
Inference-Time Scaling Laws for Embodied
Agents: Power Laws, Optimality, and Adaptive

Deliberation under Latency Constraints

Liz Lemma Future Detective

January 17, 2026

Abstract

Neural scaling law work in robotics has focused almost entirely on
training-time resources (data, parameters, FLOPs) and reports little
about inference-time compute. Yet 2026-era robot systems increas-
ingly rely on deliberation at test time: sampling multiple action plans,
verifying safety/feasibility, running short world-model rollouts, or self-
consistency over language-conditioned policies—often under strict la-
tency and energy budgets. We introduce a clean candidate-and-verify
formalization of test-time compute for embodied agents and prove that
expected downstream error can exhibit power-law scaling in inference
compute. Our key observation is that power laws arise generically when
episode difficulty induces a heavy tail of small per-sample success prob-
abilities. Under mild assumptions on the density of the latent success
probability near zero, we show E[Err(k)] = Θ(k−a) with matching up-
per and lower bounds, making the exponent information-theoretically
optimal. We then study adaptive allocation of a global compute budget
across episodes and give approximation/online guarantees for compute
controllers that concentrate deliberation on hard instances. Finally, we
outline an experimental protocol wrapping an open-source VLA pol-
icy with a deliberation layer (plan sampling + verification and optional
fast world-model simulation) to measure exponents, identify the regime
where test-time compute outperforms parameter scaling, and connect
these findings to robotics scaling-law meta-analyses that currently lack
compute and inference axes.

Table of Contents

1. 1. Introduction: why inference-time compute is a first-class scaling
axis in robotics; limitations of training-only scaling; contributions and
summary of results.

2. 2. Related Work: scaling laws (training + test-time), embodied agents
and planning wrappers, verification critics, and robotics benchmark-

1

ing/compute reporting; contrast with meta-analysis findings empha-
sizing missing compute studies.

3. 3. Problem Setup and Computational Model: candidate generation,
verification, and compute budget; formal definition of k-sample delib-
eration; deployment-level compute allocation across episodes.

4. 4. From Episode Difficulty to Power-Law Inference Scaling: latent
success probability model; heavy-tail condition; derivation of Θ(k−a)
error scaling; interpretation of exponent as difficulty mass near zero.

5. 5. Tight Bounds and Minimax Optimality: matching lower bounds for
any k-limited algorithm; robustness to verification noise and depen-
dence; extensions to imperfect critics/world models.

6. 6. Phase Transition Between Model Scaling and Inference Scaling: for-
mal marginal-return comparison; conditions for existence of N∗; guid-
ance for resource allocation (train vs infer) under latency constraints.

7. 7. Adaptive Compute Allocation Algorithms: offline (budgeted) and
online (bandit/optimal stopping) compute controllers; approximation
guarantees; regret bounds; practical estimators for per-episode diffi-
culty.

8. 8. Experimental Protocol (Optional but Strengthening): how to wrap
an open-source VLA with sampling + critic + optional world-model
rollouts; controlled sweeps over Ctest; measuring exponents; identifying
N∗; ablations for confounds.

9. 9. Discussion and Limitations: when power laws may break (satura-
tion, correlated samples, nonstationary tasks); implications for safety
and benchmarking; recommendations for reporting inference compute.

10. 10. Conclusion: takeaways and open problems (joint train+test scaling
surfaces for robotics; standardized inference compute accounting).

2

1 Introduction

Contemporary embodied agents increasingly couple a learned policy with a
nontrivial amount of test-time computation: they sample candidate plans,
score them with critics or verifiers, optionally simulate outcomes, and exe-
cute the best verified candidate. In manipulation and navigation this pattern
appears under many names—sampling-based planning around a learned pro-
posal distribution, LLM- or VLM-generated skill sequences with execution-
time filtering, motion-planning with learned heuristics, and “plan–critic–act”
wrappers. The commonality is that deployment performance is not deter-
mined by the parameters of a single forward pass alone, but by an inference-
time compute budget that governs how many candidates are generated and
checked before acting. We therefore treat test-time compute as a first-class
scaling axis in robotics, on par with model size and training compute.

A training-only scaling viewpoint is incomplete for at least three rea-
sons. First, robotics deployments are latency-limited: an agent must decide
within a per-episode cap K (or a per-decision cap in receding-horizon set-
tings), which makes the marginal value of additional deliberation itself a
central quantity. Second, deployments are often budget-limited at the sys-
tem level: fleets of robots share compute, power, or server capacity, inducing
a global constraint B over a window of T episodes. Third, the empirical dis-
tribution of task difficulty is heterogeneous. For many episodes a competent
base model πN produces a correct plan quickly, while a minority of “hard”
episodes require repeated resampling, backtracking, or verification to suc-
ceed. This heterogeneity suggests that the appropriate performance metric
is not merely the best achievable success at a fixed average compute, but the
entire compute–reliability curve and the allocation policy that traces it.

We formalize these considerations through a candidate-and-verify ab-
straction. Fix a trained base model πN (parameters fixed during deploy-
ment). For each episode τ drawn from an environment distribution T , the
agent can spend k units of test-time compute to sample and verify k candi-
date plans y ∼ SN (· | τ), where SN is the candidate generator induced by πN .
A verifier V (y, τ) accepts feasible candidates; under sound verification, the
episode succeeds if at least one accepted candidate is found and executed.
Conditional on τ , this reduces the episode to a latent success probability
Pτ,N : a single candidate drawn from SN passes verification and succeeds
with probability Pτ,N , and repeated candidate generations are (stylized as)
conditionally i.i.d. given Pτ,N . Under this model, spending k compute yields
success probability 1 − (1 − Pτ,N)k, so compute yields diminishing returns
even before introducing any additional structure.

The central question then becomes: how does expected error scale with
k under realistic heterogeneity in Pτ,N? A key empirical regularity across
domains is that error is often governed by a heavy tail of hard instances. We
capture this by assuming that, across episodes, the density of Pτ,N near 0

3

behaves as
fN (p) = cNp

aN−1(1 + o(1)) (p ↓ 0),

for constants aN > 0 and cN > 0 depending on model size N . Intuitively,
small p corresponds to episodes for which the proposal distribution seldom
generates a viable plan; these episodes dominate the error for large k. Un-
der this assumption, a standard Laplace-type calculation shows that the
expected error after k candidate-and-verify steps obeys a power law in test-
time compute,

E[ErrN (k)] = E[(1− Pτ,N)k] = Θ(k−aN),

with constants determined by (aN , cN). Thus, in this regime, improvements
from additional test-time computation are predictable and quantifiable: dou-
bling k multiplies error by approximately 2−aN at sufficiently large k. We
emphasize that the exponent aN is a property of the instance distribution
and the proposal mechanism induced by πN , not merely of the verifier or the
planner.

A second question is whether smarter test-time algorithms can beat this
exponent. In the absence of additional structure beyond i.i.d. sampling and
sound verification, the answer is negative: we show a minimax lower bound
demonstrating that no algorithm restricted to k candidate generations can
improve the k−aN exponent uniformly over all distributions with the stated
tail behavior. This clarifies what is and is not possible by “better search”
alone: improvements in constants may be available, but the heavy-tail ex-
ponent is information-theoretically pinned down unless one leverages extra
signals (e.g., informative verifier scores, structured neighborhoods of candi-
dates, or amortized warm-starting across episodes).

The candidate-and-verify viewpoint also clarifies compute allocation un-
der shared budgets. Since per-episode success is concave in k (diminishing
marginal gain ∆N (k)), allocatingB compute units across T episodes becomes
a monotone submodular maximization problem. When the latent Pτ,N val-
ues are known (offline), a greedy allocation that assigns each additional unit
of compute to the episode with the largest current marginal gain achieves the
classical (1 − 1/e) approximation guarantee. In the realistic online setting,
where Pτ,N is unknown and only partially revealed through accept/reject
outcomes (or scores), this perspective motivates controllers that spend addi-
tional compute on episodes estimated to be in the low-P tail, subject to the
latency cap K and the remaining global budget.

Contributions. Our contributions are therefore conceptual and analytic.
We (i) isolate inference-time compute as an explicit resource in robotics
deployments and propose a clean candidate-and-verify abstraction parame-
terized by (N, k) and the latent per-episode pass probability Pτ,N ; (ii) prove

4

a power-law scaling of expected error in test-time compute under a heavy-
tail assumption on the distribution of Pτ,N near 0, and establish a matching
minimax lower bound on the scaling exponent; (iii) connect global-budget
compute allocation across episodes to submodular maximization, yielding
approximation guarantees for greedy allocation under diminishing returns;
and (iv) formalize a resource tradeoff between increasing model size N and
increasing test-time compute k by comparing marginal returns, yielding a
phase-transition criterion under standard assumptions on how (aN , cN) vary
with N .

We view these results as a step toward making robotics evaluation pro-
tocols more compute-aware: reporting only a single success rate without
specifying test-time search budget obscures a crucial axis of capability. In
the next section we situate our formulation relative to prior work on scaling
laws, planning wrappers for embodied agents, and verification-based control.

2 Related Work

Training-time scaling laws. A large body of work studies how predictive
error or downstream performance varies with training compute, dataset size,
and model size under fixed evaluation procedures. Classical empirical scaling
laws for language models relate cross-entropy loss to power laws in model
and data size, and identify compute-optimal training frontiers ??. Related
analyses extend to vision and multimodal models, and to transfer perfor-
mance on downstream tasks, typically assuming that test-time computation
is dominated by a single forward pass at fixed context length ?. Our empha-
sis differs in that embodied deployment frequently introduces an additional,
controllable inference-time loop (sampling, scoring, and optional simulation)
whose computational cost is comparable to, or larger than, a forward pass,
and whose effect on reliability depends on instance heterogeneity rather than
solely on average-case error.

Test-time compute and inference-time scaling. In language-model
inference, there is an explicit notion of allocating additional test-time com-
pute by sampling multiple completions and selecting among them, as cap-
tured by metrics such as pass@k in code generation and by best-of-n selection
more broadly ?. More recent work investigates deliberate inference proce-
dures that use additional tokens, additional samples, or structured search
(e.g., self-consistency, reranking, and tree-based deliberation) to improve ac-
curacy ??. Although these methods are usually motivated in terms of reason-
ing or search, from a resource perspective they instantiate a common pattern:
repeated proposal and selection under a compute cap. The present paper iso-
lates the corresponding scaling axis in a setting where the proposals are plans
or control sequences rather than text continuations, and where a verifier em-

5

bodies feasibility, safety, or goal satisfaction. We also stress that the rele-
vant limiting factor in robotics is often latency (per-episode or per-decision),
which changes the operational meaning of a compute–accuracy curve: the
relevant question is not merely whether additional compute helps, but how
error decays as a function of the allowed number of proposal–verification
iterations.

Embodied agents with planning wrappers. Many embodied systems
couple a learned policy with explicit planning, resampling, or receding-
horizon control. Classical sampling-based motion planning and trajectory
optimization methods (e.g., RRT variants, CEM-style optimization, MPPI)
already fit a “generate candidates, score/feasibility-check, execute best” tem-
plate, with learned components used as proposal distributions, cost models,
or warm starts ??. In learning-based robotics, this pattern appears in model
predictive control with learned dynamics, in learned planners that generate
candidate action sequences, and in hierarchical agents that plan in a discrete
skill space and then execute low-level controllers ??. More recently, large lan-
guage and vision–language models are wrapped with task-and-motion plan-
ning, tool-use controllers, or iterative refinement loops that propose candi-
date skill programs and filter them through simulation, constraint checking,
or execution feedback ??. Across these lines, the computational burden at
deployment is frequently dominated by repeated candidate generation and
evaluation, but is seldom treated as an explicit scaling variable. Our abstrac-
tion aims to unify these wrappers at the level of resource accounting: each
additional candidate consumes compute and yields diminishing marginal im-
provement, with the extent of improvement governed by the distribution of
per-instance proposal quality.

Verification, critics, and safety filters. The role of a verifier in our
model is related to several mechanisms used in robotics and reinforcement
learning. In planning, feasibility checks include collision checking and con-
straint satisfaction, which can be exact (geometric) or approximate (learned)
and are routinely used as hard filters. In RL and control, one sees learned
value functions or Q-functions used for action selection, discriminator-based
critics for goal satisfaction, and safety “shields” that reject unsafe actions
based on reachability or barrier-function reasoning ??. In language-grounded
robotics, verifiers include affordance classifiers, predicate evaluators, and
simulation-based checks that ensure that a proposed plan is executable in
the current scene ?. Our analysis is agnostic to whether V is learned or ana-
lytic, and instead makes explicit the operational assumption required for the
candidate-and-verify reduction: that an accepted candidate succeeds with
high probability (soundness, possibly up to a bounded false-positive rate).
This viewpoint complements work that focuses on learning better critics by

6

clarifying when improvements should be attributed to changing the proposal
distribution versus changing the verifier, and by highlighting that repeated
proposal–verification can induce predictable compute–reliability curves even
with fixed learned components.

Benchmarking practice and compute reporting. Robotics bench-
marks typically report success rates, path efficiency, or reward under fixed
evaluation pipelines, with limited standardization of test-time computation
budgets. In contrast, several areas in machine learning explicitly report
performance as a function of test-time sampling (e.g., pass@k) or inference-
time budgets, and maintain leaderboards that separate model capacity from
sampling-based ensembling. For embodied agents, comparisons are com-
plicated by heterogeneous hardware, simulator speed, and differing plan-
ner/verifier implementations; nevertheless, the absence of explicit compute
reporting makes it difficult to interpret gains from planning wrappers versus
gains from better base models. Meta-analyses and survey-style syntheses
of embodied evaluation protocols repeatedly note that compute and latency
constraints are under-specified, and that claims of “better reasoning” or “bet-
ter planning” are often confounded by unreported deliberation budgets and
selection mechanisms. Our contribution is not a new benchmark, but a
formal account of what compute reporting should enable: (i) a compute–
reliability curve indexed by k under a fixed base model πN , and (ii) princi-
pled allocation rules when compute is shared across episodes. This framing
motivates the computational model introduced next, where we treat candi-
date generation and verification as explicit oracles and make the per-episode
and global budget constraints part of the problem statement.

3 Problem Setup and Computational Model

We formalize deployment as a sequence of episodes (task instances) τ ∼ T ,
each of which specifies an instruction, an environment configuration, and an
initial state. A trained base model/policy πN of fixed size N is held constant
at deployment time. The agent may, however, expend additional test-time
compute to improve reliability by iteratively proposing candidate plans and
filtering them through a verifier before executing.

Candidate-and-verify interface. For each episode τ we assume access
to two black-box procedures induced by πN and the surrounding system:
a candidate generator (sampler) and a verifier. The generator is a distri-
bution SN (· | τ) over candidates y; a candidate may represent, depending
on the application, a low-level action sequence, a high-level skill program,
a receding-horizon control prompt, or any structured plan object that can
be executed by the robot. A single generator call returns an i.i.d. sample

7

y ∼ SN (· | τ). The verifier is a predicate or score function V (y, τ) that
returns either (i) accept/reject, or (ii) a real-valued score that can be
thresholded into accept/reject. The semantics of verification are that accep-
tance certifies feasibility/safety/goal-satisfaction for the current τ up to a
known bounded error, which we absorb into the effective success probability
defined below.

Compute accounting and per-episode cap. We measure test-time com-
pute in units of one “generate+verify” attempt. Thus, spending k ∈ {0, 1, . . . ,K}
compute on an episode means performing at most k sequential iterations of
sampling and verification, with a hard per-episode latency cap K. In set-
tings where generation and verification costs differ materially (or where each
candidate is additionally rolled out in a world model), we allow weighted
costs; one can interpret a unit budget as wg units per generation plus wv

per verification (plus optional simulation cost ws), and absorb these into a
normalized budget without changing the structure of the analysis. The only
requirement for our results is that the algorithm be feasible: it may stop
early but it cannot exceed K for any single episode.

k-sample deliberation as a sequential decision rule. A k-sample de-
liberation procedure for episode τ is any (possibly randomized) sequential
rule that, at each iteration i, draws yi ∼ SN (· | τ), queries V (yi, τ), and
then either stops and executes some selected candidate (typically the first
accepted one, or the best among accepted), or continues to the next iteration,
until i = k or the procedure stops early. If no acceptable candidate is found
within the allotted budget, the agent executes a designated fallback behav-
ior (e.g., the base policy without deliberation, a safe default, or a “no-op”),
yielding success or failure depending on the domain; for the scaling analysis
it is convenient to treat fallback as failure, since any nontrivial fallback can
be incorporated into the sampler as an additional candidate with its own
acceptance probability.

We write Succτ,N (k) ∈ {0, 1} for the success indicator under model size
N and deliberation budget k, and Errτ,N (k) = 1− Succτ,N (k) for the corre-
sponding error. The primary per-episode quantity of interest is the success
probability P(Succτ,N (k) = 1) induced by the deliberation rule.

Latent per-sample success probability. The abstraction becomes espe-
cially transparent under the following stylized reduction. For a fixed (τ,N),
define a latent parameter Pτ,N ∈ [0, 1] to be the probability that a single
draw y ∼ SN (· | τ) will be accepted by the verifier and succeed when exe-
cuted. Importantly, Pτ,N is episode-specific: it captures instance difficulty
and proposal quality, and it may be arbitrarily small on hard episodes. Un-
der conditional independence of candidate draws given (τ,N), a canonical

8

deliberation rule is “sample until acceptance or budget exhaustion,” in which
case the probability of failure after k attempts is

P(Errτ,N (k) = 1 | Pτ,N) = (1−Pτ,N)k, P(Succτ,N (k) = 1 | Pτ,N) = 1−(1−Pτ,N)k.
(1)

We emphasize that (1) should be read as a computational model rather than
a literal claim about all systems: it asserts that, after all modeling choices
(including any bounded verifier false positives/negatives) are absorbed into
the effective event “a sampled candidate works,” deliberation acts as repeated
independent trials. This reduction is the basis for the compute–reliability
curves studied in the sequel.

Deployment objective and global compute budgets. Over a deploy-
ment window of T episodes, we may additionally impose a global budget B
on the total number of generate+verify iterations:

T∑
t=1

kτt ≤ B, 0 ≤ kτt ≤ K for all t. (2)

The controller must choose kτt online (before or during episode t) and then
run a feasible deliberation procedure subject to that cap. The natural ob-
jective is to maximize expected total successes,

max
T∑
t=1

E[Succτt,N (kτt)] , (3)

or, equivalently, minimize expected total errors. When it is useful to treat
compute as a soft cost rather than a hard constraint, we consider the La-
grangian form

∑
t E[Succτt,N (kτt)]− λ

∑
t kτt for some λ > 0.

Within-episode stopping and across-episode allocation. Two levels
of adaptivity are permitted. First, within a single episode we may stop early
when an acceptable candidate is found, and more generally we may use ver-
ifier outputs (scores) to form a running estimate of difficulty (a proxy for
Pτ,N) and decide whether further sampling is worthwhile. Second, under the
global constraint (2), we may allocate different caps kτ to different episodes
based on cheap pre-deliberation signals (e.g., perception uncertainty, lan-
guage ambiguity, or a preliminary verifier probe). The analyses that follow
treat these controllers as operating in a constrained sequential decision prob-
lem with limited feedback: the latent Pτ,N is unobserved, but its effect is
partially revealed through accept/reject outcomes.

The remainder of the paper studies the consequences of (1) when Pτ,N

varies substantially across τ . In particular, we will relate the decay of
E[ErrN (k)] = Eτ∼T [(1−Pτ,N)k] to distributional mass near Pτ,N = 0, and we
will use the diminishing-returns structure implicit in (1) to justify principled
compute allocation under (2).

9

4 From Episode Difficulty to Power-Law Inference
Scaling

The per-episode model (1) isolates a single latent parameter Pτ,N that mea-
sures how frequently the candidate generator, coupled with verification, pro-
duces an executable solution on episode τ . To pass from a within-episode
statement to a deployment-wide compute–reliability law, we must under-
stand how Pτ,N varies across τ ∼ T . In particular, the scaling with k is
governed not by typical episodes but by the “hard” tail where Pτ,N is very
small: these are precisely the instances on which many independent trials
are required before an acceptable candidate appears.

Formally, for fixed model size N and deliberation budget k, the expected
test-time error rate is

E[ErrN (k)] = Eτ∼T

[
(1− Pτ,N)k

]
. (4)

Writing P for a generic draw from the marginal distribution of Pτ,N over τ ,
with density fN on [0, 1], we may express (4) as the integral

E[ErrN (k)] =

∫ 1

0
(1− p)kfN (p) dp. (5)

The behavior of (5) as k → ∞ depends on how much probability mass fN
assigns to small p. If P were bounded away from 0 almost surely, then
(1 − P)k would decay exponentially and so would E[ErrN (k)]. Conversely,
if T includes a non-negligible fraction of episodes for which Pτ,N is arbi-
trarily close to 0, then those episodes dominate (5) and the decay becomes
polynomial.

Our central regularity assumption is that the density near 0 behaves as
a power law:

fN (p) = cNp
aN−1(1 + o(1)) as p ↓ 0, (6)

for constants aN > 0 and cN > 0. Although P ∈ [0, 1] is bounded, we adopt
the standard heavy-tail terminology to emphasize that (6) allows substantial
mass near 0. The parameter aN is the effective “difficulty exponent”: smaller
aN means more probability mass concentrated near P = 0, i.e., more episodes
on which the generator almost never proposes a viable plan.

Under (6), the expected error exhibits a power-law decay in k. The
derivation is a Laplace-type asymptotic controlled by the change of variables
u = kp and the elementary approximation (1−p)k ≈ e−kp for the values of p
that matter when k is large. Indeed, for any fixed δ ∈ (0, 1), we decompose
(5) as∫ 1

0
(1− p)kfN (p) dp =

∫ δ

0
(1− p)kfN (p) dp+

∫ 1

δ
(1− p)kfN (p) dp. (7)

10

The second term in (7) is negligible because (1−p)k ≤ (1− δ)k for p ∈ [δ, 1],
hence ∫ 1

δ
(1− p)kfN (p) dp ≤ (1− δ)k, (8)

which decays exponentially in k. The first term captures the contribution of
the hard episodes. Using (6) and bounding (1− p)k between e−kp/(1−p) and
e−kp for p ∈ (0, δ) (or simply using (1 − p)k = ek log(1−p) and log(1 − p) =
−p+O(p2)), we obtain∫ δ

0
(1− p)kfN (p) dp = (1 + o(1))

∫ δ

0
e−kp cNp

aN−1 dp. (9)

The remaining integral is explicit after the substitution u = kp:∫ δ

0
e−kpcNp

aN−1 dp = cNk
−aN

∫ kδ

0
e−uuaN−1 du = cNk

−aNΓ(aN) (1+ o(1)),

(10)
since

∫ kδ
0 e−uuaN−1du → Γ(aN) as k → ∞. Combining (8)–(10) yields the

asymptotic law

E[ErrN (k)] = cNΓ(aN)k−aN (1 + o(1)). (11)

Thus the expected error is Θ(k−aN), and, equivalently, the expected success
satisfies

E[SuccN (k)] = 1− cNΓ(aN)k−aN (1 + o(1)). (12)

This conclusion is insensitive to the behavior of fN away from 0; the entire
asymptotic is determined by the small-p region, reflecting the fact that suf-
ficiently easy episodes are solved quickly and cease to influence the marginal
gains at large k.

We emphasize the operational interpretation of the exponent aN . Solving
(11) for the compute required to reach an average error level ϵ gives

k(ϵ) ≍
(
cNΓ(aN)

ϵ

)1/aN

. (13)

Hence when aN is small (substantial mass of nearly-impossible episodes),
reducing ϵ requires a rapidly increasing deliberation budget; when aN is large
(few extremely hard episodes), additional compute yields steep reliability
gains. Empirically, (11) predicts that a log–log plot of E[ErrN (k)] versus k
is approximately linear for large k, with slope −aN , providing a direct route
to estimating the difficulty tail from deployment traces.

Finally, we remark on the boundary cases suggested by (6). If fN (p)
vanishes near 0 fast enough (e.g., Pτ,N ≥ p0 > 0 almost surely), then the
decay is exponential rather than polynomial. If there is an atom at p = 0 (a
positive probability of unsolvable episodes under the given generator/verifier

11

interface), then E[ErrN (k)] converges to that atom mass and no amount of
deliberation can drive the error to 0. The regime (6) lies between these ex-
tremes and is the one in which inference-time scaling laws are both nontrivial
and informative.

The next section complements (11) by showing that the exponent aN is
not merely an artifact of the particular “sample-until-accept” rule: under the
candidate-and-verify access model, no algorithm restricted to k samples can
improve the asymptotic exponent on worst-case distributions satisfying (6).

5 Tight Bounds and Minimax Optimality

We now complement the asymptotic upper bound implicit in (11) by show-
ing that, under the candidate-and-verify access pattern, the exponent aN is
minimax-optimal: no procedure restricted to k candidate generations and
verifications can improve the worst-case scaling over episode distributions
whose density near 0 satisfies (6). We also record several robustness state-
ments, clarifying which modeling perturbations preserve the same compute–
reliability law and which fall outside the oracle model.

A minimax formulation. Fix N and consider an arbitrary (possibly
adaptive, randomized) algorithm A that, on an episode τ , may sequentially
query the sampling oracle to obtain candidates y1, y2, . . . and the verification
oracle to obtain outcomes si ∈ {0, 1}, stopping after at most k queries in
total. Under (H1)–(H2) with i.i.d. candidates, conditional on τ the verifica-
tion outcomes are i.i.d. Bernoulli(Pτ,N) (after absorbing any benign failure
modes into Pτ,N). Hence A observes only a stream of failures until (possibly)
the first acceptance, at which point it may stop and succeed. In particular,
for fixed p ∈ [0, 1], the success event under any A using at most k samples
is contained in the event that at least one of k independent Bernoulli(p)
trials equals 1. Therefore, writing Succp(A, k) for the success indicator when
Pτ,N = p deterministically,

P(Succp(A, k) = 1) ≤ 1−(1−p)k, P(Errp(A, k) = 1) ≥ (1−p)k. (14)

The inequality (14) is tight for the canonical “sample-until-accept” rule, but
the point is that adaptivity cannot improve the dependence on p without
additional structure: failures convey no actionable information beyond the
fact that success has not yet occurred.

Matching lower bounds via Yao. To pass from (14) to a minimax state-
ment over episode distributions, we apply Yao’s principle: it suffices to ex-
hibit a randomized instance distribution over P such that every deterministic
k-query algorithm has expected error at least of order k−aN . Let F be any

12

distribution on [0, 1] with density satisfying (6). Then for every algorithm
A,

EP∼F [P(ErrP (A, k) = 1 |P)] ≥ EP∼F

[
(1− P)k

]
=

∫ 1

0
(1− p)kfN (p) dp.

(15)
By the same Laplace-type asymptotics used previously (now interpreted as
a lower bound because (14) holds for all A), we obtain

inf
A:≤k queries

sup
F : fN (p)=cNpaN−1(1+o(1)) near 0

E[ErrN (k)] ≥ cNΓ(aN) k−aN (1+o(1)).

(16)
Together with (11), this yields matching upper and lower constants for a nat-
ural class of distributions whose small-p behavior is controlled by (aN , cN),
establishing that the power-law exponent is information-theoretically sharp
under the oracle model. In particular, any improvement in the exponent
must come from relaxing the access model (e.g., allowing SN (· | τ) to con-
dition on past outcomes in a way that increases Pτ,N) rather than from a
more sophisticated stopping rule.

Robustness to imperfect verification. Assumption (H2) can be weak-
ened without changing the scaling exponent. Suppose instead that veri-
fication is noisy: given a candidate, the verifier outputs s ∈ {0, 1} with
false-negative rate βτ and false-positive rate ατ , and executing an accepted
candidate succeeds with probability at least 1− ατ (so false positives corre-
spond to unsafe or infeasible plans). Conditional on τ , the probability that a
single generate–verify–execute attempt both passes verification and succeeds
is

Qτ,N := P(accept & succeed | τ,N) = (1− βτ)Pτ,N · (1− ατ), (17)

under the natural conditional independence idealization. If ατ , βτ are bounded
away from 1 and do not introduce additional heavy tails near 0, then Qτ,N

inherits the same tail exponent as Pτ,N : for small p, the map p 7→ q = ητp
with ητ = (1 − βτ)(1 − ατ) is locally linear, hence the density of Q near 0
still behaves as c̃NqaN−1. Consequently,

E[ErrN (k)] = E
[
(1−Qτ,N)k

]
= Θ(k−aN), (18)

with constants rescaled by the distribution of ητ . If, however, ητ itself has
substantial mass near 0 (e.g., the verifier is frequently uninformative), then
the effective tail exponent can decrease; this corresponds to deployment
regimes in which verification noise creates additional “nearly-impossible”
episodes.

13

Robustness to dependence across candidates. The i.i.d. assumption
(H1) is likewise relaxable to weak dependence. Let Ei denote the event that
the ith candidate both passes verification and succeeds when executed, and
write qτ := P(Ei | τ) for the marginal per-attempt success probability. If,
conditional on τ , the events {Ei} are negatively associated or satisfy an
exponential-mixing condition implying an upper bound of the form

P

(
k⋂

i=1

Ec
i

∣∣∣∣∣ τ
)

≤ exp(−κkqτ) for some κ ∈ (0, 1], (19)

then the same Laplace analysis applies with an effective compute κk, and the
expected error remains Θ(k−aN) whenever the density of qτ near 0 behaves
as qaN−1. Conversely, strong positive dependence can reduce the effective
number of independent trials (e.g., repeated sampling of near-duplicates),
which changes constants and may even destroy the power law if it induces
an atom at qτ = 0. This delineates a concrete operational requirement:
candidate generation must explore sufficiently diverse plans for additional
compute to translate into additional independent chances of success.

Extensions to imperfect critics and world models. Finally, many
practical systems employ graded critics, learned feasibility scores, or world-
model rollouts rather than a perfectly sound accept/reject verifier. In our
abstraction, such mechanisms amount to replacing the binary oracle by
a stochastic filter and then choosing an execution rule (e.g., execute the
highest-scoring candidate). Under minimal assumptions—namely that, con-
ditional on τ , each candidate produces an i.i.d. score s and an execution
outcome, and the algorithm’s decision is measurable with respect to ob-
served scores—the probability of eventual success after k candidates is still
upper bounded by the probability that at least one candidate is truly ex-
ecutable. Hence the minimax lower bound persists unless the additional
signals allow the algorithm to increase the underlying per-candidate exe-
cutability probability through structured resampling or proposal adaptation.
When world-model rollouts are used solely as a verifier surrogate, their errors
enter exactly as in (17). When, instead, rollouts are used to optimize can-
didates (e.g., search in plan space using simulated gradients), the effective
Pτ,N becomes a function of k rather than a fixed latent parameter, placing
the method outside (H1) and making genuinely better exponents possible in
principle.

These tightness and robustness results justify treating aN as the canoni-
cal descriptor of inference-time compute scaling under candidate-and-verify
access. In the next section we compare the marginal benefits of increasing
k versus increasing N , and we formalize when a phase transition in optimal
resource allocation must occur.

14

6 Phase Transition Between Model Scaling and In-
ference Scaling

We now formalize when additional test-time compute k is the dominant lever
for improving expected success, versus enlarging the deployed model size N
(via additional training) while holding test-time compute fixed. Throughout
we fix an episode horizon H and the candidate-and-verify access model, and
we interpret N as fixed during deployment.

Asymptotic error model and marginal returns. Write

S(N, k) := E[SuccN (k)] = 1− E[ErrN (k)] .

Under (H1)–(H3), Theorem 1 yields the asymptotic form

E[ErrN (k)] = AN k−aN (1 + o(1)), AN := cNΓ(aN), (20)

hence
S(N, k) = 1−ANk

−aN + o
(
k−aN

)
. (21)

We compare marginal gains in expected success from increasing k versus
increasing N . For test-time compute, differentiating (21) (formally treating
k as continuous) gives

Mtest(N, k) :=
∂S

∂k
(N, k) = aNAN k−aN−1 (1 + o(1)). (22)

For model size, it is natural to measure marginal return per multiplicative
increase in N , i.e. per unit of logN :

Mmodel(N, k) :=
∂S

∂ logN
(N, k) = − ∂

∂ logN

(
ANk

−aN
)
+ o
(
k−aN

)
. (23)

Expanding the derivative and using AN = cNΓ(aN), we obtain

Mmodel(N, k) = k−aN

[
AN (log k)

∂aN
∂ logN

− ∂AN

∂ logN

]
+ o
(
k−aN

)
, (24)

with
∂AN

∂ logN
= Γ(aN)

∂cN
∂ logN

+AN ψ(aN)
∂aN
∂ logN

, (25)

where ψ = Γ′/Γ is the digamma function.

15

A crossing condition and existence of a threshold N∗. We say that
inference-time scaling dominates at (N, k) if Mtest(N, k) > Mmodel(N, k),
i.e. one additional unit of test-time compute yields more expected success
than a marginal multiplicative increase in model size. Using (22)–(24), and
ignoring lower-order terms in k, the dominance condition is

aNAN k−aN−1 > k−aN

[
AN (log k)

∂aN
∂ logN

− ∂AN

∂ logN

]
, (26)

or equivalently

aN
k

> (log k)
∂aN
∂ logN

− 1

AN

∂AN

∂ logN
. (27)

This makes explicit how a phase transition can occur. If, as N grows, im-
provements in the tail parameters saturate in the sense that

∂aN
∂ logN

→ 0,
∂ logAN

∂ logN
→ 0, (28)

then the right-hand side of (27) tends to 0, while the left-hand side re-
mains aN/k > 0 at fixed k. Under mild regularity (e.g. continuity in N and
eventual monotonic decrease of the right-hand side), there exists a (possibly
k-dependent) N∗(k) such that for all N ≥ N∗(k), inference-time compute
has the larger marginal return. Conversely, if ∂aN/∂ logN remains bounded
away from 0, then the term AN (log k) ∂aN/∂ logN can dominate for large
k, and enlarging N may remain competitive even at substantial test-time
compute.

Latency constraints and feasibility of target error. A practically
relevant comparison fixes a latency cap K and asks whether compute alone
can reach a target expected error ϵ. Using (20), achieving E[ErrN (k)] ≤ ϵ
requires

k ≳

(
AN

ϵ

)1/aN

. (29)

If K < (AN/ϵ)
1/aN , then no compute-allocation strategy respecting the per-

episode latency cap can reach ϵ with model size N within our oracle abstrac-
tion; the only remaining lever is to increase N so as to decrease AN and/or
increase aN until

AN K−aN ≲ ϵ. (30)

Thus, under strict latency, model scaling is forced whenever (30) fails; whereas
when (30) holds with margin, one expects diminishing returns from further
model scaling and increasing k up to K becomes the direct path to reliability
improvements.

16

Resource-allocation guidance under a compute penalty. If we in-
troduce a per-episode utility U(N, k) = S(N, k)− λk with λ > 0, then (22)
shows that the locally optimal k at fixed N satisfies (again at the level of
the asymptotics)

aNAN k−aN−1 ≈ λ, i.e. k∗(N) ≈
(
aNAN

λ

) 1
aN+1

, (31)

subject to truncation by K. When N is large enough that (28) holds, k∗(N)
changes slowly with N , and improvements in U are primarily obtained by
adjusting k (or, under a global budget, by reallocating kτ across episodes).
WhenN is small and ∂aN/∂ logN is substantial, the termAN (log k) ∂aN/∂ logN
in (24) indicates that increasing N can be particularly valuable in regimes
where k is already moderately large, because improvements in aN amplify
the effect of every additional test-time sample through the factor k−aN .

The preceding comparison is pointwise in (N, k) and does not yet pre-
scribe how to choose k when Pτ,N varies across episodes and is not observed
directly. We turn next to compute controllers that allocate deliberation
adaptively across episodes and within episodes, obtaining approximation
guarantees offline and regret bounds online.

7 Adaptive Compute Allocation Algorithms

We now specify compute controllers that (a) allocate a global budget across
episodes and (b) optionally stop early within an episode when additional
sampling is not worth its opportunity cost. The main difficulty is that Pτ,N

is latent and episode-specific; the controller only observes verifier outputs
(accept/reject or scores) and possibly cheap side information z = z(τ).

Offline budgeted allocation (known or estimated difficulty). Con-
sider first an offline benchmark in which we are given T episodes τ1, . . . , τT
together with their latent parameters Pt := Pτt,N , and a global budget∑T

t=1 kt ≤ B with kt ∈ {0, . . . ,K}. Under the i.i.d. candidate model and
sound verification, the expected success on episode t is

gPt(kt) = 1− (1− Pt)
kt .

By Theorem 3, each gPt is concave (diminishing returns), and by Theo-
rem 4 the greedy policy that repeatedly assigns the next compute unit to
the episode with the largest marginal gain

∆t(j) := gPt(j + 1)− gPt(j) = Pt(1− Pt)
j

achieves a (1−1/e)-approximation to the offline optimum under a cardinality
budget; the same conclusion holds with weighted per-sample costs by allo-
cating according to ∆t(j)/w in the standard knapsack-submodular variants.

17

This provides a principled target for any implementable controller: we seek
to approximate the greedy marginal-gain ordering without direct access to
Pt.

In practice Pt must be replaced by an estimator P̂t. A useful stability
fact is that gp(k) is Lipschitz in p:∣∣gp(k)− gq(k)

∣∣ =
∣∣(1− q)k − (1− p)k

∣∣ ≤ k|p− q|, (32)

since the derivative in p is bounded by k on [0, 1]. Thus plug-in allocation
based on P̂t incurs at most an additive distortion controlled by kt|P̂t − Pt|
per episode, which justifies spending a small amount of compute on difficulty
estimation when kt is large.

Within-episode adaptive deliberation as optimal stopping. Within
a single episode τ , we may decide after i failed candidates whether to draw
candidate i+1 or to stop and execute a fallback. Without any compute
penalty and without a global budget coupling across episodes, there is no
reason to stop before the cap K, since the success probability 1 − (1 − P)k

is increasing in k. Early stopping becomes nontrivial in two settings: (i) we
impose a per-unit penalty λ > 0 (as in a utility S − λk), or (ii) we have a
global budget and interpret one more within-episode query as consuming a
scarce resource with an implicit shadow price λ.

A convenient formalization is Bayesian. Place a prior P ∼ Beta(α, β) for
the episode’s latent success probability, and update after failures (rejects)
using conjugacy. Conditioning on i failures and no accept so far, we have
the posterior

P
∣∣ (i failures) ∼ Beta(α, β + i), E[P | i] =

α

α+ β + i
.

If we value success at 1 and charge cost λ per additional sample, then the
myopic one-step improvement from drawing one more candidate is exactly
the posterior mean E[P | i] (since the next draw succeeds with probability
P and otherwise leaves us where we started). Hence a simple stopping rule
is the threshold test

continue at step i+1 iff
α

α+ β + i
> λ, (33)

subject to the hard cap K. When a global budget is present, we take
λ to be the current estimate of the opportunity cost of one unit of com-
pute (equivalently, a Lagrange multiplier chosen to approximately saturate∑

t kt ≤ B). More refined stopping rules can incorporate score-valued veri-
fiers by replacing the Bernoulli observation model with a calibrated likelihood
for si = V (yi, τ) and maintaining a posterior over P ; the same comparison
of marginal value to λ applies, with E[P | data] computed under the score
model.

18

Online allocation under a global budget (bandits with knapsacks).
We next consider the streaming setting in which episodes τ1, . . . , τT arrive
sequentially and we must decide kt online while respecting

∑T
t=1 kt ≤ B.

Here Pt is unobserved and varies across episodes; the controller only sees a
context zt (cheap difficulty features) and sampling outcomes. This can be
cast as a contextual bandits-with-knapsacks problem: choosing an “action”
k ∈ {0, . . . ,K} consumes cost k and yields reward gPt(k), with Pt drawn
from an unknown conditional distribution given zt.

General BwK theory implies an unavoidable exploration cost: any al-
gorithm must sometimes spend compute suboptimally to learn which con-
texts warrant deliberation. Conversely, standard optimistic (UCB-style) or
posterior-sampling (Thompson-style) controllers achieve sublinear regret un-
der mild assumptions (bounded rewards, bounded costs, and either finite ac-
tion sets or controlled function classes for mapping z to predicted difficulty).
Concretely, after discretizing the action set to {0, . . . ,K}, one obtains re-
gret bounds of the form Õ(

√
T (K + 1)) (or budget-dependent analogues)

against the best fixed policy in hindsight, with the precise rate depending
on the chosen model class for context-to-reward prediction and on whether
one competes with stationary or adaptive benchmarks.

Practical estimators of per-episode difficulty. Finally we record esti-
mators P̂τ suitable for driving either greedy offline allocation or online BwK
controllers. The simplest is a probe-and-allocate scheme: spend a small
initial budget k0 on each episode, compute an empirical acceptance rate
P̂ = (s+α)/(k0+α+β) with a Beta prior, and then allocate the remaining
budget using the greedy marginal rule with P replaced by P̂ . When verifier
outputs are score-valued, we may map scores to calibrated probabilities (e.g.
via isotonic regression on held-out data) and treat the calibrated score as an
estimate of E[P | s]. In embodied settings, additional low-cost signals z(τ)
(model uncertainty, disagreement in an ensemble critic, heuristic measures of
scene clutter, or language-model self-reported uncertainty) can be regressed
to predict P̂ before any sampling; these predictors are most valuable when
B/T is small and probing every episode is expensive. In all cases, the algo-
rithmic objective is the same: approximate the greedy ordering of marginal
gains ∆τ (j), while using within-episode stopping rules such as (33) to avoid
wasting compute on episodes whose posterior difficulty is so high that the
expected return per unit compute falls below the current shadow price.

8 Experimental Protocol (Optional but Strength-
ening)

We describe an experimental protocol that makes the assumptions and pre-
dictions of the candidate-and-verify model directly testable using an open-

19

source vision–language–action (VLA) policy as πN , together with an explicit
sampler SN (· | τ), a verifier V (·, τ), and (optionally) a learned world model
used only at test time. The goal is not to optimize absolute performance,
but to (i) sweep test-time compute Ctest in a controlled manner, (ii) estimate
the inference scaling exponent aN in E[ErrN (k)] ≍ k−aN , (iii) measure how
(aN , cN) vary with N , and (iv) identify an empirical threshold N∗ at which
additional test-time compute yields larger marginal gains than increasing N .

Wrapping a VLA as a candidate generator. Fix an environment
suite defining T (e.g. tabletop manipulation with language instructions,
navigation-and-pick, or multi-step tool use), and fix a standardized episode
representation τ containing the instruction, initial observation x0, and any
allowed scene metadata. We implement a plan y as either (a) an open-loop
sequence of low-level actions of length H, (b) a short sequence of discrete
skills with parameters, or (c) a policy prompt (for hierarchical prompting)
that induces a closed-loop rollout when executed. The sampler SN (· | τ)
is induced by πN by introducing explicit stochasticity: temperature or nu-
cleus sampling for token-based action plans; diffusion noise for continuous
trajectories; or randomized decoding (top-k sampling, stochastic beam) for
skill sequences. We record the exact sampling hyperparameters because they
affect both the independence approximation and the tail of Pτ,N ; to reduce
confounds we keep the sampler fixed across k-sweeps and across model sizes
unless explicitly ablated.

Verifier and soundness checks. We instantiate V (y, τ) as either (i) a
learned critic (value function, success classifier, or constraint classifier), (ii)
a rule-based feasibility checker (collision, kinematic reachability, safety en-
velopes), or (iii) an ensemble that returns accept iff all components accept.
Since our analysis treats verification as sound up to a bounded false-positive
rate, we empirically bound this rate by auditing a random subset of ac-
cepted candidates: execute them in the real/sim environment and estimate
F̂P = P(fail | accept). If F̂P is non-negligible, we report results both (a) with
raw acceptance, and (b) with a tightened accept threshold chosen to reduce
F̂P to a target level, noting that tightening typically reduces Pτ,N and thus
changes cN .

Optional world-model rollouts. To test the effect of additional struc-
ture beyond i.i.d. candidate draws, we optionally augment V with a world-
model rollout: for each candidate y, simulate predicted execution and accept
only if the simulation terminates in a predicted success state with high prob-
ability. We account for the added cost by using weighted compute units:
if generation, verification, and simulation costs are (wg, wv, ws), then the
per-candidate cost is w = wg + wv + ws and the budget is a constraint

20

∑
w ≤ Ctest. When reporting scaling in k, we additionally report scaling

in the wall-clock-normalized budget Ctest to avoid artifacts from expensive
verifiers.

Controlled compute sweeps. For each fixed N , we evaluate success as a
function of the per-episode cap K by running the same episode set multiple
times with different budgets k ∈ {0, 1, . . . ,Kmax}. The primary measure-
ment is

ÊrrN (k) = 1− 1

M

M∑
m=1

Succτm,N (k),

where τ1, . . . , τM ∼ T are held fixed across budgets to reduce variance. We
then fit an exponent âN by regressing log ÊrrN (k) on log k over a range
k ∈ [kmin, kmax] chosen to avoid trivial regimes (very small k dominated by
non-asymptotic effects, and very large k near saturation). We report (i) the
fitted slope with confidence intervals via bootstrap over episodes, and (ii)
goodness-of-fit diagnostics. Because finite-sample effects can mimic power
laws, we also report a two-parameter fit ÊrrN (k) ≈ Ak−âN + b to detect an
error floor b > 0 (which corresponds to tasks with effectively Pτ,N = 0 under
the fixed sampler/verifier).

Estimating the tail parameters (aN , cN). Beyond fitting ÊrrN (k), we
can estimate the near-zero behavior of the latent Pτ,N . We approximate Pτ,N

by repeated probing: for each episode τ , draw k0 candidates and compute the
empirical acceptance indicator sequence. Under the Bernoulli model, a Beta
posterior yields P̂τ = α+s

α+β+k0
, where s is the number of accepts. Aggregating

{P̂τ} across episodes, we fit a density near 0 by log-log regression of the
empirical CDF: for small p,

F̂N (p) = P(P̂τ ≤ p) ≈ c̃Np
âN ,

which gives an independent estimate of âN that should be consistent with the
error-scaling estimate if the stylized assumptions are approximately valid.

Identifying an empirical threshold N∗. To compare scaling inN versus
scaling in k, we train or select a family of models {πN} (e.g. different param-
eter counts, or different fine-tuning budgets) and repeat the compute sweep
for each N . For a fixed operating point (N, k) we estimate the marginal
test-time gain by a finite difference

M̂test(N, k) = Ŝ(N, k + 1)− Ŝ(N, k),

and the marginal model-size gain by

M̂model(N, k) =
Ŝ(N2, k)− Ŝ(N1, k)

logN2 − logN1
,

21

for adjacent sizes N1 < N2 around N . We then define N̂∗(k) as the smallest
N such that M̂test(N, k) exceeds M̂model(N, k) within statistical error bars.
In deployments with a fixed training budget, we additionally normalize by
measured training cost to compare resource-to-resource tradeoffs.

Ablations and confound controls. To support causal interpretation, we
recommend ablations that isolate deviations from (H1)–(H3). (i) Correla-
tion ablation: vary decoding randomness (temperature, top-p) while holding
k fixed to check whether diversity increases effective independence and steep-
ens scaling; report an estimated effective sample size via acceptance autocor-
relation across candidates. (ii) Verifier ablation: swap V among rule-based,
learned, and ensemble verifiers to test sensitivity of (aN , cN) to soundness
and calibration; separately report F̂P and F̂N. (iii) World-model ablation:
toggle simulation on/off and report scaling as a function of the weighted
budget Ctest; this distinguishes genuine inference-time scaling from merely
spending more expensive compute per candidate. (iv) Nonstationarity con-
trol: freeze environment seeds and initial conditions across budgets and sizes,
and separately evaluate on a time-shifted task distribution to test robustness
of fitted exponents. (v) Fallback control: fix the fallback policy and report
its standalone success, since a strong fallback can mask scaling at small k.

All reported results should include the full compute accounting (number
of candidates, verifier calls, simulator steps, and wall-clock), the fitted scaling
range, and uncertainty estimates over τ ∼ T . This renders the exponent
claims falsifiable and makes the location of any empirical “phase transition”
N∗ comparable across systems.

9 Discussion and Limitations

Our analysis isolates a stylized candidate-and-verify mechanism and derives a
power-law test-time scaling E[ErrN (k)] ≍ k−aN under a heavy-tail condition
on the latent per-episode success probability Pτ,N . We now delineate regimes
in which this prediction may fail or become operationally misleading, and
we articulate implications for safety and benchmarking practice.

When power laws may not appear. Theorem 1 is an asymptotic state-
ment driven by the behavior of fN (p) near p = 0. Consequently, several
departures are expected.

(i) Saturation and error floors. If there is nontrivial mass at Pτ,N = 0 (or,
more generally, if Pτ,N is so small that it is effectively zero within the allowed
cap K), then E[(1−Pτ,N)k] converges to a positive constant as k → ∞, and
a pure power law must eventually break. Empirically this manifests as an
error floor b > 0 in fits of the form ÊrrN (k) ≈ Ak−âN + b. In robotics, such
floors can correspond to irrecoverable perceptual failures, missing tools, or

22

instruction ambiguity that cannot be resolved by additional sampling from
a fixed SN (· | τ) and fixed verifier V (·, τ). We therefore interpret power-
law fits as claims about an intermediate regime: after initial transients and
before saturation.

(ii) Non-heavy-tail episode distributions. If Pτ,N is bounded away from
0 with high probability (e.g. Pτ,N ≥ pmin > 0), then E[ErrN (k)] ≤ (1 −
pmin)

k decays exponentially rather than polynomially. Conversely, if fN (p)
is heavier than the assumed regular variation near 0 (e.g. slowly varying
factors, or mixtures with multiple scales), then a single exponent aN may
not describe the curve over any substantial range of k. This is not a defect
of the proof but a reminder that the exponent is a property of the task
distribution as seen through the chosen sampler and verifier.

Correlated candidates and the effective compute budget. Assump-
tion (H1) posits conditional independence across candidates. In practice,
stochastic decoding often produces highly correlated plans: diverse prefixes
collapse to similar suffixes, diffusion samples concentrate on a few modes,
and implicit replanning can repeatedly revisit the same local minimum. Un-
der dependence, the exact success probability is no longer 1 − (1 − Pτ,N)k,
and marginal gains can be substantially smaller than predicted. One conve-
nient way to summarize this effect is via an effective sample size keff(k) ≤ k
such that

P(no success in k draws | τ) ≈ (1− Pτ,N)keff(k).

Correlations typically induce keff(k) that grows sublinearly in k over rele-
vant ranges, flattening log-log slopes and creating apparent “deviations from
power laws” that are in fact deviations from independence. This limita-
tion is actionable: reporting diversity controls (temperature, top-p, noise
scale) and measuring acceptance autocorrelation across candidates clarifies
whether improvements come from more compute or from a higher keff per
unit compute.

Verifier imperfections and safety. We have treated verification as sound
up to a bounded false-positive rate absorbed into Pτ,N . In safety-critical de-
ployments this abstraction can hide a qualitatively different failure mode:
increasing k can increase the probability of encountering a false accept even
when true accepts are rare. Concretely, if the verifier accepts an unsafe
plan with probability α > 0 per candidate independently of true feasibility,
then the probability of at least one unsafe accept scales as 1 − (1 − α)k,
which increases with k and can dominate any success gains. Thus, the same
mechanism that yields inference scaling can amplify risk unless verification
is calibrated with respect to the deployment distribution and audited at the
operating k. A conservative recommendation is to separate metrics: report

23

(i) task success conditional on accept, (ii) false accept rates (safety viola-
tions) as a function of k, and (iii) the joint utility E[Succ]−λk for explicitly
stated λ when comparing systems.

Nonstationarity and distribution shift. Assumption (H3) fixes an episode
distribution T and hence a fixed fN . In embodied settings, however, the ef-
fective distribution can drift: sensors degrade, clutter varies, human instruc-
tions change, or the agent itself alters the environment over time. Under such
nonstationarity, a controller tuned to a single exponent aN may allocate com-
pute poorly: what was once a “hard tail” episode might become common, or
vice versa. Moreover, global-budget allocation becomes an online learning
problem akin to bandits with knapsacks: one must spend compute to infer
difficulty while preserving budget for exploitation. In this regime, we should
expect regret-type tradeoffs rather than static approximation guarantees,
and we should evaluate compute controllers on time-ordered streams rather
than i.i.d. episode sets.

Benchmarking implications and reporting recommendations. Be-
cause scaling claims are sensitive to sampling, verification, and accounting
conventions, we recommend the following as a minimal reporting standard
for inference-compute studies.

1. Compute units and costs: specify what constitutes one unit of k (candi-
date generation, verification, simulation), and report weighted budgets
when costs differ; include wall-clock latency distributions, not only
counts.

2. Sampler specification: report decoding/noise hyperparameters and any
diversity mechanisms; if multiple candidates are generated in a batched
or beam-like manner, clarify the dependence structure.

3. Verifier operating point: report acceptance thresholds, calibration pro-
cedure, and estimated false-positive/false-negative rates on audited
subsets; include safety violation rates versus k.

4. Curves, not single points: publish ÊrrN (k) (and success) over a range
of k with confidence intervals; state the fitted range [kmin, kmax] and
include alternative fits allowing an error floor.

5. Reproducibility controls: fix episode sets across k-sweeps, disclose ran-
dom seeds for candidate sampling, and report fallback policy perfor-
mance separately.

These practices make it possible to interpret an observed exponent as a
property of the deployed inference procedure rather than an artifact of hidden
compute, hidden correlations, or shifting safety thresholds.

24

10 Conclusion: takeaways and open problems

We have formalized a test-time candidate-and-verify abstraction for embod-
ied agents and used it to relate inference compute to reliability through the
latent per-episode success probability Pτ,N . The central consequence is that,
under a mild regular-variation hypothesis on the density of Pτ,N near 0, the
expected error as a function of test-time budget obeys a power law, with
an exponent aN that is both identifiable from the instance distribution (as
mediated by the sampler and verifier) and minimax-optimal in the sense that
no k-limited procedure can improve the exponent without exploiting addi-
tional structure. In parallel, we have emphasized that per-episode success
is concave in the number of verified candidates, which yields diminishing
returns and allows principled budget allocation across episodes under global
constraints.

From an engineering viewpoint, the immediate takeaway is that inference-
time compute is an algorithmic resource of the same status as model size. The
relevant performance object is not a single curve in k at fixed N , nor a single
curve in N at fixed k, but a two-dimensional surface

S(N, k) = Eτ∼T

[
1− (1− Pτ,N)k

]
, E[ErrN (k)] = 1− S(N, k),

together with its derivatives that quantify marginal returns per unit resource.
In embodied robotics this perspective is operationally necessary: latency
caps K are hard, energy and thermal limits induce time-varying budgets,
and the dominant failure modes often reside in the small-Pτ,N tail where
additional sampling is most valuable. Theorem 5 supplies a precise way
to articulate a “phase transition” between scaling regimes: when improve-
ments in the tail parameters (aN , cN) saturate with training, increasing k
can dominate further increases in N at deployment. Conversely, when the
tail improves rapidly with N , training compute may remain the more ef-
fective lever. A practical implication is that benchmarking should report
not only aggregate success at a single operating point, but also resource-
sensitivity : how quickly success improves with k and how the implied tail
parameters change with N .

Several open problems must be resolved to turn this abstraction into a
predictive theory for robotics deployments.

(1) Joint train–test scaling laws as surfaces. Our results treat N
as fixed at deployment and analyze scaling in k. A natural extension is
to seek empirical and theoretical laws for E[ErrN (k)] as a joint function
of training resources and test-time compute. Concretely, one may posit
parametric forms such as

E[ErrN (k)] ≈ cNΓ(aN)k−aN + bN ,

25

with (aN , cN , bN) depending smoothly on training compute, data, and ar-
chitecture, and then ask for conditions under which these dependencies are
stable across task families. In robotics, where the episode distribution is
shaped by morphology, sensors, and environment design, it is not obvious
that aN should be monotone in N ; additional capacity could change the
mode structure of SN (· | τ) and thereby alter the tail in nontrivial ways. A
satisfactory account should explain when scaling manifests primarily through
aN (changing the hardness tail) versus through cN (changing mass near 0
without changing the exponent), and how these interact with realistic caps
K.

(2) Beyond i.i.d. candidates: diversity mechanisms as first-class
design. Independence of candidate outcomes is the simplifying axis of the
present analysis, but practical samplers are controlled by a small number
of diversity parameters. This suggests treating the sampler not merely as
SN but as a family SN,θ indexed by a diversity control θ (temperature,
noise scale, guidance strength, prompt randomization, or explicit determi-
nantal/coverage objectives). The question is then to characterize the induced
effective tail behavior of Pτ,N,θ and to optimize the triple (N, θ, k) under la-
tency. Even when the marginal gain in k remains diminishing, changing θ can
alter the concavity itself by changing candidate correlations. A principled
treatment would connect diversity controls to an explicit dependence model
and derive guarantees in terms of a measurable quantity (e.g. an acceptance
autocorrelation time or a coupling bound).

(3) Verifier design under coupled success and safety objectives.
In embodied settings, “verification” often bundles multiple functions: con-
straint checking, collision prediction, policy value estimation, and sometimes
learned safety classifiers. The relevant objective is therefore multi-criterion:
maximize task success while bounding safety violations and possibly energy
use. This raises two problems. First, if the verifier provides a calibrated score
rather than a binary accept/reject, we should incorporate score-based selec-
tion (execute the best-scoring candidate) and analyze the associated scaling
with k under assumptions on score distributions. Second, when safety is
a constraint rather than a penalty, the compute allocator must respect a
per-episode risk budget; this resembles constrained optimal stopping and
constrained submodular maximization, for which sharp approximation guar-
antees in the present setting are incomplete.

(4) Online allocation under nonstationarity. Global-budget control
in deployment is intrinsically online: the controller observes partial informa-
tion and must allocate compute sequentially. Under distribution shift, the
exponent aN itself may drift, and the controller must trade exploration (esti-

26

mating difficulty) against exploitation (spending compute where it yields im-
mediate success). Establishing regret bounds for compute controllers in the
candidate-and-verify model, especially when the verifier emits informative
scores, is a concrete theoretical target. For robotics, one must additionally
integrate real-time constraints: compute decisions must be made with small
overhead and with robustness to delayed or noisy feedback.

(5) Standardized inference-compute accounting for robotics. Fi-
nally, the field requires standard accounting conventions for inference com-
pute that are meaningful for embodied agents. We propose that any deploy-
ment report a compute ledger specifying (i) the unit costs for generation,
verification, and any simulation or rollout; (ii) the per-episode cap K and
the distribution of realized k under adaptive stopping; and (iii) the wall-
clock latency distribution on target hardware. Because robotics pipelines
often amortize perception and mapping across candidates, it is essential to
declare what is shared and what scales with k. Without such standardiza-
tion, comparisons across systems conflate algorithmic gains with unreported
compute, and the fitted exponents become artifacts rather than properties
of the inference procedure. Establishing community benchmarks with fixed
ledgers, fixed episode sets, and agreed-upon reporting of success, safety, and
latency as functions of k would make scaling claims falsifiable and would
clarify when inference-time deliberation is the appropriate route to reliabil-
ity.

In summary, we have provided a tractable mathematical lens on inference-
time deliberation for embodied agents. The main opportunity is to elevate
(N, k) co-design—together with sampler diversity and verifier calibration—
to a principled discipline with standardized measurement. The main risk is
to treat any single fitted power law as universal. The open problems above
delineate what must be understood for the candidate-and-verify model to
become predictive across real robotic deployments.

27

	Introduction
	Related Work
	Problem Setup and Computational Model
	From Episode Difficulty to Power-Law Inference Scaling
	Tight Bounds and Minimax Optimality
	Phase Transition Between Model Scaling and Inference Scaling
	Adaptive Compute Allocation Algorithms
	Experimental Protocol (Optional but Strengthening)
	Discussion and Limitations
	Conclusion: takeaways and open problems

