Certified Multi-Device, Multi-Fidelity Neural
Architecture Search for an e-Pareto Front under
Noisy and Drifting Hardware Measurements

Liz Lemma Future Detective

January 20, 2026

Abstract

Neural Architecture Search (NAS) has matured from reinforcement
learning and evolutionary approaches to more efficient variants (e.g.,
differentiable and one-shot NAS) and hardware-aware optimization,
but principled guarantees for multi-objective, deployment-faithful met-
rics remain scarce. Motivated by the growing 2026-era need to deploy
foundation-model variants across heterogeneous platforms, we study
NAS as a multi-objective identification problem: for each candidate
architecture we seek a Pareto set trading off task quality with la-
tency/token, energy /token, and memory footprint on multiple devices.

We formalize a multi-fidelity evaluation model that captures com-
mon NAS accelerators (early stopping, proxy tasks, weight-sharing)
as biased low-fidelity oracles and treat hardware measurements as
stochastic objectives with device-dependent noise and bounded drift.
We propose MF-ParetoLUCB, an adaptive elimination algorithm that
allocates expensive training and hardware profiling only to architec-
tures whose Pareto status is uncertain. Our main results provide (i)
a high-probability certificate that the returned set is an e-Pareto ap-
proximation (inflated by an explicit drift term), (ii) a gap-dependent
sample complexity upper bound on the number of high-fidelity evalua-
tions, and (iii) a matching information-theoretic lower bound showing
near-tightness. We also outline an instrumentation pipeline for re-
peated energy /token and latency/token measurement with drift detec-
tion, and propose experiments comparing against MONAS/DPP-style
heuristics and predictor-only baselines to validate Pareto quality and
stability in practice.

Table of Contents

1. 1. Introduction: NAS in the 2026 deployment regime; why multi-device
energy/token + latency/token changes the NAS problem; contributions
and high-level guarantees.

10.

. 2. Related Work: efficient NAS (one-shot, differentiable), hardware-
aware NAS and Pareto NAS (MONAS/DPP-Net), performance pre-
dictors, and multi-objective bandits/BO; positioning vs. NAS survey
themes (computational cost, fairness/robustness, reproducibility).

3. Problem Setup and Definitions: architecture set, objective vector
across devices, Pareto optimality and e-Pareto approximation; multi-
fidelity biased-noisy oracle; hardware drift model; evaluation cost model
and budget.

. 4. MF-ParetoLUCB Algorithm: confidence bounds with bias + noise;
Pareto-feasible set maintenance; ambiguous-point selection; fidelity
promotion rules; stopping condition and output set; discussion of im-
plementation choices.

5. Main Theoretical Results: correctness (e-Pareto with probability
1 — 0); gap-dependent high-fidelity sample complexity; effect of drift
as additive +2p; extensions to unknown i /p via calibration tests.

6. Matching Lower Bounds: reduction from (multi-objective) best-arm
identification; instance-dependent and minimax lower bounds; near-
tightness discussion and when bounds can be improved with extra
structure (e.g., Lipschitz descriptors).

7. Instrumentation and Measurement Protocols (Experimental Spec):
latency/token and energy/token measurement, repetitions, confidence
intervals, change-point/drift detection; handling toolchain variability;
how to compute per-token metrics and memory footprint consistently.

8. Experimental Plan (Not Full Results): benchmarks (architecture
search space, tasks, devices), baselines (MONAS/DPP, predictor-only,
random -+ weight-sharing), evaluation metrics (hypervolume, Pareto
regret, stability under reruns), ablations (no drift handling, no multi-
fidelity, no elimination).

9. Discussion and Limitations: dependence on finite A, choice of S /p,
practical proxy mismatch, extending to continuous search spaces or
evolving operator sets; reproducibility checklist.

10. Conclusion: certified Pareto NAS as a clean bridge from NAS
heuristics to deployment-faithful guarantees.

1 Introduction

Neural architecture search (NAS) is now routinely performed under deploy-
ment constraints that differ materially from the regimes that motivated early
work. In the 2026 deployment setting, a single model family is often ex-
pected to serve heterogeneous inference contexts: a datacenter GPU for
batch throughput, an edge accelerator for on-device private inference, a mo-
bile SoC for interactive generation, and occasionally a CPU-only fallback
path. As a consequence, the relevant notion of “efficiency” is no longer cap-
tured by a single proxy such as parameter count or FLOPs, nor even by
a single-device latency estimate. Instead, the operational cost of deploying
an architecture is naturally described by per-token latency, per-token en-
ergy, and peak memory footprint on each target device, with each quantity
measured (or estimated) in device-specific units and under device-specific
runtimes.

This shift changes the NAS problem in three ways that we treat as struc-
turally central.

First, the objective is intrinsically multi-objective and multi-device. Even
if we fix a scalar notion of task performance (e.g., validation loss on a task
suite), the deployment costs are vector-valued. For each device d, we must
simultaneously control latency per token 74(a), energy per token e4(a), and
memory pg(a). Aggregating these costs into a single scalar (via a weighted
sum or a hand-designed penalty) is typically undesirable: it requires ex ante
preference weights that differ across products and may change over time,
and it obscures trade-offs that are relevant to downstream decision makers.
We therefore treat the search target as a Pareto set under the full objective
vector f(a), which records quality together with the per-device costs.

Second, measuring these objectives is expensive and nonuniform in cost
across coordinates and fidelities. High-fidelity quality evaluation for modern
architectures may involve training or substantial fine-tuning, while high-
fidelity device profiling requires running real kernels under representative
runtimes and batch sizes, often with repeated measurements for noise re-
duction. In practice, one therefore uses a ladder of approximations: partial
training, smaller data, smaller sequence lengths, simulators, compiler-level
estimates, or surrogate device models. These approximations are cheaper
but biased. Treating low-fidelity signals as merely noisy observations can
lead to systematic errors in Pareto decisions. We hence adopt an explicit
multi-fidelity measurement model in which an oracle query at fidelity & re-
turns an observation Yj(a) whose bias is bounded in ¢, by a known radius
Bk, while the remaining uncertainty is modeled as sub-Gaussian noise. The
bias radii are assumed to be nonincreasing with k, with the top fidelity being
unbiased.

Third, hardware measurements exhibit drift over time. Even when the
underlying architecture is fixed, the effective observed objectives may shift

due to thermal conditions, background processes, runtime updates, com-
piler changes, or measurement protocol variations. Such drift is particularly
salient for energy per token and latency per token, which can vary at the few-
percent level in settings that are otherwise stable. Since Pareto comparisons
are inherently relative, drift can induce inconsistent dominance relations if
architectures are measured at different times. We therefore incorporate an
explicit drift model: the effective objective vector at measurement time ¢
may differ from a latent reference vector by at most p in £,. This bound is
intended to be either known (from an engineered measurement process) or
estimated (from repeated measurement tests).

Under these conditions, the central algorithmic question is not merely
how to discover good architectures, but how to certify that the returned
set is an adequate approximation to the true Pareto set given finite budget,
multi-fidelity bias, stochastic noise, and drift. We formalize the problem as
follows. We are given a finite candidate set A and a finite set of devices D.
Each architecture a € A induces a vector f(a) € R™, where m = 1+ 3|D|,
and we aim to output a subset P C A that is Pareto-accurate up to a
specified additive tolerance €. The algorithm may adaptively query a multi-
fidelity oracle under a total budget constraint. The output is judged by
a componentwise additive approximation: for every excluded architecture,
there should exist a returned architecture that is no worse in every coordinate
up to an additive slack. This additive criterion is the appropriate one in our
setting because the coordinates are heterogeneous (loss, milliseconds/token,
joules/token, and megabytes), and because multiplicative guarantees become
ill-posed near zero after normalization.

Our approach is to treat the problem as a multi-objective pure-exploration
task with structured uncertainty. The algorithm we analyze, MF-ParetoLUCB,
maintains coordinatewise confidence bounds for each architecture, explicitly
inflating them by the fidelity bias radius and the drift bound. Using these
bounds, it maintains (i) a set of architectures that are still possibly nondom-
inated, and (ii) certificates of elimination for architectures that are certainly
e-dominated (in a sense compatible with the inflated bounds). It then allo-
cates further evaluation budget to those architectures whose Pareto status is
ambiguous, choosing both which architecture to query and at what fidelity
S0 as to decrease the relevant uncertainty at minimal cost. Low-fidelity eval-
uations are used whenever their bias radius is small relative to the remaining
separation margin; otherwise, the algorithm promotes to higher fidelity. The
algorithm stops when the remaining ambiguity is below the target tolerance
or when the budget is exhausted.

We emphasize two aspects of the guarantee.

First, correctness depends on simultaneous validity of the maintained
confidence regions over all architectures and all objectives. Since decisions
are based on comparisons across many candidate vectors, pointwise concen-
tration is insufficient: we require a uniform high-probability event under

which, for every architecture and objective coordinate, the true latent ob-
jective is contained in the maintained interval after accounting for bias and
drift. This is achieved by standard sub-Gaussian concentration combined
with an appropriate union bound over architectures, objectives, and update
times, with deterministic inflation terms 5, and p added by triangle inequal-
ity. Conditioning on this event yields a purely deterministic argument: any
elimination performed by the algorithm is safe, and any architecture excluded
from the returned set is dominated up to the declared slack.

Second, drift imposes an unavoidable penalty. Even if the top fidelity
is unbiased and the stochastic noise is small, two architectures measured at
different times may experience worst-case drift in opposite directions. In the
absence of additional synchronization assumptions, the best guarantee one
can state in the worst case is an (e+2p)-Pareto approximation. The factor 2p
arises because the comparison of two architectures may involve two different
measurement times, each deviating by up to p from the latent reference.
Our analysis makes this dependence explicit and, conversely, clarifies how
improved measurement protocols (e.g., time-synchronized profiling) would
tighten the attainable approximation.

From the standpoint of sample efficiency, we are interested primarily in
how many expensive, high-fidelity queries are required. In finite-set NAS,
without additional structure, one cannot hope to avoid worst-case rates that
scale linearly with |.A|, since any architecture could be Pareto-optimal. The
more informative notion is instance-dependent complexity: architectures
that are clearly dominated should be eliminated quickly, while those near
the Pareto front require more careful measurement. We capture this via a
Pareto gap A, that quantifies the minimal £/, slack by which a truly Pareto-
optimal architecture can dominate a. Under a natural fidelity-promotion rule
ensuring that bias is kept below the relevant separation margin, we obtain
an upper bound on the expected number of highest-fidelity evaluations that

scales as)
0% nm
> a e
—_)2 ’
o (Ag —)L 4]
up to universal constants. This matches, up to constants and logarithmic fac-
tors, an information-theoretic lower bound obtained by a change-of-measure
construction adapted to multi-objective dominance events. In this sense, the
algorithm is near-optimal in its dependence on the instance-specific gaps.
We summarize our contributions.

Problem formalization for multi-device deployment. We formulate
NAS as identification of an additive Pareto approximation under a full ob-
jective vector including quality and per-device latency, energy, and memory.
This explicitly models the deployment regime in which a single architecture
must be evaluated across a heterogeneous device set.

Multi-fidelity, costed evaluation model with bounded bias. We
model practical NAS pipelines by permitting multiple fidelities with known
costs, sub-Gaussian noise, and bounded bias radii. This enables principled
use of cheap proxies without treating them as unbiased measurements.

Drift-aware certification. We incorporate bounded measurement drift
and derive guarantees that degrade gracefully, showing precisely where and
why the additive 2p penalty enters, and establishing that such a penalty is
unavoidable without additional assumptions.

A certified adaptive algorithm and gap-dependent guarantees. We
analyze MF-ParetoLUCB, which adaptively selects architectures and fideli-
ties to resolve Pareto ambiguity. We provide high-probability correctness of
an (¢ + 2p)-Pareto approximation and derive gap-dependent bounds on the
number of expensive top-fidelity evaluations, with a matching lower bound
up to constants and logarithmic terms.

The remainder of the paper positions these results relative to prior work
in NAS, hardware-aware optimization, and multi-objective pure exploration,
and then develops the algorithm and theory in detail.

2 Related Work

We organize the related literature around four themes that bear directly
on our setting: (i) computationally efficient NAS, (ii) hardware-aware and
Pareto-oriented NAS, (iii) learned performance predictors and other proxy
measurements (including multi-fidelity evaluation), and (iv) multi-objective
pure exploration in bandits and Bayesian optimization. We close by noting
connections to reproducibility and robustness themes emphasized in recent
NAS surveys.

Efficient NAS: one-shot, weight sharing, and differentiable relax-
ations. A persistent bottleneck in NAS is the cost of evaluating candidate
architectures. Early reinforcement-learning and evolutionary approaches re-
duced this cost only partially by amortizing search over many candidates, but
still required training many models. This motivated one-shot and weight-
sharing methods, in which a supernetwork (or over-parameterized model) is
trained once and sub-architectures inherit weights for rapid evaluation. Rep-
resentative families include ENAS-style approaches and subsequent variants
that aim to reduce the bias introduced by shared weights, as well as once-
for-all style methods that attempt to train a single network that supports
many subnets. In parallel, differentiable NAS (e.g., DARTS and follow-ups)
replaces discrete architecture choices with continuous relaxations so that ar-
chitecture parameters can be optimized by gradient descent. These methods

greatly reduce wall-clock cost and have influenced the standard toolkit for
practical NAS.

Our focus differs from this line in two respects. First, the central ob-
ject in our analysis is not a continuous relaxation or a supernetwork, but a
finite candidate set whose elements must be compared under a deployment-
relevant objective vector. Second, while one-shot and differentiable methods
target computational efficiency of search, they typically do not provide cer-
tificates for Pareto accuracy under measurement uncertainty, nor do they
explicitly model the systematic bias of proxy objectives and the temporal
drift of hardware measurements. In our setting, these issues are not second-
order: low-fidelity evaluations (including weight-sharing estimates) can ex-
hibit structured bias, and device profiling is susceptible to drift. We therefore
treat proxy signals through explicit bias radii and maintain confidence re-
gions that support safe elimination and correctness statements.

Hardware-aware NAS: constrained and cost-aware objectives. A
second major line of work incorporates deployment constraints such as la-
tency, memory, FLOPs, or energy into the NAS objective. A common ap-
proach is to solve a scalarized constrained optimization problem, for ex-
ample by adding a penalty term for expected latency or enforcing a hard
latency constraint during search. ProxylessNAS, FBNet-style methods, and
MnasNet-type approaches are representative of this hardware-aware per-
spective, and have demonstrated that incorporating device-specific signals
can substantially change the architecture choices favored by search. There
is also a large body of work on compiler- and kernel-level modeling of la-
tency, including lookup-table estimators, operator-level profiling, and ana-
lytic roofline-inspired approximations.

The limitation we address is that scalarized objectives require prefer-
ences or constraints fixed in advance, and they obscure trade-offs across
multiple devices and cost types. In contrast, we treat the output as a set
of architectures approximating the Pareto frontier under a vector of quality
and per-device costs. This is closer to how deployment decisions are made
in practice: one often wishes to preserve alternatives that trade off latency
against energy differently on different devices, rather than committing to a
single weighting. Moreover, the hardware-aware NAS literature frequently
assumes that the measured cost (e.g., latency) is either deterministic or can
be adequately handled as mean noise, whereas we explicitly model bounded
bias (from simulators and surrogates) and bounded drift (from measurement
conditions).

Pareto NAS and multi-objective evolutionary search. Multi-objective
NAS has been studied extensively, often via evolutionary methods that main-
tain a population and use nondominated sorting, crowding-distance heuris-

tics, or explicit hypervolume contributions. MONAS and related approaches
incorporate multiple objectives such as accuracy and latency; DPP-Net and
similar methods produce Pareto sets and emphasize the diversity of returned
architectures. Other works consider multi-objective variants of reinforcement
learning or gradient-based approaches, frequently by scalarization or by op-
timizing a surrogate of hypervolume.

These approaches motivate our choice of a Pareto set as the appropriate
output. However, the typical evaluation model in Pareto NAS implicitly
assumes that objectives are either evaluated at a single fidelity or can be
compared reliably after sufficient averaging. Our contribution is comple-
mentary: we isolate the measurement problem that arises once a candidate
set is proposed (by any generator, including evolutionary or differentiable
methods) and the practitioner must determine, under limited budget, which
candidates belong to an approximate Pareto set across multiple devices. In
particular, we treat multi-fidelity evaluation as first-class, allowing system-
atic proxy bias, and we incorporate drift into the certification logic.

Performance predictors, surrogates, and proxy measurements. A
large body of work trains predictors for architecture performance, including
accuracy predictors (trained from partial training runs, learning-curve ex-
trapolation, or meta-models over architecture encodings) and hardware-cost
predictors (latency/energy /memory regressors trained from profiling data).
These predictors can be used within Bayesian optimization, evolutionary
loops, or differentiable search pipelines to reduce the number of expensive
evaluations. Multi-fidelity strategies are also common in practice: partial
epochs, reduced datasets, smaller input resolutions, shorter sequence lengths,
smaller batch sizes, quantized inference proxies, and simulators. In BO,
multi-fidelity approaches such as MF-GP-UCB variants, FABOLAS-style
models, and Hyperband /BOHB-type scheduling combine cheap approximate
evaluations with selective promotion.

We share the high-level philosophy that cheap proxies should guide the
allocation of expensive evaluations. The distinction is that we work in a set-
ting where proxy errors are not well-modeled as mean-zero noise, especially
for device-level measurements and short training runs. Instead, we repre-
sent proxy inaccuracy via an explicit /o, bias radius that depends on the
fidelity, and we integrate this radius into confidence bounds used for dom-
inance decisions. This yields a different kind of guarantee than in typical
surrogate-based NAS: rather than bounding regret or optimizing an expected
scalar objective, we aim to return a set that is provably Pareto-accurate up
to a declared additive tolerance (and drift). In this sense, our method can
be viewed as providing a certification layer that can sit downstream of any
candidate generation strategy and upstream of final deployment selection.

Multi-objective bandits, pure exploration, and Pareto front iden-
tification. On the theoretical side, our work is most closely connected to
pure-exploration multi-armed bandits and best-arm identification, and to
their extensions to multi-objective settings where the goal is to identify (ap-
proximately) the set of Pareto-optimal arms. Prior work in multi-objective
bandits studies notions of Pareto regret, scalarization-based regret, and iden-
tification of nondominated sets under stochastic feedback. There is also a
literature on LUCB-style algorithms and successive elimination for best-arm
identification, as well as information-theoretic lower bounds based on change-
of-measure and KL divergence arguments. In the multi-objective identifica-
tion setting, analogous lower bounds arise because distinguishing dominance
relations can require ©(1/A2) samples when objective vectors are close.

Our analysis adapts this style of reasoning to the NAS measurement prob-
lem, with two additional complications that are less emphasized in standard
multi-objective bandits: (i) multi-fidelity evaluations with systematic bias,
and (ii) drift in the objective values over measurement time. Multi-fidelity
pure exploration has been studied in bandits as well, often through hierar-
chical fidelity models or correlated observations, and with algorithms that
decide when to promote to expensive unbiased feedback. We adopt a conser-
vative bias-bounded model that yields simple, worst-case-valid certificates.
Similarly, drift and nonstationarity are widely studied in online learning,
but they typically enter through regret bounds or through explicit models of
time variation; here drift appears as an irreducible penalty in a certification
guarantee when comparisons are made across times.

Multi-objective Bayesian optimization and hypervolume search.
Multi-objective BO is a natural alternative when A is large or continuous.
It optimizes acquisition functions based on Pareto improvement, expected
hypervolume improvement, or scalarizations sampled from a preference dis-
tribution. Multi-fidelity BO variants further incorporate evaluation cost and
fidelity-dependent noise. These methods are powerful when smoothness or
kernel structure can be exploited, and they provide a complementary per-
spective to our finite-set analysis. In our deployment setting, however, the
candidate set is often discrete and already restricted by architectural con-
straints (e.g., kernel availability, compiler support, and product-specific de-
sign rules), and the dominant uncertainty is not only stochastic noise but also
fidelity bias and drift. We therefore develop guarantees tailored to finite-set
identification with conservative uncertainty inflation, rather than relying on
smooth surrogate assumptions.

Reproducibility, robustness, and fairness considerations in NAS.
Recent surveys and empirical studies in NAS emphasize challenges in repro-
ducibility (e.g., sensitivity to implementation details, training protocols, and

search budgets), fairness of comparisons (e.g., differing evaluation budgets
across methods), and robustness of conclusions under changes in data, ran-
dom seeds, or hardware. Our drift model directly addresses one reproducibil-
ity failure mode for hardware-aware NAS: profiling results can shift over time
due to uncontrolled factors, leading to inconsistent rankings and unstable
Pareto sets. Likewise, our explicit bias-bounded multi-fidelity model ad-
dresses a fairness issue: methods that heavily exploit proxies may implicitly
benefit from unaccounted systematic errors, whereas our framework requires
that proxy usage be justified by conservative bounds. While our results do
not solve all reproducibility concerns in NAS, they provide a formal mech-
anism for stating what can be certified from a given measurement protocol
and budget, and for quantifying the degradation induced by drift without
appealing to informal assumptions.

In summary, the existing NAS literature provides effective mechanisms
for generating candidate architectures and for incorporating hardware costs,
including multi-objective variants that output Pareto sets. The bandit and
BO literatures provide principled tools for adaptive measurement under un-
certainty. We synthesize these perspectives in a setting where the primary
obstacle is certified Pareto identification under costed, biased multi-fidelity
evaluations and time drift, and we analyze an adaptive algorithm whose
guarantees match the instance-dependent lower bounds up to logarithmic
factors.

3 Problem Setup and Definitions

We consider a finite set of candidate architectures A with |A| = n, and a
finite set of deployment devices D with |D| = D. Each architecture a € A
is associated with a vector of deployment-relevant objectives that we seek
to minimize. We separate a single quality objective from per-device cost
objectives. Concretely, we write

fla) = (a), (t4(a), ea(a), pa(a))aep) €R™, m = 143D,

where £(a) denotes a task-quality loss (e.g., validation loss on a prescribed
evaluation suite; equivalently, we may take ¢(a) = —accuracy(a)), and where
for each device d € D we include latency per token 74(a) (e.g., ms/token),
energy per token e4(a) (e.g., J/token), and peak memory pq4(a) (e.g., MB).
We emphasize that device costs are inherently device-dependent and need
not be correlated across d; our objective vector therefore explicitly retains
all coordinates rather than collapsing them through scalarization.

Partial order and Pareto optimality. We compare objective vectors
using the componentwise partial order < on R™: for z,y € R™ we write

10

x =<y if and only if z; < y; for all coordinates i € [m]. Architecture a is said
to (weakly) dominate o’ if f(a) < f(a’). The (exact) Pareto set is then

P* = {ac A: Fa’' € Asuch that f(a') < f(a) and f(d') # f(a)}.

Since A is finite, P* is nonempty. In applications we rarely expect to recover
P* exactly from finite and noisy measurements; accordingly, we adopt a
standard additive approximation notion.

Additive e-Pareto approximation. Fix ¢ > 0 and let 1 € R denote
the all-ones vector. We say that p € A e-dominates a € A if

f(p) = fla) +el.

A subset P C Ais an e-Pareto approximation if for every a ¢ P there exists
p € P such that p e-dominates a. This definition enforces coverage of all
candidates by the reported set up to a uniform coordinatewise tolerance,
which is natural when objectives have been normalized to commensurate
scales (or when ¢ is specified per coordinate and absorbed into a weighted
norm; here we use the uniform ¢, form for simplicity). Our goal is to identify
such a set with high confidence while minimizing expensive evaluations.

Multi-fidelity evaluation oracle. We assume access to a costed oracle
that can evaluate any architecture a € A at any fidelity k € {1,...,K}. A
query (a, k) returns an m-dimensional observation

Yi(a) = fla)+bi(a) +¢,

where b;(a) € R™ is a (possibly adversarial) fidelity-dependent bias vector
and £ € R™ is a noise vector. We assume a known uniform bound on the
bias magnitude,

lbr(a)lle < Br foralla€ A,

where B > 0 is nonincreasing in fidelity £ and Bx = 0. Thus fidelity K is
unbiased, while lower fidelities may be systematically shifted. This model
is intended to cover, for example, partial training runs (biased estimates of
{(a)), learned predictors and simulators (biased estimates of 74(a), eq(a),
tq(a)), reduced sequence lengths, quantized proxy kernels, or other approx-
imations that are not well-captured by mean-zero noise.

For the stochastic component, we assume that each coordinate of £ is
conditionally mean-zero sub-Gaussian with known proxy variance 0']% at fi-
delity k (coordinatewise). Formally, conditioning on the history up to the
query, for each coordinate j € [m] the scalar noise &; satisfies the usual
sub-Gaussian moment generating function bound with parameter Uz. We do
not require independence across coordinates; our analysis will rely only on
coordinatewise concentration combined with a union bound across (a, j).

11

We allow the algorithm to adaptively choose the sequence of queries
(at, kt) based on all past observations. For a fixed architecture a, evaluations
at different fidelities may be interleaved. In particular, we may initially
screen many candidates using cheap biased fidelities and only later promote
a smaller subset to high fidelity to resolve Pareto ambiguity.

Time drift and effective objectives. Hardware measurements (and,
more generally, any end-to-end evaluation pipeline) may exhibit temporal
drift due to thermal state, background processes, driver updates, frequency
scaling, or measurement tool variability. To capture this, we introduce a
time index t for measurement events and allow the effective objective vector
at time ¢ to be fi(a) rather than f(a). We assume a bounded-drift condition:
there exists p > 0 such that

Ife(a) = f(a)|loo < p for all a € A and all measurement times ¢.

Equivalently, f(a) may be viewed as a nominal “time-averaged” objective
vector and fi(a) as an adversarial but bounded perturbation. When drift is
present, a query at time ¢ should be interpreted as returning

Yii(a) = fi(a) + bg(a) + ¢,

though in our notation we suppress the explicit dependence on ¢ and incor-
porate p as an additional deterministic uncertainty radius. The drift model
is deliberately conservative: it does not assume stationarity, smoothness over
time, or shared drift structure across architectures. The only property used
in certification is that two architectures evaluated at two different times can
differ by up to 2p in their relative comparison, which naturally appears as
an additive penalty in Pareto-approximation guarantees.

Evaluation cost model and budget constraint. FEach query at fidelity
k incurs a known nonnegative cost c;. This cost is intended to aggregate
all resources relevant for evaluation, including training time (for quality es-
timates), device profiling time (for latency/energy/memory), and any over-
head from repetitions used to reduce measurement noise. We assume a total
budget B > 0 and require that the algorithm selects a (random) sequence of
queries {(az, k¢)}; satisfying

B.

g
ES
N

We make no structural assumption on {c;} beyond being known; in typical
regimes, costs increase with fidelity, but this monotonicity is not needed
for correctness (only for the efficiency interpretation of fidelity promotion).
The central algorithmic question is then: how should we allocate a fixed
evaluation budget across architectures and fidelities so as to return a certified
approximate Pareto set?

12

Target guarantee and confidence parameter. Fix a failure probability
9 € (0,1). Our objective is to output a set P C Asuch that, with probability
at least 1—0 over the algorithm’s internal randomness and observation noise,
every excluded architecture a ¢ P is (e + 2p)-dominated by some reported
architecture p € ﬁ, ie.,

Va¢ P IpeP: flp)=fla)+(c+2p)1.

The appearance of 2p is intrinsic to our drift model: even if two candidates
are each estimated within p of their nominal vectors at their respective mea-
surement times, their difference can be perturbed by up to 2p. Accordingly,
we design our confidence regions by inflating statistical uncertainty with both
the fidelity bias radii 85 and the drift radius p.

Gaps and instance difficulty (preview). For complexity statements
it is convenient to quantify how “far” a suboptimal architecture lies from
the Pareto frontier. One such notion is the (additive) Pareto gap A, for
a ¢ P*, defined as the minimum /., slack required for some Pareto-optimal
p € P* to dominate a on the coordinates where p is strictly better. While
the precise form of A, will matter only in our sample-complexity bounds,
the informal message is that architectures very close to the frontier (small
gap) are information-theoretically harder to classify, and therefore should be
expected to consume the bulk of high-fidelity measurements.

With these definitions in place, we may now describe an adaptive proce-
dure that maintains bias- and drift-inflated confidence bounds for each f(a),
uses these bounds to preserve a set of “possibly Pareto” candidates, and al-
locates evaluations across fidelities to eliminate candidates only when dom-
inance is certified up to tolerance. This is the role of the MF-ParetoLUCB
algorithm developed in the next section.

4 MF-ParetoLUCB: Multi-Fidelity Pareto Identifi-
cation with Certified Elimination

We now describe MF-ParetoLUCB, an adaptive procedure that maintains
(i) high-probability confidence boxes for each objective vector f(a) under
both fidelity bias and drift, and (ii) a set of architectures that are not yet
certifiably e-dominated. The algorithm allocates measurements to shrink
those confidence boxes that presently obstruct a dominance certificate, pro-
moting fidelity only when the residual bias at lower fidelities would prevent
resolution.

Bias- and drift-inflated confidence bounds. For a fixed architecture a
and coordinate j € [m], we may have collected samples at multiple fidelities.

13

Let N, (t) be the number of queries of (a, k) up to time ¢, and let Y, 1 ;(t)
denote the corresponding empirical mean of the j-th coordinate. Using a
standard sub-Gaussian tail bound with an anytime (or union-bounded) log-
arithmic factor, we choose radii 7, j(t) such that, simultaneously for all
(a7 k’ j’ t)’

Yari(t) = EY ani(t) [a, k][< ran;(t)

with probability at least 1 — 4. One convenient concrete choice is

AnmK 2
s(t) = oy B2
a,k,j max{1, N, (t)} ’

which suffices for a union bound over nmK streams and all ¢ > 1. Since
ElY) i(a) | a,k] = fj(a) + bi;(a) and |bg ;(a)] < Bk, and since drift con-
tributes an additional p uncertainty in each coordinate, each fidelity k yields
a valid coordinatewise interval

fi(a) € [?a7k7j(t) —Takj(t) = Bk — Py Yaki(t) + 7ok () + B + P] :

Because we may have multiple such intervals (across k), we combine them
by intersection. That is, we define the global bounds

LCB,(a,t) := Yaki(t) — (t) — B —

CBjla1) i= | jmax (t)>0{ akd(®) = Taped(®) = B — o .
Bj(a,t) := i Yaki(t)+rar;(t ,

UCB;(a. 1) ke[K}:r?\/Tk(t)>0{ A (8 F T () + B +p}

with the convention that if a has not been measured then LCB(a,t) = —ocol
and UCB(a,t) = 4+00l. The bounds for the full vector are LCB(a,t) =
(LCBj(a,t))jejm) and UCB(a,t) = (UCBj(a,t))je|m]- On the high-probability
event from Theorem [5.1] (stated later), we have f(a) € [LCB(a,t), UCB(a, t)]

componentwise for all a and all .

Maintaining the set of possibly Pareto architectures. Given the con-
fidence boxes, we use conservative dominance tests to (i) eliminate architec-
tures that are already certifiably e-dominated, and (ii) retain the remaining
candidates as the current approximation set. At time ¢, define the set of
possibly nondominated architectures by

Peand(t) = {a € A: Ba’ € A such that UCB(d/,t) < LCB(a,t) — 51}.

If UCB(d/,t) < LCB(a,t) — €1, then even under the most favorable realiza-
tion for a and the most unfavorable realization for a’ within their confidence
boxes, a’ still e-dominates a. Thus such an a can be safely excluded from
any (e + 2p)-Pareto approximation on the confidence-valid event.

14

Dually, it is sometimes useful to explicitly track those candidates that
are already certainly dominated:

Deert(t) = {a € A: 3d’ € A such that LCB(d/,t) < UCB(a,t) — 51}.

While Deert(t) € A\ Peand(t) need not hold as a strict identity for all ¢
(due to the asymmetry of the tests), Deert(t) provides a convenient pool
of architectures whose removal is already certified and hence need not be
prioritized for further measurement.

Quantifying Pareto ambiguity. In order to decide what to measure
next, we require a notion of which candidates are currently “blocking” elimi-
nation. We proceed as follows. For any ordered pair (a, a’), define a pairwise
dominance slack functional
I'¢y(a’,a) := max (LCBj(a,t) — UCB;(d,t)).
Jj€lm]

If Ty(a/,a) > &, then UCB(d/,t) < LCB(a,t) — €1 and a is eliminated with
witness a’. If Ty(a’,a) < e, the pair (a,a’) remains e-ambiguous in the
sense that it is still possible (given the confidence boxes) that a’ does not
e-dominate a. For a fixed a, we then define its worst-case “threat” level

I'f(a) := épelg ['i(d,a),

so that I'f(a) > ¢ implies that a can be eliminated, while I'; (a) < ¢ indicates
that no elimination certificate is currently available. MF-ParetoLUCB prior-
itizes measurement of architectures in Peanq(t) for which I'f(a) is small and
whose confidence widths remain large, since these are precisely the architec-
tures that might either (i) belong to the Pareto set, or (ii) be eliminated only
after further refinement.

Selecting an architecture and objective coordinate to measure.
Let the coordinatewise uncertainty width be

wj(a,t) = UCBj(a,t)—LCBj(a,t), w(a,t) = \\w(a,t)][oo:;rel%wj(a,t).

A simple and effective policy is to choose

a; € arg aegfn}j(t)w(a’t)’

i.e., we measure the candidate whose confidence box is widest in /.. In
addition, we may focus on the coordinate j; € argmax; w;(as, t), interpreting
the next measurement as one that should reduce the dominant source of
uncertainty. In the present oracle model, a query returns the full vector
Y% (a), so the coordinate selection is only used to guide the fidelity decision; in
extensions with partial observations (e.g., separate profiling calls per device),
one may query only the necessary coordinate group.

15

Fidelity choice and promotion. Having selected a;, we choose a fidelity
k: by comparing the attainable uncertainty reduction at each fidelity against
its cost. The key point is that for a fixed k, even with infinite repetitions
the best possible half-width cannot drop below S + p (and below p when
k = K). Thus lower fidelities become uninformative once [} exceeds the
resolution required to decide e-dominance.

A concrete promotion rule is the following. Let ﬁt(at) be an empirical
“margin-to-decision” proxy, for instance

~

Ap(ar) = & —Ti(a),

clipped to [0,¢]. If Ay(a;) is small, then only modest refinement is needed;
if it is large (meaning I'f(a;) is far below ¢), then a; is deeply ambiguous
and any useful refinement must be substantial. We then select the cheapest
fidelity k such that

1 ~
Br < zmaX{At(at)v e},

and sample at that fidelity, promoting to higher k only when this constraint
fails for all cheaper fidelities. The constant 1/4 is not essential; it encodes the
principle that bias should consume only a controlled fraction of the remaining
decision margin so that statistical sampling can close the gap. In particular,
if a; remains ambiguous even after extensive low-fidelity sampling, the rule
forces promotion because 74 1 j(t) decreases with N, ;(t) while 3 does not.

Stopping condition and output. MF-ParetoLUCB may stop either upon
budget exhaustion or upon certified resolution. A sufficient resolution condi-
tion is that every excluded architecture a ¢ Peand(t) has an explicit witness
D € Peand(t) with

UCB(p,t) < LCB(a,t) — €1,

and, simultaneously, that the remaining ambiguity among candidates is e-
small in the sense that for all a,a’ € Peanda(t) we do not have UCB(d/,t) <
LCB(a,t) — 1. When this condition holds, no further eliminations are pos-
sible without violating the confidence-valid event, and the natural output
is

7/5 = cand(t)-

If the budget is exhausted before the stopping rule triggers, we output the
current Peanq(t) as well; correctness is then interpreted as an (e +2p)-Pareto
approximation on the confidence-valid event (the analysis in Section makes
this precise).

Implementation considerations. First, the intersection-based bounds
LCB, UCB naturally support heterogeneous data collection: one may mix

16

cheap, biased simulators for device costs with expensive on-device measure-
ments, and similarly mix partial training runs with full training for quality,
without assuming that lower fidelities are linearly related to higher ones. Sec-
ond, although maintaining Peana(t) by naive pairwise checks costs O(n?m)
per update, in practice m = 1 + 3D is moderate and the candidate set
typically shrinks rapidly; moreover, incremental maintenance is possible by
re-testing dominance relations only for architectures whose confidence boxes
changed. Third, drift enters only through the additive inflation p. If the
experimenter can periodically re-measure a small anchor set of architectures
to estimate or upper bound p, then the same algorithm applies with the
estimated bound (we return to calibration extensions after stating the main
results). Finally, MF-ParetoLUCB is compatible with repeated measure-
ments and averaging at a fixed (a, k): increasing Ng i (t) shrinks 74 () at
the usual 1/v/N rate, and the promotion logic ensures that the algorithm
does not waste repetitions at a fidelity whose bias floor §; already exceeds
the remaining Pareto decision tolerance.

In summary, MF-ParetoLUCB maintains a conservative set of possibly
Pareto architectures using dominance certificates derived from bias- and
drift-inflated confidence boxes, and it adaptively invests evaluation budget
to shrink the few confidence boxes that presently obstruct such certificates,
promoting fidelity only when necessary. The next section states the formal
correctness guarantee and the resulting gap-dependent high-fidelity complex-
ity bounds.

5 Main Theoretical Results

We now state the formal guarantees for MF-ParetoLUCB. Throughout, we
interpret correctness as a certified additive Pareto approximation under the
componentwise order <, and we measure complexity primarily by the number
of highest-fidelity evaluations (k = K), since these are typically the domi-
nant cost drivers. Our analysis separates three effects that must be handled
simultaneously: statistical noise (captured by oy), fidelity bias (captured by
Bk), and measurement drift (captured by p).

5.1 Uniform confidence under bias and drift

The first step is to guarantee that, with probability at least 1 — §, every
true objective vector f(a) lies in its maintained confidence box for all times
t. Because the algorithm adaptively chooses which (a, k) to query, we re-
quire a uniform (anytime) concentration guarantee over the entire adaptive
transcript. Since we only assume conditional sub-Gaussianity, a standard
approach is to apply a tail bound to each empirical mean and then take a
union bound over (a, k, j) and a suitably discretized (or summed) time index.
The deterministic bias and drift then enter through triangle inequalities.

17

Theorem 5.1 (Uniform Confidence with Bias and Drift). Fiz § € (0,1).
Suppose that for each fidelity k € [K] and each coordinate j € [m], the
noise & is conditionally mean-zero sub-Gaussian with proxy variance a,%,
and that ||bg(a)llec < Bi for all a € A. Assume also that drift satisfies
| fe(a) = f(a)|loo < p for all a,t. Define radii rqy ;(t) so that

Pr (VC% kojits [Yapi(t) —EYan;(t)] ak] < Ta,k,j(t)) >1-9,

for instance using an anytime union bound. Then, on the same event, for
alla € A, j€[m], and t,

fj((l) € [LCB]‘ (a,t), UCBj (a, t)],

where LCB, UCB are the intersection-based bounds defined from 7a,k7j(t) by
inflating with B + p.

The proof is immediate once one observes that the oracle expectation equals
fj(a)+ by j(a) while the effective measured value at time ¢ may deviate from
fj(a) by at most p. Consequently, each empirical mean produces a valid
interval after adding B + p, and the intersection over fidelities preserves
validity.

5.2 Certified (¢ + 2p)-Pareto correctness

We next translate uniform confidence into a Pareto approximation guarantee
for the returned set. The essential point is that dominance decisions are made
by comparing two architectures using (potentially) measurements collected
at different times; even if we were to query at unbiased fidelity k = K, drift
can move the effective objective vectors in opposite directions at those two
times. This yields an unavoidable additive slack 2p in the worst case. The
algorithm is therefore analyzed with the target € internal to the dominance
tests, while the final approximation guarantee becomes € + 2p when stated
with respect to the reference f.

Theorem 5.2 ((¢ £ 2p)-Pareto Correctness). Assume the confidence-valid
event of Theorem holds. Let P be the set output by MF-ParetoLUCB,
i.e., the final Peanq(t) at the stopping time (or budget exhaustion time). Then
for every a ¢ P there exists pE P such that

f(p) = fla) + (e +2p)1.

Equivalently, P is an (€ + 2p)-Pareto approzimation of A under f.

A proof sketch proceeds by the elimination rule: if a ¢ Peanq(t), then by
definition there exists some witness p € A such that UCB(p, t) < LCB(a,t)—
€l. On the confidence-valid event, we have f(p) <= UCB(p,t) + p1 and

18

f(a) = LCB(a,t) — p1 componentwise, since the bounds were inflated by p
to cover temporal mismatch. Combining these inequalities yields

f(p) 2 UCB(p,t) + p1 < LCB(a,t) —el+ pl = f(a) —el + 2p1,

which is the claimed (€ 4 2p) dominance. If the algorithm stops by certified
resolution, we may further ensure that P contains all architectures that are
not (¢ 4+ 2p)-dominated; if it stops by budget exhaustion, the statement
above still holds because elimination certificates are never invalidated on the
confidence-valid event.

The preceding theorem makes explicit why drift impacts the final approx-
imation additively. In fact, without further assumptions (e.g., synchronized
measurement times or a parametric drift model), a 2p penalty is minimax-
unavoidable: any comparison between two items measured at two times can
suffer a worst-case discrepancy of p in each direction.

5.3 Gap-dependent high-fidelity sample complexity

We now quantify how many expensive highest-fidelity evaluations are re-
quired. The relevant instance-dependent quantity is the Pareto gap A, for
each a ¢ P*, which captures how far a lies from being nondominated. When
A, is large, a can be eliminated with relatively coarse confidence boxes (and
hence typically without high fidelity); when A, is small, many samples may
be needed, and promotion to unbiased fidelity is necessary once the low-
fidelity bias floor would exceed the resolution required.

For notational compactness, define ()4 := max{x,0}. We state a rep-
resentative bound for the number of £ = K queries under a promotion rule
that ensures that, whenever a’s status is unresolved, we only use a fidelity
k whose bias radius i is at most a fixed fraction of the remaining deci-
sion margin. Concretely, it suffices that for such a the algorithm eventually
promotes until S < (A, — €)/4, as this guarantees that bias cannot mask
e-separation.

Theorem 5.3 (Gap-Dependent High-Fidelity Complexity Upper Bound).
Assume the confidence-valid event of Theorem[5.1 Suppose MF-ParetoLUCB
promotes fidelity so that any a ¢ P* that remains in Peanq(t) beyond a
constant number of updates is sampled only at fidelities k satisfying B <
(Ay —€)/4, and ultimately at k = K if needed. Then the expected number
Ny of highest-fidelity queries satisfies

o? nm
E[Nk] :O<Z K210g>)
o (Ag —)L)

up to universal constants. Moreover, the total expected cost admits an analo-
gous bound that weights contributions by the costs ¢y, at the fidelities actually
used.

19

The argument parallels LUCB-style elimination analyses: each suboptimal
a ¢ P* must be sampled until there exists a witness p whose confidence box
is separated from that of a by at least € in the appropriate componentwise
sense. Since the algorithm uses /,.-widths, a sufficient condition is that the
half-widths of the relevant coordinates shrink below a constant fraction of
A, — e. Under sub-Gaussian noise this requires O(c%/(A, — €)?) samples
per such a, with an additional log(nm/¢) factor from uniform confidence.

Two remarks are worth recording. First, the bound is insensitive to the
size of P*: if most architectures are far from the front (large A,), then they
are eliminated with few or no k¥ = K samples. Second, the dependence
on m = 1+ 3D is only logarithmic via the confidence union bound, while
the per-iteration computational overhead may still scale with m through
dominance checks; we treat this as an orthogonal issue.

5.4 Calibration for unknown [, and unknown p

The preceding theorems assume that 5 and p are known (or conservative
upper bounds are available). In deployments, one may only have approxi-
mate bias/drift information. We briefly describe an extension that replaces
Br and p by data-driven upper bounds obtained from calibration tests; the
main algorithm is unchanged except for using these calibrated radii.

Estimating fidelity bias radii. Assume we can evaluate a small calibra-
tion subset C C A at two fidelities k and K sufficiently many times in close
temporal proximity so that drift is negligible relative to sampling error (or,
more conservatively, included in the bound). For each a € C, consider the
empirical difference

br(a) := Yon(t) — Yax(t),

where the two means are computed from paired repetitions. A union bound
over a € C and coordinates j € [m] yields, with probability at least 1 — d¢a1,

165(a) oo < [[br(@) oo + rady(a),

for an explicit radg(a) determined by oj, o0k and the number of paired sam-
ples. We may then define

B = max ([b (@)oo + radi(a),

and run MF-ParetoLUCB using B\k in place of . This yields the same
form of correctness guarantee with 0 replaced by d — dca1, provided S upper
bounds the true bias radii on the confidence event.

20

Estimating drift. Similarly, suppose we repeatedly measure a fixed an-
chor set Aune € A at k = K across time. For each anchor a we may define
an empirical maximal deviation across measurement times (after subtracting
empirical means) and inflate it by a noise radius to obtain p such that

| fe(a) — fr(a)|loo <2p for all observed t,t’

with high probability. Interpreting f as a reference midpoint then yields
I fi(a) — f(a)|loo < p on the same event. Using p in place of p in MF-
ParetoLUCB preserves Theorem [5.2| with the drift term replaced accordingly.

We emphasize that these calibration steps do not require modeling the
relationship between fidelities or the time evolution of drift; they only require
repeated measurements and conservative concentration bounds. The cost of
calibration can be charged to the same total budget, or treated as a one-time
amortized expense if the hardware environment is stable over multiple runs.

In summary, MF-ParetoLUCB admits high-probability correctness guar-
antees in the presence of both fidelity bias and bounded drift, achieves
instance-dependent high-fidelity complexity controlled by Pareto gaps, and
extends naturally to settings where bias and drift must be upper bounded
from data via calibration. The next section shows that these rates are essen-
tially unimprovable in the worst case by establishing matching lower bounds
up to constants and logarithmic factors.

5.5 Matching lower bounds and near-tightness

We complement the upper bounds by showing that, absent additional struc-
ture beyond a finite set A and noisy oracle access, the dependence on the
Pareto gaps {A,} in T heoremis information-theoretically necessary. For
clarity, we state lower bounds first in the unbiased highest-fidelity regime
(k = K, Bx = 0) and without drift (p = 0), since any lower bound in this
simpler setting also applies a fortiori to the multi-fidelity setting with bias
and to environments with temporal variability. We then explain how the
multi-objective nature of the problem yields essentially the same change-of-
measure obstacles as classical best-arm identification, and finally we discuss
when one can beat the finite-set minimax rate by exploiting additional geo-
metric or parametric structure.

From Pareto identification to hypothesis testing. Fix an algorithm
Alg that adaptively queries architectures and returns a set P C A. Con-
sider two instances Z and Z’ that differ only in the true objective vector of
a single architecture a, with all other architectures unchanged. If, under
Z, the architecture a is (¢)-dominated (and hence should be excluded from
any certified e-Pareto approximation), while under Z’ the same a becomes
e-nondominated (and hence must be represented, directly or by an e-close

21

surrogate), then any (e, d)-correct algorithm must be able to distinguish Z
from Z’ with error probability at most §. This is a sequential testing prob-
lem along the algorithm’s adaptive transcript. Standard arguments imply
that if Alg does not query a sufficiently often, then the induced transcript
distributions under Z and Z’ remain too close in KL divergence to support
such a distinction.

To formalize this, let N, be the (random) number of highest-fidelity
queries of architecture a, and let Pz denote the law of the entire transcript
(actions and observations) under instance Z. For sub-Gaussian (in particular
Gaussian) noise models with coordinatewise proxy variance O‘%{, shifting the
mean of Y (a) by a vector u € R™ yields a per-sample KL divergence on
the order of |lu||3/0% (up to absolute constants, and with the appropriate
norm if one works coordinatewise). By the chain rule for KL divergence and
optional stopping, one obtains inequalities of the schematic form

2
u
KL(Pz,Pz) < c¢oEz[Ng]- w, (1)

oK
where ¢y > 0 is a universal constant. On the other hand, Le Cam’s or
Bretagnolle-Huber’s inequality lower bounds the KL divergence needed to
make a decision with error at most d: for any event E measurable with
respect to the transcript,

1
Pz(E) +Pz/(E°) > §exp(—KL(}P’I,]P>I/)),

so that driving both errors below ¢ forces KL(Pz,Pz/) 2 log(1/4). Com-
bining with (] yields E[N,] 2 0% log(1/8)/||ul|3. The remaining task is to
construct, for each a ¢ P*, a perturbation u small enough to make the test
hard, yet large enough to flip (approximate) Pareto status.

Instance-dependent lower bound in terms of Pareto gaps. Let a ¢
P* and recall that A, quantifies how close a is to the Pareto front in the
componentwise sense relevant to elimination. Intuitively, if A, is small, then
there exists some p € P* that nearly dominates a; hence a perturbation of
size A, to a subset of a’s coordinates can remove this domination, turning a
into a (nearly) nondominated point. This creates a local indistinguishability
region of radius A, around the true mean vector f(a).

A canonical construction is as follows. Choose a witness p, € P* that
attains (or nearly attains) the definition of A,. Modify only f(a) by sub-
tracting a vector u > 0 (componentwise) supported on the coordinates on
which p, is strictly better than a, with ||u||s < Ag — . Under the modified
instance Z’, the architecture a becomes e-nondominated: no single competi-
tor can e-dominate it because we have reduced exactly the coordinates that
previously certified domination. Because the oracle is unbiased at k& = K,

22

only queries to a can reveal the shift, and the sub-Gaussian noise masks
shifts of size ||u|loo unless N, is large enough.

Specializing the KL. computation to a coordinatewise shift u of magnitude
O(A, — ¢) yields a lower bound of the form

2
0% 1

E[No] > ¢1 ——5 log -,
(Ay — 5)%r)

Z
for a universal ¢; > 0, where (z)+ = max{z,0}. Summing over a ¢ P* gives
the instance-dependent lower bound reported (up to constants) in Theo-
rem 4. In particular, this shows that the scaling o2 /(A, — €)? cannot be
improved in general, even if one ignores computational cost and allows arbi-

trary adaptive sampling.

Reduction from (multi-objective) best-arm identification. The pre-
ceding argument can be viewed as a direct multi-objective analogue of stan-
dard pure-exploration lower bounds, but it is also instructive to see an ex-
plicit embedding of single-objective best-arm identification. Consider a clas-
sical instance with n arms and unknown means u(a) € R, where the goal is
to identify an e-optimal arm. Embed it into our Pareto problem by defining
m objectives with

fi(a) := pu(a), fila):=C forj=2,...,m,

for an arbitrary constant C'. Then componentwise dominance reduces to or-
dering in the first coordinate, and P* consists of the best arm(s). Any algo-
rithm that outputs an e-Pareto approximation in the multi-objective sense
therefore solves best-arm identification with the same confidence. Conse-
quently, the known lower bounds for best-arm identification (gap-dependent
> atar 0?/A%log(1/6)) immediately transfer. This reduction demonstrates
that, even though we consider a Pareto set rather than a single best arm,
the fundamental difficulty of distinguishing close means under noise is al-
ready present in one coordinate, and thus cannot be circumvented by multi-
objective reasoning alone.

Minimax lower bound without gap assumptions. The gap-dependent
lower bound is tight when the instance has well-separated dominated points.
In the absence of any such separation, however, one obtains a minimax lower
bound driven by the possibility that every architecture could lie on (or arbi-
trarily close to) the Pareto front. Concretely, for any algorithm and any fixed
sampling budget, one can construct an instance where the objective vectors
are mutually incomparable (each architecture trades off against the others),
and then perturb each f(a) within an e-scale neighborhood to switch whether
it is e-nondominated. Preventing such switches with probability 1 — ¢ forces
at least constant-order information about each a, which in turn implies that

23

the number of highest-fidelity evaluations must scale at least linearly in n
(and, in quantitative forms, at least on the order of no%e2?log(1/§) under
standard noise models). This formalizes the informal statement that, for
an unstructured finite set, no algorithm can guarantee sublinear-in-n explo-
ration in the worst case, because the Pareto front may contain a constant
fraction of the candidates.

Near-tightness of our upper bounds. Comparing Theorem with
the instance-dependent lower bound shows that MF-ParetoLUCB achieves
the correct Y 0% /(A, — €)? scaling up to universal constants and logarith-
mic factors. The remaining discrepancy is the extra log(nm) factor arising
from uniform confidence over all architectures and all objectives. This term
is standard in LUCB-style analyses; removing it typically requires either (i)
sharper time-uniform concentration combined with data-dependent stopping
boundaries, or (ii) a refined change-of-measure analysis that tracks only the
subset of arms and coordinates that are actually sampled often. We do not
pursue these refinements here, since our primary objective is to characterize
how multi-objective elimination, multi-fidelity bias control, and drift inter-
act, and the dominant dependence on (A, — €)~? is already optimal.

When can one do better? The lower bounds above are worst-case over
unstructured finite sets. If additional structure links the architectures, then
the relevant complexity measure can change from n (or >, 1/AZ) to an
intrinsic dimension or covering number. One example is a descriptor map
x : A — RP and a Lipschitz condition ||f(a) — f(a')||ec < Lljz(a)—x(a’)||. In
such settings, it can be possible to infer bounds on many architectures from
measurements on a carefully chosen subset, yielding rates that depend on the
metric entropy of {z(a)} rather than on n. Another example is a paramet-
ric model f(a) = g(z(a);#) with low-dimensional #, where active learning
can focus sampling on informative architectures and certify the Pareto set
by propagating confidence through the model. These improvements are not
available under our standing assumptions, and any such gains must be paid
for by additional modeling assumptions whose validity must be checked em-
pirically.

In summary, the gap-dependent upper bound for the number of highest-
fidelity queries is essentially optimal for the finite-set, noise-only oracle model,
and the linear-in-n minimax barrier explains why multi-fidelity evaluations
and elimination are indispensable in practice: without structure, the only
way to reduce expensive k = K usage is to exploit that most architectures
are separated from the Pareto front and can be discarded early based on
coarse, possibly biased measurements.

24

5.6 Instrumentation and measurement protocols

We specify a measurement protocol intended to (i) produce consistent esti-
mates of per-device cost coordinates (74(a), eq(a), nq(a)), (il) support coor-
dinatewise confidence bounds compatible with our sub-Gaussian noise ab-
straction, and (iii) detect and mitigate temporal drift and toolchain-induced
variability. Throughout, we treat each device d € D as defining its own mea-
surement harness, but we enforce identical semantic definitions of “token,”
“generated length,” and “peak memory” across devices to preserve compara-
bility of the objective vector f(a).

Canonical inference workload and token accounting. All latency/energy /memory
measurements are taken on a fixed inference workload specified by a tuple
(tok, P, G,dec), where tok is the tokenizer/version, P is the prompt length
in tokens, G is the number of generated tokens, and dec specifies decoding
determinism (e.g., greedy with temperature 0, fixed seed, no sampling). We
fix batch size 1 unless explicitly studying throughput; in particular, 74(a) is
intended as latency per generated token for interactive use. We log exact
token counts as returned by tok including special tokens, and we report all
per-token quantities normalized by the realized number of generated tokens
G (not by characters or bytes). For decoder-only models we separate the pre-
fill phase (processing the prompt) from the decode phase (generating tokens
with KV cache), since they exhibit different scaling; our primary coordinate
T4(a) is decode latency per token, while we additionally record the prefill
latency 7} refill () as an auxiliary diagnostic (not part of f(a) unless stated).
Concretely, if T C?e“’de(a) is wall-clock time elapsed during token generation
for G tokens, we define

decode a
T4(a) = TdG() (ms/token).

We report time in milliseconds with a monotone clock, and we include
framework-side overheads that affect end-to-end user latency (kernel launches,
synchronization, and device-to-host transfers required for decoding), but we
exclude one-time setup costs such as model loading and compilation (handled
separately below).

Latency measurement and synchronization rules. On each device,
we implement a micro-benchmark harness that (i) pins the model to the
target device, (ii) performs a warm-up stage to amortize transient compi-
lation/caching effects, and (iii) executes repeated timed trials. Warm-up
consists of at least W full inference runs on the canonical workload, where
W is chosen so that subsequent runtimes stabilize under a simple stationar-
ity check (e.g., the median of the last W/2 runs differs from the median
of the first W/2 runs by at most a small threshold). Timed trials use

25

explicit device synchronization boundaries to ensure that measured inter-
vals correspond to actual device execution time (e.g., CUDA events with
torch.cuda.synchronize() or platform-native equivalents). Each timed
trial records: prompt token count, generated token count, prefill time, de-
code time, and total time. We summarize decode latency using the sample
mean for concentration analysis and also record the sample median for ro-
bustness reporting.

To reduce toolchain variability, we fix: framework version, compiler flags,
kernel selection settings, and numerical precision mode (e.g., FP16/BF16 /INTS).
When compilation is used (e.g., XLA, torch.compile, TensorRT), we sepa-
rate (a) compilation time as a distinct metric and (b) steady-state inference
time after compilation, and we ensure that timed trials only begin after
compilation completes and caches are populated. When the device supports
fixed-frequency modes, we place the device in a stable performance state
(e.g., disable CPU turbo boost, set GPU application clocks where permitted,
select “performance” governor), and we document any settings that cannot
be controlled due to permissions.

Energy measurement and per-token normalization. FEnergy per to-
ken is defined as total incremental energy consumed during decode divided
by G:

decode
eq(a) = EdG() (J/token).

We measure incremental energy Ege“’de(a) using the best available on-device
sensor or external meter for each platform, preferring direct energy counters
when available (e.g., RAPL on x86, vendor energy counters on mobile SoCs,
or GPU energy APIs), and otherwise integrating power samples. In the
power-integration case, if power is sampled at times ty < --- < ts with
readings P(t;) (watts), we compute energy by trapezoidal integration over
the decode window [tstart, tend]:

P(t;) + P(ti+1
E(cilecode(a) ~ Z () 5 (+) (tiJrl_ti)-

i [ti bt 1} - [tstart 7tend]

We align the decode window to the same synchronization boundaries as
latency measurement. If the energy interface reports total device energy
(including baseline idle), we subtract an idle baseline measured in a matched
window with identical synchronization but no model execution, yielding an
incremental estimate. We record sensor sampling rate and quantization; if
the sampling rate is too low to resolve per-token dynamics, we lengthen G so
that Egec‘)de(a) is well above sensor noise, while keeping the same per-token
normalization.

26

Peak memory footprint: definition and measurement. Peak mem-
ory pg(a) is defined as the maximum resident memory attributable to the
model execution during the canonical workload, including weights, KV cache,
and framework allocations required for decoding. Because memory account-
ing differs across platforms, we enforce a semantic rule: pg4(a) is the peak
device memory used by the process (or container) running inference. On
GPUs we use the framework-reported maximum allocated memory and/or
driver-reported peak usage; on CPU we use peak RSS; on mobile we use
platform APIs for peak resident memory when available. To mitigate frag-
mentation effects, we perform measurements in a fresh process where feasi-
ble, and we distinguish static memory (model weights and persistent buffers)
from dynamic memory (KV cache growth with P + G). We therefore log
a memory trace over time and record both the peak and its timing relative
to decode steps. The reported pg(a) is the peak observed over timed trials
after warm-up; if trials vary due to allocator behavior, we treat this as noise
and incorporate it into confidence bounds.

Repetitions, aggregation, and confidence intervals. For each archi-
tecture a and device d, we collect R repeated timed trials at a given fidelity
k, yielding observations Y} ,(a) € R™ whose relevant coordinates are com-
puted as above. We aggregate per-coordinate using the empirical mean j/;(a)
(after the appropriate mapping from raw timings/energies/memory to per-
token quantities). For uncertainty, we use coordinatewise confidence radii
compatible with sub-Gaussian tails. Concretely, if coordinate j at fidelity k
has proxy variance bound Uz, then for confidence level o we may take

2021og(2/a

re (R, a) = k]g%(/),

and we allocate o via a union bound across (a,j) and across updates as
required by the algorithmic analysis. When o,% is not known a priori, we
estimate it conservatively from pilot measurements and inflate by a safety
factor; we additionally verify empirically that residuals are light-tailed (e.g.,
by checking that extreme deviations are consistent with the chosen proxy).
We emphasize that our algorithmic guarantees rely on conservative upper
bounds rather than exact parametric correctness.

Change-point detection and drift handling. We operationalize drift
as time-variation in effective objectives fi(a) induced by background load,
thermal effects, firmware updates, or measurement stack changes. We im-
plement two complementary mechanisms. First, we maintain a sentinel set
S C A of fixed architectures that are periodically re-measured on each de-
vice; these sentinels are chosen to span typical runtime/memory regimes
(small/medium/large). For each sentinel s € S and each coordinate j, we

27

track a time series of residuals relative to the current reference estimate. We
apply a simple sequential change-point test (e.g., Page-Hinkley or CUSUM
on standardized residuals) to flag abrupt shifts. Second, we estimate a drift
bound p by taking the maximum absolute deviation observed between two
measurements of the same (s, j) within a prescribed time window, after sub-
tracting estimated measurement noise; this yields a conservative £, drift en-
velope that can be fed into the confidence inflation used by MF-ParetoLUCB.

Upon detecting a change-point on device d, we take one of two actions
depending on severity: (i) recalibration, in which we temporarily pause explo-
ration and re-measure S to update the drift bound and re-anchor confidence
intervals; or (ii) segmentation, in which we treat measurements before and
after the change as belonging to different regimes and avoid mixing them in a
single estimator. In either case, we log the event and annotate the transcript
so that subsequent analysis can attribute variance either to stochastic noise
or to systematic drift.

Toolchain variability and reproducibility controls. To ensure that
“noise” is not dominated by uncontrolled software variability, we record a
full toolchain manifest per device: OS/kernel build, driver versions, frame-
work /library versions, model serialization format, quantization/calibration
artifacts, and compiler cache identifiers. We pin CPU affinity and isolate
benchmarking processes where possible, disable extraneous background ser-
vices, and enforce deterministic decoding settings. When such controls are
infeasible (e.g., shared mobile devices), we treat the resulting variability as
part of the measurement noise and increase repetition counts R accordingly.
We also ensure that any fidelity-k proxy (e.g., simulator, reduced sequence
length, smaller batch) uses the same tokenization and reports per-token
metrics under the same definitions, so that bias by (a) reflects approximation
error rather than definitional mismatch.

Consistency checks and derived quantities. Finally, we implement
cross-metric sanity checks: latency and energy must be nonnegative; en-
ergy must be broadly consistent with average power bounds for the de-
vice; and peak memory must exceed static weight size up to compression
factors. We also verify scaling with G: decode time should be approxi-
mately linear in G once warm-up completes, and memory growth should
match KV cache dimensionality. When a measurement violates these checks
(e.g., due to thermal throttling mid-run), we retain the data but annotate
it and, if necessary, trigger drift handling. This protocol yields a coherent
set of per-token and peak-memory coordinates suitable for the oracle model
Yi(a) = f(a) + bi(a) + £ and supports the construction of conservative con-
fidence bounds used by the elimination and certification logic.

28

5.7 Experimental plan (benchmarks, baselines, metrics, ab-
lations)

We outline an experimental plan to evaluate MF-ParetoLUCB as a procedure
for identifying a certified approximate Pareto set under a costed multi-fidelity
oracle, with objectives given by f(a) = (¢(a), (14(a), eq(a), i(a))aep). Our
primary goal is not to exhaustively optimize any particular application, but
rather to stress-test (i) correctness of elimination/certification under bias
and drift, (ii) budget efficiency in terms of high-fidelity evaluations, and (iii)
robustness of the returned set P under reruns.

Architecture search spaces. We consider finite candidate sets A con-
structed by enumerating and filtering discrete design choices, with sizes
ranging from n ~ 10? (for near-exhaustive diagnostics) to n a~ 10* (for
budget-limited regimes). We propose three families.

1. Decoder-only Transformer variants. We enumerate tuples (L, dmodel, df, b, attn, kv, prec)
where L is layer count, h heads, and prec is an inference precision /quantization
mode. We include attention/kernel choices attn (standard, fused, or
sparse variants) and KV-cache format choices kv (e.g., standard vs.
compressed). Each tuple maps to a concrete implementation artifact,
so each a € A has a well-defined f(a) in the sense of our oracle model.

2. Operator-set ablations. We construct a finite set by toggling a small
number of implementation operators that materially affect device costs
(e.g., activation variants, layernorm placement, tensor-parallel degree
on GPU, and memory-saving options), holding the high-level param-
eter count approximately fixed. This isolates the multi-device cost
structure while keeping quality changes modest but non-negligible.

3. Compression/serving configurations. For a fixed pretrained backbone,
we enumerate discrete serving-time configurations: quantization level,
pruning/sparsity setting, and batch/sequence constraints. This pro-
duces a large A with relatively tight quality range but wide per-device
cost variation.

In all cases we record a deterministic mapping from the symbolic architecture
description to an executable artifact to ensure that repeated queries of the
same (a, k) correspond to the same underlying implementation.

Task suites and the quality objective. We define ¢(a) as an aggregate
task loss (to be minimized) on a fixed validation suite. Concretely, we pro-
pose to use a mixture of (i) language modeling loss on held-out text, (ii)
instruction-following or summarization loss under teacher forcing when ap-
plicable, and (iii) a small code or reasoning subset, with task weights fixed

29

a priori. When accuracy-style metrics are more natural, we convert them to
minimization form (e.g., ¢(a) = —Acc(a)) and, when necessary, rescale to
comparable numeric ranges to avoid hypervolume calculations being dom-
inated by a single coordinate. We emphasize that MF-ParetoLUCB itself
is invariant to monotone coordinate transforms, but downstream evaluation
metrics (notably hypervolume) are not.

Devices and objective dimensionality. We choose a heterogeneous de-
vice set D spanning at least one server-class GPU, one datacenter CPU, and
one edge-class device (e.g., mobile GPU/NPU). This yields m = 1 4+ 3D
objectives, and we explicitly evaluate the regime in which m is moderately
large (e.g., D € {3,4,5}), since multi-device Pareto structure is the motivat-
ing application. All per-device cost coordinates are measured following the
protocol of Section here we focus only on how those measurements enter
the experimental comparison.

Multi-fidelity ladder design. We instantiate a ladder k € {1,..., K}
with K € {2,3}, choosing fidelities that are operationally meaningful and
that plausibly satisfy ||bg(a)|lcc < Bk with conservative, auditable 8. A
representative K = 3 design is:

1. k = 1: a cheap proxy (e.g., an analytic estimator, a learned predictor
trained on past runs, or a simulator) returning a full vector estimate
of f(a), with a large but known f;.

2. k = 2: a partial real measurement (e.g., shorter generation length,
reduced repetition count, or profiling-only without full-quality evalua-
tion), with intermediate B2 and reduced cost cs.

3. k=3 = K: full protocol measurement with S = 0.

We pre-register costs ¢x in a common unit (e.g., wall-clock time converted
to a monetary or GPU-hour equivalent) and run MF-ParetoLUCB under a
fixed total budget B. In addition to fixed-budget runs, we include a fixed-
accuracy mode in which we terminate only under the stopping rule and treat
budget overruns as failures (reported explicitly).

Baselines. We compare against methods chosen to isolate the contribution
of (i) multi-objective elimination with confidence bounds, (ii) multi-fidelity
bias management, and (iii) adaptive focus on Pareto-ambiguous candidates.

1. Random (high-fidelity only). Sample architectures uniformly from A,
evaluate at K = K until budget is exhausted, and return the nondomi-
nated subset among evaluated points. This baseline clarifies the benefit
of adaptive sampling versus passive collection.

30

. Predictor-only Pareto selection. Fit a surrogate f(a) from an initial
design (either random or space-filling), then select a predicted Pareto
set and spend the remaining budget verifying only those candidates

at k = K. This tests whether MF-ParetoLUCB is doing more than
“predict then verify.”

. Random + weight-sharing / one-shot proxy. Train a shared model
(where applicable) or use a one-shot estimator to cheaply rank candi-
dates; then evaluate a small set at £ = K. We include this because
it is common in NAS practice and creates an implicit fidelity with
potentially nontrivial bias.

. Multi-objective NAS baselines (e.g., MONAS /DPP-style selection). We
instantiate a multi-objective search method that proposes a batch of
candidates each round (e.g., using diversity-promoting selection or evo-
lutionary updates) under the same budget accounting. Where such
methods lack explicit certification, we still evaluate their returned set
under the same metrics as below.

. Scalarization sweeps. For a grid of weights w € A™™!, run a single-
objective best-arm procedure (or simple bandit elimination) on (w, f(a)),
then merge all identified candidates and take the nondominated subset.
This baseline approximates a common engineering approach to Pareto
discovery.

All baselines are run under identical oracle access, i.e., the same fidelities and
costs when applicable. If a baseline cannot naturally exploit multi-fidelity,
we record this as a design limitation rather than artificially granting it extra
information.

Evaluation metrics. Since the output is a set P C A, we use set-valued
metrics capturing both quality of approximation and stability.

1. Hypervolume (HV). After normalizing coordinates to [0, 1] using fixed

lower /upper bounds (derived either from known feasible ranges or from
a precomputed reference set), we compute dominated hypervolume of
P with respect to a fixed reference point r > max, f(a) (in normalized
minimization coordinates). For larger m, we use a Monte Carlo estima-
tor with a fixed random seed and sufficient samples to make estimator
variance negligible relative to inter-method differences.

. Empirical Pareto regret. On instances where we can afford an (approx-
imately) exhaustive high-fidelity evaluation to form a reference front
P* (or a high-quality proxy thereof), we report the smallest 7 > 0
such that for every a in the reference set there exists p € P with
f(®) < f(a) + nl. This directly aligns with our additive approxima-
tion notion and yields an interpretable scalar.

31

3. Certification and contamination. We report (i) the fraction of P that is
truly nondominated up to a small tolerance under high-fidelity reeval-
uation and (ii) the fraction of true Pareto points (or reference points)
that are covered up to tolerance by P.

4. Cost decomposition. We report total cost) . ¢, and the number Ng of
highest-fidelity queries, since the central claim is reduction in expensive
evaluations.

5. Stability under reruns. We rerun each method with different random
seeds and (when feasible) different measurement times. We report set
similarity (e.g., Jaccard index on the identity of architectures returned)
and metric stability (standard deviation of HV and empirical Pareto
regret). We additionally report the maximum coordinatewise deviation
in reevaluations of returned candidates to quantify susceptibility to
drift.

Ablations. To isolate design choices in MF-ParetoLUCB, we include con-
trolled ablations:

1. No drift handling. Set p = 0 and disable any remeasurement /sentinel-
driven inflation, while keeping all else fixed. This tests whether the
empirical instability matches the theoretical 2p penalty.

2. No multi-fidelity. Restrict to k = K (thus g = 0), reducing MF-
ParetoLUCB to a single-fidelity Pareto elimination scheme. This iso-
lates the value of cheap biased information.

3. No elimination (uniform allocation). Continue sampling without dis-
carding certainly dominated points, allocating budget either uniformly
over a € A or proportional to current uncertainty widths. This isolates
the effect of safe elimination on sample complexity.

4. No bias-aware promotion. Allow low-fidelity sampling but ignore S5 in
confidence inflation and promotion logic. This tests whether explicit
bias control is necessary in practice.

Reporting format. We will report curves of HV and empirical Pareto
regret versus consumed budget B, as well as Ni versus achieved regret,
to expose the cost—accuracy tradeoff. For each benchmark we will include
a small-number-of-points visualization of the front on selected coordinate
pairs (e.g., ¢ vs. 74 for each d) while emphasizing that the true object is m-
dimensional. All plots and tables will be accompanied by rerun variability
summaries to distinguish stochasticity from systematic drift and bias.

32

5.8 Discussion and limitations

Dependence on a finite candidate set. Our guarantees are stated
for a finite architecture set A and proceed by uniform concentration over
(a,j) € A x [m]. This is not merely a technical convenience: the elimina-
tion logic in MF-ParetoLUCB is defined by explicit dominance comparisons
among confidence boxes indexed by a € A, and Theorem 2 is ultimately a
statement about set containment and certificates among these finitely many
alternatives. In applications, A is typically induced by discretizing a design
space (layers, widths, operator toggles, quantization modes) and then fil-
tering by feasibility constraints. The quality of the returned P is therefore
limited by the expressivity of this discretization: if the true deployment-
optimal design lies between grid points, no algorithm operating on A can
recover it.

The finiteness assumption also interacts with complexity. While the sam-
ple complexity statements scale logarithmically in n, the worst-case compu-
tational cost of maintaining dominance relations can scale as ©(n?m) per
round without further geometric data structures. Hence, even if oracle eval-
uations dominate wall-clock time in many regimes, there exist regimes (large
n, moderate m, very cheap proxies) where naive dominance maintenance be-
comes a bottleneck. Our analysis does not attempt to optimize this aspect;
rather, it isolates the statistical cost of certification under bias and drift.
In practice, one should expect to rely on incremental skyline maintenance,
aggressive pruning by cheap feasibility checks, and caching of dominance
witnesses.

Choice and meaning of [;: bounded bias is a strong modeling
commitment. The multi-fidelity abstraction Yi(a) = f(a) + br(a) + &
with ||bg(a)|lec < B makes two commitments: (i) bias is bounded uniformly
over A, and (ii) the bound fj is known to the algorithm. Both can be
difficult to justify for learned predictors or simulators trained on historical
data, especially under distribution shift across architecture families. If S is
under-specified, then the confidence boxes can be systematically miscentered,
and the “safe elimination” argument used in Theorem 2 may fail, i.e., a
truly Pareto-relevant architecture could be eliminated. If 8y is over-specified,
correctness is retained but the algorithm may delay promotion decisions and
over-explore, eroding the cost advantages of low-fidelity queries.

Two pragmatic mitigations are natural within our framework. First, 5
can be made coordinatewise (and even device-specific): replacing By by By ;
is immediate and often more realistic, since latency simulators, memory es-
timators, and quality proxies can have qualitatively different error scales.
Second, f; can be calibrated empirically by auditing a random subset of
architectures at both fidelity £ and K, and setting (i to a high quantile of
the observed discrepancies inflated by a statistical tolerance. Such calibra-

33

tion does not prove a uniform bound over all A, but it converts an implicit
heuristic into an explicit, auditable assumption. From a theoretical stand-
point, replacing a worst-case 85 by a high-probability bound simply changes
the bookkeeping of the overall failure probability via an additional union
bound (or a two-stage d-allocation) without altering the logic of the method.

Drift bound p: identifiability versus realism. We include drift through
the deterministic bound || fi(a) — f(a)|lec < p, leading to the unavoidable ad-
ditive 2p penalty (Corollary 5). This is the correct worst-case statement
when measurements of different architectures occur at different times and
drift may adversarially move objectives in opposite directions. Nevertheless,
the interpretation of p requires care. Drift in hardware measurement is of-
ten structured (thermal saturation, background load, driver state) and can
be partially controlled by experimental protocol (warmup, fixed clocks, ex-
clusive mode, repeated interleavings). If one can enforce near-simultaneous
paired measurements, or if one can model drift as a stochastic process with
mixing properties, then the worst-case 2p term may be pessimistic, and
sharper guarantees may be possible. Our framework does not exploit such
structure; it provides a conservative envelope within which certification re-
mains valid.

A further subtlety is that what we call “drift” may also absorb unmodeled
systematic error (e.g., measurement instrumentation bias, nondeterminism
in kernels, or operator fusion variability across runs). If these effects are
not bounded in ¢, by a small p, then we cannot expect any method to
deliver reliable componentwise certificates without strengthening the obser-
vation model (e.g., by explicitly tracking run conditions as covariates). In
particular, the assumption Sx = 0 should be interpreted as “no fidelity bias
relative to the chosen reference protocol,” not as “perfect truth.”

Proxy mismatch and non-monotone fidelities. The ladder assump-
tion [nonincreasing in k£ encodes the idea that higher fidelities are closer
to the deployment protocol. In practice, one can encounter non-monotone
behavior: a “medium fidelity” measurement (short sequence length, fewer
repetitions) may exhibit less bias for some architectures than a longer run,
due to cache effects or kernel selection thresholds. Likewise, learned predic-
tors may be accurate on certain operator subsets and poor on others, yielding
architecture-dependent bias patterns that violate uniformity.

Our algorithmic prescription in such cases is not to force a dubious mono-
tone ladder, but to refine the fidelity design until the bound is defensible.
Concretely, one may maintain multiple proxies as separate fidelity options
and treat [as a conservative bound for each, allowing the selection rule to
choose among them by cost and estimated informativeness. If no meaningful
Bk can be certified, then the method degenerates to a single-fidelity scheme

34

(still useful) and the remaining question becomes one of variance reduction
and efficient elimination under noise alone.

Additive accuracy and scaling across objectives. Our correctness no-
tion is additive: P (e + 2p)-covers A in the componentwise order. This is
mathematically natural under bounded ¢, errors, but it depends on the
units of the objectives. Latency in ms/token, energy in J/token, and mem-
ory in MB have different scales, and even within a single coordinate the scale
may change with sequence length or batch size. Hence, € is only meaningful
relative to a declared measurement protocol and a declared normalization.
In deployment settings, this is a feature rather than a defect: stakehold-
ers often specify tolerances in concrete units (e.g., “within 0.2 ms/token”),
and certification should respect those units. Still, when comparing across
tasks or devices, one should explicitly state the normalization and interpret
€ accordingly.

Beyond finite A: continuous and evolving search spaces. Extending
MF-ParetoLUCB to continuous or combinatorially enormous spaces requires
additional structure. One route is discretization with a covering argument:
if f is Lipschitz in a continuous parameterization, then an n-net reduces the
problem to a finite set with n controlled by the covering number, at the ex-
pense of an additional approximation error. Another route is to replace the
uniform finite-arm concentration by model-based confidence regions (e.g.,
linear or kernel bandit assumptions over architecture descriptors), yielding
sample complexity in terms of dimension or information gain rather than n.
Both directions are viable but fundamentally change the nature of the guar-
antees: they trade the assumption “A is finite” for assumptions on regularity
or realizability of a surrogate model.

A related practical complication is that operator sets evolve: compilers
change, kernels are updated, and new quantization modes appear. In such
nonstationary settings, A may change over time, and even f(-) under the
nominal protocol may shift. One can incorporate new candidates by treating
the algorithm as operating in a streaming mode with a growing A;, but then
uniform confidence must be re-allocated (or refreshed) over time, and drift
control becomes central rather than auxiliary. We view our drift term p as
a minimal step in this direction, but not a complete solution to evolving
software /hardware stacks.

Reproducibility checklist (for auditable certification). Since our claims
are conditional on explicit bounds (B, ok, p) and a well-defined oracle proto-
col, we recommend reporting the following items whenever MF-ParetoLUCB
(or any certified Pareto identification method) is evaluated:

35

e Candidate set definition. Exact specification of A: parameter grids,
operator toggles, feasibility filters, and the deterministic mapping from
each symbolic a to an executable artifact.

e Objective protocol. Precise definition of all m coordinates: datasets/task
suite and aggregation for ¢(a); device-specific measurement conditions
for 74(a),eq(a), pa(a) (sequence length, batch size, decoding method,
warmup, measurement window).

e Device and software stack. Hardware identifiers, OS, drivers, com-
piler versions, kernel libraries, and any clock/thermal settings; confir-
mation of exclusive access or description of background load controls.

e Fidelity ladder. Operational meaning of each fidelity k, the corre-
sponding cost accounting cg, and whether fidelity affects quality eval-
uation, profiling, or both.

e Noise and repetitions. Number of repetitions per measurement,
estimator used (mean/median), and the method used to upper bound
oy (or to justify a sub-Gaussian proxy).

e Bias calibration. Procedure used to set 5; (and any coordinatewise
Br,j), including the audit set size, statistical confidence level, and any
held-out validation of the bound.

e Drift quantification. Procedure used to estimate p: sentinel archi-
tectures, remeasurement frequency, time window, and summary statis-
tics leading to the chosen bound.

¢ Randomness control. Random seeds for algorithmic choices and for
any stochastic training/evaluation; reporting of rerun variability.

e Raw logs. Storage of per-query outputs Yj(a), timestamps ¢, and
environment metadata sufficient to recompute f, confidence bounds,
and the final elimination certificates.

This checklist does not eliminate modeling risk, but it makes the assumptions
falsifiable and the results comparable across implementations.

Summary. We have presented MF-ParetoLUCB as a conservative, certificate-
driven alternative to heuristic Pareto discovery under multi-device objec-
tives. Its limitations are the limitations of its assumptions: finiteness (or
discretization), defensible bias envelopes for proxies, and a credible bound
on drift. When these inputs are auditable, the method yields correspondingly
auditable outputs; when they are not, one should interpret the procedure as

a principled heuristic rather than a correctness-guaranteeing algorithm.

36

5.9 Conclusion

We have framed certified Pareto neural architecture search as a finite-set
identification problem in which the object of interest is not a single “best”
architecture but a set of mutually non-dominated tradeoffs across quality
and deployment costs. The key point is that the output of a NAS procedure
is typically consumed as a decision support artifact: practitioners wish to
select among alternatives under shifting constraints (latency caps, energy
budgets, memory limits, or accuracy targets) and across multiple devices. In
such settings, returning a scalarized optimum is brittle, whereas returning
a Pareto approximation is aligned with the actual decision surface. Our
contribution is to make this output auditable: under explicit assumptions
on proxy bias, measurement noise, and bounded drift, we can return a set
P that is (e + 2p)-Pareto accurate with probability at least 1 — ¢, together
with an explicit mechanism (confidence boxes and dominance certificates)
that witnesses why candidates are retained or eliminated.

This viewpoint provides a clean bridge from common NAS heuristics to
deployment-faithful guarantees. Most NAS pipelines already separate can-
didate generation (evolutionary search, differentiable relaxations, predictor-
guided exploration, or manual templates) from candidate evaluation (train-
ing and profiling). Our formulation isolates the second stage: given a finite
candidate set A, the task is to spend a limited evaluation budget to certify
which candidates are needed to cover the remaining ones up to an addi-
tive tolerance. The algorithm MF-ParetoLUCB does not prescribe how A
is obtained, and in this sense it is compatible with essentially any upstream
heuristic; it can be viewed as a wrapper that turns a heuristic proposal set
into a set with probabilistic correctness guarantees relative to the declared
oracle protocol.

The technical content of the bridge is the explicit accounting for the two
failure modes that dominate deployment measurement practice: (i) low-cost
proxies are biased relative to the deployment protocol, and (ii) even high-
fidelity measurements are noisy and subject to time variation. The oracle
model Yi(a) = f(a) + bg(a) + £ with [|bg(a)]lec < B and sub-Gaussian &
makes bias and noise separable and thus separately controllable by fidelity
promotion and replication. The drift model || fi(a) — f(a)|c < p makes
explicit that comparisons across time necessarily incur slack, and that any
guarantee stated in terms of the static target f must tolerate a 2p discrepancy
when two architectures are measured at different times. In our analysis, these
quantities appear transparently as additive inflations of confidence bounds,
so that the algorithm cannot “hide” optimism behind unmodeled variability:
it must pay for certainty either by promoting fidelity (reducing () or by
sampling (reducing the stochastic radius), and it must accept the irreducible
drift penalty unless stronger synchronization is assumed.

From an algorithmic standpoint, MF-ParetoLUCB is a conservative elim-

37

ination scheme operating on vector-valued confidence boxes. At any time we
maintain high-probability bounds LCB(a) and UCB(a) for each a € A, in-
flated by the current fidelity bias radius and the drift bound. Elimination is
then performed only when a dominance relation holds at the level of these
boxes with margin e, which yields a certificate that survives the transla-
tion from estimated to true objectives. The output is the set of candidates
that cannot be ruled out as Pareto-relevant given the current uncertainty;
equivalently, it is the set that still intersects the e-expanded nondominated
region under all plausible realizations consistent with the observations and
bounds. This is the precise sense in which the method turns heuristic explo-
ration into certified conclusions: every exclusion is justified by an explicit,
checkable inequality involving only stored statistics and declared tolerances.

Our complexity results clarify when expensive deployment-faithful eval-
uations are actually necessary. The gap-dependent upper bound shows that,
after fidelity promotion has reduced proxy bias below the relevant margins,
the number of highest-fidelity evaluations required to resolve Pareto status
scales as } yp- 0% /(Aq — €)% up to logarithmic factors, which matches an
instance-dependent lower bound up to constants and log(nm) terms. Thus
the algorithm is not merely correct; it is near-optimal in how it spends high-
fidelity budget on hard-to-separate candidates near the Pareto boundary.
This near-tightness is important in practice because the cost ratio between
fidelities can be extreme: if one must ultimately measure on real devices, we
wish to know that these measurements are information-theoretically justified
rather than artifacts of an overly cautious procedure.

The multi-objective formulation also makes explicit an often implicit de-
ployment reality: different objectives may be learned or measured with differ-
ent difficulties, and the bottleneck is the coordinate that blocks dominance
resolution. Since m = 1 + 3D can be moderately large, one might worry
that certification becomes hopelessly expensive. Our results indicate instead
that the essential difficulty is concentrated near the front: if a candidate is
clearly dominated in at least one coordinate by a large margin, it is elimi-
nated quickly; if it is near-nondominated, then it must be sampled, and no
method can avoid this. This is a useful diagnostic principle: when certifi-
cation appears expensive, it reflects genuine ambiguity in the tradeoffs at
the declared tolerances, not merely inefficiency. Conversely, if certification
is cheap, then the front is well-separated at scale €, and one can trust that
the returned set is not an artifact of under-sampling.

In terms of methodology, we emphasize that certification is complemen-
tary to, not a replacement for, search. For large design spaces, one may
first use aggressive heuristics and cheap proxies to propose a manageable A,
and only then invoke certified Pareto identification as a final stage that (i)
allocates expensive measurements adaptively, (ii) provides a clear stopping
rule tied to (g, d), and (iii) outputs a set equipped with guarantees under ex-
plicit modeling assumptions. This division of labor is natural: the upstream

38

heuristic is judged by its ability to generate a candidate set containing good
solutions, while the certification stage is judged by its ability to decide, at
controlled cost, which of these solutions are needed to cover the rest under
the true deployment protocol. When combined, the overall pipeline inher-
its the practical strengths of heuristic exploration while gaining an explicit
correctness layer at the end.

Finally, the central conceptual message is that NAS for deployment
should be treated as a problem of controlled approximation under measure-
ment constraints. The parameters €, §, B, ok, and p are not nuisances; they
are the quantities that encode what it means for an empirical claim about
tradeoffs to be reliable. By stating them explicitly, we make the promise of
the algorithm commensurate with what can actually be measured. The re-
sulting guarantee—an (¢4 2p)-Pareto approximation with high probability—
is modest in form but strong in implication: it asserts that, within declared
tolerances and under auditable assumptions, the returned set is sufficient for
any downstream selection rule that respects componentwise costs.

We therefore view certified Pareto NAS not as an alternative objective
to heuristic NAS, but as a principled interface between empirical search
and deployment decision-making. It provides a language in which proxy
evaluations, device measurements, and uncertainty can be combined into
statements of the form “no excluded architecture can improve any objective
without paying at least € (up to drift).” Such statements are the appropriate
unit of scientific and engineering communication for deployment: they are
falsifiable, tied to a protocol, and stable under re-interpretation of preferences
over objectives. Within these constraints, MF-ParetoLUCB offers a concrete
instantiation of the broader idea that the output of NAS should be not only
performant, but also certifiably so relative to the system in which it will be
used.

39

	Introduction
	Related Work
	Problem Setup and Definitions
	MF-ParetoLUCB: Multi-Fidelity Pareto Identification with Certified Elimination
	Main Theoretical Results
	Uniform confidence under bias and drift
	Certified (+2)-Pareto correctness
	Gap-dependent high-fidelity sample complexity
	Calibration for unknown k and unknown
	Matching lower bounds and near-tightness
	Instrumentation and measurement protocols
	Experimental plan (benchmarks, baselines, metrics, ablations)
	Discussion and limitations
	Conclusion

