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Abstract

Mechanistic interpretability has produced compelling circuits (in-
duction, retrieval, factual recall) but struggles to reuse findings across
models because neurons and attention heads are not aligned and com-
putations may self-repair. Building on the feature/circuit/motif fram-
ing and causal intervention tooling surveyed in mechanistic interpretabil-
ity work, we formalize *universality up to abstraction*: two mod-
els share a motif not when they share the same neurons, but when
there exists a causal abstraction mapping from a canonical motif into
each model such that interventional effects match. We operational-
ize this notion by (i) learning sparse, overcomplete feature coordinates
with sparse autoencoders/transcoders, (ii) aligning these feature bases
across models using interventional effect signatures, and (iii) validating
motif equivalence via causal abstraction/causal scrubbing style tests.
We give provable guarantees in a simplified generative setting (sparse
latent features mixed into model activations with bounded noise) show-
ing alignment recovery and motif validation are possible with O(logm)
samples per intervention and O(logm) interventions, and we provide
matching lower bounds showing purely observational alignment is im-
possible under rotations. Empirically (implementation work strength-
ening the claim), we propose to instantiate the pipeline on compiled-
transformer testbeds (ground-truth circuits) and then scale to families
of open transformer checkpoints, releasing a motif library and eval-
uation harness that amortizes interpretability across 2026-era model
churn.
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1 Introduction and motivation

A recurring aspiration in mechanistic interpretability is a universality claim:
that the internal organization responsible for a behavior is, in some stable
sense, the same across models trained on similar data. The most literal form
of this claim—neuron-level universality—is, however, poorly posed for mod-
ern transformers. Individual neurons (or MLP units, attention heads, etc.)
are not identifiable objects under natural symmetries of the parameteriza-
tion, and even when we fix a specific implementation, the representational
degrees of freedom induced by superposition permit many inequivalent inter-
nal decompositions that realize essentially identical input—output behavior.
Consequently, a claim of the form “neuron w in M; corresponds to neuron v
in M;” is not invariant under benign reparameterizations, and tends to be
fragile under retraining, fine-tuning, or modest architectural changes.

We make this critique precise at the level needed for algorithmic and
statistical analysis. Even restricting to linear submodules, if an activation
vector a € R? is expressed as a mixture a = As of latent coordinates s € R™,
then for any invertible transform R on the latent space we obtain an equally
valid factorization a = (AR™!)(Rs). Observationally, and often even under
limited probing, these rotated (or otherwise transformed) descriptions are
indistinguishable. Thus, without additional structure, “the” features are not
identifiable, and any purported universality at the granularity of coordinates
is at best a convention. In practice, we see this convention drift substantially
across random seeds and training runs, and even more under post-training
modifications.

The year-to-year “model churn” that is standard by 2026 magnifies the
inadequacy of neuron-level correspondence. Production and research models
undergo frequent transitions: instruction tuning, RLHF /RLAIF, safety fine-
tuning, tool-use scaffolding, retrieval augmentation, multimodal adapters,
and distillation. These operations may preserve broad behaviors on a bench-
mark family B while reorganizing the internal computation. Two models may
agree on a task distribution D yet implement the behavior using different
internal routes; conversely, two models may differ in output on edge cases
while sharing a common mechanistic subroutine. Any notion of “universal-
ity” that is too rigid will fail to be stable under such transformations; any
notion that is too permissive will be scientifically vacuous.

We therefore seek the appropriate equivalence class: one in which mech-
anistic claims are (i) invariant to irrelevant reparameterizations, (ii) stable
under routine post-training changes, and (iii) strong enough to support fal-
sifiable predictions under interventions. Our organizing proposal is that uni-
versality should be formulated up to causal abstraction. Concretely, we fix a
readout variable Y capturing the behavior of interest (e.g. a logit, a tool-call
decision, a refusal indicator), and we demand agreement of interventional
effects on Y rather than agreement of internal coordinates. In this framing,



a mechanistic description is acceptable if it supports the same counterfactual
predictions under an explicit intervention family Z, over both in-distribution
inputs D and a designated out-of-distribution family Doop.

This move resolves two distinct failure modes of naive universality. First,
it avoids the coordinate-choice problem: if two internal descriptions are re-
lated by a benign change of basis that preserves all interventional responses
relevant to Y, then they are equivalent for our purposes. Second, it pre-
vents purely correlational “universality” from passing as mechanistic. Many
internal units correlate with a behavior while being causally downstream or
epiphenomenal. By requiring that candidate correspondences preserve the
effect of doing something to the internal state (within Z), we force a causal
commitment. Put differently, our basic object is not an activation but a
causal relation between manipulable internal variables and the readout.

The immediate methodological implication is that alignment across mod-
els should be done using interventional signatures rather than raw activa-
tions. In particular, we treat learned sparse feature bases (e.g. via SAEs/transcoders)
as a means of producing candidate internal variables that are more nearly
identifiable than neurons, while recognizing that even these features are
only defined up to permutation and sign (and, empirically, occasional split-
ting/merging). We then characterize a feature not by its mean activation,
but by its effect fingerprint: the vector of changes in Y induced by in-
terventions targeting that feature, aggregated over inputs. This yields a
basis-invariant matching signal: a feature correspondence is acceptable only
insofar as it preserves the causal influence profile relevant to Y.

On top of feature alignment, we introduce a second level of organization:
motifs (bounded-size causal subgraphs) that capture reusable computational
patterns such as induction, retrieval, copy-suppression, or safety refusal gat-
ing. The aspiration is not merely to say that isolated features recur, but
that small causal structures recur, possibly with model-specific instantia-
tions. Formally, we model a motif type 7 by a canonical structural causal
model SCM; with a fixed (small) number of variables, and we ask whether
each model M; admits an abstraction map that embeds SCM. into its in-
ternal causal graph in a way that preserves interventional behavior up to
tolerance.

Our contributions are accordingly organized into three parts.

e Algorithmic pipeline. We specify an explicit procedure (CMML)
that (a) learns sparse feature bases per model, (b) computes inter-
ventional fingerprints for a selected feature subset, (c) aligns features
across models via assignment on fingerprint distances, (d) extracts
bounded-size candidate motifs within each model, (e) clusters motifs
across models into canonical types, and (f) validates each proposed
abstraction by an interchange-style causal abstraction test using inter-
ventions from 7.



e Provable guarantees in a simplified setting. Under a shared
latent-feature generative model with sparsity and incoherence con-
ditions, and assuming that permitted interventions approximate do-
operations on latent coordinates, we prove sample/intervention com-
plexity bounds for recovering correct feature correspondences from fin-
gerprints. We also prove that, for fixed motif size bound k, deciding
e-equivalence of candidate motifs up to abstraction is tractable (in the
sense of polynomial dependence on ambient dimension with an expo-
nential dependence only on k).

e Lower bounds and computational barriers. We show that with-
out interventions, alignment is information-theoretically impossible in
general due to rotational symmetries of the latent space. Separately,
we show that removing the bounded-size restriction yields NP-hardness
for motif matching and minimal library construction, with the expected
logarithmic approximation barrier via Set Cover.

It is essential to separate what we prove from what we propose to vali-
date empirically. The theorems in this work are conditional: they assume (i)
a simplified generative model in which sparse latent features exist and are
sufficiently separated in their causal effects, and (ii) an intervention family
that can approximate feature-level do-operations while keeping activations
approximately on-distribution. These assumptions are not tautological, and
in practice must be checked by diagnostics (e.g. reconstruction quality and
sparsity for the feature basis; stability of effects under resampling ablations;
sensitivity of results to the intervention choice). Likewise, the existence of a
compact motif library £ that provides broad coverage is an empirical ques-
tion; our greedy selection guarantee concerns approximation quality given a
candidate set of validated motifs, not the completeness of that set.

Finally, we emphasize the scope of our universality claim. We do not
claim that all internal mechanisms are shared across all models, nor that a
single canonical representation exists. Rather, we claim that for practically
relevant behavior families B, there exist small causal motifs whose interven-
tional semantics recur across models, and that these motifs can be identified
and certified with explicit error tolerance € and failure probability d, provided
we restrict attention to bounded-size structures and intervention-accessible
internal variables. This is the strongest notion of universality that remains
both stable under model churn and falsifiable by causal testing.

2 Background and related work

We summarize the prior technical ingredients that our formalism relies on:
(i) feature discovery under superposition, with an emphasis on sparse autoen-
coders (SAEs) and related transcoders; (ii) circuit- and motif-level analyses



in transformers; (iii) intervention methods used to ascribe causal responsi-
bility to internal components; and (iv) causal abstraction frameworks that
aim to make mechanistic claims invariant to representational choices. Our
emphasis is on what is known to be identifiable, what is not, and which
aspects of the literature implicitly depend on intervention access.

2.1 Features, superposition, and sparse dictionary learning
in networks

A standard starting point is the observation that internal activations often
appear to encode many “features” (directions corresponding to semantically
or algorithmically coherent properties), but these features are typically not
realized as single neurons. Rather, features may be distributed across many
coordinates and multiple features may be superposed within the same neuron.
In the simplest linearized picture, one writes an activation stream a € R
(e.g. residual stream at a layer, or MLP pre-activations) as a mixture

a~ Dh,

where D € R¥™ is a dictionary and h € R™ is a sparse code. This is
precisely the sparse coding / dictionary learning model, in which identifia-
bility (up to permutation and sign, and sometimes scaling) can be obtained
under sparsity and incoherence assumptions. The relevance for mechanistic
interpretability is that, when such a model is a reasonable approximation,
the “right” internal variables to talk about are not individual coordinates of
a but the sparse coordinates of h, which better track stable latent causes.

Sparse autoencoders (SAEs) instantiate this idea by learning an encoder—
decoder pair (E, D) so that h = E(a) is sparse and Dh reconstructs a with
small error, typically by minimizing a reconstruction loss plus a sparsity
penalty (e.g. £1 or variants) 7?7. Transcoders and related architectures aim to
map between activation streams (e.g. from one layer or module to another)
while maintaining a sparse representation 7. In either case, the learned
features are intended to provide a feature basis F; for model M;, with the
practical benefit that interventions can be applied at the level of feature
activations (ablate, clamp, resample, or patch) rather than at the level of
neurons.

Two limitations are central for our purposes. First, even when sparse cod-
ing assumptions are approximately satisfied, identifiability is only guaranteed
under additional conditions; empirically, SAEs can exhibit splitting/merging
of features across training runs, dead features, and dependence on hyperpa-
rameters and training data. Second, in the absence of strong assumptions,
the learned features are not canonical objects: different dictionaries may
support comparable reconstruction quality while giving different decompo-
sitions, and some of these differences may be behaviorally irrelevant. Our
subsequent emphasis on interventional fingerprints is motivated by the need



to identify feature correspondences by their causal role with respect to a
readout, rather than by reconstruction or correlation alone.

2.2 Circuits, motifs, and bounded mechanistic structure

The circuits tradition in transformer interpretability studies how specific
behaviors are realized by small sets of components (attention heads, MLP
neurons, residual streams) and their interaction patterns; canonical examples
include induction-like behavior in attention, copy mechanisms, and task-
specific subroutines discovered in toy settings ?7. The operational content
of a circuit claim is usually that: (i) ablating or perturbing a proposed set of
components degrades a target behavior, and (ii) the information flow between
those components can be demonstrated by targeted patching or attribution
methods.

Our work uses the term motif to denote a bounded-size causal pattern
that recurs across instances (models, seeds, or post-training variants). This
is a generalization of a circuit: we abstract from the precise implementation
details to a small directed structure with designated variables and edges,
together with a family of interventions that test its functional role. The
bounded-size requirement is not merely methodological; it is what permits
tractable validation procedures and meaningful statistical guarantees. In
practice, circuit discovery is typically performed with a mixture of manual
hypotheses and automated tools (e.g. procedures that search over paths,
edges, or components that most influence a measured output). However,
without a bounded-size bias or a strong prior, the search space is combina-
torial, and many candidate explanations can be consistent with the same
observational behavior.

2.3 Intervention methods: activation, path, and subspace
patching

A large fraction of mechanistic interpretability relies on interventions ap-
plied to internal activations. The simplest form is activation patching: one
runs a “clean” and a “corrupted” input through the model, caches activa-
tions from one run, and then substitutes them into the other run at selected
sites, observing changes in a chosen readout (often logits) ?. Variants in-
clude patching individual layers, attention head outputs, MLP activations,
or residual stream vectors. Patching provides evidence of causal mediation:
if substituting a component restores performance, that component contains
information relevant to the behavior under the specified input manipulation.

A refinement is path patching or edge ablation, where one intervenes not
on an entire node but on a specific computational pathway (for instance,
the contribution of one attention head to another module) ?. This aims to
isolate the mediating route and reduce confounding from other sources of



information. Relatedly, subspace patching targets a linear subspace (often
defined by a probe direction or by a feature dictionary) rather than the full
activation vector, allowing finer-grained statements such as “the behavior
depends on this subspace of the residual stream” rather than on the entire
stream.

These methods naturally suggest the intervention family Z we will for-
malize later. Two practical considerations are worth isolating. First, naive
ablations can drive activations off-distribution, producing artifacts; resam-
ple ablations and related techniques attempt to keep interventions within
the typical activation manifold by replacing components with draws from
a reference distribution. Second, patching-based evidence is inherently rel-
ative to the chosen input manipulations (clean/corrupt pairs) and to the
chosen readout; consequently, it is best understood as producing a condi-
tional causal claim, which motivates our explicit bookkeeping of Y, D, and

Doop-

2.4 Causal abstraction, causal scrubbing, and invariance of
mechanistic claims

The causal abstraction program aims to relate a high-level causal model
(capturing an algorithmic description) to a low-level causal model (captur-
ing mechanistic implementation) via an abstraction map that preserves in-
terventional semantics 77. In mechanistic interpretability, this perspective
is operationalized through interchange interventions and causal scrubbing:
one defines a hypothesized decomposition into variables, specifies which in-
terventions should commute with the abstraction, and then tests whether
substituting internal states according to the hypothesized map preserves the
relevant outputs 7. The key point is that abstraction is not merely a com-
pression of observables; it is a constraint on counterfactual behavior under
interventions.

Our use of causal abstraction differs in emphasis rather than in kind. We
are not primarily concerned with relating a neural network to an external
symbolic program, but with relating multiple networks to a shared canonical
motif model. This shifts the burden from explaining a behavior in one model
to establishing a cross-model equivalence class of mechanisms, with explicit
tolerance. In particular, we require that the abstraction be validated not
only on a single distribution but also on a designated OOD family, to reduce
the risk that a putative motif match is an artifact of a narrow benchmark.

2.5 Universality claims: weak notions, strong notions, and
failure modes

A variety of “universality” results appear in the literature, ranging from em-
)
pirical observations that certain attention heads or directions recur across



seeds, to claims that specific motifs (e.g. induction-like heads) are common
in language models trained on next-token prediction. These results often
come in at least two forms. A weak universality claim asserts that some
recognizable pattern exists in many models (e.g. a head with a particular
attention pattern, or a direction linearly decodable as a feature), typically
established by correlational or probe-based evidence and occasional ablation
checks. A strong universality claim asserts a stable correspondence of inter-
nal variables across models, sometimes suggesting a near one-to-one mapping
between units or directions.

Both forms face characteristic limitations. Weak claims can be true but
scientifically underspecified: without explicit intervention semantics, it may
be unclear whether the recurring pattern is causally responsible for the be-
havior, merely correlated with it, or downstream of the true causal factors.
Strong claims, when formulated at the level of neurons or arbitrary coor-
dinates, conflict with the non-identifiability induced by reparameterizations
and superposition; when formulated at the level of learned features, they
inherit the non-canonicity of the learned basis and can fail under feature
splitting/merging or under post-training changes.

These limitations motivate two design choices in our framework. First,
we treat correspondences as hypotheses to be tested by interventional effect
profiles with respect to a readout Y, rather than by activation similarity.
Second, we elevate the unit of universality from isolated features to bounded-
size motifs whose semantics are defined by a canonical causal model and
validated by intervention. The next section introduces the formal machinery
needed to state these claims precisely.

3 Formal setup

We now fix notation and state the objects that will be manipulated through-
out. Our goal is to phrase cross-model mechanistic claims in a way that is (i)
explicit about intervention semantics, (ii) invariant to superficial reparame-
terizations, and (iii) compatible with bounded-size validation procedures.

3.1 Models as structural causal graphs

For each i € {1,...,7}, let M; denote a transformer with parameters 6;.
We view M; as a (possibly stochastic) mapping from an input sequence x
to a readout Y of interest. The readout ¥ may be a scalar (e.g. a refusal
indicator), a discrete action (e.g. tool selection), or a vector of logits Y €
RV for a vocabulary V. Randomness may enter through explicit sampling,
dropout-like noise (if present), or through resampling-based interventions.
We associate to M; an internal causal graph G;. Concretely, fix a finite set
of internal variables V' (G;) corresponding to activation vectors at chosen sites
(e.g. residual stream at each layer and position, attention head outputs, MLP
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activations). Directed edges correspond to direct functional dependence in
the forward computation. For a fixed input z, the forward pass induces
assignments

v = f,(Pa(v),z;6;), v € V(Gi),

where Pa(v) denotes the parent variables of v in G;. Together with a readout
function g; producing Y from a subset of internal nodes and z, this yields
a structural causal model (SCM) in the standard sense: internal nodes are
endogenous variables, x (and any explicit noise variables) are exogenous, and
the equations are induced by the computation graph. We emphasize that G;
is not intended to be uniquely defined; rather, it is a bookkeeping device for
intervention targets, and it may be coarsened or refined depending on the
chosen granularity of analysis.

3.2 Inputs, distributions, and readouts

We fix a behavior family B, which determines a collection of tasks, templates,
or benchmarks that instantiate inputs. We write « ~ D for in-distribution
inputs and z ~ Doop for a specified out-of-distribution family. The union
DUDgop is the domain on which we will demand agreement of mechanistic
claims.

A readout Y is any measurable function of the model execution that
we intend to explain or constrain. When Y is vector-valued (logits), we
will compare models via a chosen discrepancy functional, e.g. expected logit
differences on designated coordinates or total variation distance between
induced next-token distributions. The definitions below are stated for general
Y'; the choice of discrepancy will be made explicit when needed.

3.3 Intervention families

Let Z be a family of allowed interventions. An intervention I € Z specifies
(i) a target set of internal variables in V(G;) and (ii) a rule for modifying
those variables during the forward pass. We write MZI for the intervened
model. Typical examples include:

1. Node ablation: replace an activation vector v by 0 or by its mean.

2. Resample ablation: replace v by a sample from a reference distribu-
tion conditioned on layer/position, intended to keep activations on-
manifold.

3. Subspace interventions: decompose v = v + v relative to a chosen
subspace, then ablate/patch only v.

4. Patching: substitute cached activations from a counterfactual run.
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5. Path/edge interventions: modify only a designated contribution along
an edge (e.g. one head’s contribution to the residual stream).

We will require interventions to be well-posed (they define a measurable
mapping from (z, ;) and internal randomness to outputs) and, when claims
depend on approximate equivalence, to be chosen so that the intervened ac-
tivations remain approximately on-distribution (resample/patching variants
are intended to satisfy this).

3.4 Feature bases and the threat model of non-identifiability

To express motif variables in a basis that is more stable than raw neurons, we
assume that for each M; we learn a feature basis F; via an SAE or transcoder.
Formally, for a chosen activation stream a € R? we obtain a dictionary
D; € R¥™™ and an encoder E; producing sparse codes h; = FE;(a) € R™
with a = D;h;. The coordinates (h;); are our candidate features.

Our threat model is that, absent additional assumptions, such a basis is
not canonical. Even when reconstruction is good, multiple dictionaries may
exist that induce comparable reconstruction error but differ by permutations,
sign flips, scalings, or more general rotations within subspaces of correlated
features. Moreover, feature splitting/merging can occur across SAE training
runs or across models with different training histories. Consequently, any
definition of “the same feature across models” that relies only on geometric
similarity (e.g. cosine similarity between dictionary vectors) is vulnerable to
non-identifiability. The purpose of our subsequent formalism is to tie feature
identity to interventional role with respect to a readout Y, thereby breaking
symmetries that are invisible observationally.

3.5 Motifs as bounded-size SCMs

A motif type T is specified by a canonical SCM, denoted SCM,, with endoge-
nous variables Z1, ..., Z; for some k bounded by a fixed constant. The SCM
includes:

e a directed graph on {Z1, ..., Z;} specifying parent sets Pa,(Z;);

e structural equations Z; = ¢;(Pa-(Z;),U;), with exogenous noise U;
(which may be degenerate);

e adesignated interface to the readout, e.g. a function Y = ¢, (21, ..., Z, Uy)
or, more generally, a specification of which interventions on the Z;
should induce which qualitative changes in Y.

The bounded-size condition k& = O(1) is not a modeling convenience but
a computational constraint: it is what makes it possible to enumerate and
validate candidate abstractions with finite intervention budgets.
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3.6 e-causal equivalence and abstraction maps

We require a notion of equivalence that is explicitly interventional. Fix a
model M;, a motif type 7, and a candidate abstraction map «; that assigns
each canonical variable Z; to a concrete internal target in M;. In practice,
a; will often map Z; to an SAE feature (a coordinate of h;) at a particular
layer /position, possibly together with a linear readout/subspace identifying
how interventions on Z; are implemented in the underlying activation stream.

Given «;, each intervention do(Z; < z) in SCM, induces an intervention
I € T on M; (e.g. clamping, ablating, or resampling the corresponding feature
coordinate). Let PdTo(,)(Y | ) denote the interventional distribution over Y

in the canonical motif SCM, and let P}"ai (Y | x) denote the interventional
distribution over Y in M; under the corresponding intervention.

Definition 3.1 (e-causal agreement). Fix a discrepancy d(-, ) between dis-
tributions on Y (e.g. total variation, or expected ¢y distance of logits). We
say that (M;, a;) e-agrees with SCM; on D’ (where D' C D U Doop) if for
all z € supp(D’) and for all allowed interventions in the motif intervention
set,

A(PP (Y | 2), Pi(Y [ 0)) <.

Definition 3.2 (e-causal equivalence of motifs across models). Two in-
stances (M;,a;) and (M;, ;) implementing the same motif type 7 are e-
causally equivalent on D’ if both e-agree with SCM, on D’ under the same
canonical intervention set. Equivalently, their induced interventional distri-
butions on Y match up to 2¢ by the triangle inequality.

This definition separates the representational question (what internal
variables realize Z;7) from the semantic question (what counterfactual con-
straints does 7 impose on Y'?7). In particular, «; is not required to be an
isomorphism between graphs; it is required to preserve the relevant inter-
ventional semantics up to tolerance.

3.7 Universality up to abstraction

We can now state the cross-model notion we aim to certify.

Definition 3.3 (Universality up to abstraction). Fix a motif type 7, an
intervention family Z, a readout Y, and distributions D, Doop. We say that
T is universal up to e-abstraction across the model family {My,...,M,} if
for each ¢ there exist (i) a feature basis F; (e.g. an SAE dictionary on a
chosen stream) and (ii) an abstraction map «; from SCM; into G; (typically
via features in F;) such that (M;, «;) e-agrees with SCM, on D U Doop.

The quantification over F; reflects the fact that different models may
require different learned feature bases for the motif variables to be sparse
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and intervention-accessible. The dependence on Dgop is explicit: we are not
merely fitting a motif to a benchmark, but demanding that its interventional
semantics persist under a designated shift family.

3.8 Interventional effect fingerprints (preview)

Although the algorithmic details appear in the next section, we record one
object that will reoccur: for a feature f (an SAE coordinate) in model M;, an
intervention I € Z, and an input z, let A;(f; I, z) denote the induced change
in Y when intervening on f using I at input z. Aggregating these effects
over a collection of interventions yields a vector-valued summary, which we
will use as a basis-invariant signature of causal role. This is the mechanism
by which we will mitigate the non-identifiability described above: rotated or
permuted feature bases that are observationally indistinguishable need not
preserve interventional effect profiles on Y.

With these definitions in place, we can pose a concrete computational
task: given multiple models, interventions, and data distributions, we seek
to align features across models, cluster bounded motifs into canonical types,
and select a compact library that maximizes validated coverage. This is the
Cross-Model Motif Library problem formulated next.

4 Problem formulation: the Cross-Model Motif Li-
brary (CMML) task

We now formalize the computational problem implicit in the preceding def-
initions. The input consists of a family of models {M, ..., M,}, a behavior
family B that induces input distributions D and Doop, a readout Y, and
an allowed intervention family Z. The output we seek is a compact library
of canonical motifs together with per-model abstraction maps that certify
e-causal agreement on D U Doop. Algorithmically, this decomposes into
three interacting subproblems: (i) aligning feature bases across models, (ii)
testing whether candidate motifs are e-equivalent up to abstraction, and (iii)
selecting a small set of motifs covering as many validated model-behavior
instances as possible.

4.1 The CMML task

Fix a motif size budget k (treated as a constant in our fixed-k results). For
each model M; we may choose a feature basis F; (e.g. via an SAE /transcoder
on a specified activation stream) and a candidate set of features S; C [m)]
on which we are willing to spend intervention budget. A candidate motif
instance in model M; is then a bounded-size object

p= (Vyu, Ey,locy),
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where V,, C S; with |V,| < k is a set of feature indices, E), is a directed edge
set encoding an hypothesized causal /functional dependency among these fea-
tures (possibly annotated by layer/position), and loc, records where in the
computation graph the features are realized. We deliberately keep this repre-
sentation abstract: different circuit discovery procedures instantiate different
notions of edges E,, (e.g. attention-mediated paths versus MLP composition),
but for CMML we require only that edges can be targeted (directly or indi-
rectly) by interventions from Z when performing validation.

A motif type T is represented canonically as an SCM SCM, over variables
Zi,..., 2y, with k; < k. An instance of 7 in model M; is specified by an
abstraction map «; , that assigns each Z; to a concrete intervention target
in G; (typically a feature coordinate in F; at a designated site) together with
the intervention semantics needed to implement do(Z; < z) via some I € T.

CMML output. The CMML problem asks us to produce:
1. alibrary £ = {(7,SCM;)} of canonical motif types;

2. for each 7 and each 7 € L judged present in M;, an abstraction map
(07

3. a validation report certifying e-causal agreement of (M;,a; ) with
SCM; on D U Dpop (up to failure probability ¢ arising from finite
sampling).

We emphasize that £ is not a taxonomy of all internal phenomena; it is
a parsimonious set of causal templates whose interventional signatures are
reused across models.

4.2 Alignment subproblem: matching features across models

Because feature bases F; are only identifiable up to reparameterization, we
treat feature identity across models as an interventionally defined notion.
Concretely, for each model M; and feature f € S;, we define an interventional
effect fingerprint by aggregating the effect on the readout Y across a collec-
tion of interventions and inputs. Fix a list of T interventions (I;)._, € Z
intended to act “locally” on the target feature (e.g. ablation, resample abla-
tion, or subspace patching restricted to that feature). We define

0 (f) = (Bewn[Ailfi )] ) (1)

t=1’
optionally concatenated with an analogous vector over © ~ Dgop. Here
A;(f;1,z) is a chosen effect functional (e.g. a logit difference on designated
coordinates, or a scalar change in refusal probability) computed as the dis-
crepancy between M;(x) and M/ (z).
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The feature alignment problem between models M; and M; is then a
minimum-cost matching between subsets of S; and S; using a metric on
fingerprints. Writing dg(-,-) for a distance on R” (e.g. £, cosine distance,
or a robust M-estimator), we seek a partial bijection 7;; minimizing

min Y de(®i(f), D5(x(f))), (2)

el fedom(r)

where II ranges over matchings of prescribed cardinality (or, more generally,
over matchings with dummy nodes to allow unaligned features). In settings
where sign or scale flips are expected (e.g. due to dictionary conventions), we
may allow de to minimize over these symmetries, or augment ;; to record
sign/scale parameters.

This alignment is the only place where we attempt to establish cross-
model correspondences at the level of individual features. Subsequent motif
canonicalization may use these correspondences to propose that two motifs
drawn from different models instantiate the same motif type; the validity of
that proposal is then checked interventionaly, not assumed from the align-
ment alone.

4.3 Motif equivalence testing as causal abstraction checking

Given a candidate motif type 7 (represented by SCM;.) and a candidate
abstraction map « into M;, the central decision problem is whether (M;, ) e-
agrees with SCM, on DUDgop under the motif’s canonical intervention set.
Since the quantification “for all 2”7 and “for all interventions” is intractable
in full generality, we phrase validation in terms of a finite test suite derived
from Z, with explicit sample size N per test and failure probability J.

Formally, fix a finite intervention set Z, C 7 sufficient to characterize
the motif semantics of 7 (e.g. single-node ablations, pairwise interchange
interventions, and a small number of compositional interventions on size-
k subsets). For each I € Z. and each distribution D' € {D,Doop}, we
estimate

o~

N
1 . ~
dio(I;D) = NZd(P}’O‘(YMn), IT(Y\xn)), 2y ~D.
n=1

We accept (M;, o) as an instance of 7 if c/l;-,a(l; D) <eforall I € Z. and both
D', with slack chosen so that concentration bounds imply a true discrepancy
at most € with probability at least 1 — §. Importantly, this validation step
treats the model as a causal system, not merely a pattern recognizer: passing
the test entails that the counterfactual constraints encoded by SCM, are
respected (up to tolerance) when realized through a.
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We also require a well-posedness condition on interventions used in val-
idation: interventions should keep internal activations approximately on-
distribution, so that discrepancies reflect causal mismatch rather than patho-
logical off-manifold behavior. This motivates using resample ablations or
patching-based interventions as the default elements of Z. when available.

4.4 Library selection: coverage versus parsimony

After alignment and motif validation we obtain a collection C of wvalidated
motif clusters. Each cluster ¢ € C corresponds to a proposed motif type 7(c)
together with a set of validated instances across models. Let

U = {(i,b) : i € [r], b € Bis a target behavior instance}

denote the universe of model-behavior instances we seck to explain (one may
equivalently take U to be pairs (i,7) if motif presence is defined indepen-
dently of B). Each validated cluster ¢ covers a subset U(c) C U, consisting
of those instances for which there exists an abstraction map «; () passing
the e-agreement test.

The library selection problem is to choose a subcollection £ C {7(c) : c €
C} that achieves high coverage while remaining small. In its strictest form,
we require full coverage of a designated target set U, C U and minimize |L|,
yielding a set cover instance:

i t. - .
m[{n]ﬁ] st Uk _TLEJLU<T)

More generally, we may trade off coverage and parsimony by optimizing

max |UrecU(T)| = AIL],

or by imposing a hard budget |£| < B and maximizing covered instances.
The key point is that motif discovery alone does not solve CMML: without
an explicit selection objective, one may produce an unwieldy and redundant
library that fits idiosyncrasies of particular models. CMML therefore treats
library construction as an optimization step layered atop interventional val-
idation.

In summary, CMML is a structured pipeline of decision and optimiza-
tion problems whose primitives are (i) interventional fingerprints for aligning
feature identities across models, (ii) fixed-k causal abstraction tests for certi-
fying motif equivalence, and (iii) a set-cover-style selection objective for pro-
ducing a compact explanatory library. The next section presents an explicit
algorithm realizing this decomposition under the intervention and sampling
budgets parameterized by T and N.
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5 Algorithm: constructing a Cross-Model Motif Li-
brary

We now describe an explicit procedure realizing the CMML decomposition
stated in Section (4] The algorithm has six stages: (A) learn sparse feature
coordinates within each model, (B) measure interventional effect fingerprints
for a selected subset of features, (C) align feature identities across models by
solving a fingerprint matching problem, (D) extract bounded-size candidate
motifs associated with behaviors of interest, (E) canonicalize and validate
motifs by causal abstraction tests, and (F) select a compact library by a
set-cover objective. Throughout, we treat k as a small constant and make
the intervention and sampling budgets explicit via parameters 17" and N.

(A) Per-model sparse features via SAE /transcoder. For each model
M; we first fix an activation stream to be featurized (e.g. MLP pre-activations,
attention outputs, or residual stream) and a set of layers and token positions
over which we will collect training data. This choice is part of the algorith-
mic interface: we require only that the stream admits interventions from 7
that are sufficiently local to approximate do-operations on individual fea-
ture coordinates. We then train a sparse autoencoder (or a transcoder) to
obtain a dictionary D; € R¥™ and encoder E; producing codes h; € R™.
The only properties we use downstream are (i) that the codes are sparse (so
individual coordinates are plausibly interpretable intervention targets) and
(ii) that the learned basis is stable enough that interventions on a coordinate
can be implemented without systematically driving activations off-manifold.
In practice we therefore prefer objectives and regularizers that encourage
sparsity and decoder incoherence, and we evaluate reconstruction quality to
avoid degenerate dictionaries.

Having learned F;, we select a manageable subset S; C [m] of candidate
features. Since intervention budget scales linearly in |S;|, we typically com-
bine multiple filters: activation frequency (to remove rarely used directions),
magnitude/variance (to remove near-noise coordinates), and behavioral rel-
evance (to prioritize features implicated by quick screening interventions on
Y'). This stage produces a per-model feature set on which we will compute
fingerprints and search for motifs.

(B) Interventional effect fingerprints. Fix an intervention list (I;)]_; C
7 intended to probe the causal role of a feature coordinate while remaining
approximately on-distribution. For each ¢ and each f € S; we estimate the
fingerprint ®;(f) from by sampling z ~ D (and optionally  ~ Doop)
and computing the effect A;(f;I;, ) on the readout Y. We emphasize two
design constraints. First, the effect functional should be sensitive to the
behavior under study (e.g. class-logit differences for classification behaviors,
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tool-call indicators for agentic behaviors, refusal probability for safety behav-
iors). Second, the interventions should be “well-posed” in the sense discussed
earlier: we prefer resample ablation, subspace patching, or interchange-style
interventions that preserve the marginal distribution of the remaining acti-
vation space, so that measured discrepancies reflect a feature’s causal con-
tribution rather than arbitrary distribution shift.

We treat fingerprint estimation as a statistical task: for each (i, f,t)
we obtain an empirical mean over N samples and retain (when useful) an
empirical variance estimate. These variance estimates will later serve as con-
fidence weights in the alignment objective and as a mechanism for automat-
ically discarding unstable fingerprints. When OOD robustness is required,
we concatenate fingerprints over D and Doop (or maintain them separately
and enforce agreement in both regimes), thereby preventing alignments that
match only in-distribution idiosyncrasies.

(C) Cross-model feature alignment by assignment. Given finger-
prints {®;(f) : f € S;} and {®;(g) : g € Sj}, we align features by solving
a minimum-cost bipartite matching problem as in . The cost between f
and g is given by a distance do(®;(f), ®;(g)), optionally re-optimized over
sign/scale symmetries if the SAE convention admits them. When finger-
print variances are available, we may use a Mahalanobis-style distance or a
robust loss that downweights noisy coordinates. To accommodate features
that have no reliable counterpart (due to training differences, feature split-
ting/merging, or insufficient probing power), we allow dummy nodes so that
the solution returns a partial bijection 7;; together with an “unmatched” set.

Since this alignment is computed pairwise, we optionally impose a global
consistency step across multiple models: for example, we may choose a ref-
erence model M;, and align all others to it, or we may compute a cycle-
consistent alignment by solving a synchronization problem over permuta-
tions. In either case, the alignment is used only as a proposal mechanism for
motif canonicalization; it does not itself certify causal equivalence.

(D) Candidate motif discovery under a size bound. For each behav-
ior template b € B and each model M;, we use a circuit discovery routine
restricted to SAE features to produce bounded-size candidate motifs p with
|V,| < k. The discovery procedure is modular: it may be implemented by
greedy attribution over features, by path patching restricted to a small set
of feature coordinates, or by searching for small subgraphs whose interven-
tions substantially move Y. The crucial restriction is that the output must
be representable as a directed graph on at most k£ nodes with intervention
targets in G; (as recorded by loc,), so that subsequent equivalence testing
remains tractable in the fixed-k regime. We also store sufficient metadata
(layer/position annotations and intervention semantics) to replay the motif
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under validation interventions.

(E) Canonicalization and causal-abstraction validation. We next
cluster discovered motifs across models into candidate motif types. Canon-
icalization uses two sources of structure: the aligned feature identities (via
mi;) and the internal motif graph structure (edge patterns, layer orderings,
and any annotations). Concretely, we map each motif instance into a canon-
ical representation by relabeling nodes according to aligned feature IDs and
by applying a fixed ordering convention on layers/positions; motifs with sim-
ilar canonical representations are grouped into a cluster c. For each cluster
we propose a canonical SCM SCM_ .y whose variables correspond to the mo-
tif nodes and whose edges follow the shared structure observed in the cluster;
we also propose abstraction maps «; ;. into each participating model.

Canonicalization is only a hypothesis generator. Acceptance is deter-
mined by an interventional validation step: for each (i,7) we construct a
finite test suite Z, C Z of single-node and multi-node interventions that
probe the motif’s defining counterfactual constraints (including interchange
interventions when appropriate). We then estimate discrepancies between
the model-under-abstraction and the canonical SCM prediction on both D
and Doop, accepting the instance only if all estimated discrepancies fall be-
low & with sampling slack chosen to ensure overall failure probability at most
6. This step is the point at which motif equivalence is certified: observational
similarity or aligned fingerprints alone are insufficient.

(F) Library selection with approximation guarantees. After valida-
tion we obtain a set C of motif clusters, each covering a subset of target in-
stances U (or U, ). We then select a library £ by solving the induced set cover
(or budgeted maximum coverage) problem. Because exact optimization is
intractable in general, we use the greedy algorithm that iteratively adds the
motif type providing the largest marginal increase in coverage (or the best
marginal gain per unit cost if motifs have heterogeneous validation costs).
The output consists of the selected canonical motif SCMs, the validated ab-
straction maps «; » for each covered instance, and the associated validation
reports. In Section 6 we will state the conditions under which this proce-
dure admits formal guarantees: interventionally defined fingerprints enable
reliable alignments; fixed-k validation is tractable with polynomial query
complexity; and greedy selection achieves the standard harmonic-number
approximation ratio for set cover.
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6 Theory I: identifiability and alignment from in-
terventional fingerprints

We isolate the portion of the CMML pipeline whose role is to assign stable
identities to internal feature coordinates across models. The central diffi-
culty is that a learned feature basis Fj is not, by itself, canonically labeled:
even when two models compute the same abstract function, their internal
representations may be related by permutations, sign flips, or (in the ab-
sence of additional structure) more general rotations. Our approach is to
use interventional effect fingerprints as signatures that are invariant to such
relabelings and that concentrate with finitely many interventions and sam-
ples.

Generative assumptions and identifiability target. We work in a
simplified latent-feature setting sufficient to state recovery guarantees. For
each model M; and a fixed activation stream of dimension d, we posit latent
coordinates s € R™ (shared across i) and a mixing matrix 4; € R such
that

a; = Ajs+n, (3)

where s is p-sparse (or approximately sparse), 1 is mean-zero sub-Gaussian
noise, and A; satisfies standard incoherence conditions. In this regime, sparse
dictionary learning is identifiable up to permutation and coordinate-wise sign
(and, depending on normalization, scale). Concretely, if D; denotes an SAE
decoder trained on samples of a;, then under these assumptions we expect

D; = A;P;3;, (4)

where P; is a permutation and ¥; is diagonal with entries in {+1} (and
possibly positive scales). Thus a coordinate index f € [m] in model 7 is not
directly comparable to a coordinate g € [m] in model j without recovering
the relative permutation P]71Pi (and sign/scale).

The remaining ingredient is causal: we assume the intervention family
7 contains operations that, to a good approximation, implement do(s, <
S¢) for a single latent coordinate ¢, realized in practice by intervening on
the corresponding SAE coordinate. This is an approximation statement:
interventions must be sufficiently local and sufficiently on-manifold that the
measured change in the readout Y reflects the causal contribution of the
targeted coordinate rather than an arbitrary distribution shift.

Fingerprints and concentration. Fix a list of interventions (I;)_; C T.
For each model 7 and feature f € S; we define the population fingerprint

®;(f) = (EonlAi(fiIna)])l,, (5)
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and its empirical estimate from N samples per intervention,

T

N '
(/I;i(f) = (;lz&(f;ft,xgn))> , xg")‘f‘iiD. (6)
n=1

t=1
Under bounded-variance (or sub-Gaussian) assumptions on A;(f; Iy, x), stan-
dard concentration yields

Tlog(1/5)> -

18:0F) - 0 Pls < 0( (

uniformly over a finite candidate set S; by a union bound, or more sharply
using empirical Bernstein bounds when variances are estimated. This mo-
tivates the scaling N = O(e2log(|S;]/6)) when we seek fo-accuracy e per
fingerprint.

Alignment as minimum-cost matching and a margin condition.
For a pair (i,7), we align features by solving a bipartite assignment problem
minimizing a total cost

min > do ($i(1), &;(x(/))) (8)

fes;

where dg is a chosen metric (e.g. 2 or a variance-weighted norm), and 7 may
be partial via dummy nodes. The analysis hinges on a separation (margin)
assumption: for identifiable features f, there exists a unique counterpart g*
such that

do(Pi(f), ®j(g%)) +v < do(Pi(f), ®;(g)) forall g # g* (9)

for some margin v > 0. When v dominates the fingerprint estimation error,
the optimal assignment is forced to select the true correspondence.
Formally, in the latent-feature model above with interventions that act as
approximate do-operations on single latent coordinates, one obtains the fol-
lowing recovery statement (stated earlier as Theorem 1): with 7' = O(log m)
appropriately chosen interventions and N = O(y~2log(m/4)) samples per
intervention, the Hungarian assignment recovers the correct permutation/sign
on all features satisfying the margin condition, with probability at least 1—9.
The proof proceeds by (i) identifiability of the sparse dictionary up to per-
mutation /sign, which reduces the alignment problem to identifying that per-
mutation, and (ii) uniform concentration of ® around ®, which ensures the
empirical cost matrix preserves the argmin structure implied by the margin.
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Observational impossibility and lower bounds. The use of interven-
tions is not merely algorithmically convenient; it is information-theoretically
necessary in general. In particular, if one observes only the joint distribution
of activations and outputs under x ~ D (with no interventions), then there
exist model pairs whose internal feature spaces are related by an orthogonal
rotation that preserves all observable statistics while destroying any notion
of coordinate-wise correspondence. In the latent model, if s is isotropic on
its support and A; = A; R for an orthogonal R acting within an identifiable
subspace, then a; and a; can induce the same distribution even though the
individual coordinates of s have been mixed. Under such constructions, any
estimator attempting to match coordinates across models from observational
data alone has expected accuracy at most 1/m + o(1) on the rotated subset
(Theorem 2). The proof is a standard indistinguishability argument (e.g.
Le Cam or Fano): two hypotheses (two different rotations) generate identi-
cal observations, so no test can reliably distinguish them, and therefore no
alignment procedure can do better than chance on the affected coordinates.

These lower bounds justify why we define fingerprints in terms of causal
effects on Y: interventions break the rotational symmetry by selecting priv-
ileged directions through their effect on the readout.

Robustness to noise and approximate interventions. Two deviations
from the idealized setting are unavoidable: fingerprints are noisy estimates,
and interventions are only approximately equal to do-operations on latent
coordinates. Both can be incorporated as perturbations.

First, if the true fingerprints are perturbed by additive noise ; y with
&£l < B, then the margin condition degrades from v to v — 25 by the
triangle inequality; hence exact recovery persists as long as 8 < /2. Since
[ can be taken as the empirical estimation error, this reproduces the scaling
N = O(y~?log(m/9)).

Second, suppose the intervention I; on SAE coordinate f implements a
mixture of latent do-operations with a small leakage term, e.g.

do(s <= s+eer+(),  [ICfl2 <A, (10)

for some A capturing off-target effects and off-manifold drift. If the causal
effect of ( on Y is Lipschitz (or otherwise bounded) in magnitude by L||(||2,
then fingerprints incur a systematic bias of size at most LA. Again, recovery
reduces to requiring an effective margin ~ that dominates both statistical
error and intervention bias. This is the point at which “on-distribution”
intervention design becomes theoretically relevant: resample ablation and
related procedures can be viewed as methods for reducing A by preserving
the marginal distribution of non-target coordinates.

Feature splitting, merging, and partial matchings. Across indepen-
dently trained models, it is common for a semantic factor to be represented
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by multiple coordinates in one model (splitting) or for multiple factors to be
entangled into one coordinate (merging). In such cases a bijective alignment
is not well-posed. Our assignment formulation accommodates this by allow-
ing dummy nodes (unmatched features), but it is useful to articulate what
can and cannot be recovered.

A minimal model of splitting is: in model ¢ a latent coordinate sy exists,
while in model j the same effect on Y is carried by two coordinates sy 1, s¢2
whose interventions each produce approximately half the effect, so that no
single coordinate in j matches sy under the fingerprint distance. Then any
one-to-one matcher must either (a) leave sy unmatched, or (b) commit an
error by matching it to an imperfect counterpart. By introducing a rejection
option (dummy nodes) and a calibrated threshold on dg, we can guaran-
tee a partial recovery statement: all pairs with distance below threshold are
correct, and all ambiguous cases are rejected. Formally, if true correspon-
dences satisfy do(®i(f),®;(g*)) < n while all non-correspondences satisfy
do(®i(f),®;(g9)) > n+ v, then choosing a threshold in (7,7 + v) yields a
precision guarantee (no false matches) at the cost of recall (some features
rejected). The same logic applies to merging: a merged coordinate lacks a
unique counterpart and should be rejected rather than forcibly matched.

This robustness mechanism also interacts favorably with downstream mo-
tif discovery. Since motifs are extracted as bounded-size subgraphs, it is
typically preferable to retain only high-confidence aligned features; missing
nodes can be re-introduced later via motif-level validation, where multi-node
interventions can detect whether a split representation collectively realizes
the same causal role.

In summary, the identifiability story is as follows: sparse coding provides
a representation that is unique up to simple symmetries; interventions define
fingerprints that break those symmetries by referencing causal effects on
Y'; and matching under a margin condition yields finite-sample alignment
guarantees, while observational data alone admits impossibility results. The
remaining theoretical question is how to walidate that aligned subgraphs
correspond to the same canonical causal motif, which we address next.

7 Theory II: motif equivalence testing and fixed-k
tractability

We now formalize the validation step in which we decide whether a bounded-
size subgraph extracted from a model implements a given canonical motif
SCM.- up to causal abstraction, and we bound the interventions and samples
needed to accept/reject this hypothesis with error probability at most §. The
key observation is that once we restrict attention to motifs of size at most
k, equivalence testing reduces to a finite family of interventional constraints
whose cardinality depends only on & (and mild structural parameters such
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as indegree), yielding a tractable procedure. Conversely, if k is unrestricted,
the same problem subsumes standard NP-hard graph matching tasks.

Motifs as bounded causal subgraphs. Fix a model M; with learned
features F; and internal causal graph G;. A candidate motif instance is a
directed subgraph

together with a designated set of intervenable nodes V; and a readout Y.
In practice, M; is produced by automated circuit discovery methods con-
strained to SAE features and bounded size, and F; encodes a hypothesized
causal dependency (e.g. as suggested by path patching scores). For theory,
we assume that for each v € V; we may apply interventions from Z localized
to that feature (e.g. resample ablation, clamping, or subspace patching), and
that each intervention yields a well-defined interventional distribution over
Y under inputs z ~ D (and similarly for Doop).

A canonical motif type 7 is represented by a structural causal model
SCM; with variables Z1, ..., Zy_ for k; < k. We assume SCM, comes with a
specified set of allowed interventions on its variables (mirroring Z at the ab-
stract level), and with a prediction for the induced effect on Y as a function
of those interventions and the input distribution. This covers both deter-
ministic motifs (where Y is a deterministic functional of Z) and stochastic
motifs (where Y has an induced conditional distribution).

Equivalence up to abstraction as a finite test family. An abstraction
map «; - assigns each abstract variable Z; to an internal feature v; € V;
(possibly together with sign/scale and a layer index when the same feature
appears at multiple sites), and interprets abstract interventions do(Z; « -)
as concrete interventions I € Z applied to v;. Given «;, we obtain an
induced family of interventional distributions on the readout,

Pia = {L(Y‘doa(u),me) : uEUT},

where U, indexes a chosen set of abstract interventions (single-node, multi-
node, and/or interchange interventions), and do, (u) denotes the correspond-
ing concrete intervention pattern on M;. Analogously, SCM.. induces a family
P- over Y under the same intervention index set U, .

We say that M; e-implements SCM, under o on distribution D’ €
{D,Doop} if

uséll/ll) d(L(Y | dog(u), z ~D'), L(Y |do(u), z ~D')) < ¢, (11)

for a fixed discrepancy d (e.g. total variation when Y is discrete, or an
absolute difference of expected logit/readout when Y is real-valued). The
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validation task is to decide whether there exists an « such that holds
simultaneously for D and Doop.

The crucial point is that for fixed & we may choose U, to be finite and of
size poly(k) while still pinning down the causal role of each node in the mo-
tif. Concretely, we may include: (i) single-node interventions on each Z; at
two or more reference values (e.g. ablate vs. resample); (ii) selected pairwise
interventions do(Z; < a,Zy < b) to detect interaction terms; and (iii) in-
terchange interventions that swap representations between two inputs while
holding other variables fixed, which operationalize functional dependencies
without requiring a dense grid over values. Under bounded indegree A, the
number of such constraints needed to rule out non-isomorphic causal graphs
on k nodes is bounded by a function f(k, A), which we treat as constant in
fixed-k analysis.

Algorithmic structure of the equivalence test. Given M; = (V;, E;)
and SCM,, we enumerate candidate abstraction maps a from {Z1,..., Zy_}
into V;. Without additional structure this is O(k!) maps, and with bounded
indegree and typed nodes (e.g. “retrieval head”, “induction feature”) it can be
substantially smaller; in any case it is f(k, A) for fixed k. For each candidate
a, we estimate the discrepancy in using T' := |U,| interventions and N
input samples per intervention:

1 1 X
flia(u) = NZw(Yifg?u), fir(u) = szp(y;;g),
n=1 n=1

where 1) is either the identity (for real Y') or an indicator/test function used

to approximate a distributional discrepancy, and YZEZ?U denotes the model

readout under intervention u and input z(™ ~ D’. We accept « if

~

max | o(u) — fr(w)] < Etest,

weld, ‘,U/z,oz( ) NT( )| > Ctest

and we accept that M; realizes 7 if any « passes (on both D and Doop).
The dependence on m enters only through the upstream motif extraction;
conditional on having a k-node candidate, validation is independent of m up
to the cost of forward passes.

Intervention and sample complexity. Assume that for each fixed u €
U, the scalar statistic () is sub-Gaussian with parameter o2 under both
the model and SCM,, uniformly over inputs and any stochasticity induced
by resampling interventions. Then, for any fixed «, Hoeffding- or Bernstein-
type bounds imply

. Nt?
P max 1i0(u) = pia(u)] >t ) < 2Texp| —c— |,
o

uets
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for a universal constant ¢ > 0. Taking a union bound over the f(k,A)
candidate maps « and over the two distributions D, Doop, it suffices to

choose ) FlkA)
~ (0o Tf(k,

so that all empirical estimates are simultaneously within O(e) of their pop-
ulation counterparts with probability at least 1 — §. This yields the fixed-k
tractability claim: with 7" = poly(k,log(1/d)) interventions (determined by
the test family U, ) and N as in , we can accept/reject e-equivalence using
O(T'N) model queries per (i, 7) validation attempt, up to the multiplicative
enumeration factor f(k,A). This is the content of the fixed-k result stated
abstractly as Theorem 3.

We emphasize that e 2 scaling in is unavoidable for mean-estimation-
based tests under sub-Gaussian noise, and the log(1/6) dependence is simi-
larly tight up to constants. What fixed-k buys is that the number of tested
constraints 7" and the number of candidate abstractions f(k,A) do not grow
with the ambient feature count m, so validation remains stable as models
scale provided we can extract bounded motifs.

Approximate interventions and the effective tolerance. As in the
alignment setting, concrete interventions may deviate from ideal abstract
do-operations. If each mapped intervention incurs a bounded bias b(u) in
the relevant statistic, so that [;q(u) — pf, (u)| < b(u) where p* denotes the
counterfactual quantity under perfect interventions, then the test can only
certify equivalence up to an effective tolerance € + max,, b(u). Operationally,
one sets eiest 10 account for both estimation error and a measured (or con-
servatively bounded) intervention bias term, and one treats failures localized
to specific u as evidence that the intervention family Z is insufficiently on-
manifold for that motif instance.

Hardness without bounded size and tightness of the restriction. If
we remove the restriction |V;| < k and permit arbitrary motif graphs, then
motif matching and equivalence testing inherit the computational hardness
of classical subgraph problems. In particular, even if feature alignment is
given, deciding whether a graph encoding of one motif embeds into another
(or whether two models share a common motif of size at least K) subsumes
SUBGRAPH ISOMORPHISM and MAXIMUM COMMON SUBGRAPH, yielding
NP-hardness (as summarized by Theorem 4). Moreover, any algorithm that
attempts to search over large motifs faces an exponential blowup in the
number of candidate abstractions and constraints required to distinguish
non-equivalent graphs; thus the fixed-k regime is not merely a convenient
assumption but the natural boundary at which we can obtain both provable
guarantees and practical scaling.
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This concludes the validation component: with aligned features and
bounded candidate motifs, we can certify motif instances by checking a fi-
nite interventional constraint family with controlled sample complexity. We
next address how to select a compact motif library across many validated
instances.

8 Theory III: library objective and approximation
via set cover

Having reduced validation of a fized motif hypothesis to a finite interven-
tional test family, we now address the cross-model objective: from a poten-
tially large collection of validated motif hypotheses, we wish to produce a
compact library £ that explains as many model-behavior instances as pos-
sible, with explicit approximation guarantees and a clear scaling law in the
number of models and behaviors.

Instances to be explained and candidate motif clusters. Let B be
a behavior family (tasks, templates, or benchmark items) equipped with
a readout Y and intervention family Z. For each model M; and each be-
havior b € B, we run the upstream pipeline (feature learning, candidate
motif extraction, canonicalization, and validation) and obtain a set of vali-
dated ezplanations in the form of motif clusters (canonical motif types) that
e-implement their corresponding canonical SCMs under some abstraction
map. We define the universe of explainable instances as

U = {(i,b) : i € [r], b€ B, 3 a validated motif cluster explaining (i,b)}.

Let C denote the set of all candidate motif clusters produced by canonical-
ization. Each cluster ¢ € C is associated with a proposed canonical motif
(7(c), SCM,()) and a collection of abstraction maps {c; .} for the instances
it explains. We write the coverage set of cluster ¢ as

S, = {(z, b) € U : cluster ¢ passes the causal abstraction test for (M, b) on DUDOOD}.

By construction, S. depends on the tolerance ¢, the allowed intervention
family Z, and the chosen validation test family U (.); however, at this stage
these are fixed, and we treat {S.}.cc as known.

Set cover formulation (unweighted and weighted). The most basic
library objective is to explain all explainable instances using the smallest
number of motifs. This yields the (unweighted) set cover problem:

Englrclwl s.t. CELJESC = U. (13)
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In many applications we may prefer a weighted objective capturing that some
motifs are intrinsically more complex (larger k, richer intervention semantics,
or additional parameters). Assign a nonnegative cost w, to each cluster ¢
and consider the weighted set cover:

minch s.t. U Se = U. (14)

LCC
ceLl ceLl

Both and are NP-hard in general (cf. Theorem 4), and thus one
should not expect exact polynomial-time solutions without additional struc-
ture. We therefore adopt a greedy approximation algorithm with the stan-
dard logarithmic guarantee (Theorem 5).

MDL interpretation and explicit cost choices. The set cover objec-
tive admits a minimum description length (MDL) reading that is useful for
selecting w, and for handling partial coverage. Consider a two-part code:
(i) describe the selected library £ and its canonical SCMs, and (ii) describe,
for each instance (4, b), which motif in £ is used (together with the validated
abstraction map identifier) or, if uncovered, describe a residual “exception”
model. A minimal library then corresponds to a short description of the
family of behaviors across models. Concretely, one may set

We DL(SCMT(C)) + DL(UT(C)) + )\kr(c) ,
S——— S——

canonical motif complexity intervention semantics size penalty

for a tunable A > 0. The MDL view also suggests relaxing the hard constraint
UeerSe = U to a penalized objective when coverage is imperfect due to
limited interventions or overly strict e:

i U\ UeerS
Iﬁnélgcez;;wc-i-ﬁ‘ \ UeerSe

)

where 8 encodes how costly it is to leave an instance unexplained relative to
adding a new motif. The hard-constraint set cover is the limit 8 — oo.

Greedy selection and approximation guarantee. For the unweighted
case, the greedy algorithm iteratively selects the motif cluster covering the
largest number of currently uncovered instances. For the weighted case, it
selects the cluster maximizing the ratio |S. N Urem|/we, where Usen denotes
uncovered instances at the current iteration. Formally, starting from Loy = ()
and Ur(gr)n = U, define
(t—1)

¢t € arg max M, Ly =Ly U{et Ul =ul=b\ s,

ceC We
until Ur(ér)n = (). Theorem 5 yields that the resulting library has total weight
at most H(|U|) times the optimal (where H(n) is the n-th harmonic number),
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and in particular at most (1 + In|U|) times optimal. As is standard, this
approximation factor is essentially best possible in polynomial time under
conventional complexity assumptions.

Implications for scaling in r and |B|. The relevance of the greedy guar-
antee is that the approximation factor depends only on |U|, not on the num-
ber of candidate motifs |C| nor on the ambient feature dimension m. Since
|U| < r|B|, the worst-case approximation scales as O(log(r|B|)). Thus, as
we increase the number of models (additional seeds, sizes, or post-training
variants) and enlarge the behavior family, the degradation in the optimality
guarantee is only logarithmic.

Equally important, once the coverage sets {S.} are computed, the greedy
selection stage is computationally light relative to upstream validation: it
requires maintaining uncovered counts and selecting maxima, which can be
implemented in time O (Y ¢ |S¢|) up to data-structure overhead. In typical
regimes, the dominant cost remains the model-query budget used to certify
each membership (i,b) € S., not the combinatorial selection itself.

Library stability and incremental updates. The set cover/MDL for-
mulation also clarifies how to update the library when new models or be-
haviors are added. Suppose we append a new model M, ; or new behavior
bnew. We need only validate candidate motifs on the new instances to update
the coverage sets S¢, and then rerun greedy (or continue greedy from the ex-
isting £ by covering newly added universe elements). While greedy need
not produce identical solutions under incremental growth, the logarithmic
approximation guarantee continues to hold for the enlarged universe, and in
practice the library changes only when genuinely novel motifs appear that
cover instances previously uncovered by existing motifs.

Interpretation: universality as small set cover. Finally, the library
viewpoint provides an operational measure of “universality up to abstrac-
tion.” If a small number of canonical motifs suffice to cover a large fraction
of U across diverse Doop settings, then the behavior family admits a com-
pact causal basis stable across the model family. Conversely, if covering U
requires a library whose size grows nearly linearly in |U|, then either (i) the
behavior family is not decomposable into bounded motifs under the inter-
vention family Z, (ii) the extracted candidates are too noisy to canonicalize
reliably, or (iii) the models implement genuinely heterogeneous mechanisms.
In this sense, the set cover objective provides not merely a selection heuristic
but a quantitative diagnostic: library size (or MDL cost) summarizes the ex-
tent to which our motif abstraction captures cross-model commonality under
interventions.
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9 Experimental plan: empirical validation of cross-
model motif libraries

We outline an experimental program designed to (i) verify the alignment and
motif-equivalence claims in settings with known ground truth, (ii) measure
scaling and robustness across realistic model families, and (iii) stress-test
the causal nature of our validation via falsification and ablation studies.
Throughout, we fix a readout variable Y appropriate to the behavior (e.g.
next-token logits on a designated position, a discrete tool-call, or a refusal
indicator), a behavior family B, an allowed intervention family Z, and in-
distribution / out-of-distribution input families D U Doop.

(I) Compiled-transformer testbeds with known motifs. We first
evaluate on “compiled” transformers whose internal computation implements
a known algorithmic motif with an explicit, human-specified causal graph
(e.g. induction heads, associative retrieval, parity checks, multi-step copy-
ing). Concretely, we consider synthetic sequence tasks where a small circuit
is sufficient and can be embedded into a transformer with controlled su-
perposition and noise. This setting supports a ground-truth SCM.. and an
intended abstraction map o from canonical variables 7, ..., Z; to internal
nodes.

The primary goal is to test whether our pipeline recovers (a) the correct
feature correspondence (up to permutation/sign/scale) across independently
trained instances, and (b) the correct motif type 7 and causal structure up
to the equivalence induced by the validation test family. We measure:

o Alignment accuracy: given ground-truth correspondences among la-
tent variables (or designated internal modules), we score 7;; by top-1
matching accuracy and by a soft score based on rank of the true match
under fingerprint distance.

e Motif recovery: whether the discovered motif cluster is isomorphic (un-
der aligned features) to the planted motif, and whether the learned
canonical SCM, matches the planted intervention response table on a
held-out intervention set.

e Statistical efficiency: empirical dependence on the number of interven-
tions T and samples per intervention NN, including the observed prob-
ability of correct recovery as a function of (7', N) for fixed tolerance
€.

Because Z can be implemented exactly in these testbeds (true do-operations
on known latent coordinates), we also quantify the gap between ideal inter-
ventions and their SAE-feature approximations by comparing fingerprints
computed in latent space versus activation space.
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(IT) Model families across seeds and sizes. We next consider realistic
model families {M;}!_; produced by varying (a) random seed, (b) model
width/depth, and (c) training data scale, while holding architecture class
fixed. For each family we train a feature basis F; (SAE/transcoder) on a
chosen activation stream (e.g. MLP residual stream at a subset of layers)
and compute interventional fingerprints ®;(f) for a candidate feature set .S;.
We emphasize two evaluation regimes:

1. Within-size, across-seed: tests stability of recovered correspondences
under minimal distribution shift, isolating the effect of non-identifiability
and superposition.

2. Across-size: tests whether motif types and their canonical causal con-
straints persist under scaling, allowing that abstraction maps o; r may
involve different layers/heads/features as width changes.

Here we do not have ground truth, so we use internal consistency metrics:
cycle-consistency of alignments (m;; o mj;, & 7, on high-confidence features),
agreement of motif clusters across subsets of models, and predictive validity
of motifs via transfer tests (below).

(ITI) Base versus instruction-tuned versus preference-optimized
(RLHF/DPO). A central claim is that motifs can be universal up to
abstraction even when post-training substantially changes behavior. We
therefore construct triplets of related models: a base pre-trained Mpase, an
instruction-tuned My, and a preference-optimized Mpes (RLHF or DPO),
ideally sharing a common pre-training initialization. For each behavior b € B
we ask:

e whether a motif validated in My, remains present (possibly with dif-
ferent o) in My and Mpyer;

e whether novel motifs appear that explain post-training-specific behav-
iors (e.g. refusal mechanisms, policy shaping, tool-use routing);

e whether alignments based on fingerprints computed on neutral D trans-
fer to domains where the post-training signal dominates (selected sub-
sets of Doop).

We treat these as paired comparisons: we hold 7 fixed and report motif cov-
erage changes and changes in validation margins (empirical effect mismatches
relative to ¢).

Metrics: alignment, transfer, robustness, and certification. We re-

port four families of metrics, each computed with explicit confidence intervals
over both intervention sampling and input sampling.
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1. Feature alignment metrics. For each pair (i, 7), we report (a) matching
cost under the optimal assignment, (b) fraction of features aligned
above a margin threshold (a calibrated “high-confidence” subset), and
(c) stability of m;; under resampling of D and under moderate changes
in 7.

2. Motif transfer accuracy. Given a motif cluster ¢ learned primarily
from a subset of models Iiyain C [r], we test on held-out models Ties; by
instantiating the proposed SCM_ () with abstraction maps «; ; derived
from aligned features, and measuring agreement of interventional effect
predictions on Y. This yields a direct measure of whether canonical
motifs generalize across the family rather than merely re-fitting per
model.

3. 00D robustness. For each validated (i,7) we evaluate the same inter-
ventional constraints on Doop, reporting the distribution of effect mis-
matches and the fraction of motifs whose certification holds uniformly
(or with bounded degradation) under OOD shift. We distinguish se-
mantic OOD (new topics/templates) from syntactic OOD (longer con-
texts, altered token distributions), since different motifs are expected
to fail differently.

4. Fulsification and negative controls. We report the false-accept rate
of the causal abstraction test under deliberately incorrect hypothe-
ses: mismatched motif types, random abstraction maps, and “shuffled”
alignments produced by permuting fingerprints. A valid certification
procedure should reject these at rates consistent with the target failure
probability 4, up to estimation error.

Falsification tests targeted to causality (not correlation). To ensure
that success is not driven by incidental correlations in activations, we include
interventions that specifically break correlational explanations:

e Counterfactual interchange: swap the activations of candidate motif
variables across inputs x,x’ matched on superficial statistics but dif-
fering in the motif-relevant property (e.g. presence/absence of an in-
duction trigger), and test whether Y changes according to SCM.

e Path-constraint checks: intervene on purported parent variables while
holding downstream activations fixed via patching; reject motifs that
only reproduce marginal effects but fail conditional (path-specific) con-
straints.

o Anticausal baselines: define a “reverse” motif graph with edges reversed
(or randomized) and show that it cannot pass the interventional con-
straints despite matching observational correlations.
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These tests are reported alongside standard effect-size summaries so that
acceptance corresponds to genuinely causal invariants under Z.

Ablations on fingerprint design and intervention family. We per-
form controlled ablations to identify which components are necessary for
reliable cross-model alignment.

1. Fingerprint statistics. We compare fingerprints based on (a) mean logit
differences at selected positions, (b) KL divergence between output
distributions, (c) discrete readout changes (e.g. tool-call flips), and
(d) multi-position summaries. We also ablate whether fingerprints are
computed on D alone or on a mixture D U Dgoop.

2. Intervention operators. Within Z, we compare zero-ablation, resample
ablation, mean replacement, subspace projection, and sparse feature
editing (setting a coordinate in h;). We quantify (i) on-distributionness
of intervened activations (e.g. via reconstruction error or density prox-
ies) and (ii) downstream stability of the alignment.

3. Budget scaling. We sweep T and N to empirically map the tradeoff be-
tween cost and accuracy, and to verify that observed sample complexity
tracks the qualitative dependence predicted by the separation-margin
story (in particular, the emergence of a stable high-confidence aligned
subset).

As a final robustness check, we vary the SAE dictionary size m and sparsity
regularization to test whether motifs are stable across different feature gran-
ularities, and we report when increased m merely refines abstraction maps
versus when it changes the inferred motif types.

Deliverables of the experimental section. The empirical outcome is a
set of quantitative curves and certification tables: alignment quality across
families, motif transfer and OOD validity, and calibrated rejection rates on
falsification tests. The experimental narrative is thereby forced into explicit,
testable statements: which motifs are shared, under what interventions, at
what tolerance €, and with what failure probability § as estimated from
repeated trials.

(X) Released artifacts: library schema, tooling, benchmarks, and
reporting standards. To make the claims of universality up to abstrac-
tion auditable and extensible, we will release a set of artifacts that render
each accepted motif instance (i,7) as a reproducible object: one should be
able to (a) instantiate the canonical SCM., (b) apply the corresponding
abstraction map ;. to a concrete model M;, (c) re-run the agreed-upon
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intervention suite from Z on fresh samples from D U Doop, and (d) re-
cover the validation decision (accept/reject) within statistical tolerance. We
therefore treat the motif library not as a narrative description but as a typed
schema with explicit interfaces for interventions, effect measurements, and
uncertainty.

Motif library schema. We will publish £ = {(7,SCM;)} in a machine-
readable format that separates canonical causal content from model-specific
instantiations. Each motif type entry includes:

e Canonical variables and graph: anode list (Z1, ..., Zy), directed edges,
and (when available) a parametric or tabular specification of structural
relations, including which variables are designated as intervene-able
under the intended 7.

e Readout interface: a declaration of the readout Y (e.g. logits at a
named position, a categorical action, or a scalar score) and an allowed
family of effect summaries (e.g. expected logit difference, KL diver-
gence, or probability shift).

e Interventional constraints: the finite set of inequalities/equalities used
by the causal abstraction test (e.g. interchange constraints, path-specific
constraints), stated as estimable functionals of the interventional dis-
tribution of Y. This is the portion of the schema that is intended to
be stable under re-implementations.

o Reference intervention suite: a recommended family of interventions
{It}ﬁl C 7 sufficient to validate the motif for typical choices of ¢, d,
together with any admissibility checks (e.g. resample-ablation require-
ments to keep activations on-distribution).

We emphasize that SCM; need not be fully identified as a set of structural
equations; it suffices to encode the interventional invariants that define the
equivalence class we certify. Accordingly, the schema is designed to admit
both equation-based motifs (where a compact parametric form exists) and
constraint-based motifs (where the canonical object is a list of interventional
tests and predicted qualitative effects).

Abstraction maps as first-class objects. For each validated (i,7), we
will release «; r as a structured mapping from canonical variables to inter-
nal nodes/features of G; (typically SAE features in F;), with enough detail
to execute the test suite without ambiguity. Concretely, each map entry
specifies:

e Target location: model identifier and version hash, layer/module co-
ordinates, activation stream, and the feature index (or a small set
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thereof) in the learned basis F;. Where applicable, we include sign /scale
conventions induced by dictionary normalization so that aligned fea-
tures can be compared across models without hidden gauge choices.

e Realization type: whether the canonical variable is realized as a single
feature, a sparse linear combination in code space h;, or a subspace (e.g.
an SAE feature group). When the map is non-injective (one canonical
variable realized by multiple internal degrees of freedom), we record
the aggregation rule used by the intervention operator.

e [ntervention operator binding: an explicit recipe translating a canoni-
cal do-operation on Z; into a concrete intervention I € Z on the chosen
internal representation (e.g. resample-ablate the corresponding feature
coordinate; project out a subspace; patch from a matched donor input).
This includes any matching criteria for donor selection in interchange
interventions.

This makes the abstraction map more than an alignment hint: it is an exe-
cutable specification of how to realize the canonical motif within M;. Where
multiple abstraction maps pass validation, we record them as alternative re-
alizations with their respective validation margins, rather than committing
to a single “true” placement.

Validation reports as certificates with uncertainty. FEach accepted
instance (7, 7) will ship with a validation report that functions as a certifi-
cate relative to declared tolerances (e,d). The report includes: (a) the exact
intervention set used for validation (including random seeds where sampling
is involved), (b) the sample sizes N and any stratification over D versus
Doop, (c¢) the empirical effect mismatch statistics for each constraint (point
estimates and confidence intervals), and (d) the acceptance criterion used to
aggregate constraints into a single decision (e.g. max-norm mismatch, FDR-
controlled multiple testing, or a composite test statistic). In addition, we
include negative-control results produced by the same harness (e.g. random-
ized « or shuffled alignments) so that a consumer can sanity-check calibration
of false acceptance rates under the declared §.

Tooling for adding new models and re-validating motifs. We will
release a reference implementation of the end-to-end pipeline sufficient for
third parties to (i) train a feature basis F; on a new model M;, (ii) compute
fingerprints ®;(f) and align to an existing library via m;;-style assignments,
(iii) propose candidate abstraction maps for known motifs, and (iv) run
the validation harness to either accept an existing motif or reject it with
diagnostic traces. The tooling will expose a minimal interface:

forward(x) — (activations, Y), intervene(activations, I) — activations’,
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together with adapters for common transformer libraries. We will provide
caching and batched execution utilities, since the practical cost is dominated
by repeated forward passes under interventions. The intent is that adding a
new model requires only an implementation of these hooks plus a declaration
of the activation stream on which Fj is trained; all other steps (fingerprints,
alignments, motif tests) are then standardized.

Benchmark suite for universality up to abstraction. We will pack-
age a benchmark suite that operationalizes the task “given L, certify which
motifs hold in a new model.” The suite includes (a) a behavior family B
specified as prompt templates with labeled readout positions and scoring
functions, (b) an explicit split into D and multiple Doop families (semantic
shift, syntactic/length shift, and adversarially constructed perturbations),
and (c) reference implementations of interventions in Z together with ad-
missibility checks. For compiled-transformer settings, we will also include
generators with planted motifs and the corresponding ground-truth motif
annotations, enabling direct measurement of alignment/motif recovery in a
controlled environment. The benchmark will report not only pass/fail but
also coverage (how many (i,7) are validated), margins (distance to the e
threshold), and cost (effective T'; N, and wall-clock).

Recommended reporting standards. To ensure comparability across
studies, we will recommend that any reported motif universality claim in-
clude, at minimum:

e model provenance (architecture, training regime, checkpoint hash) and
the exact definition of Y

e SAE/transcoder configuration (activation stream, dictionary size m,
sparsity regularization, reconstruction metrics) and the candidate fea-
ture selection procedure for S;;

e intervention family Z and the concrete operators used (including on-
distributionness diagnostics for intervened activations);

e the tolerances € and target failure probability §, with the actual T,
and N, used for validation and an explicit multiple-testing policy if
applicable;

e a table of validated (i, 7) with margins on both D and each Doop, plus
negative-control rejection rates under the same harness.

When alignments 7;; are used to transfer motif hypotheses across models,
we recommend reporting cycle-consistency statistics on the high-confidence
subset and sensitivity of conclusions to re-training F; under modest hyper-
parameter changes. These standards are intentionally mechanistic: they
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force the claim “motif 7 is universal up to abstraction” to be grounded in
executable objects (maps, interventions, tests) rather than in qualitative
similarity of circuits.

11. Limitations and failure modes. Our notion of “universality up to
abstraction” is intentionally operational: we certify agreement of interven-
tional effects on a declared readout Y under a declared intervention family
7 and input families D U Doop, up to tolerance € and failure probability
0. This choice yields auditable claims, but also fixes what can go wrong.
In particular, a negative result may reflect a mismatch between the motif
and the model, or merely a mismatch between the motif and the available
interventions; conversely, a positive result may certify only that the motif
reproduces the tested effect constraints, not that it captures all causal struc-
ture relevant to B. We therefore enumerate limitations that arise when the
assumptions implicit in our alignment, extraction, and validation steps are
violated.

Non-linear or manifold features beyond sparse linear codes. Our
alignment guarantees (e.g. Theorem 1) are stated in a simplified setting
where internal activations admit a sparse linear representation a; = A;s +n
and where SAE features approximate do-interventions on coordinates of s.
Empirically, many internal variables are better modeled as lying on curved
manifolds, with behavior depending on directions that are only locally lin-
ear, context-dependent, or representationally entangled across layers. In
such cases, a global dictionary D; € R with sparse codes h; may fail
to produce a stable basis Fj, and the induced intervention operator (e.g.
resample-ablation of a coordinate) may not approximate any well-defined
do-operation in the underlying computation. A concrete failure mode is
that two features with similar reconstruction properties yield sharply differ-
ent A;(f;I,z) depending on z, destroying the separation margin ~y required
for reliable matching. While one may attempt to address this by (i) learning
multiple dictionaries conditioned on activation regimes, (ii) fitting non-linear
feature maps, or (iii) using tangent-space interventions (projecting onto local
principal directions), these extensions weaken identifiability and complicate
the meaning of feature-level causal claims.

Redundancy, hydra effects, and self-repair under intervention. Trans-
formers frequently exhibit redundant representations and alternative path-
ways implementing the same function. Under an intervention I that ab-
lates or perturbs a feature, downstream computation may “route around”
the perturbation by recruiting correlated features, a phenomenon sometimes
described as hydra behavior or self-repair. In our framework this manifests
as an intervention-dependent abstraction: a map «; r that passes validation
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for one subset of Z may fail for another, even when both subsets are osten-
sibly aimed at the same canonical do-operation. The failure is not merely
statistical; it reflects that the intervention changes the mechanism rather
than setting a variable in an invariant SCM. This is especially acute when
interventions are large in magnitude, when they break layernorm statistics,
or when they implicitly induce compensatory attention patterns. Mitiga-
tion typically requires restricting to “gentle” interventions (e.g. resample-
ablation with matched donors, low-rank subspace patching) and explicitly
checking invariance across multiple operators intended to represent the same
do-operation. Nonetheless, in highly redundant systems, a motif may be
present but not isolatable: no intervention in Z cleanly severs the relevant
causal path without activating alternatives.

Off-distribution interventions and the problem of admissibility.
All causal conclusions here are conditional on interventions being admissible
in the sense of keeping internal activations approximately on-distribution.
When an intervention produces an activation pattern outside the training
support, the resulting output shift in Y may reflect pathological extrapola-
tion rather than the counterfactual effect of toggling a meaningful internal
variable. This can cause both false positives (a spurious but consistent effect
pattern that matches SCM; by accident) and false negatives (true motifs ob-
scured by intervention-induced noise). Our recommended resample-ablation
and donor-matched patching operators reduce but do not eliminate this risk,
since matching in a limited activation stream may fail to control for other
latent state. A principled admissibility theory would specify, for each I € 7,
a constraint such as

d(Law(a; | z),Law(I(a;) | 2)) < K

for an appropriate distance d and tolerance x, and would propagate this to
bounds on causal-effect estimation error. We do not yet have such a theory
in general, so validation should be read as an empirical certificate under a
chosen admissibility diagnostic rather than as an unconditional causal guar-
antee.

Partial observability of internal state and limited intervention ac-
cess. Even in a white-box setting, we typically intervene on a selected acti-
vation stream (e.g. residual stream features) and treat other internal quanti-
ties as fixed or endogenous. However, the effective internal state relevant to
Y includes attention scores, key/value caches, normalization statistics, and
sometimes stochastic components (sampling, dropout during training-time
analysis, or tool-use randomness in agentic settings). If the true causal par-
ents of the canonical variables Z; are partly unobserved or un-intervenable,
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then abstraction maps «; » may be non-identifiable: multiple distinct inter-
nal structures can satisfy the same finite set of tested interventional con-
straints. This is not merely an inconvenience; it bounds what we can claim.
Our certificates establish that the tested interventional distributions of Y
are consistent with SCM; under «; -, but they need not pin down a unique
internal causal story. In practice, we expect to report equivalence classes of
realizations (multiple passing maps) and to treat failure to find a passing
map as inconclusive when intervention access is too narrow.

Statistical and multiple-testing failure modes in validation. Val-
idation aggregates many estimated effects into a single accept/reject deci-
sion. When the number of tested constraints is large, naive thresholds can
silently inflate false acceptance. Conversely, conservative corrections can
yield false rejections, especially under heterogeneous variance across D and
Doop. Although Theorem 3 gives sample requirements N = O(e~2log(1/4))
for individual constraints under concentration assumptions, the constants
can be large in practice, and model outputs can be heavy-tailed under
OOD prompts. Moreover, the choice of effect summary (e.g. expected logit
shift versus KL divergence) can change sensitivity. A robust implementa-~
tion therefore requires explicit multiple-testing policy (e.g. FDR control)
and negative controls (randomized «, shuffled 7;;) to estimate calibration.
These measures reduce, but do not eliminate, the risk that a library grows
by accumulating borderline motifs that pass due to correlated test statistics.

Compute and scaling constraints. The pipeline is compute-intensive:
training SAEs per model, computing fingerprints for |S;| features across T'
interventions with N samples, performing pairwise (or hub-based) align-
ments, and then validating candidate motifs with additional T}, N, queries.
The complexity terms O(r - |S| - TN) for fingerprints and O(r? - |S|3) for
exact assignment become prohibitive when r and |S| are large, even before
motif extraction. Approximate matching, locality-sensitive hashing on fin-
gerprints, and restricting to a small high-confidence subset can help, but
may systematically bias the library toward frequent or easy-to-intervene-on
features, reducing coverage of rarer but behaviorally important motifs. Fur-
thermore, the fixed-k tractability story does not remove the practical cost
of candidate generation: without strong pruning heuristics, the search space
over |S|¥ remains large even for modest k. Thus our approach is likely to
be most reliable when applied to carefully chosen behaviors B and narrow
activation streams where interventions are cheap and interpretable.

Dual-use and release-risk considerations. A motif library £ with ex-
ecutable abstraction maps o; » can lower the cost of targeted model editing,
behavioral steering, or bypassing safety mechanisms. The same interven-

40



tion harness that enables scientific reproducibility can, if misused, enable
systematic discovery of control levers for undesirable behaviors (e.g. elicit-
ing disallowed content, manipulating tool calls, or amplifying persuasion).
This risk is accentuated when motifs correspond to high-level control sig-
nals (refusal, deception, goal persistence) rather than benign subroutines
(copying, retrieval). We therefore view unrestricted release of model-specific
maps and intervention recipes as a policy decision rather than an automatic
consequence of scientific publication. Practical mitigations include releas-
ing (i) canonical motifs SCM, and validation statistics without fine-grained
model coordinates, (ii) coarse-grained or rate-limited tooling interfaces, (iii)
red-teamed subsets of motifs under controlled access, and (iv) audit logs for
intervention execution in shared environments. Any such restriction, how-
ever, reduces external verifiability; this tradeoff is intrinsic and should be
made explicit in claims of universality.

Summary. In short, our certificates are strongest when (i) feature bases
approximate identifiable causal variables, (ii) interventions are admissible
and do not trigger self-repair, (iii) the relevant internal state is sufficiently
observable, and (iv) the tested constraints are appropriately calibrated un-
der finite samples. Where these conditions fail, the framework remains use-
ful as a disciplined empirical protocol, but its conclusions should be read
as conditional statements relative to (Z,Y,D U Doop,€,6), not as absolute
mechanistic identifications.

12. Conclusion and future work. We have formulated an operational
notion of universality up to abstraction for mechanistic motifs across a family
of transformer models, and we have given a concrete pipeline (CMML) that
(i) learns sparse feature bases, (ii) aligns features across models using inter-
ventional fingerprints, (iii) proposes candidate motifs of bounded size k, (iv)
canonicalizes these into a library £ of motif types 7 with associated canonical
SCM;, and (v) certifies e-agreement of interventional effects on a declared
readout Y over DUDgop. The main value of this framing is that it turns in-
formal claims of “shared circuits” into a finite family of testable interventional
constraints, together with explicit dependence on (Z,Y,¢,d). Theorems 1-5
delineate a tractable regime (identifiable sparse features; bounded motif size)
and clarify where interventions are provably necessary and where computa-
tional hardness is unavoidable. We view the present work as a base layer
upon which several extensions—multimodality, agentic tool use, temporal
motifs, and adversarial robustness—can be developed without abandoning
the core requirement of auditable causal tests.

Multimodal models: shared motifs across heterogeneous streams.
A direct next step is to extend the feature/alignment/validation story to
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multimodal transformers whose internal state mixes text, vision, audio, or
other modalities. In such settings, a motif 7 may be realized by variables
that are not confined to a single activation stream, and an abstraction map
a; » may necessarily span multiple layers and modalities. Technically, this
suggests replacing a single dictionary D; € R¥™ by a typed collection
{DgteXt),DZ(VlSlon),...} together with cross-modal linking constraints that
specify which feature types are allowed to serve as images of a given canonical
variable Z;. One can then define fingerprints ®;(f) with interventions that
are modality-appropriate (e.g. patching a visual token subspace, ablation of
a cross-attention head, or resample-ablation in the residual stream) while
preserving the same downstream readout Y. An open theoretical question
is whether analogues of Theorem 1 can be proved when the latent sparse
code s has block structure and the mixing maps A; are modality-specific
and partially shared; a plausible route is to impose structured incoherence
assumptions that prevent arbitrary rotations across modalities while still
allowing within-modality symmetries. Empirically, we expect that many
canonical motifs (retrieval, copy-suppression, refusal gating) will admit both
unimodal and multimodal realizations, and a library £ that explicitly records
modality-typed variables may clarify when “the same behavior” is imple-
mented by genuinely shared subroutines versus modality-contingent special
cases.

Agentic and tool-using systems: motifs over interaction graphs.
When Y denotes an action (tool call, parameter choice, or refusal) produced
by an agentic model interacting with an environment, the relevant causal
graph is no longer confined to a single forward pass. Instead, the system
includes external state (tool outputs, memory buffers, scratchpads) and the
model’s own action-conditioned future inputs. We can still remain within
the present framework by treating the entire closed-loop computation as an
extended causal graph G;OOP
and tool I/O. The intervention family Z must then include operations such
as (i) patching internal activations at specific time steps, (ii) intervening on
tool outputs (counterfactual tool responses), and (iii) freezing or replacing
memory states. A motif type 7 in this setting may describe, for example, a
canonical SCM.. in which a latent goal variable influences both a plan variable
and a termination decision, with observed tool calls mediating information
acquisition. Validation would require interchange interventions that hold the
environment fixed while swapping internal variables according to «; -, in a
manner analogous to interchange intervention tests but now indexed by time
and conditioned on the history. A key methodological issue is to ensure that
the test suite distinguishes mechanistic motifs from policy-level invariances;
in particular, we will want tests that separate “the agent chooses tool ¢
because it inferred fact ¢” from “the agent chooses tool t whenever the prompt

with additional nodes for environment variables
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matches a template,” even if both patterns produce similar observational
behavior.

Dynamic motifs over trajectories: causal templates for computation-
in-time. Even without external tools, many behaviors of interest (multi-
step reasoning, iterative refinement, self-correction) are naturally temporal.
We therefore expect the appropriate canonical object to be a dynamic SCM
or causal state-space motif. One minimal formalization is to index canonical
variables by time t € {1,..., Ty}, writing Z ](.t) and allowing edges across time
steps. A dynamic motif of bounded per-step size k can then be represented
by structural equations

Z(t+1) gT(Z(t), U(t)), y®) — hT(Z(t)),

where U®) are exogenous noises and ¢, h, are canonical mechanisms. An
abstraction map «;, now maps each Zj(t) to a time-localized internal node
(or feature) in Gj, such as an SAE feature at layer ¢(¢) and token position
p(t). The intervention family must support temporally targeted operations,
and fingerprints must be defined over interventions that perturb a variable
at a given time and measure its downstream effect on future readouts. The
main conceptual benefit is that we can state universality claims not merely
about static subcircuits, but about canonical update laws that recur across
positions and layers. The main technical obstacle is combinatorial: even if
each time slice has size k, the unrolled motif has size k7,. One promising
direction is to validate local constraints that are sufficient to certify a repeat-
ing template (e.g. time-homogeneous mechanisms) rather than validating the
entire unrolled graph.

Adversarially robust universality testing: worst-case prompts and
interventions. Our present guarantees are phrased in terms of average-
case estimation over D (and a chosen Doop). For safety-relevant behaviors,
we often require stronger statements: the motif should predict interven-
tional effects not only on typical inputs, but also under adversarially chosen
prompts, contexts, or tool outputs. We can express such a requirement by
replacing expected discrepancies with a supremum over an adversary class
A:

sup sup d(Law(Y | don(I),z), Law(Y; | do(]),x)) <ce,

zeA I€T,
where Z; denotes canonical interventions on SCM, and do, () denotes the
corresponding realized intervention via «. Achieving such a bound would
require (i) an explicit adversary model (prompt-space constraints, norm
bounds in embedding space, or discrete search procedures), and (ii) a test-
ing protocol that either covers A by a finite e-net or uses adaptive search
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to find counterexamples. This suggests a synthesis between causal abstrac-
tion testing and adversarial evaluation: we can treat the validation step as
a falsification game in which the tester searches for (z,I) that maximizes
mismatch. Theoretical work here would aim to relate the complexity of this
search to capacity measures of the motif and to regularity properties of the
model’s response under admissible interventions.

Compositional libraries, hierarchy, and minimality. The library ob-
jective in CMML is a set-cover criterion over validated instances (i, 7), which
already implies an implicit notion of parsimony. A further goal is to construct
libraries that are compositional: complex behaviors should be explained by
wiring together simpler motifs with explicitly represented interfaces. Con-
cretely, we can treat motifs as typed components with input/output vari-
ables, and define a composition operator that produces a larger SCM by
identifying interface variables (or by adding coupling equations). The result-
ing representation would allow us to express, for example, that a tool-use
policy motif composes a retrieval motif with an action-selection motif. On
the algorithmic side, compositionality suggests searching for motifs that not
only explain Y directly but also serve as reusable subcomponents across be-
haviors B. On the theoretical side, it raises a minimality question: under
what conditions is a canonical decomposition identifiable from interventional
fingerprints, and how does bounded-size tractability interact with hierarchi-
cal reuse?” While unrestricted structure learning remains hard, we expect
that constraining the motif grammar (bounded arity, typed interfaces, lim-
ited depth) may yield tractable special cases analogous to the fixed-k regime
of Theorem 3.

Closing remark. We emphasize that each proposed extension retains the
same core discipline: universality claims should be phrased as equivalence of
interventional effects on declared readouts under declared intervention fam-
ilies, with explicit tolerances and failure probabilities. The central open
problem is to broaden the class of systems and behaviors for which we
can construct such certificates without relying on fragile assumptions, while
maintaining computational and statistical feasibility at scale.
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