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Abstract

Recent meta-analysis of robotics scaling laws finds that downstream
success improves as a power law in data and model size, but that
scaling on unseen tasks is markedly weaker than on seen tasks. We
formalize this gap by treating embodied datasets as sets of contexts
(scene-object-goal configurations) and defining diversity via geometric
coverage. Our first contribution is a clean problem formulation for
unseen-task scaling in imitation learning: given a dataset of episodes
collected from contexts S, characterize the best-achievable success on
test contexts in terms of the dataset’s coverage radius r(S). Under a
mild Lipschitz transfer assumption in context space, we prove match-
ing upper and lower bounds showing that unseen-task error is O(r(S))
(up to system error). We then relate r(S) to the number of distinct
contexts and the intrinsic dimension of the context distribution, yield-
ing a power law exponent cypseen = —1/dx (up to logarithmic factors).
Our second contribution is an operational estimator of effective diver-
sity Deg = 7~ % and a dataset construction procedure (farthest-first
context selection) that increases Deg faster than naive data collection.
Finally, we propose experiments in procedurally generated embodied
suites where we independently vary episode count and context cov-
erage; we predict that unseen success curves collapse when plotted
against Deg, turning the qualitative slogan “diversity matters” into a
quantitative scaling law relevant for 2026-era robot data engines.
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1 Introduction

Empirical scaling laws have become a practical tool for anticipating perfor-
mance gains from additional data and compute. In robotics, however, the
most salient performance metric is rarely in-distribution return on the tra-
jectories used for training; it is instead the ability to solve unseen tasks,
i.e. tasks whose defining attributes (object instances, layouts, goals, dynam-
ics parameters, sensing conditions) differ from those present in the training
episodes. In this regime we repeatedly observe a gap between “seen-task” and
“unseen-task” scaling: as the number of recorded episodes D increases, per-
formance on previously encountered situations improves rapidly, while per-
formance on held-out situations often improves slowly and saturates early.
This discrepancy is not well explained by raw episode count alone.

The primary reason is that D conflates two distinct resources. On the
one hand, additional episodes reduce statistical error on contexts already
present in the dataset: repeated demonstrations can sharpen an estimate
of the expert action distribution and reduce variance in behavior cloning.
On the other hand, generalization to new tasks depends on where the data
was collected: if most episodes arise from a small number of nearly identical
contexts, then the learner has little basis for transferring to contexts far from
those represented in the dataset. Consequently, two datasets with the same
D may yield markedly different unseen-task performance, depending on their
coverage of the task space.

We formalize this intuition by representing tasks as a family {7,}zcx
indexed by a context variable z taking values in a metric space (X, d). The
context may be directly observed (e.g. a symbolic description of object types
and goal positions), partially observed (e.g. an image), or latent and in-
ferred via an embedding @(z). The metric d is chosen to reflect task similar-
ity; it may be discrete (Hamming/edit distance over attributes), geometric
(e.g. Wasserstein-like distances over layouts), or an embedding distance. A
dataset induces a multiset of contexts S C X', and the relevant quantity for
generalization is how well § approximates the test distribution over contexts.
Intuitively, if every test context lies near some training context, then we can
expect transfer; if there exist test contexts far from all training contexts,
then no amount of repetition on the seen contexts can fix the resulting blind
spots.

Our analysis proceeds under a transfer regularity assumption: success
probability varies smoothly with context in the sense that small context per-
turbations cannot dramatically change success when we compare against a
nearby expert. This hypothesis is deliberately weak: it does not require that
the policy itself be Lipschitz in observations, nor that the transition dynam-
ics vary smoothly in parameters; it asserts only that task performance does
not change arbitrarily fast as a function of context. Under this assump-
tion, unseen-task error can be controlled by the distance from an unseen



test context to its nearest context in §. This yields a concrete operational
recommendation: to improve generalization under a fixed episode budget D,
we must preferentially allocate episodes to new and distant contexts rather
than repeatedly sampling near-duplicates.

To make this principle quantitative, we introduce a coverage-based proxy
for dataset “size” that we call effective diversity. Rather than measuring
progress by D, we measure progress by how small a test context can be
guaranteed to be from the training set in the worst case. This leads to a
scalar summary of the dataset that increases when we add novel contexts
and changes minimally when we repeat old ones. Under standard geomet-
ric regularity conditions on the context space, effective diversity admits an
interpretable scaling with the number of distinct contexts K and yields a
power-law prediction for unseen-task error whose exponent is governed by
an intrinsic dimension dy of the context distribution.

The resulting view clarifies several empirical phenomena. First, it pre-
dicts that unseen-task scaling exponents are typically smaller in magnitude
than seen-task exponents: generalization is limited by how rapidly a finite
set can cover a high-dimensional space, whereas interpolation among previ-
ously observed contexts can improve quickly with repeated samples. Second,
it predicts that aggregating additional episodes without increasing coverage
produces diminishing returns on unseen tasks, even if it continues to improve
performance on the seen contexts. Third, it suggests that comparing learning
systems by plotting error versus D can obscure the true driver of generaliza-
tion; plotting error versus an estimate of effective diversity should produce
a sharper, more stable relationship across architectures, laboratories, and
collection protocols.

We also consider the dataset design problem that arises when a simulator
or environment generator allows one to choose which contexts to sample. In
that setting, the appropriate objective is explicitly geometric: select a set of
contexts that minimizes the coverage radius over a prescribed candidate pool
or evaluation set. This objective coincides with a classical k-center problem,
and consequently admits efficient approximation algorithms with worst-case
guarantees. The practical implication is that one can convert a fixed episode
budget D into a principled context budget K (with m = D/K episodes per
context) and then choose contexts via a farthest-first traversal to maximize
diversity.

Our contributions can be summarized as follows. (i) We propose a
coverage-based effective diversity measure D.g for robotics imitation datasets,
along with a simple plug-in estimator based on nearest-neighbor distances
over an evaluation pool. (ii) We provide a theoretical connection between
coverage and unseen-task error under a Lipschitz transfer hypothesis, and
we show that coverage is not merely sufficient but information-theoretically
necessary for worst-case generalization. (iii) We derive a scaling prediction
linking unseen-task error to effective diversity through an intrinsic dimension



parameter dy, yielding an exponent determined by geometry rather than by
model class idiosyncrasies. (iv) We present a near-optimal context selection
procedure, based on farthest-first k-center approximation, for maximizing
effective diversity under a fixed episode budget.

The practical prediction is straightforward to falsify: when we evaluate
on a preregistered set of unseen contexts, we should observe that perfor-
mance as a function of Deg is more stable than performance as a function of
D, and that interventions which increase coverage (more distinct and more
distant contexts) systematically outperform interventions which merely in-
crease repetition. This perspective does not deny the importance of represen-
tation, optimization, or system imperfections; rather, it isolates a geometric
bottleneck that persists even for an idealized learner and therefore must be
addressed by data collection and benchmark design.

2 Related Work

Empirical neural scaling laws study how loss or error changes as a func-
tion of training resources such as dataset size, model capacity, and compute.
In language modeling, a sequence of works established approximate power-
law relationships between cross-entropy and the number of tokens and pa-
rameters, along with practical prescriptions for allocating compute between
data and model size 77. Related analyses appear in vision and multimodal
learning, often emphasizing that the exponent can depend on the evaluation
distribution and on whether one measures in-distribution likelihood versus
downstream transfer ?7. Our setting differs in two respects: (i) the quantity
of interest is unseen-task success in a family of interactive problems rather
than predictive loss on held-out i.i.d. samples; and (ii) the relevant dataset
resource is not solely the number of recorded episodes, but also the geometric
coverage of the task space from which those episodes originate. Neverthe-
less, the methodological motivation is shared: we seek a low-dimensional
summary of data that yields stable scaling behavior under controlled evalu-
ation.

Scaling phenomena have also been investigated in reinforcement learning
and decision making, where performance depends on both exploration and
function approximation ?7. These works typically scale environment inter-
actions or compute and evaluate on either the same task distribution or a
suite of tasks. Our focus is narrower: we separate, by design, the statisti-
cal benefit of repeated episodes in the same context from the generalization
benefit of collecting episodes in new contexts. This distinction is closely
related to classical notions of distribution shift and coverage in offline RL,
where lack of support of the behavior policy can lead to poor extrapolation
??. However, rather than reasoning about state-action visitation coverage,
we treat the task generator as inducing a metric space of conterts and ask



how far test tasks can be from the training contexts in that metric.

In imitation learning, sample complexity analyses typically quantify the
number of expert demonstrations required to achieve low expected cost on
a fixed task, under either i.i.d. supervised learning assumptions (behav-
ior cloning) or interactive data collection (e.g. DAgger) ??. Subsequent
work refines these guarantees under partial observability, compounding error
over horizon, and structured policy classes 7?7. These results are primarily
within-task: they hold when training and test rollouts are generated in the
same environment instance. Our interest is complementary and orthogonal:
even if we imagine an oracle imitation learner that matches the expert on
each context represented in the dataset, performance can remain poor on
new contexts due to the absence of any nearby training context to transfer
from. In other words, our geometric bottleneck persists even when the usual
supervised-learning estimation error is idealized away.

Several empirical robotics papers have emphasized that diversity of demon-
strations and environments is a key driver of generalization. Large-scale
robot learning efforts aggregate data across objects, scenes, and goals, and
report improved robustness and transfer as the variety of training conditions
increases 777. Benchmarks for manipulation and navigation often oper-
ationalize generalization by holding out object instances, layouts, or goal
specifications, sometimes reporting a steep gap between seen and unseen
conditions ?7. A common limitation is that the data resource is reported
as total transitions or episodes, which does not distinguish repetition from
coverage. Our contribution is to propose an explicit metric-based notion of
coverage radius and an associated effective diversity proxy that is intended to
function analogously to “dataset size” in scaling plots, but tuned to unseen-
task performance.

Metrics for dataset diversity in robotics have been proposed in several
forms. At the trajectory level, one can measure variability via clustering
in representation space, entropy of high-level labels, or diversity over goal
specifications. At the state(-action) level, one can estimate coverage by visi-
tation counts, kernel density estimates, or learned latent occupancy models,
with ties to offline RL reliability ??. These approaches are valuable but can
be difficult to interpret across tasks and modalities, and they may conflate
differences that are irrelevant for transfer with differences that are crucial.
We instead posit that the environment generator naturally induces a context
variable (observed or latent) and that an application-relevant metric d can
be defined on contexts; our effective diversity is then a geometric quantity
derived from nearest-neighbor distances in this metric space. This perspec-
tive aligns with work on coresets and dataset compression, where one chooses
representative points to approximate a distribution or function class, often
using k-center or farthest-first heuristics 7?7. Our dataset design procedure
is a direct instantiation of these ideas in the context space of tasks.

Generalization across tasks has also been studied through meta-learning



and representation learning, where a model is trained across a distribution of
tasks and then adapted or evaluated on new tasks ??. In such frameworks,
one often introduces a latent task embedding or context encoder inferred
from observations, which is then used to condition the policy ??. These
methods motivate our allowance for contexts that are not directly observed:
in practice one may work with an estimated embedding q;(x) and a corre-
sponding metric in embedding space. Our theoretical development does not
assume that the context is perfectly known; rather, it isolates the role of ge-
ometric proximity between training and test contexts, regardless of whether
that proximity is computed in a symbolic space or a learned representation.
Any embedding error is naturally absorbed into an irreducible system term
in the performance bound.

Finally, the relationship between intrinsic dimension and rates of approx-
imation has a long history in nonparametric statistics and learning theory. In
metric spaces with finite doubling dimension, covering numbers control the
number of points needed to approximate a distribution to a given resolution,
yielding rates governed by the dimension rather than by ambient coordinates
?. Our use of doubling dimension is in this tradition: it provides a principled
way to translate “number of distinct contexts” into an expected coverage ra-
dius, and hence into a predicted rate for unseen-task error under Lipschitz
transfer. In the next section we formalize the task family, the seen/unseen
evaluation protocol, and the coverage-based quantities that instantiate this
intuition.

3 Problem Setup and Metrics

We model a family of interactive tasks indexed by a context variable x € X,
where X' is equipped with a metric d : X x X — R>g. Intuitively, = en-
codes those aspects of an environment instance that are intended to vary
across tasks (e.g., object identities and poses, scene layouts, goal specifi-
cations, or domain parameters). For each context x, we define a finite-
horizon POMDP 7, with horizon H. We do not require a particular para-
metric form of 7,; it suffices that 7,, induces a distribution over trajectories
¢ = (01,a1,...,0p,ap) under any policy 7, and a bounded return R(§) or
a binary success indicator. Accordingly, we write

S(x,m) = E[R(f)|§~7’x, Tr],

interpreting S(z,m) € [0,1] as a success probability when R is an indicator,
and as a normalized expected reward otherwise. We also use the complemen-
tary error notation Err(z,7) := 1—S(z,7) (or an affine rescaling, depending
on the evaluation convention).

A policy m maps the agent’s information to actions. In the fully observed-
context regime, we allow 7 to depend explicitly on = (i.e., m(a; | 014, )). In



the latent-context regime, the policy depends only on observations (and in-
ternal memory), and any dependence on x is mediated by a learned inference
mechanism. In both cases we posit the existence of an expert (or oracle) pol-
icy m that is optimal for 7, under the same information structure available
to the learner. The learned policy 7 is trained from offline episodes and is
evaluated without further interaction during training; our primary concern
is not within-task generalization, but rather the dependence of performance
on the set of contexts represented in the dataset.

Training data. We assume access to an offline dataset D consisting of
D episodes, each episode generated in some context x; € X. The multiset
of contexts appearing in the dataset is denoted by S := {z;}2,, and the
set of distinct contexts by U := unique(S), with cardinality K := |U]| (so
K < D). We emphasize that D and K play different roles: D controls
statistical estimation and optimization effects at a fized context, whereas
K (and more generally the geometry of U in (X, d)) controls the ability to
transfer to novel contexts. Since our goal is to isolate diversity effects, many
of our statements later will be expressed as if an oracle learner could match
the expert on each x € U, thereby eliminating within-context estimation
error; the remaining source of error is then attributable to the distance from
a test context to its nearest representative in U.

Seen versus unseen evaluation. We fix a test distribution p over con-
texts, intended to represent the deployment regime. For evaluation we con-
sider a preregistered set of test contexts Xiest C X (often finite in empirical
protocols), together with a partition into seen and unseen subsets:

Xtest = Xseen U Xunseena Xseen N Xunseen = ®7

where typically Xseen € U and Xynseen NU = (. We report aggregate perfor-
mance by integrating (or averaging) over the corresponding parts of the test
distribution, e.g.,

Errunseen(#) = Egop[Err(z, #) |2 € Xnseen),

with the analogous definition for Errgeen (7). When Xieqt is finite and each
context is evaluated by a bounded number of rollouts, we view the resulting
binomial or Monte Carlo variability as separate from the population quantity
above; it may be controlled by increasing evaluation rollouts and is orthog-
onal to the diversity question.

Coverage radius and effective diversity. The central geometric quan-
tity we associate to a dataset is its coverage radius over the test set:

r(S) := sup mind(x,2’).
TEXest z'el
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This is the largest distance from any test context to its nearest training con-
text (among the distinct contexts present in the dataset). The dependence
on U rather than on the full multiset S reflects the fact that duplicating
a context does not improve coverage. In contexts where Xies is replaced
by the support of u, one obtains the corresponding distributional variant
ru(S) = inf{r : Pry,(ming ey d(z, 2') < r) = 1}; for clarity we focus on the
test-set formulation used in typical benchmarks.

To convert radius into a scalar notion comparable across task spaces with
different intrinsic dimension, we define the effective diversity

Deg(S) = r(S)79%,

where dy denotes the doubling dimension (or another intrinsic metric di-
mension) of (X,d) under pu. This definition is motivated by the scaling of
covering numbers in doubling spaces: if N(g) denotes the size of a mini-
mal e-net, then typically N(¢) < e~9%. Thus 7(S)~%* may be read as “the
number of contexts needed to achieve radius r(S),” even when the observed
K is not directly comparable across domains or when contexts are sampled
non-uniformly:.

Observed and latent contexts. In some domains the context x is ex-
plicit (e.g., a symbolic goal specification or a simulator seed), and d can be
defined directly (e.g., edit distance over goal graphs, Hamming distance over
discrete attributes, or Euclidean distance over continuous parameters). In
other domains z is latent and must be inferred from observations. In this
case we assume access to an embedding ¢(z) (learned or engineered) and de-
fine the operational metric by d(z, #') := ||¢(z) — d(z)| or a related distance
in embedding space. Any mismatch between d and the “true” task similarity
relevant for transfer is treated as part of an irreducible system effect, and
will appear later as an additive term in performance bounds. This separation
allows us to state results in terms of a user-specified metric while making
explicit that poor metric choice can limit transfer even when coverage is
large.

This formalization reduces unseen-task generalization to a question about
how well the training contexts cover the test contexts in (X, d). In the next
section we show that, under a Lipschitz transfer hypothesis, r(S) controls
unseen error up to additive system terms, thereby motivating D.g as the
relevant scaling variable for unseen-task performance.

4 Main Theoretical Results: Upper Bounds

We now state an upper bound showing that, once the learner matches the
expert on the contexts present in the dataset, the remaining degradation



on unseen contexts is controlled by the dataset coverage radius. The ar-
gument is intentionally modular: it separates (i) a geometric transfer term
determined by r(S), from (ii) a within-contert learning term (approxima-
tion/optimization /statistical error) on the contexts actually observed, and
(iii) an irreducible system term capturing metric mismatch, partial observ-
ability, and sim2real effects. In particular, the bound clarifies why increasing
the raw episode count D can have negligible effect on Erryngeen when it does
not reduce r(S).

Lipschitz transfer hypothesis. Fix a metric d on X. We assume that
success probabilities vary smoothly across contexts in the following sense:
if a policy behaves as the expert for a nearby context, then its success at
the target context cannot change too abruptly as a function of distance.
Formally, we posit an L < oo such that for any x,2’ € X and any policy 7
satisfying m(- | -,2") = 7%, (- | -, &) (i.e., it matches the expert when executed
in context z’), one has

‘S(x,w)—S(x',w;/) < Ld(z,2). (1)

This hypothesis is weaker than requiring the dynamics of 7, to be Lipschitz
in x; it directly constrains the induced task-level performance functional.
When z is latent and we use an embedding ¢(z) to define d, any violation
of is understood as contributing to the system term introduced below.

Seen-context learning guarantee. Let U = unique(S) denote the dis-
tinct contexts in the dataset. For each ' € U we measure how well the
learned policy 7 matches the corresponding expert on that context. We
allow a generic additive bound

S, 7t) > S’ 7)) — €seen(), ¥ eU, (2)

where €geen (') aggregates approximation error of the policy class, optimiza-
tion error of the training procedure, and finite-sample estimation error due
to having only finitely many episodes at 2. In the oracle (realizable) regime
emphasized for isolating diversity effects, we set €seen(z') < €gys uniformly;
more generally we define €jearn 1= SUP,/cpr €seen ().

Theorem 4.1 (Unseen error upper bound via coverage radius). Assume (|1))
and . Then for any test context v € Xiest,

Err(z,71) < €eamn + €sys + Lmir(}d(a:,a:’). (3)
z'e
Consequently,
Errunseen(ﬁ') < €learn T+ €sys + LT(S) (4)
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Proof sketch. Fix x € Xiest and choose x* € arg ming ¢y d(x, 2’). By we
control the performance of 7 at 2* relative to .. To relate x to 2*, consider
which by definition matches itself on context z*; applying

the policy 7,
yields

S(x,mr) > S(z*, 7)) — Ld(x,x).

Finally, we use that 7 is within €jearn +€sys of T3« at *, and we pessimistically
transfer this deviation to x by absorbing any remaining mismatch into €gys.
Rearranging from success to error yields (3). Taking an average (or supre-
mum) over & € Xypseen gives , and using the definition of r(S) completes
the argument. O

Interpretation and decomposition. The bound (4] exhibits the promised
three-way decomposition:

Errunseen S L T(S) + €learn + €sys
~—— e
coverage/transfer approx. & opt. on seen irreducible system

The coverage term depends only on the set of represented contexts U and is
unchanged by repeating contexts; thus increasing D while keeping K = |U|
fixed can reduce €jeay (via better estimation on seen contexts) but cannot
improve the leading transfer term. Conversely, increasing K in a way that
reduces r(S) improves the bound even if the number of episodes per context

is held fixed.

Effective diversity as the scaling variable. In a doubling space, r(S)
is the correct geometric bottleneck, and Deg(S) = r(S)~% provides a
dimension-normalized proxy for how many contexts have effectively been
covered. Writing in terms of Deg yields

Errunseen(T) < €learn + €sys + L Deﬁf(S)_l/dX,

which motivates fitting a power law in Deg rather than in D. The subsequent
lower bound results will show that, without additional structure beyond
Lipschitz transfer, dependence on 7(S) (and hence on D.g) is unavoidable
up to constant and logarithmic factors.

5 Main Theoretical Results: Lower Bounds

We now complement the coverage-based upper bound by a minimax lower
bound showing that, under no assumptions beyond the Lipschitz transfer
hypothesis, dependence on the coverage radius is information-theoretically
unavoidable. The guiding point is that the dataset reveals behavior only on
the represented contexts. If there exists a test context at distance =~ r(S)
from all represented contexts, then an adversary can modify the task family

11



in a way that is (i) consistent with all training episodes, (ii) still L-Lipschitz
across contexts, yet (iii) forces any learned policy to incur error at least pro-
portional to that distance on at least one unseen context. Consequently, any
improvement in unseen performance must come from reducing r(S) (equiv-
alently increasing Deg), rather than from algorithmic ingenuity alone.

Theorem 5.1 (Minimax lower bound: coverage is necessary). Fiz a (multi)set
of training contexts S C X and let U = unique(S). There exists a context-
indexed task family {7;}rcx with bounded success probabilities, satisfying
the Lipschitz transfer hypothesis (1)), such that for any (possibly randomized)
learning algorithm A that outputs a policy 7 = A(D) using only episodes
collected on contexts in S, we have

sup Err(z,7) > ¢r(S) — €obs, (5)
TEXpest
for a universal constant ¢ > 0 and an additive term eqns capturing any ez-
ogenous observation noise or non-identifiability that persists even at a fized
context.

Proof idea (indistinguishability via a packing argument). We out-
line a standard reduction (Le Cam / Yao) adapted to our context-indexed
setting. Let r := r(S). By definition of r, there exists xg € Xiest such that
d(zg,u) > r for all u € U. We will construct two task families, 7 and 7,
which agree on all contexts in U (hence generate identical training data dis-
tributions on &), but induce different optimal behavior at xy in a way that
is detectable only by interacting with contexts near xg. Since the learner
never observes episodes at xy (or near it, if r is large), it cannot reliably
distinguish 7+ from 7 —, implying that its output must be suboptimal on
at least one of them at xg.

Concretely, consider a stylized family of horizon-H tasks in which the
only decision that matters is a single binary action a € {+1,—1} taken at
the first step; the episode then terminates with a Bernoulli success whose
mean depends on (z,a). (This can be realized as a degenerate POMDP with
trivial observations and a terminal reward.) For a chosen center ¢, define a

bump function
d
b(x) = max {0, 1- M},
,
which is 1/r-Lipschitz with respect to d and satisfies b(u) = 0 for all w € U
since d(u,rp) > r. Now define two instances 7+ and 7~ by specifying
success probabilities

Si(r,a) == - &£ % b(x) - a,

1
2
clipped to [0, 1] if desired (for small enough r this clipping is unnecessary;
otherwise one may rescale constants). Several properties are immediate.
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First, for every training context u € U we have b(u) = 0, hence Si(u,a) =
S_(u,a) = 1/2 for both actions. Therefore, the entire distribution over
training episodes (including actions, observations, and outcomes) is identical
under 7+ and 7 —, regardless of the data-collection policy used on S. Second,
at the unseen context xy we have b(xg) = 1, and the optimal action differs
between the two instances: 7 prefers a = +1 while 7~ prefers a = —1,
with an optimality gap of order Lr. Third, the mapping = — Si(z,a) is
L-Lipschitz up to constant factors, since b is 1/r-Lipschitz and the prefactor
is proportional to Lr. This realizes the transfer regularity demanded by
at the level of the induced success functional.

Under this construction, any learning algorithm A produces (possibly
randomized) & based on data that is identically distributed under 7+ and
T~. Thus, 7 cannot correlate with the hidden sign. By a two-point testing
argument, the expected suboptimality of 7« at xy under the uniform prior
over {71, 7} is at least a constant fraction of the gap, hence at least
Q(Lr). Converting suboptimality in success to an error lower bound yields
(5) (absorbing constants into ¢ and any unavoidable ambiguity into €,ps). A
more refined version replaces a single xg by a packing of many well-separated
centers and uses Fano’s inequality; this yields the same linear dependence
on 7(8) while making explicit that the adversary can place the “hard” region
anywhere that remains uncovered by U.

Tightness and logarithmic factors. Theorem matches the upper
bound dependence on r(S) up to constants (and the additive system/observation
terms). In particular, in regimes where e and eops are negligible, the
quantity r(S) is the correct rate-determining bottleneck: no algorithm can
guarantee Errypseen = 0(r(S)) uniformly over all task families obeying Lip-
schitz transfer. When § is itself random (e.g., K i.i.d. distinct contexts),
the remaining gap between achievable and unavoidable rates arises not from
learning but from geometry and concentration: expected coverage radii in
doubling spaces typically scale as K ~1/%x up to log K factors stemming from
uniform control over an e-net. Thus, while the next section will translate cov-
erage into a power law in Deg, the present lower bound already establishes
that any such power law must ultimately be governed by the geometry of
context coverage rather than the raw episode count.

6 From Coverage to Power Laws: Doubling-Dimension
Radius Scaling

We now translate the radius-based upper and lower bounds into an explicit
scaling prediction as the number of distinct training contexts grows. The key
point is that, under the Lipschitz transfer model, the only dataset statistic

13



that enters the worst-case unseen error is the coverage radius

r(S) := sup mind(z,z’),
TEXest z'eS
where we may without loss restrict S to its set of unique contexts. Thus, to
understand how unseen error improves with more data, it suffices to under-
stand how quickly r(S) decreases as we add new, previously-unseen contexts.

Radius scaling in doubling spaces. Assume that contexts are drawn
i.i.d. from a test distribution p supported on a metric space (X,d) with
finite doubling dimension dy. Let Sk denote K i.i.d. draws from p, and
let Ux = unique(Sk) be the induced set of distinct contexts (we ignore
repeats, since repeats do not improve coverage). Classical covering-number
arguments imply that for sufficiently large K,

E[r(Ux)] = @((K/logK)_l/dX), r(Ugx) = (K% whp. (6)

The intuition is standard. In a doubling space, the number of balls of radius
e required to cover typical mass scales as =% up to constants. If we choose
€ so that the covering number is on the order of K, then i.i.d. sampling
populates most covering cells with high probability; the logarithmic factor
arises from the uniform control needed to avoid leaving any cell empty (a
coupon-collector effect over an e-net). Equation @ formalizes that geometric
statement in the quantity we care about, namely the maximal distance from
a test point to its nearest sampled context.

Unseen error as a power law in effective diversity. Combining @
with the coverage-based bound (Theorem 1) yields an explicit prediction for
the unseen scaling curve. Indeed, for a learner that is essentially optimal on
the represented contexts up to €sys, we have

Errynseen < €sys T+ L 7n(UK) .
Taking expectations and substituting @ gives
E [Errunseen] < Egys T+ O<L K_l/dX ) ’ (7)

and Theorem 4 implies that this dependence on 7(Ug) (hence on K~1/dx)
is unavoidable up to constants in the worst case. It is therefore natural to
reparametrize the horizontal axis by an effective diversity

Deg(S) = r(8) %,

which is monotone in coverage and (in doubling spaces) is equivalent to the
number of “e-balls worth of support” covered by the dataset. Writing in
terms of Deg yields the power-law form

1

~~ « 3 p—
Errunseen = ADefifmseen + F, Qlunseen = _d )
X

E = €sys; (8>

14



where A absorbs L and distribution-dependent constants and O(-) logarithms
have been suppressed. The exponent ayupseen 1S stable in the sense that it
depends only on the intrinsic metric dimension of the context space under p,
not on the learning architecture, optimizer, or other implementation details
(which, in our abstraction, affect primarily the additive floor F).

Why unseen scaling is typically slower than seen scaling. The same
dataset may exhibit substantially different scaling behavior on seen and un-
seen contexts. On seen contexts, additional episodes at already-represented
contexts can reduce estimation error, imitation mismatch, and other context-
local effects; consequently, seen performance may improve primarily with
total episode count D, and its effective exponent can be steeper when the
learner benefits from repeated supervision. By contrast, under the present
transfer model, unseen performance cannot improve unless the set of repre-
sented contexts becomes a finer net over Xiet. Repeating an already-covered
context does not reduce r(S), hence cannot improve the worst-case unseen
guarantee beyond the system floor. In this sense, the unseen exponent is
“geometry-limited”: it is controlled by dy through , and in typical regimes
1/dy is small enough that |unseen| < |Cscen-

Implications for dataset construction under a fixed episode budget.
Let D be the total episode budget. If we allocate m episodes per context and
collect K distinct contexts, then D = K'm. Under the idealized assumption
that the learner matches the expert on each represented context once that
context is present (i.e., no residual estimation error from finite m), the bound
depends only on K through r(Uk), so the optimal strategy is to maximize
K (take m = 1) and thereby minimize r(S). In more realistic settings,
finite m reduces within-context error but does not change coverage; thus we
obtain an explicit design tension: increasing m can lower the additive terms
bundled into E, while increasing K improves the geometric term AD;H1 fdx,
Our framework separates these contributions and predicts when additional
repeats will saturate (once E dominates) versus when acquiring new contexts
will continue to pay off.

Finally, since Dg is defined through a metric, the same analysis applies
when contexts are not directly observed, provided we can work in a learned
embedding ¢(z) and an induced distance d(¢(z), (') that preserves neigh-
borhood relations relevant for transfer. This motivates estimating Deg di-
rectly from the observed set of contexts (or embeddings) and designing sam-
pling procedures that explicitly minimize the empirical coverage radius. The
next section makes these statements algorithmic by giving concrete estima-
tors and near-optimal context-selection rules.
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7 Algorithms: Estimating Effective Diversity and
Designing High-Coverage Datasets

The preceding analysis reduces unseen-task behavior to a geometric statistic
of the set of distinct contexts represented in the dataset. We now make
this reduction operational: given a finite dataset of episodes (possibly with
repeated contexts), we estimate the coverage radius and hence Deg; given
control over a procedural generator or a large candidate pool of contexts, we
construct a high-coverage dataset subject to a fixed episode budget.

Estimating coverage radius and D.g from a dataset. Let D = {(z;,episode;)}2,
be an offline dataset and let

U := unique({z;}2,), K = |U].

Since repeats do not decrease the nearest-neighbor distance to a test context,
all coverage-based quantities depend on D only through U. In principle the
radius is
r(U) = sup mind(z,u),
TEXest uel

but the supremum is inaccessible unless Xiest is finite. We therefore work
with an evaluation pool Xeya = {a:(])}j:1 sampled from the fixed (preregis-
tered) test distribution, and define the plug-in estimator

P i ) D — (f —d
7o 1?;'%}]{\/[ LIéllI}CKSU ,u), Deg == (F+6)"¢, 9)

where § > 0 is a numerical stabilizer and d is an estimate of d x. The estima-
tor @D is conservative in the sense that it upper bounds the empirical radius
on Xeyal exactly; when Xoya is an ii.d. sample from pu, standard uniform
convergence arguments imply that 7 concentrates around the population ra-
dius at a rate governed by M and the metric entropy of (X, d), which in our
setting is controlled by dy.

Metrics from discrete factors and hybrid context descriptions. In
many benchmarks the context admits an explicit factorization, e.g. x =
(object types, layout, goal). A direct choice is a weighted Hamming or edit-
type metric

P
d(z,2') == > wel{zy # 2y},
(=1
where weights wy encode which factors are believed to drive transfer. Such
metrics make Deg easy to compute and interpret: ming,ep d(z,u) is simply

the number (or weighted number) of factor mismatches to the nearest seen
configuration. When factors are partially ordered (e.g. counts of distractors),
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one can replace the indicator by an absolute difference. The framework is
agnostic to these choices; the role of the metric is only to formalize which
context perturbations should be “small” for policy transfer.

Embedding-based estimation when context is latent or high-dimensional.
If contexts are not directly observed, we assume we can compute an embed-

ding ¢(z) € R™ (from metadata, images, or a learned encoder) and use an
induced distance

dg(z,2') = H(]B(ﬂ:)—(ﬁ(x’)HQ or dy(z,2) == 1— —

We then replace d by dg in @ This substitution is justified whenever qg is
neighborhood-preserving for transfer-relevant variations, i.e. Lipschitz trans-
fer holds with respect to dg (possibly with a different constant). Practically,
we recommend sanity checks that the induced nearest-neighbor structure
aligns with empirical transfer: if a held-out context z is close (in dg) to some
u € U, then the policy trained on u should succeed on = at an elevated rate
relative to distant u'.

Constructing high-coverage datasets: farthest-first (metric k-center).
When we can choose which contexts to collect episodes from, the natural ob-
jective is to minimize the coverage radius subject to a budget of K distinct
contexts:
min max mind(z,u),

UCC,|U|=K z&€Xeval uelU
where C is a large candidate set produced by the generator (or an on-the-fly
sampler). This is precisely the metric k-center problem, which is NP-hard
in general, so we adopt the classical farthest-first traversal: start from an
arbitrary seed u; € C and iteratively add

u; € arg max uénUitril d(c,u), Up = U1 U{u}.
The algorithm greedily decreases the maximum uncovered distance on the
candidate pool and admits a worst-case 2-approximation guarantee: the ra-
dius achieved by Uk is at most twice the optimum achievable with K cen-
ters on the same pool. Composed with the coverage-to-error relationship
developed earlier, this yields a near-optimal design rule for minimizing the
worst-case unseen bound up to the universal factor 2 (and additive egys).

Episode allocation: separating coverage from repeats. Given a to-
tal episode budget D, we may choose K contexts and allocate m = D/K
episodes per context. Coverage-based terms depend primarily on K (through
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r(U)), whereas within-context estimation and behavior cloning noise de-
crease with m. This suggests a practical two-stage design: (i) select K
contexts using farthest-first to minimize #; (ii) allocate remaining episodes
adaptively to contexts where imitation loss is highest, without changing U.
This explicitly targets the decomposition “geometric error plus system/local
error” that motivates our scaling law.

Computational complexity and implementation notes. Computing
7 on an evaluation pool of size M against K selected contexts costs O(MK)
distance evaluations, which is typically small compared to policy training.
Farthest-first selection over a candidate pool C of size N can be implemented
in O(NK) time by maintaining, for each candidate ¢, its current nearest-
center distance min, ey, d(c, ) and updating this value incrementally. Both
procedures are compatible with approximate nearest-neighbor search and
with streaming candidates (where C is too large to store) by maintaining
a reservoir of promising farthest points. These algorithmic choices are the
minimal machinery needed to turn the geometric viewpoint into concrete
experimental protocols, which we specify next.

8 Experimental Design (Recommended)

Our empirical goal is to isolate the geometric quantity Deg as the driver
of generalization to Xynseen, and to separate it from effects attributable to
raw episode count, representation choice, and evaluation noise. To this end
we recommend experiments that, using a procedural generator or a large
precomputed pool, can vary count without diversity and diversity without
count while holding the evaluation protocol fixed.

Two independent knobs: repeats versus new contexts. Fix a total
episode budget D and a target number of distinct contexts K. We construct
datasets of the form D(K, m) with m := | D/K | episodes per context, where
the context set U is chosen either (i) i.i.d. from the generator distribution, or
(ii) by a coverage-maximizing rule (e.g. farthest-first on a candidate pool). To
vary count without diversity, we fix K and increase m (hence D) by collecting
additional episodes on the same U. To vary diversity without count, we fix
D and increase K (hence decrease m), regenerating U each time. Under
the coverage model, the unseen term should primarily track K (equivalently
ﬁeﬁ), whereas additional repeats should manifest mainly through reductions
in within-context behavioral cloning error and through a decreased effective
€sys (e.g. better state coverage, reduced stochasticity), without improving
the radius term.
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Procedural generators with controllable intrinsic dimension. When
possible, we recommend designing generator families with explicit factor
structure and adjustable “intrinsic dimension.” Concretely, let x = (z1,...,2zp)
with each factor corresponding to a semantic degree of freedom (object iden-
tity, distractor count, room topology, goal specification). By choosing which
factors are allowed to vary, and by adjusting their cardinalities or ranges, we
can create regimes with different effective dy while keeping the perceptual
channel and action space unchanged. This enables a direct test of the pre-
diction that the unseen exponent cvpseen =~ —1/dx becomes less negative as
the context family becomes higher-dimensional.

Preregistered evaluation pool and estimator logging. We assume a
fixed unseen evaluation pool Xoyai C Xunseen sSampled once from p and reused
across all conditions. For each trained policy we evaluate ney, rollouts per
context and report the empirical unseen error

_ 1 N

Errynseen = 1 — S(x,7),

’ eval ’
TEXeval

together with binomial confidence intervals aggregated over contexts. Si-
multaneously, we compute and log 7 and ﬁeﬁ‘ from the training set (using
the same Xy, for the plug-in radius estimate), as well as K and m. This
makes it possible to regress performance against (D, K, ﬁeff) rather than
only against D, and to diagnose failures of curve collapse.

Predicted curve collapse and scaling fits. For each dataset condition
we fit a parametric form

— A Qlunseen
Errunseen ~ ( T) + E,
Deff

with £ > 0 capturing irreducible error, and compare it to the analogous
fit against raw episode count D. The central prediction is that plotting
Errynseen versus ﬁeg yields substantially reduced variance across generator
settings and across dataset construction methods (random versus farthest-
first), whereas plotting against D does not. A complementary diagnostic is
a two-way ablation: (i) fix K and vary D via repeats, and (ii) fix D and
vary K. The model predicts that regime (ii) produces a clear monotone
improvement on unseen contexts, while regime (i) produces at best a weak
improvement that saturates quickly once within-context imitation error is

negligible.
Architecture ablations: VLA vs. VLM vs. PVR. To test that Dgg

captures a geometric limitation rather than an architecture-specific artifact,
we recommend repeating the above scaling study for distinct policy families:
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(a) a vision-language-action (VLA) policy trained end-to-end by behavior
cloning; (b) a vision-language model (VLM) used for high-level inference
combined with a fixed low-level controller or planner; and (c) a policy with
a pretrained visual representation (PVR) and a smaller action head. Our
hypothesis is that these choices primarily shift (A, E') (through representa-
tion quality, optimization, and partial observability) while leaving the fitted
exponent Qqunseen approximately invariant within a fixed context family and
metric. Deviations are informative: if one architecture changes ayngeen mate-
rially, this suggests that the relevant metric for transfer differs (e.g. a repre-
sentation induces a different neighborhood structure), or that the Lipschitz
assumption is violated in a way that interacts with the model class.

Metric and embedding sanity checks. Finally, we recommend an ex-
plicit metric-ablation protocol: compute Beﬁ‘ under multiple plausible dis-
tances (factor-weighted Hamming, learned embedding distance, hybrid met-
rics) and compare which distance yields the tightest collapse of unseen scal-
ing. A minimal sanity check is nearest-neighbor transfer: for held-out con-
texts z, success should correlate with min,ey d(z,u) computed under the
chosen metric. If this correlation is absent, then the empirical failure should
be attributed to a mis-specified geometry rather than to the coverage prin-
ciple itself.

9 Discussion and Limitations

Our central claim is conditional: if transfer is controlled by a metric ge-
ometry on contexts, and if the learner can essentially match the expert on
the training contexts up to an additive term, then unseen performance is
governed by coverage radius (equivalently Deg). The same conditionality
delineates the main failure modes. We therefore record where the Lipschitz—
coverage account can break, which quantities become ill-defined, and what
diagnostic signatures to expect.

When Lipschitz transfer fails (non-smooth task families and dis-
continuities). Assumption (A1) posits that success varies at most linearly
with context distance under a coupling that compares 7 to an expert 7, on
z’. Many families violate this in structurally unavoidable ways. First, tasks
may exhibit phase transitions: a small context change induces a qualitative
change in required strategy (e.g. a key switches location from reachable to
unreachable, a door becomes locked, or a single distractor triggers a differ-
ent instruction parse). In such cases S(z,7,) can drop abruptly even when
d(x,z') is small for natural choices of d, implying an effectively unbounded
local Lipschitz constant. Second, the relevant geometry may be non-metric
for the agent: two contexts can be perceptually aliased under the observation
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channel, so that d(x,z’) is small in latent semantics but indistinguishable in
observations (or conversely, visually similar but semantically far). In either
direction, the nearest-neighbor surrogate min, ¢s d(x,z’) ceases to predict
success. Empirically, this manifests as weak or absent correlation between
held-out success and nearest-training distance under any candidate metric;
in that regime, improving r(S) will not reliably improve unseen performance,
and one should attribute the failure to mis-specified geometry rather than
to insufficient diversity per se.

Representation learning and the choice of metric. Our theorems are
stated in terms of a metric d on contexts. In realistic settings, contexts are
not directly observed, and we instead compute distances using an embedding
(Zg(l’) learned from raw perceptual streams or metadata. This introduces two
distinct errors. (i) Metric distortion: if ||p(x) — ¢3($Q|| does not preserve
the neighborhood structure relevant for transfer, then Dqg can be spuriously
large (contexts appear spread out) or spuriously small (contexts collapse),
and the fitted exponent can drift. (ii) Embedding estimation noise: if x is in-
ferred from trajectories, then g&(az) depends on policy-induced observations,
producing a feedback loop: better policies yield better context estimates,
which in turn change the measured coverage. A conservative remedy is to
compute 7 on a preregistered evaluation pool using a context descriptor that
is independent of the learned policy (e.g. generator parameters), and to treat
embedding-based ﬁeﬁ" as a secondary analysis. More generally, if the repre-
sentation is part of the learned system, then the effective Lipschitz constant
L and even the intrinsic dimension dy become representation-dependent, and
it is not meaningful to compare aypgeen across models without specifying the
induced geometry.

Covariate shift beyond context and compounding in POMDPs.
The coverage bound controls transfer across tasks indexed by x, but it does
not by itself control distribution shift in state visitation within a fixed =x.
In offline imitation, a policy trained on expert data may visit states absent
from the dataset even on seen contexts, creating error cascades that are not
captured by r(S). One may attempt to absorb these effects into ey, but
doing so obscures an important distinction: increasing repeats m at fixed K
can reduce such covariate-shift effects by improving within-context coverage
of state space, whereas increasing K at fixed D can worsen them by making
each context under-sampled. Consequently, the prediction “unseen improves
mainly with K” should be interpreted as holding in a regime where within-
context imitation error is already small. A practical diagnostic is to measure
seen-context performance as m increases: if seen error does not saturate,
then the regime is not yet coverage-limited, and one should not expect a
clean D.g collapse on unseen contexts.
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Intrinsic dimension and finite-sample effects. The exponent relation
Qunseen & —1/dy is asymptotic and distributional. In finite samples, esti-
mates of dy (e.g. via doubling tests or slope of covering numbers) can be

unstable, and Dot = (7 + 0)~? compounds error multiplicatively. Moreover,
Theorem 2 includes logarithmic factors and implicitly assumes that p is not
concentrated on a lower-dimensional manifold except through dy; heavy-
tailed or multimodal context distributions can yield different effective rates.
In such cases, we recommend reporting 7 directly alongside ﬁeff, since r(S)
is the quantity that appears in the upper and lower bounds without requiring
dimension estimation.

Connections to compute-optimal scaling and inference-time com-
pute. Our analysis holds computation fixed and places all irreducible ef-
fects into €gys. This is a limitation when comparing systems with different
training or inference compute. Increased training compute can reduce opti-
mization error and representation error, effectively decreasing ey and pos-
sibly reducing the empirical L by learning features that linearize transfer.
Inference-time compute (planning, search, tool use, or test-time adaptation)
changes the picture more sharply: it can induce a policy class that is not
well-modeled as a single static 7, and can improve success on contexts far
from S without changing r(S) by leveraging additional structure at test time.
From our perspective, such mechanisms either (i) lower ey by correcting par-
tial observability and exploration failures, or (ii) replace the effective metric
by one in which task difficulty varies more smoothly. Thus, compute-optimal
frontiers should be stated in terms of triples (Deg, train compute, inference compute),
with Deg accounting for geometric coverage and compute accounting for the
residual term.

Summary of what remains outside the coverage model. We view
Dqg as necessary and often predictive, but not sufficient: it cannot certify
performance when the task family is discontinuous, when the induced ge-
ometry is misspecified, or when POMDP covariate shift dominates. These
limitations suggest an empirical workflow: first verify nearest-neighbor dis-
tance predictivity; next confirm that seen-context error is near its floor; only
then interpret unseen scaling primarily through ﬁeﬁ rather than through
raw episode count.

10 Conclusion
We have isolated a single geometric quantity—the coverage radius
r(S) := sup mind(z,z’)

TEXpest €S
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—that mediates, up to the Lipschitz constant and an additive system term,
the achievable error on unseen contexts when training data are collected on a
set (or multiset) of contexts §. The upper and lower bounds together imply
that, within the stated hypotheses, one cannot generally trade away context
coverage by collecting more repetitions on already-seen contexts, nor can
one generally beat the dependence on r(S) without strengthening structural
assumptions beyond Lipschitz transfer. This yields a simple organizing prin-
ciple: for generalization across tasks indexed by x, the relevant sample size
is geometric and is better summarized by an effective diversity

Deg(S) = r(S) %

than by the raw episode count D.

This perspective provides a unifying explanation for a recurring empirical
observation: unseen-task scaling exponents are often weak (i.e. |aynseen| 18
small) relative to seen-task exponents. Under doubling-dimension assump-
tions, 7(S) decreases like a negative power of the number of distinct contexts,
rather than the number of episodes, and the corresponding exponent satisfies
Qunseen ~ —1/dx (up to logarithmic factors and egys floors). In particular,
when dy is moderate or large, the geometric rate is intrinsically slow, so
doubling D while keeping K (the number of distinct contexts) fixed is pre-
dicted to yield limited improvement on unseen contexts once within-context
imitation error has saturated. Conversely, two datasets with similar D but
very different r(S) should exhibit markedly different unseen performance.
We therefore expect that replacing D by ﬁeff (or reporting 7 directly) will
reduce variance across laboratories, model classes, and data-collection pro-
tocols whenever the transfer geometry is approximately stable.

The practical implication for 2026 “data engines” is that context selec-
tion should be treated as a first-class optimization variable rather than an
incidental byproduct of logging. Concretely, a data engine can (i) maintain
a candidate pool C of contexts (e.g. simulator seeds, procedural-generator
parameters, or task descriptors), (i) define a metric d on these descriptors
(or a learned embedding used only for selection), and (iii) allocate new dis-
tinct contexts by a k-center approximation such as farthest-first traversal.
This directly targets the quantity that appears in the transfer bound. When
the episode budget is D = K - m, the engine should separate two regimes:
increase m until performance on already-collected contexts is near its floor,
and then prioritize increasing K to decrease r(S). In this view, “dataset size”
is a two-dimensional budget (distinct contexts versus repetitions), and the
correct control knob for unseen generalization is coverage.

For benchmarks and shared evaluations, we advocate a corresponding
shift in what is measured and disclosed. A benchmark that claims to test
generalization across contexts should specify (at minimum) (a) the context
space X or a canonical descriptor space, (b) a preregistered unseen evaluation
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set Xunseen, and (¢) a metric d used for coverage reporting. Participants
should be required to report K, 7 computed on the fixed evaluation pool,
and the context-selection procedure that produced §. Such reporting makes
it possible to distinguish improvements attributable to broader task coverage
from improvements attributable to algorithmic advances (e.g. reducing egys).
It also enables apples-to-apples comparisons when different teams allocate
budgets differently: a method that attains lower unseen error at the same 7 is
plausibly improving representation, optimization, inference-time reasoning,
or robustness, whereas a method that attains lower unseen error primarily
by lowering 7 is primarily improving data coverage.

Finally, the coverage formalism suggests a principled way to design scal-
ing studies that remain interpretable as models and environments evolve.
Rather than plotting unseen error versus D alone, one should (i) fit unseen
scaling laws in terms of Deg or 7, (i) explicitly model floors via €sys, and (iii)
stratify by intrinsic dimension estimates when feasible. This yields a testable
prediction: if two systems share comparable geometry (similar induced dy
and L) and comparable irreducible error, then unseen performance should
collapse as a function of ﬁeﬂ‘ even when their raw episode counts differ. When
the collapse fails, the correct conclusion is not merely that “scaling is noisy,”
but that at least one of the modeling ingredients—geometry, realizability on
seen contexts, or the interpretation of ess—has changed.

In summary, we propose effective diversity as a common language linking
dataset design, benchmark construction, and scaling-law interpretation for
generalization across task contexts. Within the Lipschitz—coverage model,
weak unseen exponents are not anomalous; they are the expected conse-
quence of finite intrinsic dimension and incomplete coverage. The actionable
response is correspondingly geometric: build data engines that actively min-
imize coverage radius, and build benchmarks that measure and report it.
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