraints to state constraints is motivated by
two considerations. First, the offline dataset typically provides more direct
evidence about which states are well covered than about which actions are
safe to take. In many problems, the behavior policy may be multi-modal or
noisy in action space, so action-level support is a poor proxy for transition
reliability. Second, and more importantly, deterministic reasoning about
single actions is fragile under stochastic dynamics and model error. If we
only ensure that an action is “in distribution,” we do not thereby ensure that
the next state is in distribution. Conversely, an action that is slightly out of
distribution might still reliably transition into a well-covered region, which
suggests that action-level constraints can be overly restrictive.

The difficulty is that state constraints are inherently probabilistic. Even
if there exists a controller intended to move from a state s to a target s′,
stochasticity in the environment means that executing the prescribed action
may land us elsewhere. Likewise, when the controller is learned from finite
data (e.g., via inverse dynamics or goal-conditioned behavior cloning), it
will make mistakes. Consequently, any deterministic guarantee of the form
“choosing target s′ implies st+1 = s′” is untenable in the regimes of interest.
The appropriate object is instead the success probability

p(s→ s′) = Pr
[
st+1 = s′

∣∣ st = s, at = g(s, s′)
]
,
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and the corresponding feasibility notion “p(s → s′) ≥ δ” for a chosen confi-
dence level δ ∈ (0, 1]. In this formulation, stochasticity and controller error
are not nuisances to be ignored; they are explicitly incorporated into the
constraint.

However, in offline RL we do not know p(s→ s′) and cannot estimate it
uniformly well over all pairs. The core technical question becomes: how can
we enforce probabilistic state constraints using only finite offline data, while
retaining performance guarantees relative to a baseline? Our answer is to
introduce an explicit reachability certification step that produces, for each
pair (s, s′) of dataset states, a conservative lower confidence bound (LCB)
p(s → s′) on p(s → s′). We then define a certified feasible set of targets by
thresholding these bounds at level δ, and we plan only over certified targets.

The certification step serves two roles. Operationally, it filters candi-
date targets to those that are plausibly achievable with probability at least
δ. Analytically, it provides a calibrated notion of reliability: even though
individual estimates may be wrong, the overall procedure controls the rate
at which we mistakenly certify an unsafe transition (a false positive), with
respect to a reference distribution over state pairs. We emphasize that this
is not an assumption that the learned model is correct; rather, it is a re-
quirement that the uncertainty quantification procedure is calibrated in a
distributional sense. This calibration property becomes the bridge between
statistical estimation and sequential decision making.

Certification alone is not sufficient, because planning with a hard con-
straint “s′ ∈ R̂eachδ(s)” would still be brittle: if a false positive slips through,
the planner may overcommit to a transition that in fact fails, potentially
pushing the agent out of the dataset-supported region and invalidating sub-
sequent value estimates. We therefore couple certification with an explicit
pessimistic treatment of residual uncertainty. Concretely, when we plan as if
targeting s′ from s, we treat the event of reaching s′ as occurring with prob-
ability at most δ and allocate the remaining probability mass to an adverse
outcome represented by a known lower bound Vmin. This device converts an
uncertain reachability constraint into a robust Bellman backup: the planner
is rewarded for selecting high-value targets, but it must pay an explicit price
for the possibility of failure.

The parameter δ is the key knob controlling this tradeoff. At a high
level, larger δ demands higher one-step reliability: the certified feasible set
shrinks, but the policy is less likely to exit the dataset-supported region.
Smaller δ enlarges the feasible set and may improve nominal performance,
but it increases sensitivity to both genuine stochasticity and miscalibration.
Importantly, the pessimistic backup scales the downstream influence of any
target by δ, which causes the dynamic programming operator to contract
more strongly as δ decreases. Thus δ simultaneously governs (i) feasibility
in the environment (how often we remain within the dataset states), (ii)
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conservatism in planning (how much value we attribute to the target state),
and (iii) stability of the value iteration process.

The resulting perspective can be summarized as follows. We treat the
dataset as specifying a trustworthy region in state space. We endow ourselves
with a family of target-reaching controllers g(s, s′) (learned or given) that
attempt to realize one-step transitions between dataset states. We then
use offline data to estimate, and crucially to certify, which such transitions
are reliable at a chosen level δ. Planning is performed over this certified
transition structure, but with a built-in pessimism that anticipates failure.
The output is a policy that does not merely imitate the behavior policy, but
composes certified one-step skills into multi-step behavior while maintaining
an explicit probabilistic link to dataset coverage.

This approach is intended to address a specific failure mode of batch-
constrained methods. Batch constraints are typically phrased as restrictions
on the action distribution, often enforced by generative models, nearest-
neighbor filtering, or explicit penalties. Yet the safety of offline RL is ulti-
mately about where the system goes, not about the action marginal per se.
Under stochastic dynamics, two actions that are equally “in distribution” can
have very different probabilities of leaving the dataset state set; under con-
troller error, an action predicted to be safe can produce an out-of-support
transition. State constraints, formulated in terms of one-step reachability
and enforced via calibrated certification, target this issue directly.

Finally, the certified reachability lens suggests an algorithmic decompo-
sition that is natural in offline settings: supervised learning for the controller
and reachability model, calibration for uncertainty quantification, retrieval
for candidate targets, and dynamic programming for planning. Each compo-
nent can be improved independently (better controllers, better uncertainty
estimates, better retrieval indices), while the overall method retains a clear
safety-performance mechanism through δ and the pessimistic backup. This
modularity is especially attractive when the state space is high-dimensional:
we can operate on a dataset-indexed set of candidate next states rather than
attempting to learn an unconstrained dynamics model over the entire state
space.

In the remainder of the paper, we formalize this framework, define the
pessimistic operator induced by certified reachability, and prove that it yields
a well-behaved planning problem with explicit robustness to false-positive
certifications. We also show that the dependence on the miscalibration rate is
unavoidable in the worst case, clarifying what can and cannot be guaranteed
in offline control without additional coverage assumptions.
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2 Related work

Offline reinforcement learning has developed a large set of algorithmic re-
sponses to the distribution-shift pathology that arises when a learned pol-
icy queries values outside the support of a fixed dataset. A first line of
work enforces action-side constraints or regularization, typically by restrict-
ing the learned policy to remain close to the behavior distribution. Batch-
Constrained Q-learning (BCQ) ? filters candidate actions through a genera-
tive model and then performs approximate maximization over those actions;
TD3+BC ? uses an explicit behavior-cloning penalty added to an actor-critic
objective; and related variants enforce nearest-neighbor or model-based ac-
tion constraints. These methods can be viewed as attempting to control the
discrepancy between the learned policy and the behavior policy in action
space (or, more precisely, in the joint space of states and actions appearing
in the dataset), with the implicit hope that such control prevents the induced
state distribution from drifting into poorly covered regions.

A second family, often described as value-side conservatism, modifies the
critic objective so that Q-values for out-of-distribution actions are underes-
timated. Conservative Q-learning (CQL) ? adds a regularizer that penalizes
large Q-values on actions sampled from a broad proposal distribution, which
yields a lower bound flavor under suitable realizability and sampling as-
sumptions. Implicit Q-learning (IQL) ? avoids explicit policy constraints by
performing a particular asymmetric regression that tends to preserve conser-
vative values and can be paired with advantage-weighted regression for policy
extraction. More generally, a substantial portion of the offline RL literature
can be interpreted as producing a pessimistic critic, either explicitly through
penalties and constraints or implicitly through the choice of objectives and
targets ?. Our work is aligned with this perspective in that our planning
operator is pessimistic by design; however, our mechanism for pessimism is
tied to a state-level feasibility notion rather than an action-level divergence.

Model-based offline RL provides a complementary route to conservatism
by exposing uncertainty through explicit dynamics modeling. Approaches
such as MOPO ?, MOReL ?, COMBO ?, and RAMBO ? train dynamics
models (often as ensembles) and then penalize or terminate rollouts in regions
of high model uncertainty. While these methods differ in how they quan-
tify and operationalize uncertainty, a common template is: (i) learn a model
from the dataset, (ii) identify where the model is unreliable (via disagree-
ment, likelihood, or uncertainty estimates), and (iii) plan pessimistically
by either restricting rollouts or subtracting uncertainty-dependent penalties.
Our framework shares with this literature the central role of pessimism and
the use of uncertainty quantification, but it differs in the object being certi-
fied. Rather than certifying the accuracy of a global transition model (or the
safety of multi-step imaginary rollouts), we certify one-step target transitions
between dataset states through a controller, and we insert pessimism directly
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into a Bellman backup that accounts for the probability of failing to realize
the target. This yields a planning problem on a dataset-indexed graph of
candidate next states, which can be advantageous when full dynamics mod-
eling is difficult or when one wishes to avoid compounding model error in
long synthetic rollouts.

Uncertainty estimation in offline RL has been studied through ensem-
bles, Bayesian methods, and distributional critics, and these tools frequently
appear as subroutines for conservative control ??. In the offline setting, how-
ever, uncertainty must be tied to a statistical guarantee of some form if it is
to support worst-case comparisons. Several works pursue calibrated uncer-
tainty through conformal prediction or other finite-sample tools ?, though
typically not specialized to the sequential reachability events that are rele-
vant for keeping the agent within a dataset-supported region. In our setting,
the certification object is a lower confidence bound on a Bernoulli success
event of the form “executing the controller intended to reach s′ from s actu-
ally lands in s′,” and our subsequent analysis uses only a miscalibration-rate
control (false-positive rate) with respect to a reference distribution. This
emphasis separates calibration from accuracy : we do not require uniformly
small error in probability estimates, but rather a bound on the frequency
with which the bound is optimistic.

The present work is also connected to research on state abstractions and
similarity, in which one seeks to quantify when two states are “close” in terms
of their downstream control-relevant behavior. Bisimulation relations and
bisimulation metrics formalize behavioral equivalence or near-equivalence of
states via reward and transition similarity ??. More recent representation-
learning approaches aim to learn embeddings that preserve such structure
and can support planning or generalization ?. While our algorithmic core
is not an abstraction method per se, it relies on a dataset-indexed neigh-
borhood structure over states: we must retrieve plausible target states and
reason about reachability between nearby states. Bisimulation-style think-
ing motivates why such retrieval may be well-behaved when the embedding
respects transition structure, and it clarifies that “nearest neighbors” in raw
observation space are not necessarily the right candidates. At the same time,
our certification step is deliberately agnostic to the choice of retrieval metric:
we may use any candidate generator (e.g., kNN in a learned embedding), and
then rely on calibrated reachability bounds to filter candidates.

Goal-conditioned RL and skill learning provide another relevant founda-
tion. Controllers of the form g(s, s′) are closely related to goal-conditioned
policies g(s, goal) trained by supervised imitation or by relabeling methods
such as hindsight experience replay ?, as well as to inverse dynamics models
used to infer actions that connect successive states ?. In many robotic and
control applications, the ability to propose an action that aims for a target
observation is an available primitive, either via a learned inverse model or
via an existing low-level controller. Our use of such a controller is concep-
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tually simple: it turns the offline problem into selecting targets rather than
actions, thereby moving the support constraint into state space. The novelty
is not the existence of goal-conditioned controllers, but the combination of
(i) a certification step for one-step success probabilities and (ii) a pessimistic
Bellman backup that remains meaningful under miscalibration.

Finally, we place our work relative to deterministic or hard state-constrained
formulations. Constraint satisfaction in RL is commonly studied through
constrained MDPs (CMDPs), Lyapunov methods, and safe RL ??. Such
formulations typically constrain expected cumulative costs or enforce almost-
sure safety with respect to a known safe set, often requiring either online in-
teraction for verification or a known model. Offline safe RL is strictly harder:
without interaction, a constraint that depends on unobserved transitions is
not verifiable, and worst-case guarantees can become vacuous without ex-
plicit coverage assumptions. Some deterministic offline approaches therefore
impose hard support constraints such as “stay within the dataset” by re-
stricting actions to those observed (or near observed) in each state; these
are natural but can be overly conservative, and they do not directly encode
the probability of leaving the dataset state set under stochastic dynamics.
Our framework can be read as a probabilistic relaxation of deterministic
dataset support constraints: we require only that the one-step transition
remains in the dataset-supported region with probability at least δ, and we
incorporate the remaining probability mass pessimistically. This perspec-
tive is especially relevant when the environment is stochastic or when the
controller is imperfect, in which case deterministic next-state constraints are
inappropriate abstractions.

In summary, we build on offline RL conservatism, uncertainty quantifica-
tion, and goal-conditioned control, while shifting the constraint locus from
actions to one-step reachable dataset states. The next section formalizes
the MDP and dataset-induced state set, introduces the target-reaching con-
troller interface, and defines the value bounds and baseline class used in our
subsequent comparison theorems.

3 Preliminaries and setup

We work with a discounted Markov decision process (MDP) M = (S,A, P, r, γ)
with discount factor γ ∈ (0, 1). The state space S and action space A may be
large in applications; for our basic definitions and several theory statements
we consider S finite. The transition kernel is P (· | s, a), and the reward
function is either of the form r(s, a) or r(s, a, s′); in either case we assume
bounded rewards,

|r(s, a)| ≤ rmax for all (s, a) ∈ S ×A,
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(or the analogous bound for r(s, a, s′)). For a (possibly stochastic) policy
π(· | s), we write the discounted return from state s as

V π(s) := Eπ
[ ∞∑
t=0

γt r(st, at)
∣∣∣ s0 = s

]
,

where the expectation is over the trajectory induced by at ∼ π(· | st) and
st+1 ∼ P (· | st, at). Bounded rewards imply the uniform value bound

|V π(s)| ≤ rmax

1− γ
for all π and s ∈ S,

and we will frequently use a known lower bound Vmin satisfying Vmin ≤
V π(s) for all s and all π under consideration; a canonical choice is Vmin =
−rmax/(1− γ).

Offline dataset and dataset-induced state set. We assume access to
an offline dataset of transitions

D = {(si, ai, ri, s′i)}ni=1,

generated by some unknown behavior policy interacting with the MDP. We
do not assume we can sample new transitions from M after collecting D.
The dataset induces a finite subset of states,

SD := {s : ∃i with si = s or s′i = s} ⊆ S,

which we treat as the set of “supported” states available for planning. In
continuous-state problems, SD is a finite collection of observations; in the
analysis it is convenient to view each element of SD as an atomic node,
with the understanding that function approximation may impose additional
structure. We emphasize that SD is generally not closed under the true
dynamics: even if s ∈ SD, an action selected at s may transition to s′ /∈ SD.
Our goal is therefore not to assert that SD is invariant, but to control the
probability of leaving SD under the learned policy.

It is also useful to record the dataset-supported action set at each dataset
state,

AD(s) := {a ∈ A : ∃i with si = s, ai = a},

and the empirical distribution over (s, a) pairs induced by D. While our
proposed method will not directly constrain actions to AD(s), these objects
serve as a point of comparison to standard batch-constrained baselines.

Target-reaching controllers and induced success events. A central
interface in our setup is a target-reaching controller (or inverse model) that
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maps a current state and a desired next state to an action. Concretely, we
assume access to a (possibly learned) mapping

g : SD × SD → A, (s, s′) 7→ g(s, s′),

intended to produce an action that causes a one-step transition from s to
s′. The controller may be trained from D as an inverse dynamics model,
or may be provided by a lower-level system. For a fixed pair (s, s′) ∈ S2D,
the execution of a = g(s, s′) in the environment induces a Bernoulli success
event,

1{st+1 = s′} given st = s, at = g(s, s′),

with associated success probability

p(s→ s′) := Pr[st+1 = s′ | st = s, at = g(s, s′)].

In deterministic settings with a perfect controller, p(s → s′) may be close
to 1 for appropriate targets; in stochastic environments or with imperfect
inverse models, p(s→ s′) can be substantially smaller and can vary strongly
with both s and s′. In addition to reachability, we will sometimes require
an estimate of the expected immediate reward obtained when attempting a
target transition. We therefore define the one-step reward induced by the
controller,

rg(s, s
′) := E

[
r(s, g(s, s′)) | st = s

]
,

(or the analogous quantity if rewards depend on st+1), and we allow the
algorithm to employ an estimate r̂(s, s′) of rg(s, s′) learned from D.

The interpretation of g is that we plan over targets s′ ∈ SD rather than
over primitive actions. Formally, selecting a target s′ at state s induces
an action a = g(s, s′) and therefore an environment transition distribution
P (· | s, g(s, s′)). This reparameterization moves the usual offline “support”
question from actions to reachable dataset states: we will prefer targets s′

that are plausibly realized by the controller while staying within the region
indexed by SD.

Values restricted to dataset states. Because the output policy will be
defined only on SD (and because our performance comparisons are stated
for s ∈ SD), we treat value functions as mappings V : SD → R. When
a policy remains within SD with high probability, such value functions can
be interpreted as approximately capturing the relevant long-horizon conse-
quences. Nevertheless, we must account for the possibility of transitioning to
S \ SD, in which case V is undefined. Our analysis will handle this through
pessimistic bounding: whenever there is residual probability of leaving the
supported region, we conservatively lower-bound the continuation value by
Vmin. This device is purely analytic at this stage, and it motivates the later
definition of a pessimistic Bellman backup in which the continuation value
is a convex combination of V (s′) and Vmin.
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Baseline class for comparison: batch-constrained policies. To state
meaningful improvement guarantees in offline RL, it is standard to compare
against a baseline that is itself constrained to remain within the dataset
support. We formalize this via a batch-constrained policy class. Let πBC

denote any policy satisfying two properties: (i) action support—for each
s ∈ SD, πBC(· | s) is supported on AD(s) (or on a prescribed relaxation
thereof, e.g. nearest-neighbor actions); and (ii) dataset-state invariance—
starting from any s ∈ SD, the one-step next state under πBC lies in SD
almost surely, i.e.,

Pr[st+1 ∈ SD | st = s, at ∼ πBC(· | s)] = 1 for all s ∈ SD.

The second condition is an explicit assumption ensuring that the baseline
does not “fall off” the dataset state set; it is satisfied, for example, if the envi-
ronment is effectively deterministic on the dataset support and the baseline
selects only actions that were observed to lead to dataset states, or if SD
is defined as a closed region under the baseline dynamics. We stress that
this invariance is used only to define a safe point of comparison; our learned
policy will be permitted to have a nonzero probability of leaving SD, but it
will do so in a controlled manner.

This baseline perspective also clarifies the role of the controller interface.
A batch-constrained method operates in action space and typically enforces
π(· | s) ≈ πβ(· | s) for the behavior policy πβ (or a model thereof). In
contrast, our method will operate in target space: at each dataset state s it
will select a candidate s′ ∈ SD and execute g(s, s′). The relevant comparison
is then between policies that remain in SD because they imitate dataset
actions and policies that remain in SD because they can certify one-step
transitions between dataset states. The remainder of the paper specifies
how we quantify such certification through conservative lower bounds on
the success probabilities p(s → s′), and how we incorporate the resulting
feasibility notion into a pessimistic dynamic programming operator.

4 Problem formulation: probabilistic reachability
and certified planning

Our goal is to formalize an offline control objective in which we (a) plan
over dataset states as targets, (b) restrict ourselves to targets that are likely
reachable in one step under the controller interface, and (c) account for the
possibility that any certification procedure may occasionally admit unsafe
targets. The central object is therefore a one-step reachability predicate
that is inherently probabilistic and must be handled with explicit uncertainty
quantification.
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Probabilistic one-step reachability under a target controller. Fix
the controller g : SD × SD → A. For each ordered pair (s, s′) ∈ S2D, recall
the induced success probability

p(s→ s′) := Pr[st+1 = s′ | st = s, at = g(s, s′)].

We interpret p(s → s′) as the reliability of the directed “edge” s → s′ when
we attempt to realize it via g. In general, even if s′ ∈ SD, the controller
can fail and transition to some other state s̃ ̸= s′, potentially outside SD.
Accordingly, we cannot treat SD as closed, and we must explicitly reason
about a nonzero failure probability.

We fix a confidence threshold δ ∈ (0, 1] and declare a target s′ δ-feasible
from s if p(s → s′) ≥ δ. If we knew all such probabilities, then the feasible
target set would be

Reachδ(s) := {s′ ∈ SD : p(s→ s′) ≥ δ}.

The constraint p(s → s′) ≥ δ is a one-step probabilistic safety condition: it
ensures that, whenever we attempt s→ s′, with probability at least δ we land
at a dataset state (indeed, at the designated s′). What remains unspecified
is the outcome on the complement event of probability at most 1 − δ; our
subsequent planning rule will treat this complement pessimistically.

Lower confidence bounds and calibrated false positives. In offline
learning we do not know p(s → s′), and we therefore rely on a statistical
procedure which outputs a lower confidence bound (LCB)

p(s→ s′) ∈ [0, 1] for each (s, s′) ∈ S2D.

Because the pairs (s, s′) are numerous (and typically structured), we do not
assume a uniform, simultaneous guarantee over all pairs. Instead, we adopt
a distributional calibration condition with respect to a user-chosen reference
distribution µ over pairs in S2D. Concretely, for a target miscalibration level
ε ∈ (0, 1), we require that

Pr
(s,s′)∼µ

[
p(s→ s′) > p(s→ s′)

]
≤ ε. (1)

We emphasize the direction of the inequality: the event {p > p} is a false
positive in the sense that the bound is overly optimistic. Condition (1) asserts
that such optimism occurs rarely under µ. This formulation aligns with
split conformal prediction and related distribution-free calibration methods,
where coverage (or miscoverage) is guaranteed for new draws from the same
reference distribution used for calibration.

Given p, we define the certified feasible set

R̂eachδ(s) := {s′ ∈ SD : p(s→ s′) ≥ δ}.
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This is the set of targets our algorithm is permitted to select. We will impose
a mild coverage condition ensuring that the set is nonempty:

R̂eachδ(s) ̸= ∅ for all s ∈ SD. (2)

Condition (2) prevents degenerate behavior in which the constraint is in-
feasible; algorithmically, it can be enforced by decreasing δ, enlarging the
candidate target pool, or including a fallback self-loop target if such an edge
can be certified.

State-constrained policy class induced by certified reachability.
We consider policies that act by selecting a target. Formally, a (possibly
stochastic) target-selection rule ρ(· | s) induces a primitive-action policy via

at = g(st, s
tar
t+1), start+1 ∼ ρ(· | st).

We define the certified state-constrained policy class at level δ as the set of
such policies satisfying

supp ρ(· | s) ⊆ R̂eachδ(s) for all s ∈ SD.

In words, from each dataset state s the policy may only attempt transitions
to targets s′ whose certified LCB exceeds δ. This is the basic device by
which we control distribution shift: we do not constrain actions to those
in the batch, but we constrain next-state intent to dataset states that are
plausibly achievable in one step.

Conservative backups via value pessimism. Even under the constraint
p(s → s′) ≥ δ, we must plan with the understanding that (i) certification
can be wrong on a small fraction of pairs, and (ii) even for correct certificates
the success probability is only lower-bounded by δ, leaving a residual failure
probability. We therefore embed the constraint into a pessimistic dynamic
programming backup.

Let V : SD → R be any bounded value function, and let Vmin be a
known lower bound on continuation values (e.g. Vmin = −rmax/(1 − γ)).
For planning we also require an estimate r̂(s, s′) of the expected immediate
reward obtained when attempting target s′ from s using g. The key modeling
choice is to treat the event of not reaching s′ as adversarial, and to lower
bound the continuation value on that event by Vmin. This leads to the
pessimistic backup

(T̂δV )(s) := max
s′∈R̂eachδ(s)

(
r̂(s, s′) + γ

(
δV (s′) + (1− δ)Vmin

))
. (3)

The operator (3) should be read as follows: upon selecting target s′, we
credit ourselves with at most a δ fraction of the continuation value at s′ and
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assign the remaining mass to the worst-case lower bound Vmin. We stress
that this is not a claim about the true transition distribution, but rather a
conservative surrogate used for offline planning in the presence of certification
and modeling error. In particular, if the actual success probability exceeds δ
then (3) may be loose, but it is designed to be robust to both limited success
rates and occasional false positives.

Objectives and evaluation metrics. The algorithmic objective is to
compute a value function V̂δ as an approximate fixed point of (3) and to
output a greedy target policy

ŝ′(s) ∈ arg max
s′∈R̂eachδ(s)

(
r̂(s, s′)+γ(δV̂δ(s

′)+(1−δ)Vmin)
)
, π̂δ(s) := g(s, ŝ′(s)),

with the understanding that ties may be broken arbitrarily and that in
function-approximation settings the maximization may be approximate.

We evaluate the resulting policy along three axes. First, we consider
the discounted return V π̂δ(s) for each s ∈ SD (or averaged over an ini-
tial distribution supported on SD). Second, we consider safety with respect
to dataset support, quantified implicitly by the one-step success constraint
p(s → s′) ≥ δ and explicitly by the pessimistic handling of failure through
Vmin. Third, we quantify robustness to miscalibration through the false-
positive rate ε in (1); this is the parameter that will govern our comparison
to batch-constrained baselines.

Finally, we measure performance relative to a batch-constrained base-
line policy πBC whose one-step transitions remain in SD almost surely. The
comparison is meaningful because πBC serves as a safe reference point under
the same dataset support, while π̂δ may improve return by exploiting certi-
fied transitions among dataset states that are not realizable by strict action
support constraints. Any remaining discrepancy due to imperfect reward
models, approximate DP, or imperfect controllers will be aggregated into an
additive approximation term, which we treat separately from the calibration-
driven degradation. This setup isolates the conceptual role of certification:
the only unavoidable statistical price we aim to pay, beyond approximation
effects, is controlled by ε and amplified by the effective horizon 1/(1− γ).

5 Oracle analysis: a clean core for certified state-
constrained planning

In this section we analyze the planning problem induced by a hypothetical
oracle reachability certification procedure. The purpose is twofold. First,
we isolate the algorithmic and dynamic-programming structure of the cer-
tified backup from any particular learning mechanism. Second, we make
explicit which parts of the final guarantee are information-theoretic (driven
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by false positives) as opposed to approximation-theoretic (driven by imper-
fect value/reward/controller models, deferred to the next section).

Oracle reachability and the nature of the statistical error. We as-
sume that for every ordered pair (s, s′) ∈ S2D we are given a lower confidence
bound p(s → s′) satisfying the distributional false-positive control (1) with
respect to a reference distribution µ on S2D, and the nondegeneracy condi-
tion (2). We emphasize that (1) is not a uniform guarantee over all pairs;
it only bounds the frequency (under µ) with which an edge is erroneously
certified as more reliable than it is. Thus, for any fixed dataset, there may
exist “bad” pairs (s, s′) with p(s → s′) ≥ δ even though p(s → s′) < δ; the
only protection is that such pairs are rare under µ.

To focus on the core planning phenomenon, we temporarily treat r̂(s, s′)
as an arbitrary but fixed bounded function on S2D (to be instantiated ei-
ther by the true expected reward under g or by a learned estimator). The
sole structural assumption is the existence of a known lower bound Vmin ≤
−rmax/(1− γ).

Contraction, monotonicity, and existence of a unique fixed point.
We begin with the operator-theoretic properties of the pessimistic certified
backup (3). These properties ensure that planning over targets is well-posed
even though we only ever optimize over a set-valued reachability predicate.

Proposition 1 (monotonicity). For any bounded V,W : SD → R with
V (s) ≤W (s) for all s ∈ SD, we have (T̂δV )(s) ≤ (T̂δW )(s) for all s ∈ SD.

Proof. Fix s. For each s′ ∈ R̂eachδ(s), the quantity

r̂(s, s′) + γ
(
δV (s′) + (1− δ)Vmin

)
is nondecreasing in V (s′) since γδ ≥ 0. Taking maxima over the same feasible
set preserves the inequality.

Proposition 2 (contraction). The operator T̂δ is a γδ-contraction in
∥ · ∥∞ over bounded functions on SD.

Proof. Fix V,W and s. For any s′ ∈ R̂eachδ(s) we have∣∣∣γ(δV (s′)+(1−δ)Vmin

)
−γ

(
δW (s′)+(1−δ)Vmin

)∣∣∣ = γδ |V (s′)−W (s′)| ≤ γδ ∥V−W∥∞.

The map x 7→ maxs′ xs′ is nonexpansive in the sup-norm, hence

∥T̂δV − T̂δW∥∞ ≤ γδ ∥V −W∥∞.

By Banach’s fixed point theorem, there exists a unique fixed point V̂δ
and value iteration Vk+1 = T̂δVk converges to V̂δ at rate (γδ)k. This provides
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a clean separation between (i) the computational question of approximately
maximizing over R̂eachδ(s) and (ii) the statistical question of how often
R̂eachδ(s) contains a genuinely unsafe target.

Oracle dominance: why certified state constraints can subsume
batch constraints. We next formalize a dominance claim that motivates
planning in the space of dataset states rather than dataset actions. The key
point is that feasibility is expressed as a constraint on next-state support,
which can be strictly weaker than constraining actions to those observed in
D.

Let πBC be any baseline policy whose one-step transitions remain in SD
almost surely. Suppose further that the baseline can be realized through
the controller interface in the sense that for each s ∈ SD there exists a
(possibly randomized) selection over targets s′ such that the induced action
equals πBC(s) and the next state lies in SD with probability one. In this
case, the baseline is feasible for any oracle reachability set that contains all
baseline-induced next states.

Proposition 3 (policy-set inclusion implies dominance). Assume
there exists an “oracle” feasible set Reach∗δ(s) ⊆ SD such that (i) for all s
the baseline selects targets only in Reach∗δ(s), and (ii) for all s′ ∈ Reach∗δ(s)
we have p(s → s′) ≥ δ. Let V ∗

δ denote the optimal value over policies con-
strained to select targets from Reach∗δ(·). Then V ∗

δ (s) ≥ V πBC(s) for all
s ∈ SD.

Proof. Under (i), πBC is a member of the oracle constrained class; there-
fore the supremum of returns over that class is at least the return of πBC.

This proposition is deliberately elementary: it makes no mention of cal-
ibration. Its purpose is only to justify the modeling choice that state con-
straints are a natural relaxation of strict batch constraints. The remaining
question is how much this advantage deteriorates when we replace Reach∗δ
by the certified set R̂eachδ that may contain false positives.

Robustness to false positives: the role of pessimism. We now ex-
plain how the pessimistic backup converts a bound on false-positive fre-
quency into an additive value loss. At a high level, the max over R̂eachδ(s)
creates the possibility of selecting a falsely certified edge, but the backup
assigns only δ mass to the purported target and sends the remaining 1 − δ
mass to Vmin. Consequently, even if the edge is entirely spurious (e.g. it tran-
sitions outside SD with high probability), the algorithm does not implicitly
assume a continuation value larger than Vmin on the failure event.

To make the dependence explicit, we reason as follows. Consider the ide-
alized case where rewards are bounded by rmax and where, whenever a false
positive occurs, the realized continuation value can be as low as Vmin rather
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than the value of the intended target. The maximal one-step harm of such
a deviation is on the order of γδ (Vmax − Vmin), which is O(γδ rmax/(1− γ))
under bounded rewards. Over an infinite horizon this accumulates geomet-
rically, yielding an effective amplification of order 1/(1 − γδ) ≤ 1/(1 − γ).
The additional factor 1/δ appearing in the final comparison bounds reflects
that, to be competitive with a baseline that is sure to remain in SD, our
method must tolerate that its own certified edges are only guaranteed at
level δ; thus a fixed rate of false positives consumes a larger fraction of the
already limited “success budget”.

While the precise constants depend on how µ relates to the state–target
pairs actually selected by the policy, the qualitative message is invariant:
calibration error enters linearly in ε and is amplified by the effective horizon
1/(1− γ) and by the conservatism parameter 1/δ.

A matching lower bound: false positives are information-theoretically
costly. Finally, we show that an O(ε/(1−γ))-type degradation is unavoid-
able in general. The construction is standard in spirit: we create a safe
branch that is well supported by the dataset and a trap branch that is en-
tered only through a small set of edges that are indistinguishable from safe
edges to any procedure that makes false-positive errors with probability at
least ε.

Concretely, consider an MDP with an initial dataset state s0 ∈ SD and
two candidate targets ssafe, strap ∈ SD (or with strap /∈ SD, depending on
whether one prefers the trap to be explicitly out-of-support). The controller
g admits actions corresponding to “attempt safe” and “attempt trap”. Un-
der the true dynamics, attempting safe reaches ssafe with probability one
and yields reward 0 forever thereafter. Attempting trap reaches a terminal
absorbing state with reward −rmax forever (equivalently, transitions to a re-
gion outside SD where the value equals Vmin = −rmax/(1− γ)). The dataset
D is chosen so that both attempts appear equally plausible from s0 to any
learner except through the reachability certification signal. If the certifica-
tion procedure produces a false positive on the trap edge with probability
at least ε under µ, then with probability at least ε the planner may admit
the trap edge as δ-feasible and, due to maximization, select it (for instance
if we perturb the immediate rewards so that the trap edge appears slightly
better under r̂). On this event, the realized value suffers a loss of approx-
imately rmax/(1 − γ) relative to the safe baseline. Therefore the expected
degradation is at least on the order of rmaxε/(1− γ).

This lower bound is not an artifact of our particular algorithm; it is a
statement about the decision problem defined by one-step certificates with
nonzero false-positive rate. Any method that sometimes declares an unsafe
edge safe must, on some instance, pay a linear price in that error probability
times the horizon. The role of the pessimistic backup is thus not to eliminate
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this dependence, but to ensure that it is the only unavoidable statistical
dependence once approximation errors are controlled.

From oracle to learned reachability. The preceding discussion treats
the map (s, s′) 7→ p(s → s′) as an oracle object satisfying the calibration
condition (C1). We now explain how such certificates can be constructed
from an offline dataset using standard predictive models together with a
distribution-free calibration step. The central point is that the planning
analysis only requires one-sided validity of the lower bounds under a reference
distribution µ; thus we may modularize the design into (i) a statistical model
that produces scores correlated with success and (ii) a calibration procedure
that converts scores into LCBs with controlled false-positive rate.

Two modeling routes: inverse–forward versus direct success pre-
diction. We require a controller interface g(s, s′) and a success probability
p(s→ s′) = Pr[st+1 = s′ | st = s, at = g(s, s′)] (or an appropriate relaxation
when states are continuous). There are two natural constructions.

(A) Inverse dynamics plus forward model. We may fit an inverse model
gθ by supervised learning on dataset transitions (st, at, st+1) ∈ D, e.g.

θ ∈ argmin
θ

E(s,a,s′)∼D
[
ℓ(gθ(s, s

′), a)
]
,

with ℓ a regression or classification loss depending on whetherA is continuous
or discrete. Separately, we fit a forward model P̂ϕ(· | s, a), for example by
maximizing log-likelihood. For any candidate target s′ ∈ SD we then define
a model-based success estimate

p̂(s→ s′) := P̂ϕ(s
′ | s, gθ(s, s′)).

This route makes explicit the causal structure: the only place where the
target s′ enters is through the controller action gθ(s, s

′).
(B) Direct target-reaching prediction. Alternatively, we may fit a single

predictor p̂ϕ(s, s′) of the success event under the controller gθ, viewing (s, s′)
as the input and Y = 1{st+1 = s′} as the label. Since the dataset contains
only the realized next state, we typically form training pairs by relabeling :
for each transition (st, at, st+1), we treat (st, st+1) as a positive pair and
sample negatives (st, s̃) with s̃ ̸= st+1 from an auxiliary distribution on
SD. The resulting binary classification problem yields a calibrated score of
reachability that can be evaluated on arbitrary candidate targets. This route
avoids explicit forward modeling but pushes the burden into the pairwise
supervision scheme.

In either case, we emphasize that the planning layer only consumes a
number in [0, 1] for each ordered pair (s, s′) together with a valid LCB; the
internal decomposition is immaterial for the subsequent operator analysis.
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Uncertainty quantification via ensembles. Offline datasets may be
sparse in the relevant (s, s′) pairs, and generalization errors are precisely
what induce false positives. As a practical device, we may train an ensemble
{p̂(m)}Mm=1 (by bootstrapping the dataset, varying initializations, or using
approximate Bayesian methods). The ensemble dispersion provides a non-
conformity score for calibration and, operationally, allows us to prioritize
targets that are both promising and certain. Concretely, we may compute a
point prediction p̄(s→ s′) := 1

M

∑M
m=1 p̂

(m)(s→ s′) and a dispersion proxy
σ2(s→ s′) := 1

M

∑M
m=1(p̂

(m) − p̄)2, and then pass the pair (p̄, σ) to the cali-
bration layer. We stress that ensemble variance by itself is not a guarantee;
it only serves as an input to a finite-sample calibration step that provides
(C1).

Conformal calibration and valid LCBs. We now describe a split-conformal
construction that turns any scoring rule into a lower confidence bound with
distribution-free validity under µ. Let C = {(xi, yi)}ni=1 be a calibration
set of i.i.d. samples from µ, where xi = (si, s

′
i) and yi ∈ {0, 1} indicates

whether an execution of g(si, s
′
i) reaches s′i in one step. (In practice, we

obtain such samples either from held-out transitions when the action in the
dataset is close to g(s, s′), or from a learned success proxy; the analysis only
uses exchangeability of the calibration pairs with future test pairs under µ.)
Let p̂(x) ∈ [0, 1] be any predictor trained on a disjoint training split. De-
fine a nonconformity score α(x, y) that is large when the predictor is overly
optimistic. One convenient choice is

α(x, y) := p̂(x)− y,

which is positive exactly when p̂ exceeds the realized success label. Compute
calibration scores αi = α(xi, yi) and let q1−ε be the (1−ε) empirical quantile
of {αi}ni=1 with the usual conformal +1 correction. We then set

p(x) :=
[
p̂(x)− q1−ε

]
+
, [z]+ := max{z, 0}.

Under exchangeability, split conformal implies

Pr
(x,y)∼µ

[
p(x) ≤ y

]
≥ 1− ε.

Interpreting y as a Bernoulli draw with mean p(x), the above is a one-
sided control on overly optimistic predictions at the event level; standard
arguments (as summarized by Theorem 5) upgrade this to a bound of the
form

Pr
x∼µ

[
p(x) ≤ p(x)

]
≥ 1− ε,

namely exactly (C1). The precise score may be modified to incorporate
ensemble dispersion, for instance by taking α(x, y) := (p̂(x)+βσ(x))− y for
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a tuning parameter β ≥ 0, which trades sharpness for fewer false positives
prior to conformalization; the conformal guarantee remains distribution-free
as long as the score is computed without using the calibration labels beyond
the quantile.

On the role of the reference distribution µ. Condition (C1) is inher-
ently distributional : it controls false positives under µ, not uniformly over
S2D. Consequently, the operational choice of µ is part of the algorithm design.
In the present setting, µ should reflect the pairs that the planner will actu-
ally query, i.e. the joint distribution of a dataset state s encountered during
planning/training and a target s′ proposed by the retrieval mechanism. If µ
is chosen in this manner, then (C1) bounds the probability that the planner
ever treats an unsafe target as δ-feasible when it is sampled from its own
query distribution.

When µ differs from the induced query distribution ν, one may still
proceed provided a mild absolute-continuity condition holds, e.g. ν(x) ≤
C µ(x) for all relevant pairs x = (s, s′). In that case, the effective false-
positive probability under ν is at most Cε, and all subsequent performance
bounds hold with ε replaced by Cε. This is the familiar “concentrability”
phenomenon in offline RL, appearing here at the level of edge certification
rather than action-value estimation.

Translating calibration error into policy suboptimality. We finally
connect the statistical guarantee (C1) to the planning objective. The core
mechanism is already visible in the operator T̂δ: the backup explicitly assigns
only δ mass to the target value and pessimistically assigns (1 − δ) mass to
Vmin. This design ensures that if a certified edge (s, s′) is a false positive
(so that p(s → s′) < δ), then the Bellman target is not catastrophically
optimistic about the failure event.

To make this precise, suppose that the only source of statistical error is
certification, and that rewards are bounded by rmax. Consider an update at
state s that selects a target s̃ ∈ R̂eachδ(s). If the edge is truly δ-feasible,
then the continuation value is at least δV (s̃) + (1 − δ)Vmin by definition of
Vmin. If the edge is a false positive, we may still lower bound the realized
continuation value by Vmin, hence the excess optimism of treating the edge
as δ-feasible is at most

γδ
(
V (s̃)− Vmin

)
≤ γδ

( rmax

1− γ
− Vmin

)
≤ 2γδ rmax

1− γ
,

where we used Vmin ≤ −rmax/(1− γ) and V (·) ≤ rmax/(1− γ) for bounded
rewards. Thus each false positive can cost at most a constant multiple of
rmax/(1− γ) in discounted value, and by (C1) such events occur with prob-
ability at most ε under µ (or Cε under a shift factor C as above). Iterating
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through the contraction of T̂δ converts these one-step losses into an infinite-
horizon bound, yielding an overall degradation linear in ε and amplified by
the effective horizon. This is the quantitative content behind the comparison
statement of Theorem 3: calibration error enters additively as O

(
rmax
1−γ ·

ε
δ

)
once we compare to a baseline that never leaves SD.

Where approximation errors enter. In the learned setting, we addi-
tionally incur approximation error from (i) the controller gθ (which may fail
to realize the intended transition), (ii) the reward estimator r̂, and (iii) the
value function approximation used in fitted iteration. These errors appear
through the usual approximate dynamic programming inequalities: if T̂δ is
implemented approximately by an operator T̃δ with a uniform Bellman error
bound ∥T̃δV − T̂δV ∥∞ ≤ η, then the fixed point Ṽ of T̃δ satisfies

∥Ṽ − V̂δ∥∞ ≤
η

1− γδ
,

and the resulting greedy policy suffers an additional O(η/(1−γ)) loss. In our
final guarantees we collect these terms into ApproxErr, thereby isolating the
statistical contribution of false-positive certification from the approximation-
theoretic contribution of imperfect models.

6 Algorithms: Certified StaCQ (C-StaCQ) for stochas-
tic settings

We now spell out an implementation of Certified StaCQ (C-StaCQ) tailored
to stochastic environments, emphasizing the components that are typically
left implicit in the operator-level analysis: (i) how we parameterize the
target-conditioned controller interface, (ii) how we generate and maintain
candidate targets efficiently, and (iii) how we incorporate reward estimation
and additional conservatism (beyond the hard certification constraint) to
stabilize training.

Target-conditioned control as a one-step (or short-horizon) option.
In the tabular exposition, a decision at s ∈ SD consists of selecting a target
s′ ∈ SD and executing the action a = g(s, s′). In stochastic systems, it
is often preferable to interpret g as a short-horizon controller (an “option”)
intended to reach s′ within H environment steps, rather than in exactly one
step. Concretely, we may define a termination event Es→s′ := {∃t ≤ H :
st ∈ B(s′)} for a neighborhood B(s′) (e.g. an ℓ2-ball in state space or a
discretization cell), and define the success probability

pH(s→ s′) := Pr(Es→s′ | s0 = s, execute g(·, s′) for H steps).
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The same certification and planning logic applies provided we (i) replace p
by pH , (ii) use an effective discount γH in the backup, and (iii) define the
reward estimate as the expected discounted return accumulated during the
option execution. For notational simplicity we continue to write p(s → s′)
and r̂(s, s′), with the understanding that these may already aggregate over
an internal horizon H and a relaxed success set B(s′).

Certified target selection and target-mixture policies. Given a cer-
tified set R̂eachδ(s), the simplest policy is deterministic:

ŝ(s) ∈ arg max
s′∈R̂eachδ(s)

(
r̂(s, s′)+γ(δV̂δ(s

′)+(1−δ)Vmin)
)
, π̂δ(· | s) = δg(s,ŝ(s)).

In continuous control, a stochastic mixture over targets is frequently more
stable, especially early in training when V̂ is inaccurate. A convenient pa-
rameterization is a Gibbs distribution over certified targets:

ρτ (s
′ | s) ∝ 1{s′ ∈ R̂eachδ(s)} exp

(
1
τ U(s, s′)

)
, U(s, s′) := r̂(s, s′)+γ(δV̂ (s′)+(1−δ)Vmin),

followed by sampling s′ ∼ ρτ (· | s) and executing g(s, s′). The hard con-
straint (support restricted to R̂eachδ(s)) is preserved, while τ > 0 interpo-
lates between exploration over certified targets and near-greediness.

Candidate generation and retrieval for reachability queries. The
planning layer does not enumerate SD; it only evaluates a small candidate
list K(s) ⊂ SD and then certifies within that list. Thus, a critical design
choice is the retrieval mechanism s 7→ K(s).

We have found the following sources of candidates to be complementary.

1. Empirical successors. If D contains transitions out of s, we include the
observed next states (or their discretized representatives). This gives
high-quality “local” moves and improves coverage.

2. Nearest neighbors in a representation. We maintain an embedding
z = hψ(s) (either learned jointly with the reachability model or taken
from a pretrained encoder), build an approximate nearest-neighbor
index over {z(s) : s ∈ SD}, and query K neighbors of z(s). This
yields candidates that are geometrically plausible even when s has few
outgoing samples in D.

3. Goal-biased candidates. If a separate value model suggests that certain
regions of SD have high value, we additionally retrieve neighbors of
a small set of “elite” states under V̂ . This encourages longer-range
planning through chained certified moves.
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We then set K(s) as the union of these sources (capped at a fixed budget),
compute p(s → s′) for each s′ ∈ K(s), and define R̂eachδ(s) = {s′ ∈ K(s) :
p(s → s′) ≥ δ}. In practice, we also enforce (C2) by adding a fallback
target such as s′ = s (a “do nothing” or “stay” controller) and certifying it
separately; if it fails certification, we enlarge K(s) adaptively until at least
one certified target is found.

Implementing the certification model efficiently. The certification
call (s, s′) 7→ p(s → s′) must be cheap, since it is invoked O(K) times per
visited state. Two implementation patterns are common.

• Direct pair model. A network takes (h(s), h(s′)) (or their concatena-
tion/difference) and outputs p̂(s, s′), optionally with an ensemble to
provide dispersion features. This is naturally compatible with nega-
tive sampling.

• Controller plus forward model. If g outputs an action, and a forward
model predicts a distribution over next-state embeddings, then p̂ is
computed by evaluating the likelihood of the target under that distri-
bution (or by Monte Carlo). This is more expensive but can generalize
well when the dynamics structure is learnable.

In either case, we clip p to [0, 1] after conformalization, and we recommend
caching p(s → s′) for frequently queried pairs (e.g. within a minibatch) to
avoid repeated forward passes.

Reward modeling and consistency with the target abstraction. C-
StaCQ requires a reward estimate r̂(s, s′) aligned with the controller ab-
straction. If rewards are Markovian and depend on (s, a, s+), but the policy
chooses s′ and executes a = g(s, s′), we may define

r̂(s, s′) ≈ E
[
r(s, g(s, s′), s+)

]
,

estimated by (i) a learned reward model r̂ω(s, a, s+) combined with a learned
forward model for s+, or (ii) direct regression r̂ω(s, s

′) using the same rela-
beling scheme as for p̂. When rewards are observed in D and the controller
g is close to the behavior actions, a simple and effective baseline is to set
r̂(s, s′) as the empirical average reward among transitions whose (s, s+) pair
matches (s, s′) up to discretization.

Since the analysis assumes bounded rewards, we explicitly clip reward
predictions: r̂(s, s′) ← clip(r̂(s, s′),−rmax, rmax). This prevents rare model-
ing artifacts from dominating the max over targets.
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Additional conservatism: using p inside the backup. The theoretical
operator uses a fixed δ in the continuation term to separate feasibility (hard
constraint) from pessimism (fixed mass split). In implementations, we can
increase robustness by also using the pair-dependent LCB in the backup,
replacing δ by p(s→ s′):

(T̂ V )(s) := max
s′∈R̂eachδ(s)

(
r̂(s, s′)+γ

(
p(s→ s′)V (s′)+(1−p(s→ s′))Vmin

))
.

This modification remains pessimistic whenever p ≤ p (the intended calibra-
tion outcome), and it encourages selecting targets that are not only above
threshold but also well above it. Empirically, this reduces sensitivity to the
choice of δ and mitigates brittleness when the certified set is large.

Value clipping and numerical stability. We finally note two stability
measures that are innocuous in the tabular theory but important with func-
tion approximation. First, we clip learned value estimates to known bounds,
e.g.

V (s)← clip

(
V (s), Vmin,

rmax

1− γ

)
,

ensuring that the pessimistic term (1− δ)Vmin remains meaningful. Second,
we recommend tie-breaking among targets by preferring larger p(s → s′)
(or smaller ensemble dispersion) when their backed-up utilities are nearly
equal; this reduces variance in target choice without changing the certified
feasibility constraint.

These implementation choices instantiate the abstract operator analysis
in a form that is computationally viable in large SD and robust to stochas-
ticity, thereby setting up the empirical study in the next section.

7 Experiments: stochastic benchmarks, calibration–
performance link, and ablations

We evaluate C-StaCQ on stochastic offline-control benchmarks with the goal
of isolating the role of certified reachability, the confidence threshold δ, and
the calibration error rate ε in the resulting policy performance. The experi-
mental questions we target are: (Q1) whether certification improves robust-
ness relative to standard batch-constrained and pessimistic baselines under
increased stochasticity; (Q2) how sensitive performance is to δ; (Q3) whether
empirical calibration curves predict performance degradation in the manner
suggested by Theorem 3; and (Q4) whether the method fails primarily due to
false positives (unsafe edges) or false negatives (overly conservative pruning).
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Benchmarks: stochastic D4RL variants. Standard D4RL MuJoCo
tasks are only mildly stochastic (beyond observation noise and finite-sample
effects), whereas our analysis is motivated by explicit reachability uncer-
tainty. We therefore consider stochastic variants of D4RL datasets con-
structed by modifying the transition kernel at evaluation time while keeping
the offline dataset fixed. Concretely, for each environment we introduce a
family of perturbed evaluation dynamics indexed by η ∈ [0, 1]:

Pη(· | s, a) := (1− η)P0(· | s, a) + η P̃ (· | s),

where P0 is the original environment dynamics and P̃ (· | s) is a state-
dependent “stochastic reset” distribution implemented by injecting Gaussian
noise in velocities (for MuJoCo) and/or randomly replacing the next state
by a nearest-neighbor state in SD (to preserve state plausibility while break-
ing determinism). We report results on (i) the unperturbed case η = 0, (ii)
moderate stochasticity η = 0.1, and (iii) heavy stochasticity η ∈ {0.2, 0.3},
where long-horizon compounding effects become visible. This protocol keeps
the offline training distribution fixed and induces controlled distribution shift
at test time.

Algorithms compared. We compare against baselines intended to span
the common offline RL design space: behavior cloning (BC), a batch-constrained
algorithm (BCQ or a nearest-neighbor action constraint), and pessimistic
value-based methods (CQL and IQL). We also include a pure “reachability-
max” ablation that uses R̂eachδ(s) but replaces the pessimistic mass split by
the optimistic continuation γV (s′); this ablation directly tests the necessity
of pessimism under certification error. For C-StaCQ we evaluate both the
fixed-δ operator described in the theory and the implementation variant that
uses the pair-dependent LCB p(s→ s′) inside the backup. All methods are
trained on identical datasets and evaluated in the same stochastic evaluation
environments Pη.

Implementation details: controller, retrieval, and calibration. We
instantiate g(s, s′) as a target-conditioned inverse dynamics model trained
by supervised regression on dataset transitions. For continuous actions we
use a Gaussian policy with mean µθ(s, s

′) and fixed or learned diagonal
covariance; g(s, s′) is taken as the mean action at evaluation time. Candidate
targets are obtained via approximate nearest neighbors in an embedding
space z = hψ(s) learned jointly with the reachability predictor, together
with empirical successors as described in the previous section. We set a fixed
retrieval budget K (e.g. K ∈ {50, 100, 200}) and measure how often coverage
(C2) fails before fallback or adaptive expansion. To obtain p(s→ s′) we train
an ensemble predictor of success events (either one-step or option-level) and
apply split conformal calibration on a held-out calibration set drawn from the
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reference distribution µ induced by the retrieval procedure (i.e. pairs (s, s′)
that are actually queried during planning). This choice aligns the finite-
sample guarantee in Theorem 5 with the distribution on which certification
is used.

Evaluation metrics. We report standard normalized D4RL return, but
also explicitly measure safety-relevant quantities tied to our analysis. First,
we estimate the realized one-step (or option-level) success rate of chosen
targets:

Ŝucc(π) := E
[
1{st+1 ∈ B(s′t)}

]
, s′t ∼ target distribution of π(· | st),

with B(s′) the success neighborhood used in training. Second, we compute
an empirical false-positive rate under µ,

ε̂ := Pr
(s,s′)∼µ

[
p(s→ s′) > p̂MC(s→ s′)

]
,

where p̂MC is a Monte Carlo estimate of the true success probability using re-
peated rollouts of g(s, s′) from state s in the evaluation environment. Third,
we report the certified set size

∣∣R̂eachδ(s)∣∣ averaged over visited states, as a
proxy for conservatism and planning flexibility.

Sensitivity to the confidence threshold δ. We sweep δ over a log-
spaced grid (e.g. {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}) and evaluate returns and real-
ized success rates across η. We expect a characteristic bias–variance tradeoff:
small δ enlarges feasible sets but increases the magnitude of the pessimistic
penalty (1− δ)Vmin, while large δ restricts planning and can induce coverage
failures when the dataset is sparse. We therefore plot (i) return versus δ and
(ii) coverage failure frequency versus δ, and we additionally report the effec-
tive contraction modulus γδ as a diagnostic of optimization stability in fitted
value iteration. In practice we find it informative to compare fixed-δ back-
ups against the p-weighted backup: the latter often reduces sensitivity by
smoothly interpolating between near-threshold and well-supported targets.

Calibration curves and performance prediction. To connect empir-
ical behavior to the theory, we produce calibration plots that relate LCB
conservatism to realized success. Specifically, for a set of queried pairs (s, s′)
we bucket them by p(s→ s′) and plot the empirical success frequency within
each bucket; we additionally plot the coverage curve Pr[p(s → s′) ≥ x |
p(s → s′) ≥ x] as a function of x. We then correlate these calibration
statistics with downstream return across δ and η. The hypothesis suggested
by Theorem 3 is that, holding other errors fixed, performance degradation
tracks the mass of false positives relative to the chosen confidence level, ap-
proximately through a factor of ε/δ. Empirically, we therefore report scatter
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plots of return gap to a batch-constrained baseline versus the measured ra-
tio ε̂/δ, and we test whether the relationship is monotone across tasks and
stochasticity levels.

Ablations separating false positives from false negatives. We iso-
late the effect of (i) erroneously including unsafe targets (false positives) and
(ii) excluding safe targets (false negatives). Since ground-truth p(s → s′)
is not directly available, we approximate it via Monte Carlo rollouts for
a subset of queried pairs and define an empirical “safe” edge as one with
p̂MC(s → s′) ≥ δ. We then construct two diagnostic variants: (A) an FP-
inflated variant that artificially increases p by a constant shift before thresh-
olding, raising false positives at fixed δ; and (B) an FN-inflated variant
that decreases p, increasing conservatism. We expect (A) to harm return
sharply under stochastic evaluation (large η), especially for the optimistic
“reachability-max” ablation, while (B) should primarily reduce return via
limited connectivity and smaller R̂eachδ(s), but with comparatively stable
realized success. This experiment clarifies whether the empirical failure mode
is brittleness to occasional unsafe edges (the setting of Theorem 4) or exces-
sive conservatism from mis-specified µ or underpowered models.

Comparisons to batch-constrained and pessimistic baselines under
stochasticity. Finally, we compare C-StaCQ against BCQ-like constraints
and against pessimistic Q-learning methods across η. The central claim we
test is that explicit certified state transitions provide a complementary ro-
bustness mechanism: batch action constraints can still permit transitions
to out-of-distribution states under perturbed dynamics, while purely value-
based pessimism can be overly diffuse without an explicit notion of feasible
next-state support. We therefore report not only normalized return but also
(i) visitation concentration in SD measured by nearest-neighbor distance to
dataset states, and (ii) the frequency of entering low-support regions (large
distance), which should increase with η for methods lacking an explicit state-
constraint mechanism. We emphasize that these measurements are descrip-
tive rather than guaranteed in function approximation; their purpose is to
substantiate the qualitative interpretation of certified reachability as a tool
for controlling distribution shift.

Together, these experiments aim to make the operator-level guarantees
operational: we measure the calibration properties that instantiate (C1), ver-
ify coverage behavior related to (C2), and quantify how false-positive reacha-
bility errors translate into return degradation under controlled stochasticity.
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8 Discussion and limitations

Our development isolates a particular mechanism for robustness in offline
control: we constrain one-step transitions by certifying the feasibility of tar-
get states inside the dataset support. This yields an operator whose con-
traction modulus is explicitly improved from γ to γδ and whose performance
degradation can be related to the false-positive rate ε through a factor re-
sembling ε/δ. The same isolation also makes clear what our approach does
not address; we summarize the principal limitations and the mathematical
obstacles that remain.

Coverage and connectivity assumptions. The coverage condition (C2)
is structurally necessary for any method that enforces feasibility through a
hard constraint s′ ∈ R̂eachδ(s). When (C2) fails for some s ∈ SD, the opera-
tor T̂δ is not well-defined unless we supply a fallback action (or equivalently
we add an absorbing failure state with value Vmin). In practice, (C2) is
best interpreted as a statement about the connectivity of the induced cer-
tified graph on SD: if for many states the certified out-degree is near zero,
planning degenerates into a short-horizon policy that repeatedly invokes the
fallback. This phenomenon is not captured by ε alone; false negatives (overly
conservative p) can collapse the reachable set while still satisfying calibra-
tion.

There is also a subtler limitation: even when each state has at least
one certified successor, the global geometry of R̂eachδ may prevent reaching
high-value regions because the certified edges do not compose. One-step
feasibility does not guarantee multi-step feasibility under distribution shift,
and our pessimistic backup only addresses failure at the immediate step. A
natural refinement is to couple (C2) with a mixing or expansion condition
on the certified graph, e.g. that for each s there exists a path of certified
edges to a set of “well-supported” states. Formalizing such a condition in
continuous control (where SD is large and irregular) remains open.

The role and fragility of the reference distribution µ. Calibration
(C1) is stated under a fixed reference distribution µ on pairs (s, s′). This is
mathematically clean but operationally delicate: if the planning procedure
adaptively changes which pairs are queried, then the empirical distribution
of queried pairs may drift away from the calibration distribution. In the
present work we partially mitigate this by defining µ to be induced by the re-
trieval mechanism, hence aligning certification with use. Nevertheless, there
is no guarantee that the state-visitation distribution under π̂δ will match the
distribution of states used for calibration, especially under heavy stochas-
ticity. This mismatch is a standard instance of the “offline-to-online shift”
for uncertainty quantification: conformal validity is distribution-free given
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exchangeability, but it is not automatically robust to adaptive querying when
the set of queried points is itself a function of the learned model.

A principled direction is to treat certification as an online prediction
problem and use sequential conformal methods or martingale-based concen-
tration to control miscoverage under adaptive selection. Another direction
is to incorporate explicit importance weighting to target the induced dis-
tribution of queried pairs. Either approach requires additional assumptions
(bounded likelihood ratios or stable selection), and the extent to which such
assumptions hold in high-dimensional continuous control is unclear.

Partial observability and representation dependence. Our analysis
is formulated in terms of a Markov state s ∈ S, whereas many offline datasets
are effectively partially observable: logged observations ot may omit latent
variables that influence dynamics, and the learned controller g(o, o′) may
exploit spurious correlations. In this setting, the event “reach o′ from o” is
not a well-defined property of the environment; it depends on the unobserved
latent state and on the history. One can attempt to lift the state to a history
window ht = (ot−k+1, . . . , ot) or to a learned belief embedding zt, and to run
the same machinery on z. However, certification in representation space
introduces new failure modes: an LCB p(z → z′) may be well-calibrated
for the learned predictor yet correspond poorly to the true probability of
reaching an observation-neighborhood in the environment.

From a theoretical perspective, the correct object is a belief-MDP (or a
predictive state representation) under which the Markov property holds. A
complete extension would require (i) a definition of success events that is
invariant to the chosen embedding, and (ii) calibration guarantees that are
stable under representation learning. The latter is particularly challenging
because the calibration set is no longer independent of the representation if
the representation is trained on the full dataset, and because the relevant
notion of distance (for “neighborhood” success) is itself learned.

Continuous states, neighborhood success, and discretization error.
Even in fully observed control, S is continuous, while our constrained op-
erator is expressed over the finite set SD. Empirically we interpret “target
state” as “target neighborhood” and measure success via membership in a
ball B(s′). This induces a discretization: the planner chooses among finitely
many anchors in SD, and feasibility is assessed with respect to neighbor-
hoods around these anchors. The resulting approximation error has two
components that are not explicit in the tabular theory:

1. Geometric error : high-value regions may lie between dataset states,
and the nearest dataset state may be dynamically unreachable with
high probability even if the region itself is reachable.
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2. Metric error : the choice of neighborhood B(s′) depends on a metric
(often in an embedding space), and the success label 1{st+1 ∈ B(s′)}
may not correspond to semantic reachability.

Both effects can be viewed as a form of additional pessimism: the certified set
is conservative relative to the true set of controllable next-state regions. A
more faithful continuous-state formulation would treat the action as selecting
a distribution over next states and would constrain a notion of support or
density ratio with respect to the dataset next-state distribution. Connecting
our target-state graph view to such density-based constraints is an open
theoretical step.

What is needed for full function-approximation theory. Our operator-
level analysis relies on contraction and monotonicity, which are robust prop-
erties, but the moment we implement fitted value iteration with function ap-
proximation, additional phenomena appear: projection error, non-realizability,
and distribution shift between successive fitted iterations. In the approxi-
mate setting, one would like bounds of the schematic form

∥V π̂δ − V πBC∥∞ ≥ − C(γ, δ) · ε︸ ︷︷ ︸
certification error

−C ′(γ, δ) · Eproj︸ ︷︷ ︸
approximation

−C ′′(γ, δ) · Eshift︸ ︷︷ ︸
sampling/shift

,

with explicit constants and with Eproj, Eshift defined in terms of the func-
tion class and the data distribution. Achieving such a statement requires
assumptions analogous to those in approximate dynamic programming: a
concentrability (or coverage) coefficient controlling how state distributions
induced by the learned policy relate to the dataset distribution, and a stabil-
ity condition ensuring that the greedy improvement step does not move the
policy into regions where the certification model is untrained. Our certified
feasibility constraint is intended to reduce precisely this drift, but proving a
nontrivial concentrability bound from certification alone is not immediate,
because a certified one-step constraint does not control the multi-step state
distribution without additional mixing assumptions on the certified transi-
tions.

State-only logs and identifiability of control. A practically impor-
tant regime is “state-only” (or observation-only) datasets, where actions are
missing or unreliable. Our method can be applied by learning an inverse
model g(s, s′) from state transitions, but this is an additional source of non-
identifiability: if multiple actions can explain the same observed transition,
then g may choose an action that is inconsistent with the environment’s
true actuation constraints. In that case, the estimated success probabil-
ity p̂(s → s′) can be arbitrarily miscalibrated because the intervention
a = g(s, s′) is not represented in the logged data. A principled approach
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would require either (i) additional structure (e.g. known action bounds and
smooth dynamics) or (ii) experimental interventions beyond passive offline
logs. At minimum, one should treat controller error as part of ApproxErr
and expect it to dominate when actions are unobserved.

k-step (option-level) certification and compounding uncertainty.
One-step certification is conceptually clean but may be inefficient: long-
horizon tasks require many certified steps, and even small false-negative
rates can impede exploration of the certified graph. This motivates certi-
fying k-step reachability, in which a target corresponds to an option whose
internal policy attempts to reach s′ within k steps, and feasibility is defined
by Pr[st+k ∈ B(s′) | st = s, option(s, s′)] ≥ δ. While this can increase effec-
tive connectivity, it introduces compounding uncertainty: the success event is
rarer, the calibration problem is harder, and the induced failure cost may be
larger because the agent commits to the option for multiple steps. A careful
design must therefore couple k-step certification with a pessimistic backup
that accounts for intra-option failure; a direct analogue of our mass-splitting
would replace γ(δV (s′)+(1−δ)Vmin) with an appropriate option-value lower
bound. Establishing tight ε-dependence in this setting is open.

Summary of open directions. The central open problems are thus (i)
replacing (C2) by verifiable and non-vacuous connectivity conditions in con-
tinuous control; (ii) providing calibration guarantees under adaptive query-
ing and representation learning; (iii) deriving approximate-DP performance
bounds with explicit dependence on projection and shift errors; and (iv)
extending certification from one-step to option-level while controlling com-
pounding miscalibration. We regard these as necessary steps for a complete
function-approximation theory of certified state-constrained offline RL.
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