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Abstract

Neural Architecture Search (NAS) relies heavily on cheap proxies—weight-
sharing supernets, early-stopped training, or proxy tasks—to avoid the
prohibitive cost of training each architecture from scratch, as empha-
sized by the survey source material (efficient NAS, DARTS variants,
random search with weight-sharing, performance predictors). Yet the
field lacks clarity on what can be guaranteed when proxies are biased
or misrank architectures. We propose a clean oracle model separating
a cheap proxy signal P from the expensive true evaluation F. Our
first result is an impossibility theorem: without any structural linkage
between P and F', no proxy-only algorithm can guarantee a nontrivial
approximation to the optimal architecture. We then introduce a min-
imal, testable proxy-to-true linkage condition—a bounded-distortion
calibration assumption stating that F'(a) is close to an unknown trans-
formation of P(a) within a known function class. Under this condition
we give a simple calibration-based algorithm with tight sample com-
plexity: ©(1/e?) true evaluations suffice (and are necessary) to select
an e-optimal architecture up to the irreducible distortion 7. Finally, we
outline diagnostics that empirically test whether a given NAS proxy
satisfies the calibration condition on held-out architectures, offering
a practical checklist for when proxies such as weight-sharing or early
stopping can be trusted.
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1 Introduction

Neural architecture search (NAS) is commonly posed as the problem of se-
lecting, from a finite candidate set A with |A| = n, an architecture a € A
maximizing an unknown performance objective F'(a) € [0,1] (e.g., test ac-
curacy after full training). The defining difficulty is that evaluating F(a)
is expensive: a single query typically requires a full training run, and the
resulting observation is noisy due to stochastic optimization, data ordering,
and evaluation variance. We therefore model each expensive evaluation as
an oracle call returning F'(a) = F(a) + &, where £ is mean-zero and sub-
Gaussian. Under a budget constraint of at most B expensive evaluations,
the goal is to output a with F'(a) close to OPT := max,c 4 F'(a) with high
probability.

To reduce the number of expensive evaluations, practical NAS pipelines
use prozies—cheap signals P(a) € ) intended to correlate with F'(a) while
being much cheaper to compute. Typical examples include weight-sharing
scores from one-shot models, early-stopping validation accuracy, training-
free heuristics, or learned predictors. In abstraction, we grant the algorithm
oracle access to a proxy oracle Op returning P(a) on query a, and we treat
Op queries as essentially free relative to Op queries. This modeling choice
isolates the fundamental question: what can be guaranteed from proxy in-
formation, and how many expensive evaluations are unavoidable?

Guarantees matter for two reasons. First, proxy-based methods are
known to succeed or fail abruptly as the search space, training protocol,
and proxy construction change. Empirically, one often observes ranking re-
versals: architectures that score highly under a proxy may train poorly when
fully evaluated, and conversely strong architectures may be suppressed by
proxy bias. Without a formal linkage between P and F', an algorithm that
is “good” on one benchmark may be provably incapable of providing any
uniform performance guarantee across problem instances. Second, NAS is
frequently deployed under strict budgets, and the relevant question is not
only whether a proxy correlates with F' on average, but whether one can cer-
tify that a pipeline will return a near-optimal architecture with probability
at least 1 — § while using at most B expensive evaluations.

Our first contribution is to formalize a minimal oracle model capturing
the ubiquitous proxy-truth dichotomy. The algorithm may adaptively query
Op and Op, but its dominant cost is the number of Op calls. This allows
us to separate two roles played by proxies in practice: (i) screeming, where
one uses P to restrict attention to a small candidate set, and (ii) estimation,
where one uses expensive evaluations to resolve remaining uncertainty. The
model is deliberately simple—finite .4, bounded objective values, and sub-
Gaussian evaluation noise—so that any limitations we prove are not artifacts
of pathological function classes or continuous domains.

Our second contribution is a worst-case impossibility statement for proxy-



only NAS. If an algorithm has access only to Op, then for any such algorithm
we can construct instances in which the proxy conveys no information about
which architecture is optimal. In this regime, even allowing randomization
and adaptive proxy queries, no method can guarantee a nontrivial approxi-
mation to OPT uniformly over all (F, P). This observation is not a criticism
of proxies per se; rather, it identifies the exact point at which additional
assumptions are logically necessary. In particular, any meaningful perfor-
mance guarantee must posit some relationship between P and F' that rules
out indistinguishable instances.

Our third contribution is to articulate a linkage assumption that is both
weak enough to cover diverse proxy mechanisms and structured enough to
yield tight sample complexity bounds. We assume there exists an unknown
calibration function ¢ in a known function class G such that g(P(a)) predicts
F(a) up to a bounded distortion 7, i.e.,

|F'(a) —g(P(a))| <n for all a € A.

This condition separates two sources of error: a modeling error n reflect-
ing intrinsic proxy bias, and a statistical error arising from learning g from
finitely many expensive evaluations. The parameter 7 is not assumed known
a priori; it is a property of the given proxy and search space, and it can be
empirically assessed via residuals on held-out calibration data. The func-
tion class G encodes any structural knowledge we are willing to assert (e.g.,
monotonicity or Lipschitzness), and its complexity comp(G) governs how
many calibration evaluations are required for uniform generalization.

Our fourth contribution is an algorithmic template, calibrate then select,
that explicitly mirrors common practice while admitting end-to-end guaran-
tees. We use a subset of the expensive evaluation budget to collect calibration
data (P(a;), F(a;)) and fit g € G. We then score architectures by g(P(a))
using cheap proxy queries, retain a top-k candidate set, and spend the re-
maining budget validating candidates through additional calls to Op. The
analysis yields an additive guarantee of the form

F(a) > OPT —e—2n

with probability at least 1 — §, where the expensive evaluation complexity
decomposes into a calibration term scaling as ©((comp(G) + log(1/6))/e?)
and a validation term scaling as O(k log(k/§)/e?). This decomposition makes
explicit a tradeoff often left implicit in practice: increasing the screening
aggressiveness (smaller k) reduces validation cost but increases the risk that
calibration error causes the optimum to be screened out.

Finally, we show that the ©(1/¢?) dependence on the desired accuracy
is information-theoretically necessary: even when n = 0 and the proxy is
perfectly calibratable within G, one cannot in general beat the canonical



rate dictated by hypothesis testing and best-arm identification. Thus, un-
der bounded distortion, calibration can improve constant factors and reduce
dependence on n via screening, but it cannot circumvent the fundamental
sampling barrier imposed by noisy expensive evaluations. In this sense, our
results delineate what proxies can and cannot buy: they can reduce the
search burden by guiding where to spend expensive evaluations, but they
cannot eliminate the estimation burden required to certify near-optimality.

2 Related Work

We group prior work by the role played by inexpensive signals in reducing
expensive evaluations, and we highlight where existing analyses leave gaps
that our oracle formalization and tight bounds are designed to fill.

Weight-sharing and one-shot NAS. A major line of work seeks to
amortize training cost by constructing a one-shot supernet whose shared
parameters are used to score sub-architectures, thereby inducing a cheap
proxy for the fully trained objective. This idea appears in a wide range of
methods, including differentiable NAS and its variants (e.g., DARTS and
follow-ups), as well as sampling-based one-shot procedures. In differentiable
approaches (DARTS, DARTS+, and subsequent stabilizations such as Fair-
DARTYS), the search objective is relaxed so that architecture parameters and
shared weights are optimized jointly; the relaxed solution is then discretized
to produce a final architecture. In the language of our model, the supernet-
derived validation accuracy (or a related score) is a proxy P(a) that can be
queried for many a at low marginal cost. Empirical work has documented
that weight-sharing proxies can be informative in some regimes but can also
exhibit significant bias and instability, including sensitivity to optimization
hyperparameters, discretization effects, and mismatches between proxy rank-
ing and the ranking under full training. These observations motivate treating
P as an arbitrary signal that may or may not reliably preserve the ordering
induced by F, rather than as a faithful estimator of F.

Surrogate predictors and performance modeling. Another promi-
nent approach trains a learned predictor that maps an architecture encoding
to a predicted performance, using a dataset of previously evaluated architec-
tures. This includes classical surrogate modeling (e.g., Gaussian processes
and random forests in Bayesian optimization for structured spaces) as well
as modern neural predictors. Such predictors may be used to propose can-
didates directly, to rank a large set and then validate a shortlist, or to guide
acquisition functions in sequential design. Conceptually, a learned predictor
is itself a proxy oracle Op once trained. However, the predictor is typically
learned from noisy, budget-limited data, and its generalization depends on



the hypothesis class and the sampling scheme. Our abstraction separates
these issues: we allow any proxy oracle, but we require expensive evalua-
tions to learn a calibration map from proxy values to the true scale, and
we quantify how many such evaluations are necessary as a function of the
complexity of the calibration class. This differs from work that treats the
predictor as the final decision rule without explicit end-to-end guarantees
relative to OPT.

Multi-fidelity HPO and early-stopping proxies. Multi-fidelity meth-
ods reduce cost by evaluating configurations at lower fidelities, such as fewer
epochs, smaller models, reduced data, or coarser resolutions, and adaptively
allocating more budget to promising candidates. Representative algorithms
include successive halving and Hyperband, as well as Bayesian optimization
variants that incorporate fidelity as an input. These methods can be viewed
as producing a proxy P(a) derived from partial training information, often
with a well-defined computational cost that is lower than full training. In
practice, the critical question is how reliably low-fidelity performance pre-
dicts full-fidelity performance, and under what conditions aggressive early-
stopping can discard the eventual best configuration. Our framework does
not model fidelity cost explicitly; instead, it isolates the dominant cost—full
evaluations through Op—and treats proxies as inexpensive. This allows us
to state worst-case limits (proxy-only impossibility) and then recover pos-
itive results under a minimal linkage (bounded-distortion calibration) that
captures when low-fidelity signals can be trusted up to a distortion level 7.

Learning-curve extrapolation. A closely related literature attempts to
predict final performance from early learning curves, using parametric curve
families, Bayesian models, or neural sequence predictors. These methods
again provide a cheap or moderately cheap proxy derived from partial obser-
vations, sometimes with uncertainty estimates used to terminate unpromis-
ing runs. From our perspective, learning-curve extrapolation is one instan-
tiation of a proxy oracle: P(a) may be a vector of early metrics, and ¢ is
the extrapolation rule mapping that proxy to a predicted final score. The
bounded-distortion view clarifies what must be true for such extrapolations
to support guarantees: there must exist a calibration map within a known
class that uniformly approximates the truth up to 1 across the architectures
under consideration.

Known proxy pathologies and ranking unreliability. A recurring em-
pirical finding in NAS is that proxies can induce substantial ranking error:
high proxy scores may correspond to architectures that underperform when
trained independently, and proxy rankings can change across seeds, datasets,
or training protocols. In weight-sharing, this is often attributed to interfer-



ence among sub-architectures, optimization mismatch between supernet and
stand-alone training, and implicit regularization effects. In early-stopping,
it arises from non-uniform convergence rates and regime changes late in
training. Predictor-based proxies can fail due to covariate shift between the
training set of architectures and the queried region, or due to model misspec-
ification. These pathologies align with the logical content of our impossibil-
ity result: without an explicit assumption linking P to F', it is possible to
construct instances where proxies provide no usable information about the
optimizer, and thus no algorithm can guarantee even a weak approximation
uniformly over instances.

Positioning and contribution relative to prior analyses. Prior work
often provides (i) empirical comparisons of proxies, (ii) asymptotic conver-
gence statements under smoothness or realizability assumptions in contin-
uous relaxations, or (iii) regret-type guarantees in Bayesian optimization
settings under strong priors and kernel assumptions. Our objective is differ-
ent: we seek finite-sample, instance-uniform guarantees for a finite candidate
set under a budget of noisy expensive evaluations, while allowing arbitrary
proxy mechanisms. The key conceptual move is to treat proxies as screening
devices whose utility must be justified by a testable linkage to the truth.
The bounded-distortion calibration condition serves as such a linkage: it is
weak enough to encompass weight-sharing, early-stopping, and predictor-
based proxies (by placing the burden on the existence of an appropriate g),
yet structured enough to yield sharp rates governed by the complexity of G.
Under this condition, we obtain end-to-end guarantees with explicit depen-
dence on ¢, ¢, and comp(G), and we complement them with matching lower
bounds showing that ©(1/2?) expensive evaluations are unavoidable even
when proxies are perfectly calibratable. In this sense, our results formalize
what is implicit across much of the NAS literature: proxies can reduce where
we spend expensive evaluations, but they cannot remove the fundamental
sampling requirements imposed by noisy true evaluation.

3 Formal Model

We formalize neural architecture search (NAS) as an optimization problem
over a finite candidate set with two sources of information: an inexpensive
proxy signal and an expensive noisy evaluation of the true objective. The
finiteness assumption is not merely for convenience; it isolates the role of
statistical noise and information constraints from issues of continuous op-
timization, and it captures the common experimental regime in which one
searches within a discretized cell space or a benchmarked search space.



Architectures and true objective. Let A denote a finite set of archi-
tectures with |A| =n > 2. The (unknown) true objective is a function

F:A—0,1],

where F'(a) represents the performance of architecture a under a fixed training-
and-evaluation protocol (e.g., validation accuracy after full training). We
denote the optimal value by

OPT := max F(a).
acA
The scaling to [0, 1] is without loss of generality and simplifies concentration
statements.

True-evaluation oracle and noise model. Architectures are not ob-
served through F' directly; instead, an expensive evaluation produces a noisy
observation. Formally, we assume oracle access to Op such that a query at
a returns an independent sample

Fla) = Fla) +¢,

where the noise £ is mean-zero and o-sub-Gaussian (uniformly over a). This
captures the dominant randomness in training runs (initialization, minibatch
order, stochastic regularization, hardware nondeterminism), as well as mea-
surement noise in the evaluation procedure. If one averages r independent
runs, the effective noise parameter scales as o /+/r; we freely allow such repli-
cation, noting that it consumes r units of expensive budget.

Proxy oracle. In addition, we assume access to a cheap proxy oracle Op
which, on query a € A, returns a proxy value

P(a) €,

for some proxy range Y (e.g., Y = [0, 1] for accuracies, or R for scores). We
treat Op as deterministic in this model: once the proxy mechanism is fixed
(including any training of a supernet or a predictor), the value P(a) is fixed.
This abstraction separates the statistical difficulty arising from noisy true
evaluations from the algorithmic role played by proxies; extensions to noisy
proxies can be handled by introducing an additional noise term in Op and
adjusting concentration arguments, but the impossibility and lower-bound
phenomena we study are already present in the deterministic-proxy setting.

Algorithms and resource constraints. An algorithm Alg may be ran-
domized and adaptive. It interacts with Op and Of sequentially: at each
round it may query either oracle on an architecture of its choice, based on all



past observations and internal randomness. The output is an architecture
ac A

The dominant cost is the number of calls to Op. We therefore impose a
budget B on Op queries (counting repetitions separately). Proxy queries to
Op are assumed free or separately budgeted; in particular, Alg may query
Op for all architectures in A if desired. Computationally, we assume that
processing proxy values is feasible in time polynomial in the number of proxy
queries and in n (e.g., sorting scores, fitting a low-complexity calibration
map), whereas Op queries represent expensive training runs.

Approximation notions. We evaluate Alg through its achieved true per-
formance F(a) relative to OPT under a failure probability parameter § €
(0,1). The primary notion used in our upper bounds is an additive approx-
imation guarantee: for € > 0, we say that Alg is (e, §)-accurate if

Pr(F(a) > OPT —¢) > 1—06.
We also discuss a multiplicative approximation factor a € (0, 1], requiring
E[F(d)] > aOPT,

or the corresponding high-probability variant. In our setting, additive guar-
antees are the more meaningful baseline because OPT may be arbitrarily
small (e.g., for difficult tasks or adversarial instances), making multiplica-
tive statements vacuous unless one further assumes OPT > 7 > 0. Our
impossibility result is stated multiplicatively to emphasize that even a weak
constant-factor approximation cannot be achieved in the absence of assump-
tions linking P to F'.

How common NAS signals instantiate the proxy. The proxy map-
ping P is intended to encompass the inexpensive signals commonly used to
reduce the number of full training runs:

o Weight-sharing / one-shot scores: after training a supernet, one eval-
uates a sub-architecture a using inherited weights, producing a cheap
validation accuracy or a related score. This defines P(a) as the supernet-
derived metric.

e Farly-stopping and multi-fidelity metrics: one trains a for a small num-
ber of epochs, on a subset of data, or at reduced resolution, and uses
the resulting validation accuracy or loss as P(a).

e Surrogate predictors: one trains a regression model on previously eval-
uated architectures, and then uses the predictor output as P(a) for
new architectures.



In each case, our model regards P(a) as an arbitrary real-valued signal that
may or may not preserve the ordering induced by F'. The point of the sub-
sequent sections is to make precise what can be concluded from proxy access
alone (nothing nontrivial in the worst case), and what can be concluded
once we posit a minimal, testable relationship between P and F' and allow
a limited number of noisy true evaluations to learn that relationship.

4 Impossibility of Proxy-Only NAS

We now isolate a basic information-theoretic obstruction: without any as-
sumption linking the proxy P to the true objective F', oracle access to Op
alone is insufficient to guarantee nontrivial optimization performance. The
obstruction is not computational; it holds even for unbounded computation
and fully adaptive, randomized procedures. The crux is an indistinguisha-
bility construction in which two different objectives induce identical proxy
observations.

Proxy-only algorithms. Fix any (possibly randomized and adaptive) al-
gorithm Alg that is allowed to query Op arbitrarily many times, and then
outputs an architecture a € A. Since Op is deterministic in our model, and
Alg has no access to Op, the entire transcript of interaction with Op (and
hence the output distribution of @) is a deterministic function of the proxy
mapping P and the internal randomness of Alg. In particular, if two prob-
lem instances share the same proxy mapping P, then Alg induces the same
distribution over outputs on both instances.

Indistinguishability construction. We prove Theorem 1 by exhibiting
two instances that share the same proxy but have different maximizers of
F. Let a9, a() € A be two distinct architectures. Define a proxy mapping
that carries no information,

P(a)=0 for all a € A,

so that every proxy query returns the same value. Next define two objective
functions Fy, Fy : A — [0,1] by

Fo(a®)y =1, Fy(aV)=0, Fy(a)=0 Va¢ {a© aV},
and symmetrically,
Fi(a =0, F(Y)=1 F(a)=0 Va¢ {a?,aV}.

Both instances have OPT = 1. However, the identity of the unique optimizer
is swapped between Fy and Fj while the proxy mapping remains identical.

10



Let ¢ denote the output distribution of Alg on this proxy mapping P; that
is, g(a) = Pr(a = a), where the probability is over the internal randomness
of Alg (there is no other randomness in the proxy-only setting). Since P is
the same under both instances, ¢ is the same under Fjy and F}. The expected
true performance under each instance is therefore

E[Fo(a)] = q(a®),  E[Fi(a)] = g(a™V).
Averaging over the two instances yields

q(a'”) + q(a™)
2

<

)

N | =

1 R N

5 (EIR (@) + B[R (2)]) =
since ¢(a?) + g(a™) < 1. Consequently, at least one of the two instances
must satisfy E[Fj(a)] < 1/2, proving that no proxy-only algorithm can guar-
antee E[F'(a)] > o OPT uniformly over instances for any o > 1/2.

No nontrivial additive approximation without linkage. The same
indistinguishability phenomenon rules out additive guarantees. Indeed, fix
any € < 1. In the above construction, exactly one architecture attains value
1 and all others attain value 0. Unless Alg outputs the optimizer with prob-
ability at least 1 — 0, it fails the (g,0)-accuracy requirement Pr(F(a) >
1—¢) >1— 0. But because the proxy transcript is identical under Fy and
Fy, any event of the form “a = a(9” has the same probability under both
instances, and therefore Alg cannot simultaneously assign high probability
to the optimizer in both cases. Thus, without assumptions linking P to F,
even extremely weak high-probability guarantees are impossible.

Tightness of the 1/2 barrier as a guessing limit. The constant 1/2
should be understood as the unavoidable loss incurred when the proxy col-
lapses two competing hypotheses about which architecture is optimal. In
the two-instance construction, the best one can do (given only P) is es-
sentially to guess between a(®) and aV); any strategy induces probabilities
q(a(o)),q(a(l)), and one of the two worlds penalizes the less-likely guess.
This is the standard form of a lower bound by indistinguishability: when-
ever an information source makes two instances observationally identical, no
algorithm using only that source can reliably choose the correct maximizer
across both instances.

Implications for proxy-driven ranking methods. Many NAS proce-
dures are, at their core, prozy-driven rankers: they compute a score P(a)
(e.g., a weight-sharing validation accuracy, an early-stop metric, or a pre-
dictor output), then return an architecture that is approximately maximal
under this score. If such a procedure performs no expensive true evalua-
tions during search, then it falls within the proxy-only model and inherits

11



the above impossibility: there exist search spaces and training protocols for
which the proxy ranking is completely uninformative about the true ranking,
and the selected architecture can be arbitrarily suboptimal in expectation
and with nontrivial probability.

This observation applies directly to one-shot and differentiable methods
(e.g., DARTS-style relaxations) when interpreted as mechanisms that pro-
duce a final discrete architecture purely by optimizing a proxy objective in-
duced by shared weights or continuous relaxation. Our lower bound does not
assert that these methods fail on typical benchmarks; rather, it formalizes
a worst-case limitation: absent explicit conditions ensuring that the proxy
preserves enough information about F', no proxy-only procedure can provide
guarantees. In particular, empirical success of proxy-based NAS must rely
on additional structure (sometimes implicit) connecting P and F', or on the
use of at least some expensive evaluations to correct proxy errors.

Motivation for linkage assumptions. The conclusion is that proxies
are not, by themselves, a source of optimization guarantees; they must be
justified by a verifiable relationship to the true objective. This motivates
our next step: we will posit minimal proxy-to-true linkage conditions under
which a small number of noisy true evaluations suffices to calibrate the proxy
and recover provable near-optimal selection.

5 Minimal Proxy-to-True Linkage Conditions

Theorem 1 shows that, in the absence of any relationship between the cheap
signal P and the true objective F', proxy access alone cannot support non-
trivial guarantees. We therefore require an explicit linkage condition. Our
goal is to articulate a condition that is (i) weak enough to plausibly hold for
realistic proxies, (ii) strong enough to enable provable near-optimal selection
with a small number of expensive evaluations, and (iii) at least partially
testable from finite calibration data.

Bounded-distortion calibration as a minimal linkage. We adopt a
calibration viewpoint: the proxy P(a) need not be on the same scale as F'(a),
but it should be possible to map proxy values to predicted true values via
an unknown function g, up to a bounded residual. Formally, we require that
F' is well-approximated by a calibrated proxy.

Definition 5.1 (Bounded-distortion calibration). Fix a known function class
G of maps g : Y — [0,1] and a distortion level n > 0. We say that a pair
(F, P) satisfies (G, n)-bounded distortion if there exists an (unknown) g € G
such that for all architectures a € A,

|F(a) = g(P(a)] <.
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This condition separates the proxy-to-true relationship into two compo-
nents. First, G encodes structural beliefs about how proxy values translate
to true performance (e.g., monotonicity, smoothness, or parametric form).
Second, n measures the irreducible mismatch between the best such calibra-
tion and the true objective. The definition is deliberately agnostic about the
origin of the proxy: P may arise from weight-sharing, early stopping, learned
predictors, or any other cheap heuristic. If n is small, then P is informative
after calibration; if n is large, then no method can hope to recover OPT
closely from P alone, and our final bounds will explicitly reflect this.

Two aspects merit emphasis. (a) The calibration function g is unknown,
so we must learn it from a small set of expensive evaluations; thus G cannot be
arbitrarily rich if we want generalization from few samples. (b) The condition
is uniform over a € A; this is the form most convenient for worst-case
optimization guarantees. In applications one may also consider distributional
variants (e.g., the inequality holding for a ~ D), but we focus on the uniform
statement to keep the downstream selection argument simple.

Why a function class is necessary. If we allowed G to contain all func-
tions Y — [0, 1], then the condition would become vacuous with n = 0
whenever P is injective (one could fit g to interpolate F'). Such a link-
age would not be learnable from limited calibration data: empirical fitting
could overfit proxy values without controlling prediction error on unseen ar-
chitectures. The role of comp(G) is precisely to quantify how many true
evaluations are required to identify a calibrator with small uniform error,
which then translates into preservation of near-optimal candidates during
proxy screening.

Structured alternatives for G. Definition [5.1] is a wrapper: different
proxy mechanisms motivate different choices of G. We record several common
candidates.

(i) Monotone calibration. A basic assumption is that larger proxy values
should not indicate systematically worse true performance after calibration.
This corresponds to taking G to be the class of nondecreasing functions on
Y (possibly also bounded in [0, 1]). Monotonicity is particularly appropriate
when P(a) is itself an accuracy-like quantity (early-stop validation accuracy,
predictor score trained to be order-preserving, etc.). It also matches the
practical use of isotonic regression, which yields an ERM procedure with
favorable finite-sample behavior.

(ii) Lipschitz (or smooth) calibration. When we believe that small changes
in the proxy cannot correspond to arbitrarily large changes in F, we may
restrict to L-Lipschitz functions:

lg(p) —g@)| < Llp—9p'| Vp,p' €.
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Such a condition can be interpreted as a stability requirement for the proxy:
it rules out adversarial “spikes” in the proxy-to-true map that would make
calibration sample-inefficient. Lipschitzness also helps justify that screening
by g(P(a)) is robust to small proxy noise or discretization of ).

(111) Low-complexity parametric calibration (“scaling laws”). In some regimes,
proxies arise from partial training curves, dataset-size extrapolation, or compute-
allocation rules. In such settings one often posits a parametric relationship gy
(e.g., alinear map, logistic link, or a power-law/exponential saturation curve)
and sets G = {gp : 0 € O} for a low-dimensional parameter space. The bene-

fit is that comp(G) can scale with dim(6) rather than with a nonparametric
complexity, yielding sharper calibration sample requirements when the model

is well-specified. The drawback is potential misspecification, which is then
absorbed into 7.

Testability and diagnostics. A linkage condition is only useful if we can
obtain some evidence that it holds. While the universal quantifier over a € A
prevents perfect verification from finite data, bounded-distortion calibration
admits practical diagnostics.

Given a calibration set S = {a1, ..., am } with proxy—truth pairs (P(a;), F(a;)),
we can fit § € G and examine residuals

R; == |F(a;) — §(P(a;))|.

Because F(a) = F(a) + ¢ with mean-zero sub-Gaussian ¢, the residuals
combine both distortion and evaluation noise. Nonetheless, standard con-
centration arguments allow us to translate empirical residual quantiles on
a held-out test set into bounds on the population distortion on the proxy
distribution (after correcting for noise), thereby producing an operational
estimate of whether 7 is plausibly small. Concretely, if even the median (or
a high quantile) of R; remains large relative to the target accuracy, then
no algorithm can reasonably expect to achieve an e-level guarantee via that
proxy without substantially increasing true-evaluation budget.

This is in contrast with weaker, harder-to-test notions such as “P is
correlated with F” or “the top-k under P contains the optimum”, which
can hold or fail in ways that are difficult to detect from limited calibration
data and do not yield stable uniform guarantees. By phrasing the linkage
as approximation by a low-complexity calibrator plus a distortion term, we
obtain a condition that (i) aligns with how proxies are used (ranking after
calibration), (ii) supports uniform convergence analyses through comp(G),
and (iii) admits concrete residual-based diagnostics.

In the next section we exploit this linkage: we learn § from few expen-
sive evaluations, use g o P to screen the search space, and then spend the
remaining budget to validate only a small candidate set.
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Algorithmic template. We now describe a simple procedure, Calibrate-
Then-Select, that uses a small number of expensive evaluations to learn a
calibration map and then leverages the proxy to reduce the search to a
small candidate set. The algorithm has two logically distinct phases: (i)
calibration, where we estimate a proxy-to-true map g € G from a limited set
of architectures with true evaluations, and (ii) selection, where we use g o P
to screen architectures and then spend the remaining expensive budget only
on a small retained set.

Budgeting and the role of repeated evaluations. We treat the num-
ber of calls to Op as the dominant cost. In the calibration phase, we choose
a calibration set size m and (optionally) a replication factor r and form
averaged observations

1 e ~
co= =Y FU(g,
b= ),

so that ¢; is a mean-zero sub-Gaussian perturbation of F'(a;) with variance
proxy scaling as 02/r. This cleanly separates two sources of error in later
bounds: statistical error in learning g (controlled by m and comp(G)) and
evaluation noise (controlled by r). In practice we may take r = 1 and absorb
the noise level into constants, but we keep r explicit since it is sometimes
preferable to average a small number of runs per calibration point rather
than increase m.

Calibration set construction. The distribution D used to pick S =
{ai,...,am} is a design choice. Uniform sampling over A is conceptually
simplest, but it can be statistically wasteful if proxy values are highly imbal-
anced. A more robust approach is to first compute proxy values for many
architectures (possibly all of A4), partition architectures into quantile bins
according to P(a), and then sample roughly uniformly across bins. This
stratification ensures that ¢ is trained on a proxy range relevant to screen-
ing, and it mitigates the failure mode in which the calibration data cover
only a narrow region of ). Because proxy queries are cheap, we may regard
such stratification as essentially free.

Fitting the calibrator. Given calibration data {(p;,t;)}/, with p; =
P(a;), we fit g € G by empirical risk minimization with squared loss (or
absolute loss),

m
ge argr;neig ;(tz - 9(1%’))2‘

When G is the class of nondecreasing functions, isotonic regression yields an
exact ERM solution in O(mlogm) time. For parametric classes, standard
regression suffices. We emphasize that we do not require § to be correct

15



pointwise on all of Y; rather, we require that §(P(a)) approximate g(P(a))
on the proxy values actually realized by architectures under consideration,
which is precisely what uniform convergence over G (in an appropriate met-
ric) will provide in the next section.

Proxy-based scoring and screening. After fitting §, we compute for
each a € A the proxy p(a) = P(a) and a predicted true score

s(a) = g(p(a)).

We then form a candidate set C' consisting of the top-k architectures under
s(a) (breaking ties arbitrarily). Screening is the step that converts cheap
proxy access into a reduction of the search space. The intended effect is that
if g is accurate enough and the distortion is small enough, then C' contains at
least one near-optimal architecture (and, under a margin condition, contains
the optimal one). Importantly, screening makes no additional calls to Op;
its cost is dominated by O(n) proxy queries and a sort/selection step.

Validation as best-arm identification on the candidate set. The fi-
nal step is to identify the best architecture within C using the remaining
expensive budget. The simplest validator allocates an equal number of eval-
uations to each a € C and outputs the empirical maximizer. This yields a
direct concentration analysis with total sample complexity scaling as O(k/<?)
for additive error € at fixed confidence. When k is moderately large or gaps
are heterogeneous, we may instead run a standard adaptive routine (succes-
sive halving, LUCB, or any best-arm identification algorithm) on the arms
indexed by C. Such adaptive validation can reduce constant factors and
often improves empirical efficiency while retaining worst-case guarantees of
the same order.

Optional top-k verification for robustness. A practical concern is that
screening may be brittle if § extrapolates poorly outside the proxy range
covered in calibration or if the proxy has heavy-tailed failure modes concen-
trated in a small region. To address this, we may incorporate a lightweight
verification subroutine: before committing the full validation budget, we
evaluate a small number of architectures near the screening threshold (e.g.,
ranks k,k + 1,...,k + u under s(a)) with a few true-evaluation calls each.
If these spot checks reveal systematic underestimation beyond what calibra-
tion noise predicts, we can enlarge k, resample additional calibration points
targeted to the suspicious proxy region, or revert to a more conservative val-
idator. This verification does not change the asymptotic sample complexity
in our guarantees, but it makes the method less sensitive to finite-sample
pathologies.
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Parameter selection and interface with the analysis. The remaining
design degrees of freedom are m, k, and the split of the Or budget between
calibration and validation. In the next section we will set m so that § achieves
a uniform (or distribution-dependent) approximation error of order € over
the relevant proxy values, as dictated by comp(G) and 6. We then choose k
to balance two competing effects: larger k decreases the risk that screening
discards near-optimal architectures, but increases the validation cost. The
resulting guarantee will explicitly decompose into (i) calibration error, (ii)
distortion, and (iii) validation error, thereby clarifying how proxy quality and
function-class complexity translate into expensive-evaluation requirements.

6 Upper bounds under bounded distortion

Setup and error decomposition. We analyze CALIBRATE-THEN-SELECT
under the (G, n)-bounded distortion condition (Definition 2): there exists an
unknown g € G such that for all a € A,

[F(a) — g(P(a))] <.

The analysis proceeds by isolating three contributions to suboptimality:
(i) calibration estimation error Aca = supgc |G(P(a)) — g(P(a))| (or a
distribution-restricted variant), (ii) prozy distortion 7, and (iii) validation
error from noisy comparisons within the screened candidate set C'.

Controlling noise in calibration via replication. Recall that we form,
for each calibration architecture a;, an averaged response

1~
ti==Y FY(a;) = F(a iy
2 FVa) = Fla) +¢

where ¢; is mean-zero and o //r-sub-Gaussian. Thus all calibration gener-
alization bounds that scale as 1/y/m in the noiseless case lift directly to a
dependence of order 1/y/mr in the number of oracle calls to O used for
calibration. In particular, taking » = 1 is always valid, while taking r» > 1
improves constants when evaluation noise dominates.

Finite-class calibration bounds (union bound). When G is finite, we
can bound calibration error with a direct uniform concentration argument.
Let D denote the sampling distribution used to pick calibration architectures
a; ~ D, and let p; = P(a;). Consider squared-loss ERM

m
geargmin} (t: = g(p))".
i=1
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Under bounded outputs (we may clip ¢; and g(p) to [0, 1] without worsening
the guarantee), standard sub-Gaussian concentration and a union bound
yield that with probability at least 1 — ¢,

sup| Eoen [(1-0(P(@))?] ~— Y (t—gm0))?] < O W el -l 5)>,

m m
9€9 i=1

with the hidden constant scaling linearly in o/+/r when we express the bound
in terms of oracle calls. Consequently, choosing

m = @<log 91+ log(1/6)> and r=0(1)

c2

suffices to ensure that the learned ¢ predicts g(P(a)) to accuracy O(e) on
proxy values realized under D; when we require a uniform bound over all a €
A, we may take D uniform over A (or use stratified designs that effectively
approximate this uniform control on the screened region).

Capacity-based bounds (pseudo-dimension, coverings). For infinite
classes, we replace log |G| by a suitable complexity term. Concretely, suppose
G admits a uniform convergence guarantee of the form

sup| Eé(g) — = 3" ti(g)| < 0<\/ comp(9) +log<1/6>> |

m m
9€9 i=1

for an appropriate loss ¢ (e.g., squared loss) and sample-dependent losses /;.
One may instantiate comp(G) as a pseudo-dimension term (for parametric
regression), a VC-subgraph term, or a covering-number/Rademacher com-
plexity bound (for Lipschitz or shape-constrained classes). For example, for
isotonic regression on a totally ordered proxy space with bounded range, one
may take comp(G) = O(1) up to log factors, whereas for a d-dimensional
parametric family one typically has comp(G) = O(d). In all cases, the cali-
bration sample size choice

m— @<Comp(g) + log(1/5)>

£2

drives Aca = O(€) on the proxy region covered by the calibration design.

From calibration error to screening correctness. Assume we have
obtained an event &£, on which

|g(P(a))—g(P(a))] < Acal for all a € A (or for all a considered in screening).

Let a* € argmax, F'(a), and let a € argmax, s(a) be the maximizer of the
predicted score s(a) = §(P(a)) (note a € C for any k > 1). On &, we have

9(P(a)) = g(P(a™)) = g(P(a)) = g(P(a”")) — 2Acal-
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Using bounded distortion twice yields
F(a) > g(P(C_L)) -1 > g<P(a*)) - 2Acal -n > F(a*) - 2Aca1 - 277'

Thus screening alone ensures that the best predicted architecture is already
near-optimal up to 2A¢,42n. Introducing k£ > 1 does not change this worst-
case bound, but it enables cheaper or more reliable downstream validation
(e.g., when we wish to hedge against finite-sample miscalibration outside the
calibration support).

Validation bounds on the candidate set. Condition on any fixed can-
didate set C' with |C| = k. If we allocate T independent calls to O per
candidate and output the empirical maximizer, Hoeffding-type bounds for
sub-Gaussian noise imply that with probability at least 1 — ¢,
2
F(a) > max F(a) — eyal provided T=06 <010%<k/5)> .
acC )

val

Equivalently, the total validation budget scales as kT = O(ko? log(k/5)/€2,,).

val
More adaptive validators (successive halving, LUCB) can improve constants

and exploit gaps, but the worst-case dependence on k/ 5‘2,&1 is unavoidable.

Putting the pieces together. Combining the screening inequality with
validation, and choosing (for instance) Acy < £/2 and ey, < /2, we obtain
the guarantee summarized in Theorem 3: with probability at least 1 — 6,

F(a) > OPT — e — 2n,

using

m=0 (comp(g) + 10g(1/6)> calibration points and O <klog(k/5)> validation evaluations,

g2 g2

up to factors depending on o2 and the replication choice 7.

Robustness to misspecification and heavier tails. If the bounded
distortion condition holds only approximately for the chosen class G, the
same argument yields a graceful degradation. Define the approximation
error

" == inf sup [F(a) — g(P(a))l.
9€G ac A

Then, under identical calibration and validation conditions, we obtain

F(a) > OPT — e — 2n*

(with n* replacing n), since all steps use only triangle inequalities around
g(P(a)). Finally, while our standing assumption is sub-Gaussian evaluation
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noise, the procedure can be made robust to heavier-tailed £ by replacing
simple averaging by median-of-means (both in calibration and validation),
at the cost of additional logarithmic factors; the structural dependence on
comp(G), k, and 1/£? remains the same.

7 Lower bounds: necessity of Q(1/¢?) true evalua-
tions

Why lower bounds are unavoidable in our oracle model. The bounded-
distortion condition postulates the existence of a calibration map g € G for
which F'(a) = g(P(a)) £ n. This linkage is sufficient to make proxy-guided
search meaningful, but it does not eliminate the need to sample Op: both the
identity of the maximizer and the unknown calibration map must still be in-
ferred from noisy observations. We formalize this by reductions to classical
hypothesis testing (coin-bias) and best-arm identification, which together
yield tight worst-case dependences on ¢, ¢, and (when g is unknown) the
complexity of G.

A two-point coin-bias reduction (Theorem 4). We first isolate the
intrinsic Q(log(1/4)/e?) dependence even in the simplest case n = 0. Fix
two architectures ag,a; € A and set the proxy to be uninformative among
them, e.g.,

P(ag) = P(a1) = p, P(a) =po for a ¢ {ap,a1},

so that proxy information cannot distinguish ag from a;. Let G contain at
least two hypotheses g4 and g_ satisfying g4 (p) = % +eand g_(p) = % —€
(and arbitrary values elsewhere in [0, 1]). Consider two instances indexed by

0 € {+,—} defined by

Fy(ao) = go(P(ao)), Fy(a1) = g—¢(P(a1)),

and Fy(a) = 0 for all other a. Then (Fj, P) satisfies (G, 0)-bounded distortion
(indeed equality holds with g = gg). Moreover, under § = + the optimal
architecture is ag and under § = — it is a1, and the optimality gap is exactly
2e. _

Now choose the evaluation oracle to return Bernoulli rewards F(a) ~
Bernoulli(Fp(a)), which is 1/2-sub-Gaussian and lies in [0, 1]. Any algorithm
that outputs an e-optimal architecture with probability > 1 —4 must, in par-
ticular, identify the correct maximizer among {ag, a1} with error probability
< 4. But distinguishing the two hypotheses 6§ € {+, —} reduces to distin-
guishing a coin of bias % +¢ from a coin of bias % — ¢ given adaptively chosen
samples from (at most) these two coins. Standard Le Cam/Bretagnolle—
Huber inequalities imply that if the total number of samples from Op is T,
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then the sum of type-I and type-II errors is bounded below by a constant

unless lox(1/6
o221/
€

since the KL divergence per sample between Bernoulli(%—l—e) and Bernoulli(%—
g) is ©(?). This establishes Theorem 4: even with perfect bounded distor-
tion (n = 0), one cannot beat the parametric ¢~2 rate in the number of
expensive evaluations.

Best-arm identification lower bound once screening has occurred.
The same phenomenon persists when the proxy has already reduced the
search space to a candidate set C of size k. Fix any k > 2 and consider
instances where C' contains one arm with mean % + ¢ and k — 1 arms with
mean %, with all proxies equal (or, equivalently, with g known and P perfectly
informative about membership in C' but not about the best element). Any
algorithm that returns an e-optimal element of C' with probability > 1 —§
must, in the worst case, spend

Q(k:log(l/é))

e2

total samples across the k£ arms; this follows from standard bandit lower
bounds for fixed-confidence best-arm identification by embedding k-ary hy-
pothesis testing instances with pairwise KL of order €2 and applying either
Fano’s inequality or change-of-measure arguments. Consequently, the vali-
dation phase dependence on k/c? cannot be improved in the worst case by
any proxy mechanism: at best, the proxy can reduce k.

Lower bounds reflecting complexity of G (calibration is information-
theoretically costly). The previous constructions used only two candi-
date calibrators. More generally, when ¢ is unknown and must be learned
from calibration data, the number of distinct plausible calibration functions
drives an additional information requirement. To make this precise in the
simplest setting, suppose G is finite with |G| = M and contains a subset
{g91,-..,9m} such that for each ¢ # ¢’ there exists a proxy value p (realized
by some architecture) with

19¢(p) — g0 (p)| > 2e.

We may construct M instances (Fy, P) with n = 0 and Fy(a) = g¢(P(a)) such
that (i) the proxy values are identical across instances, and (ii) the identity
of the near-optimal architecture depends on £. Any algorithm that achieves
additive error € must then effectively identify £ up to a small ambiguity class.
By Fano’s inequality, if the mutual information between the instance index
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¢ and the full transcript is o(log M), then the probability of recovering ¢
(hence of selecting an e-optimal architecture) is bounded away from 1. Since
each expensive oracle call contributes at most O(¢2?) KL information when
functions differ by O(e) on the queried proxy values, one obtains a lower

bound of the form
(logM + log(l/é))
Q 2

true evaluations in regimes where the algorithm must discriminate among
M calibrators. This matches, up to constants and standard log factors, the
comp(G)/e? calibration term in Theorem 3 when comp(G) = log |G|.

Interpretation. Taken together, these reductions show that our upper
bounds are tight in the minimax sense: (i) even in the most favorable cali-
bration regime (n = 0), €72 expensive samples are necessary to resolve noise;
(ii) even with perfect screening to k candidates, €(k/e?) validation cost is
unavoidable; and (iii) when g must be learned, the complexity of G necessar-
ily enters the expensive sample count through a term of order comp(G)/e2.
Thus, proxy signals can reduce search but not the fundamental statistical
cost of overcoming evaluation noise and calibrator uncertainty.

8 Proxy diagnostics (practical add-on)

Our guarantees hinge on a linkage between P and F—captured abstractly
by the existence of ¢ € G with |F(a) — g(P(a))| < n—and on the ability
of a finite calibration sample to learn a usable approximation §. In prac-
tice, before spending a large expensive-evaluation budget on proxy-guided
screening and validation, we should empirically test whether the proxy is be-
having in a manner consistent with small distortion on the region of interest
(typically the high-proxy tail), and we should propagate this diagnostic into
conservative screening rules and budget allocation.

Held-out calibration tests and residual summaries. We recommend
splitting the expensive calibration set into a fitting subset Sg; and a held-out
subset Siest, With ¢ trained only on Sgi. For each a € Siegt, let p(a) = P(a)
and let t(a) be the average of r independent calls to Op(a), so that t(a) =
F(a) + £(a) with £(a) mean-zero and o //r-sub-Gaussian. Define residuals

e(a) = |t(a) - g(p(a))|-

We then report (i) the empirical mean and quantiles of {e(a) : a € Siest }, (ii)
the same quantities restricted to architectures whose proxies fall in the top g¢-
quantile of p(a) (to focus on the screening-relevant region), and (iii) a binned
reliability plot over proxy bins, e.g. intervals of proxy values, showing g(p)
versus the empirical mean of ¢ in each bin. The latter often reveals regime
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changes (e.g. proxy saturating at high scores) that are invisible to global
metrics.

While e(a) is not exactly |F'(a) —g(P(a))| because of noise, it is an upper
envelope of that quantity up to the additive fluctuation |£(a)|. Using sub-
Gaussian concentration and a union bound over |Siest|, with probability at
least 1 — § we have

g 2‘Stest|
< —1/2log———.
aIGnS%Z; |£( )| B \/77 & )
Consequently,
A~ 2’Stest|
F(a)—g(P < 2log
max |F(a) = g(P(a)] < max e(a) + \f

This bound is conservative (it targets the maximum). In settings where we
only need distributional control (e.g. on the proxy-induced distribution over
architectures), a quantile-based diagnostic is typically more stable.

Quantile residual bounds and an empirical distortion estimate.
Let g, denote the empirical a-quantile of {e(a) : a € Siegt } for some o € (0, 1)
(e.g. @ = 0.9 or 0.95). Interpreting g, as an estimate of the («)-quantile of
|t(a) — g(P(a))| under the design distribution over Siest, we may form an
empirical distortion certificate of the form

. 1
na:qQﬂLC\[log

for an absolute constant ¢, which aligns with the logic of Proposition 5: the
first term captures systematic miscalibration and proxy mismatch, while the
second accounts for evaluation noise and finite-sample uncertainty in the
quantile. Operationally, if ), is large compared to the target ¢ (or large
compared to the expected spread among top candidates), then a proxy-
guided pipeline should be treated as unreliable without either improving the
proxy, enlarging Sg¢, or increasing r to reduce noise.

Conformal prediction intervals for screening with uncertainty. Resid-
ual summaries can be turned into prediction intervals for F(a) given only
P(a). A simple split-conformal construction is as follows. Fit ¢ on Sg,
compute conformity scores on Siegt,

a) = |t(a) — §(P(a))

and let ¢ be the (1 —«) conformal quantile (the usual finite-sample corrected
quantile). For a new architecture a, output the interval

)

I(a) = [§(P(@) = 4, §(P(a)) +d| N [0,1].
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Under exchangeability of the calibration/test designs, we obtain the marginal
coverage guarantee Pr{F'(a) € I(a)} > 1 — « (with the understanding that
t introduces additional noise, which can be mitigated by increasing r or by
using noise-aware conformity scores). Such intervals support a conservative
screening rule: retain all a whose upper endpoint is within 7 of the best
lower endpoint, i.e.,

§(P(a)) +q > max(g(P(a')) —q) =,
so that we only discard architectures that are very unlikely to be competitive
given the observed calibration uncertainty. This turns the proxy stage into

an approximate “safe set” computation, with k emerging from the data rather
than being fixed a priori.

Budget allocation between calibration and validation. Given an
expensive-evaluation budget B, we allocate it across (i) calibration (learning
g) and (ii) validation (best-arm identification within candidates). The upper
bound in Theorem 3 suggests a decomposition

Bt B, m—o PO TREU) g o (HRER))

where r is the number of repeats per calibrated architecture and k is the post-
screening candidate count. Diagnostics inform this allocation in two ways.
First, if 7, is large, increasing By, alone is ineffective: we must either enlarge
m (reducing estimation error of §) or change G / the proxy. Second, if 7, is
small but noise dominates (large o/4/r), then we should increase r in both
calibration and validation to sharpen estimates. A practical heuristic is to (a)
start with a pilot calibration (small m) at moderate r, (b) compute 7, and
conformal widths, (c) set screening to achieve a manageable k while keeping
intervals conservative, and (d) spend the remaining budget on validation
using successive halving or fixed-confidence best-arm identification within
the retained set.

Recommended experimental reporting. When proxies are evaluated
in benchmarks or empirical NAS studies, we recommend reporting: (i) the
held-out residual distribution (overall and in the high-proxy region), (ii) con-
formal interval widths and empirical coverage (when additional held-out true
evaluations are available), (iii) sensitivity of the final selected F'(a) to the
screening threshold (or to k), and (iv) a budget breakdown (m,r,k, Byal)-
These diagnostics make explicit whether proxy guidance is acting through
genuine calibration (small residuals) or merely through accidental correla-
tion, and they render the proxy—truth linkage empirically falsifiable within
the same oracle model.
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9 Discussion and future work

We conclude by outlining several natural extensions of the proxy—truth frame-
work, and by highlighting implications for empirical NAS methodology.

Beyond single objectives: Pareto and constrained optimization.
Many NAS applications are inherently multi-objective: we care not only
about predictive performance but also about latency, energy, memory foot-
print, or other deployment constraints. A direct extension models a vector-
valued truth

F(a) € [0,1)¢

(e.g. d = 2 for accuracy and normalized latency), and asks for an e-approximate
Pareto set, or for a point satisfying a constraint such as F,¢(a) < 7 while
maximizing Fyec(a). Proxies likewise become vector-valued or partially ob-
served, with potentially different noise profiles and distortions across coordi-
nates. One principled approach is to posit coordinate-wise bounded distor-
tion: there exist calibration maps g; € G; such that

and then use a calibrated proxy surrogate for each objective. Screening can
proceed by (i) scalarization (e.g. weighted sums or Chebyshev norms), or (ii)
conservatively retaining any architecture whose calibrated intervals intersect
a target Pareto region. The latter naturally leverages uncertainty quantifi-
cation (e.g. conformal bands) to avoid discarding Pareto-relevant points.

Theoretical guarantees in this setting require care: in multi-objective
optimization, small additive errors can change dominance relations near
the frontier. Nonetheless, we expect analogues of Theorem 3 in which k&
scales with the complexity of the frontier (or with a discretization of the
scalarization weights) and the calibration sample complexity depends on
> y comp(G;). A particularly appealing special case is hardware-aware NAS
where the cost objective (latency/energy) can often be measured nearly de-
terministically and cheaply, whereas accuracy is expensive and noisy. Then
one can treat the cost as an additional proxy feature and calibrate accuracy
conditional on cost strata, thereby sharpening the effective distortion in the
relevant deployment slice.

Hardware-aware costs and nonstationary evaluation. Even in single-
objective settings, hardware effects introduce a mismatch between the proxy
environment and the deployment environment: the same architecture can
exhibit different latency or throughput across devices, compiler stacks, or
batch sizes. This is naturally captured as distribution shift in either P or
F (or both). One direction is to incorporate context x (device, compiler,
batch size) and model F'(a,x) with proxies P(a,x), with a calibration class
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G mapping (P, z) to predicted F. Another is to treat hardware variation as
an additional noise term in 15, which inflates o and correspondingly increases
the necessary number of repeats r for stable conclusions. Both perspectives
suggest that benchmark reports should specify not only mean performance
but also the evaluation context and the variance across contexts, as these
directly affect the feasibility of any (G, n)-style linkage.

Adaptive choice of the calibration class. Our formal results assume
a known function class G containing a suitable calibrator g. In practice,
however, we rarely know whether g is well-approximated by an isotonic map,
a Lipschitz function, a small neural predictor, or a richer nonparametric class.
This motivates data-dependent selection of G under an expensive-evaluation
budget.

A standard route is to consider a nested family G; C Go C --- with
increasing expressive power and increasing complexity penalty. Using the
calibration sample, we can choose an index j by a held-out risk estimate
plus a complexity term (structural risk minimization), or by a PAC-Bayes
style bound. Conceptually, this trades approximation error (distortion not
captured by G;) against estimation error (the uniform convergence term gov-
erned by comp(G;)). An open theoretical question is to design an end-to-end
algorithm that allocates budget adaptively between (i) expanding the class
to reduce bias and (ii) collecting more calibration points to reduce variance,
while preserving a guarantee of the form

F(a) > OPT — € — poly(n, estimation error)

with the best achievable tradeoff among the candidate classes. We also
expect gains from active calibration designs that oversample architectures in
proxy regions where model disagreement across classes is high, rather than
sampling uniformly.

Implications for benchmarks and reproducibility. The proxy-only
impossibility (Theorem 1) underscores a methodological point: reporting a
proxy—truth correlation on a fixed benchmark does not by itself justify proxy-
only selection, because selection requires calibrated ranking accuracy in the
tail, not global correlation. Conversely, our bounded-distortion viewpoint
suggests concrete changes to benchmark design and reporting standards:

o Publish calibration splits. Benchmarks should provide standardized
protocols for splitting architectures into calibration, screening, and val-
idation subsets, so that proxy calibration and its uncertainty can be
audited.

e Report tail diagnostics. Residual distributions should be reported not
only globally but also restricted to the high-proxy region that drives
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selection. This reduces the risk of proxies that “look good on average”
but fail near the optimum.

o Quantify evaluation noise. Benchmarks should specify variance across
seeds and training nondeterminism; without this, the effective o is
unknown and sample-complexity comparisons are not meaningful.

e Avoid inadvertent leakage. If proxies are trained on labels derived from
the same benchmark evaluations, the calibration problem becomes ill-
posed and can lead to overly optimistic conclusions about generaliza-
tion.

More broadly, the calibration-first perspective encourages separating ques-
tions of proxy quality (small n on the relevant region) from questions of
optimization strategy (how to spend B once a reliable proxy exists). This
separation can improve reproducibility: two studies that use different search
heuristics but share the same calibration diagnostics and noise estimates can
be compared on an equal footing, since their effective information budget is
commensurable.

Open directions. Several theoretical directions remain. First, bounded
distortion is an absolute condition; it would be useful to formalize local or
tail distortion conditions that only need to hold near optimal architectures,
aligning more tightly with screening. Second, in many pipelines the proxy
itself is learned adaptively (e.g. predictors trained online); analyzing joint
learning of P and ¢ under a single expensive-evaluation budget is largely
open. Finally, the interplay between screening and validation suggests refined
lower bounds that depend on the empirical candidate set size k and on proxy-
induced margins, rather than worst-case k£ and worst-case gaps. Establishing
such instance-dependent guarantees would move the theory closer to the
behavior observed in practical NAS systems.
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