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Abstract

Modern 2026-era foundation model stacks rarely ship a single check-
point: practitioners maintain multiple pretrained variants (domain-
specialized, safety-tuned, supervised vs self-supervised, multilingual,
etc.). The SMAT framework shows that sparse interpolated experts
between a pretrained model and a meta-tuned delta can improve few-
shot OOD generalization in vision. We generalize this idea from a
single anchor θpre to a set of R pretrained sources {θ(r)} by learning
task-conditioned mixing weights over sources and sparse parameter
corrections. We formalize a multi-source sparse interpolation model
where each task’s optimum lies in the convex hull of pretrained pri-
ors plus a sparse residual, and we study the corresponding few-shot
estimator. In a convex surrogate regime (frozen features + regular-
ized squared/logistic loss), we prove an excess-risk upper bound scal-
ing as O((R + k log(d/k))/n) from n support examples and match it
with an information-theoretic lower bound, yielding tight rates. We
also show hardness of exact sparse source selection and justify relax-
ations/approximations. Finally, we propose Multi-Source SMAT: an
amortized router producing per-task mixture weights from support-set
prototypes, plus learned sparse masks for residual specialization under
explicit constraints, and outline experiments on cross-domain few-shot
classification and safety/robustness shifts to demonstrate that a single
meta-tuned router composes multiple pretrained ‘world models’ and
improves OOD performance without sacrificing ID.
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1 Introduction

By 2026, the operational reality of pretrained models is not the existence of a
single canonical checkpoint, but rather a growing collection of partially over-
lapping ones: foundation models at multiple scales; instruction-tuned vari-
ants; domain-adapted checkpoints for code, biomedical text, or multilingual
data; safety-aligned snapshots; and organization-specific finetunes produced
by continuous training pipelines. When a new downstream task arrives with
only a small labeled support set, the question “which initialization should
we use?” is often ill-posed, because several candidate checkpoints are simul-
taneously plausible and none is uniformly dominant across tasks, domains,
or evaluation criteria. Moreover, this selection problem is dynamic: tasks
sampled from a mixture distribution (including out-of-distribution episodes)
may demand different degrees of specialization, and the best choice among
available checkpoints can change abruptly with the task.

Standard meta-tuning and few-shot adaptation methods typically impose
a single-anchor view of transfer: one chooses a distinguished pretrained ini-
tialization and learns an adaptation rule (explicit optimization, an amortized
update, or a low-rank/adapter parameterization) around that anchor. This
paradigm is effective when there exists a universally good starting point and
task variation is well-modeled as a small perturbation. However, the multi-
checkpoint regime violates both assumptions. First, if tasks decompose into
clusters aligned with different pretraining distributions, any single anchor
may be systematically suboptimal for a nontrivial portion of tasks. Sec-
ond, if different checkpoints encode complementary inductive biases, then
restricting to a neighborhood of one anchor discards the possibility of com-
posing these biases in a task-dependent way. The failure mode is not merely
constant-factor inefficiency: in low-data settings, committing to the wrong
anchor can induce an irreducible bias that cannot be corrected by a small
update without overfitting.

We therefore adopt a compositional viewpoint in parameter space. The
central modeling decision is to represent the task-specific parameter as a
mixture of available sources together with a sparse residual that accounts
for task idiosyncrasies not expressible by mixing alone. Concretely, we seek
a representation of the form

θT ≈
R∑

r=1

wT,r θ
(r) + ∆T ,

where the mixing weights lie in the simplex (thereby restricting to the con-
vex hull of pretrained sources) and the residual is constrained to be sparse
(or block-sparse under a fixed modular partition). The simplex constraint is
not merely aesthetic: it induces a low-dimensional search space for routing
across sources, avoids uncontrolled extrapolation in parameter space, and
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admits efficient approximate optimization via conditional-gradient methods.
The residual constraint plays a complementary role: it provides a controlled
mechanism for specialization when the convex hull is insufficient, while keep-
ing the effective degrees of freedom commensurate with the limited support
set size.

From this representation we obtain two algorithmic regimes. In the ora-
cle regime, given the support set for a task, we solve a constrained empirical
risk minimization problem over mixing weights and sparse residuals, produc-
ing a per-task parameter vector used for prediction on query inputs. This
captures the idealized statistical behavior of multi-source composition un-
der explicit constraints. In the amortized regime, we learn a meta-router
that maps the support set to mixing weights (and optionally to a combina-
tion of sparse residual “experts”), enabling rapid deployment-time adaptation
without solving a nonconvex sparse optimization problem from scratch. The
amortized model is designed to treat pretrained checkpoints as read-only: we
construct the task model by combining sources and adding masked deltas,
with no need to backpropagate through source parameters.

Our contributions are as follows.

(1) A multi-source sparse interpolation framework for few-shot
adaptation. We formalize the setting in which a task-specific optimum is
approximated by (i) convex mixing over R pretrained checkpoints and (ii) an
additional k-sparse (or block-k sparse) residual. This formulation unifies sev-
eral empirical observations—that interpolating checkpoints can yield strong
performance, and that task-specific deltas can be efficiently represented in
structured sparse form—into a single constrained estimation problem. The
formulation cleanly separates routing (estimating wT in a low-dimensional
simplex) from specialization (estimating ∆T under a sparsity budget).

(2) Tight statistical rates with a matching minimax lower bound.
In a convex surrogate regime (e.g., linear prediction on frozen features with
ridge regularization), we analyze the constrained empirical risk minimizer
and prove an excess-risk bound scaling as

E
[
ℓT (θ̂T )− ℓT (θ

⋆
T )
]
= O

(
R+ k log(d/k)

n

)
,

under standard smoothness and strong convexity assumptions and a real-
izability condition consistent with the proposed representation. The rate
decomposes into an R term associated with estimating mixture weights and
a k log(d/k) term associated with sparse specialization, reflecting the dis-
tinct effective dimensions of the two components. We further show that this
scaling is minimax-optimal over the corresponding model class: no estimator
can improve the dependence on R, k, d, and n in worst case beyond constant
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factors. This establishes that multi-source composition with sparse residuals
is not only algorithmically plausible but statistically well-calibrated to the
few-shot regime.

(3) Practical optimization and amortization in the multi-checkpoint
setting. Exact optimization with explicit ℓ0 constraints is computationally
intractable in general, and sparse source subset selection is similarly hard.
We therefore emphasize relaxations that preserve the statistical structure
while enabling computation. On the simplex side, smooth convex objectives
admit Frank–Wolfe optimization, which yields sparse mixtures as a byprod-
uct of its vertex-based updates and provides an anytime trade-off between
the number of active sources and suboptimality. On the residual side, we
employ standard sparse approximations (hard-thresholding, hard-concrete
relaxations, or structured masks) to satisfy a budget on nonzeros. Finally,
we introduce an amortized router that predicts the mixing weights (and op-
tionally residual expert weights) directly from the support set. This router is
trained on meta-training tasks to approximate the oracle mapping, yielding
constant-time routing overhead at test time beyond encoding the support
examples.

The resulting perspective shifts the role of meta-learning: rather than
learning one initialization that must serve all tasks, we learn how to navi-
gate a library of pretrained checkpoints and how to allocate a limited special-
ization budget. This is particularly natural under distribution shift, where
different sources may be variably relevant and where conservative convex
mixing provides a robust default. The next section situates this approach
relative to existing work on meta-tuning and sparse adaptation, checkpoint
interpolation and task arithmetic, adapter composition, mixture-of-experts
routing, and constrained generalization under shift.

2 Related Work

Our setting intersects several lines of work that, when viewed together, mo-
tivate a compositional treatment of pretrained checkpoints together with a
constrained mechanism for task-specific specialization. We summarize the
closest connections and distinguish the aspects that are essential for our
analysis and algorithmic design.

Meta-tuning and few-shot adaptation around a single anchor. Clas-
sical meta-learning methods aim to produce a single initialization (or up-
date rule) that can be rapidly adapted to new tasks, most prominently via
gradient-based schemes such as MAML and its variants ??, as well as im-
plicit or amortized alternatives (e.g., learning update directions, learning
per-parameter learning rates, or learning task-conditioned hypernetworks)
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??. In these approaches the pretrained or meta-trained parameter θpre acts
as a distinguished anchor, and per-task adaptation is modeled as a small
update constrained by a limited number of steps, a norm bound, a low-rank
parameterization, or an adapter bottleneck. Our multi-checkpoint regime
departs from this single-anchor view: rather than committing to a particu-
lar checkpoint and adapting locally, we treat the available pretrained models
as a structured set that can be navigated by task-dependent routing. The
residual component we introduce is compatible with meta-tuning in the sense
that it can be implemented through standard efficient finetuning parameter-
izations, but the conceptual separation between routing (selecting a point in
a low-dimensional hull of sources) and specialization (a sparse modification)
is not explicit in most single-anchor analyses.

Sparse masked adaptation and structured parameter-efficient fine-
tuning. A large body of work seeks to reduce adaptation cost by restrict-
ing trainable degrees of freedom: adapters ?, prompt/prefix tuning ??, IA3

?, and low-rank updates such as LoRA ?. In parallel, sparse finetuning
and masked adaptation methods train a subset of parameters (or sparse
deltas) using pruning-style masks or learned gates, often aiming at favor-
able accuracy–compute trade-offs ??. Our practical residual component is
closest in spirit to this literature, with the additional constraint that the
residual is task-conditioned and budgeted (via ℓ0 or structured sparsity) to
match few-shot sample sizes. The key distinction is that we couple sparse
specialization to multi-source mixing; this changes both the statistical story
(effective dimension decomposes into a simplex part and a sparse part) and
the computational story (one may amortize routing while keeping sources
frozen and residual sparse).

Checkpoint interpolation, model soups, and task arithmetic. A
complementary line of work studies the empirical phenomenon that linear
combinations of neural network parameters can preserve or improve perfor-
mance, especially when combining finetuned models from a common base.
This includes model soups and weight-space averaging ?, linear mode con-
nectivity and related connectivity results ??, and “task arithmetic” / weight-
space composition of deltas ?. Related ideas appear in merging and averaging
LoRA or adapter deltas, and in post-hoc combination of domain specialists.
These works provide strong empirical evidence that parameter-space com-
position is viable, but typically focus on global merges (one merged model
for all tasks) or on compositions that do not explicitly incorporate a few-
shot support set at test time. Our formulation instead treats the mixing
weights as per-task variables inferred from ST , and it supplements mixing
with a constrained residual when the convex hull is insufficient. The sim-
plex constraint we impose can be interpreted as a conservative variant of
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weight-space averaging that avoids extrapolation, which is particularly rele-
vant under distribution shift.

Adapter composition and modular reuse across tasks. Modular
transfer has a long history, including composing separately trained mod-
ules, routing among a library of adapters, and assembling models from
reusable components. Empirically, one can attach multiple adapters and
select or combine them based on task descriptors or learned gating ?, and
more broadly, one can view parameter-efficient finetuning as learning a task-
specific element in a low-dimensional subspace that may be shared or com-
posed across tasks. Our approach may be viewed as operating one level
higher: the “modules” we combine are entire pretrained checkpoints (or, in
the blockwise variant, checkpoint parameters at a module granularity), and
the residual plays the role of a lightweight task-specific correction. The em-
phasis is not merely on modularity, but on a precise accounting of degrees
of freedom: the routing component has complexity scaling with R, while the
specialization component scales with sparsity k.

Mixture-of-experts routing and conditional computation. Mixture-
of-experts (MoE) architectures ??? route tokens (or examples) to a subset of
experts to achieve conditional computation and improved scaling. Routing
is typically learned end-to-end with differentiable gates and load-balancing
regularizers; the experts themselves are trained jointly, and the router op-
erates at token-level or sequence-level granularity. Our routing problem dif-
fers in three ways. First, the experts (sources) are pretrained checkpoints
treated as read-only, rather than jointly trained expert subnetworks. Sec-
ond, routing is performed at the task level using a few-shot support set,
producing a single set of weights wT that defines the task model. Third, we
focus on constrained estimation with explicit simplex and sparsity budgets,
enabling statistical characterization in the convex surrogate regime and mo-
tivating optimization strategies such as Frank–Wolfe for simplex variables
and thresholding/relaxations for sparse residuals. Nonetheless, the amor-
tized meta-router we study is conceptually aligned with MoE gating in that
it learns a fast mapping from data summaries to mixture weights.

Constrained sparsity, subset selection, and optimization under bud-
gets. Imposing hard constraints such as ∥∆T ∥0 ≤ k connects our residual
estimation to sparse regression and best subset selection, which are compu-
tationally intractable in the worst case and thus commonly approached via
relaxations (e.g., ℓ1 penalties, group lasso, or stochastic gates such as hard-
concrete) ??. Similarly, sparsity over sources (selecting a small subset of
checkpoints) is a form of combinatorial model selection; conditional-gradient
methods offer a natural relaxation when the objective is convex in the mix-
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ture and the feasible set is the simplex, producing sparse mixtures as a
byproduct of vertex-based updates ?. Our algorithmic choices mirror these
classical themes: we retain explicit constraints at the modeling level, and we
use computational surrogates that preserve the structure needed for analysis
and for deployment-time budgeting.

Robustness, distribution shift, and multi-source generalization. Fi-
nally, our emphasis on task distributions that may mix in-distribution and
out-of-distribution episodes is connected to robust optimization and distri-
butionally robust generalization, including group DRO, worst-case risk, and
tail-risk objectives such as CVaR ??. Multi-source domain adaptation and
hypothesis aggregation also motivate convex combinations of predictors or
source hypotheses under shift ??. While our mixing occurs in parameter
space rather than prediction space, the simplex restriction serves a similar
purpose: it constrains adaptation to a conservative region defined by avail-
able sources, which can mitigate overconfident extrapolation when support
data are scarce or shifted. The sparse residual then provides a controlled es-
cape hatch, whose complexity is calibrated to the amount of per-task data.

These connections clarify the design choices in our framework: we com-
bine (i) parameter-space composition inspired by checkpoint interpolation
and modular transfer, (ii) constrained sparse specialization aligned with
parameter-efficient and sparse finetuning, and (iii) task-conditioned routing
analogous to MoE gating but over pretrained sources. We now make these
components precise by formalizing the task distribution, support/query pro-
tocol, and the constrained parameter class used throughout our analysis and
algorithms.

3 Problem Setup and Notation

We consider a few-shot task distribution P over episodes T . Each task T
induces an example distribution DT on input–label pairs (x, y) ∈ X ×Y. An
episode provides a labeled support set ST = {(xi, yi)}ni=1 sampled i.i.d. from
DT , and an independent query set QT = {(x′j , y′j)}

nq

j=1 sampled i.i.d. from
the same DT . The support set is the only information available to construct
a task-adapted predictor; performance is evaluated on the query distribution
(or the realized query set, when we report empirical metrics).

We work with a shared parameterization θ ∈ Rd (e.g., a linear predictor
on frozen features in the convex surrogate regime, or a full neural network
parameter vector in practice). Each task T is associated with a population
risk

ℓT (θ) := E(x,y)∼DT

[
ℓ(θ; (x, y))

]
,
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and its empirical counterpart on the support set,

ℓ̂T (θ) :=
1

n

∑
(xi,yi)∈ST

ℓ(θ; (xi, yi)).

In the theory sections we assume ℓT is convex, L-smooth, and µ-strongly
convex in θ for each T (e.g., squared loss or logistic loss with ridge regular-
ization on fixed features). This allows us to interpret excess population risk
ℓT (θ̂T )− ℓT (θ

⋆
T ) as the primary measure of statistical error. In the practical

regime, ℓ̂T is the training objective used to infer task-specific parameters,
while evaluation uses standard predictive metrics on QT (accuracy for clas-
sification, negative log-likelihood, etc.).

Our central resource is a library of R pretrained source checkpoints
{θ(r)}Rr=1 ⊂ Rd that share architecture and parameter indexing. We treat
these sources as read-only at test time: the per-task model is obtained by
composing them in parameter space, optionally supplemented by a restricted
task-specific residual. To formalize this composition, we use mixing weights
wT = (wT,1, . . . , wT,R) constrained to the probability simplex

∆R :=
{
w ∈ RR : wr ≥ 0,

R∑
r=1

wr = 1
}
.

Given wT ∈ ∆R, the associated convex-hull mixture is
∑R

r=1wT,rθ
(r). The

simplex constraint enforces nonnegative interpolation among sources and
rules out extrapolation; operationally, it yields a low-dimensional adaptation
space of (effective) dimension at most R− 1.

To permit limited specialization beyond the convex hull, we add a task-
dependent residual vector ∆T ∈ Rd subject to a hard sparsity constraint. In
the unstructured case we require ∥∆T ∥0 ≤ k, where ∥·∥0 denotes the number
of nonzero entries. In structured variants we assume a fixed partition of
parameters into L blocks (modules), and impose block sparsity: at most k
blocks are allowed to be nonzero, with arbitrary values within each selected
block. These constraints encode the few-shot regime: the residual carries
additional degrees of freedom, but its complexity is explicitly budgeted.

We thus define the per-task parameter as

θT (wT ,∆T ) :=

R∑
r=1

wT,rθ
(r) +∆T ,

with feasibility constraints wT ∈ ∆R and ∆T sparse (unstructured or block-
sparse). The oracle per-task estimator is the constrained empirical risk min-
imizer

(ŵT , ∆̂T ) ∈ arg min
w∈∆R, ∆: ∥∆∥0≤k

ℓ̂T

( R∑
r=1

wrθ
(r)+∆

)
, θ̂T := θT (ŵT , ∆̂T ).
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This optimization problem separates the adaptation degrees of freedom into
(i) a simplex-constrained mixture over sources and (ii) a sparse correction.
The two components will later admit distinct statistical accounting: the
mixture scales with R, while the residual scales with k (and, in unstructured
form, a log(d/k) term).

In practical implementations, sparsity is enforced via a family of masks
Z, where a mask z ∈ {0, 1}d (or a structured mask over blocks) selects co-
ordinates to update; the residual is realized as z ⊙ δ for some learned or
optimized δ ∈ Rd. We also consider amortized settings in which multiple
masks {zm}Mm=1 (“experts”) are learned during meta-training and combined
at test time via task-conditioned weights, but for the present section it suf-
fices to view the constraint as limiting nnz(∆T ) and hence the incremental
compute required to apply the residual.

Beyond statistical constraints, we optionally impose a deployment budget
through a cost proxy ĉost(θT ) capturing latency, memory traffic, or energy.
In the simplest case, this proxy depends primarily on the number of nonzeros
in the residual (and, in variants that restrict source usage, on the number of
active sources). Formally, one may constrain ĉost(θT ) ≤ C and solve either
a projected problem or a Lagrangian relaxation; we treat such budgets as
orthogonal to the statistical formulation, but they motivate the same sparsity
and modular structure.

Finally, we specify how task distributions and evaluation under shift are
represented. We allow P to mix in-distribution and out-of-distribution tasks,
for instance

P = (1− γ)PID + γ POOD,

with γ ∈ [0, 1] unknown at test time. While our default objective is the
mean query risk ET∼P [ℓT (θT )], we also consider tail-focused criteria such
as CVaRα(ℓT (θT )) over T ∼ P, which emphasize worst-case or rare but
important tasks. In experiments, we report both average performance and
stratified performance on ID and OOD subsets, as well as tail-risk summaries
when appropriate.

This notation isolates the elements that will recur throughout: sources
{θ(r)}Rr=1, task-conditioned simplex weights wT , sparse specialization ∆T ,
and the support/query protocol defining adaptation and evaluation. We
next formalize the structural assumption relating tasks to the multi-source
parameter class.

4 Multi-Source Sparse Interpolation Model

We now state the structural hypothesis that links the task distribution P
to the library of pretrained sources {θ(r)}Rr=1. The hypothesis specifies a
restricted parameter class in which (i) coarse task variation is captured by
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interpolation among sources, while (ii) residual task idiosyncrasies are lo-
calized to a small subset of coordinates or modules. This is a statement
about the population minimizers θ⋆T ∈ argminθ ℓT (θ); the estimator of §3 is
an empirical proxy constrained to the same class.

Generative form and hypothesis class. Our standing assumption is
that for each task T there exist weights w⋆

T ∈ ∆R and a sparse residual
∆⋆

T ∈ Rd such that

θ⋆T =

R∑
r=1

w⋆
T,r θ

(r) + ∆⋆
T , ∥∆⋆

T ∥0 ≤ k. (1)

Equivalently, we posit that θ⋆T lies in the Minkowski sum of the convex hull
of sources and a k-sparse set. We write the corresponding hypothesis class
as

HR,k :=
{ R∑

r=1

wrθ
(r) +∆ : w ∈ ∆R, ∥∆∥0 ≤ k

}
⊂ Rd. (2)

The simplex restriction is not purely technical: it encodes the inductive bias
that tasks are generated by interpolation among known behaviors rather
than extrapolation beyond them. In particular, if each θ(r) corresponds to
a model that has been pre-validated for a given domain, safety constraint,
or calibration regime, then w ∈ ∆R preserves nonnegativity and yields a
form of convex averaging that can be easier to audit than arbitrary linear
combinations.

We emphasize that representation (1) need not be unique: distinct pairs
(w,∆) may map to the same θ. Our analysis and algorithms depend only on
membership in HR,k and do not require identifiability of the decomposition.

Structured and block-sparse residuals. In large neural models, the
unstructured ℓ0 constraint can be too permissive (it may scatter updates
across the network) or too restrictive (it may prevent coherent adaptation
within a module). We therefore also consider a structured variant based on
a fixed partition of coordinates into L disjoint blocks,

[d] =

L⊔
ℓ=1

Iℓ, ∆ = (∆[I1], . . . ,∆[IL]),

where blocks may correspond to layers, attention heads, MLP submod-
ules, or any architecturally meaningful grouping. Let the block support be
bsupp(∆) := {ℓ : ∆[Iℓ] ̸= 0} and define the block sparsity level ∥∆∥0,blk :=
|bsupp(∆)|. The block-sparse hypothesis is then

θ⋆T =
R∑

r=1

w⋆
T,r θ

(r) + ∆⋆
T , ∥∆⋆

T ∥0,blk ≤ k, (3)
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allowing dense changes within at most k selected blocks. This structure
aligns with deployment constraints: updating a small number of modules can
reduce memory traffic and can simplify interpretation (we can report which
modules were altered). It also aligns with common fine-tuning phenomena
in transformers, where adaptation often concentrates in specific layers or in
low-rank directions within attention/MLP weights.

Interpretation: interpolation as task retrieval, residual as special-
ization. Model (1) admits a natural two-stage interpretation. The mixture∑

r w
⋆
T,rθ

(r) performs task retrieval from a finite library: the weights select
a point in a low-dimensional simplex that approximates the task optimum
up to a small error. The residual ∆⋆

T performs specialization: it corrects
the retrieved point using a limited number of additional degrees of free-
dom. When k = 0 we recover pure convex-hull composition; when R = 1
we recover sparse adaptation from a single initialization (a convex surrogate
for sparse fine-tuning, masking, or sparse adapters). Thus (1) interpolates
between multi-checkpoint routing and sparse single-checkpoint adaptation.

When is the assumption plausible? We view (1) as plausible whenever
the task distribution P can be described as a mixture of a small number of
recurring “modes” plus bounded idiosyncratic variation.

First, in domain-mixture settings (e.g., a test-time stream mixing med-
ical, legal, and general text), it is common to have sources pretrained or
instruction-tuned on different domains. If task optima cluster near these
sources, then a convex mixture can approximate the cluster centroid for a
given task, with ∆⋆

T absorbing domain-specific label conventions or dataset
artifacts that are not shared with any single source.

Second, in multi-objective or safety-constrained deployment, sources may
encode different trade-offs (helpfulness, refusal, style, calibration, conser-
vatism). The simplex constraint can be seen as a safety prior : rather than
learning a fresh parameter vector from n samples, we restrict ourselves to
averaging among pre-audited behaviors, and we budget any deviation via
sparsity. In this interpretation, k plays the role of a deviation budget: it
limits how much the task can “override” the library, and where.

Third, in out-of-distribution adaptation, we do not expect θ⋆T to lie ex-
actly in the convex hull; nevertheless, we may expect it to lie close to the hull
in a restricted set of directions. For example, if the feature representation is
largely reusable and only a few decision-boundary coordinates change, then
∆⋆

T can be sparse in the effective parameterization of the convex surrogate.
In neural settings, the effective degrees of freedom relevant to a task may be
concentrated in a small set of heads or layers; the block-sparse formulation
(3) captures this.
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Strength of the hypothesis and approximate variants. As stated,
(1) is an exact realizability assumption. It is often sufficient (and more re-
alistic) to assume an approximate form: there exists θ̄T ∈ HR,k such that
ℓT (θ̄T ) − infθ ℓT (θ) is small. All subsequent procedures can then be inter-
preted as controlling an estimation term (from finite support samples) plus
an approximation term (from model mismatch). In particular, the value of
R and k should be chosen to reflect the intended trade-off: larger R and k
enlarge HR,k and reduce approximation error, but increase statistical and
computational burden.

The role of this section is therefore to define a concrete, auditable param-
eter class connecting tasks to a source library, with explicit knobs (R, k, and
the block partition) that quantify adaptation capacity. In the next section
we study the per-task constrained ERM over this class and the algorithmic
relaxations needed to compute it.

5 Oracle Per-Task Solver: Constrained ERM over
Simplex Mixing and Sparse Residual

Given a new task T with support set ST of size n, our oracle estimator
is the constrained empirical risk minimizer over the hypothesis class HR,k

introduced in §4. Concretely, we define

(ŵT , ∆̂T ) ∈ arg min
w∈∆R, ∆:∥∆∥0≤k

ℓ̂T (θ(w,∆)) , θ(w,∆) :=
R∑

r=1

wrθ
(r)+∆,

(4)
and output θ̂T := θ(ŵT , ∆̂T ). In the convex surrogate regime (e.g., linear
prediction on frozen features with ridge regularization), ℓ̂T (θ) is convex in θ
and hence convex in w for fixed ∆, but the joint optimization in (4) remains
nonconvex due to the ℓ0 constraint on ∆ (and, in the block-sparse variant,
due to combinatorial block selection). For the statistical statements in §4,
we treat (4) as defining an oracle solution; we then separate statistical error
(finite n) from any additional optimization error incurred by practical solvers.

Reparameterization and gradients. Let g(θ) := ℓ̂T (θ). Since θ(w,∆)
is affine in (w,∆), we have

∇w g(θ(w,∆)) =
(
⟨∇θg(θ(w,∆)), θ(1)⟩, . . . , ⟨∇θg(θ(w,∆)), θ(R)⟩

)
∈ RR,

(5)
and ∇∆ g(θ(w,∆)) = ∇θg(θ(w,∆)). Thus, any first-order method requires
(i) computing ∇θg(·) on the support set, and (ii) aggregating inner products
with the source parameters to obtain a gradient in the simplex coordinates.
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Simplex optimization via Frank–Wolfe. When ∆ is held fixed, min-
imizing w 7→ g(θ(w,∆)) over the simplex is a smooth convex problem un-
der our assumptions. We therefore use Frank–Wolfe (conditional gradient),
which avoids explicit projection and enjoys an intrinsic sparsity property of
the iterates. Starting from some w(0) ∈ ∆R, the t-th step computes

s(t) ∈ arg min
s∈∆R

⟨s,∇wg(θ(w
(t),∆))⟩, w(t+1) = (1− γt)w

(t) + γts
(t), (6)

where γt ∈ (0, 1] is a step size. Since the linear minimization oracle over
∆R selects a vertex, s(t) = ert for some rt ∈ [R], and consequently w(t)

has at most t + 1 nonzeros. This provides an anytime trade-off between
optimization accuracy and the number of active sources, without imposing
an explicit ∥w∥0 constraint. In settings where source retrieval cost scales
with the number of active sources, this property can be used to control
deployment overhead.

Residual optimization: exact ℓ0 is intractable, practical relaxations.
For fixed w, (4) reduces to minimizing g(

∑
r wrθ

(r)+∆) subject to ∥∆∥0 ≤ k.
Even for quadratic losses this contains sparse regression as a special case and
is NP-hard in general. We therefore distinguish three practical surrogates,
each appropriate under different structure assumptions.

First, in the unstructured sparse case we can apply iterative hard thresh-
olding (IHT) to a gradient step on ∆:

∆(t+1) = Hk

(
∆(t) − ηt∇∆g(θ(w,∆

(t)))
)
, (7)

where Hk(·) keeps the k largest-magnitude coordinates and zeros the rest.
Under restricted strong convexity/smoothness conditions familiar from sparse
estimation, IHT converges to a neighborhood whose size is controlled by noise
and model mismatch; in our usage it serves as a fast heuristic that enforces
the budget exactly.

Second, for block sparsity with a fixed partition {Iℓ}Lℓ=1, we may use a
group-lasso relaxation:

min
w∈∆R, ∆∈Rd

g(θ(w,∆)) + λ

L∑
ℓ=1

∥∆[Iℓ]∥2, (8)

followed by selecting the top-k blocks by ∥∆[Iℓ]∥2 and optionally refitting on
the selected support. This replaces the combinatorial constraint by a convex
penalty (for convex g) and yields stable solutions when blocks correspond
to semantically meaningful modules. The trade-off is that the penalty in-
troduces bias, and the conversion from penalized to hard-sparse solutions
depends on separation among block magnitudes.
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Third, in neural implementations where one wishes to learn masks by
gradient descent, we can use a hard-concrete (or related) relaxation for binary
gates. Writing ∆ = z⊙ δ with trainable δ ∈ Rd and stochastic/relaxed gates
z ∈ [0, 1]d, we optimize a differentiable surrogate of (4) with an expected
sparsity penalty λE[∥z∥0] and anneal the relaxation. This approach supports
end-to-end optimization and amortization (used in §6), but the obtained
sparsity is only approximate and must typically be enforced by post hoc
thresholding.

Alternating minimization and stopping criteria. A practical per-task
solver alternates between (approximately) minimizing over w using a small
number of Frank–Wolfe steps and (approximately) minimizing over ∆ using
one of the sparse updates above. Since the objective is smooth in θ, we may
monitor the decrease in ℓ̂T (θ(w,∆)) and stop when improvements fall below
a tolerance, or when a fixed budget of gradient evaluations is reached. While
joint global optimality is not guaranteed, this block-coordinate strategy is
consistent with the structure of (4): the simplex part is well-conditioned
and low-dimensional, whereas the residual part is high-dimensional but con-
strained by a strict budget.

Guarantees and accounting for optimization error. The excess-risk
rate in Theorem 1 is stated for the exact constrained ERM. If a solver returns
θ̃T satisfying

ℓ̂T (θ̃T ) ≤ min
θ∈HR,k

ℓ̂T (θ) + εopt, (9)

then, by standard stability arguments for µ-strongly convex and L-smooth
losses, the population excess risk increases by at most an additional term on
the order of εopt (up to problem-dependent constants). Thus, in the con-
vex surrogate regime, the statistical rate and the algorithmic approximation
may be separated: we first control estimation over HR,k and then add the
optimization gap.

Failure modes. We record three limitations that recur in practice. (i) If
the sources {θ(r)} are nearly collinear in the geometry induced by the task
loss, then w may be poorly identified, and Frank–Wolfe may oscillate among
similar vertices; this is benign for prediction but degrades interpretability
of the routing. (ii) If the true residual is not sparse in the chosen param-
eterization (or block partition), then enforcing ∥∆∥0 ≤ k induces approxi-
mation error that cannot be removed by additional samples; this motivates
the approximate-realizability viewpoint and the use of structured residuals.
(iii) When n is extremely small, the empirical objective may be dominated
by noise, and the ℓ0 constraint may lead to overfitting on the support set;
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in such regimes one should increase regularization (e.g., ridge in the surro-
gate) or reduce k, and one should evaluate with held-out queries as in the
meta-learning protocol.

6 Multi-Source SMAT (Amortized Router): Pre-
dicting Simplex Weights and Sparse Residuals
from Few-Shot Support Sets

The oracle program in (4) defines, for each task T , an implicit mapping
from a support set ST to mixing weights and a residual, (ST 7→ ŵT , ∆̂T ).
In this section we describe an amortized approximation to this mapping
which we call Multi-Source SMAT. The goal is to replace per-task iterative
optimization by a single forward pass on ST , producing wT ∈ ∆R (and
optionally a sparse residual ∆T ) at essentially constant overhead beyond
encoding the support examples.

Support-set encoding and prototype statistics. We assume each task
T comes with labeled support examples ST = {(xi, yi)}ni=1, typically in
a few-shot classification format with a small number of classes. We form
permutation-invariant task features by computing class-wise prototypes in
an embedding space. Concretely, let fϕ : X → Rp be a (meta-trained) en-
coder applied to support inputs; for each class c present in ST define the
prototype

pc :=
1

|ST,c|
∑

(xi,yi)∈ST,c

fϕ(xi), ST,c := {(xi, yi) ∈ ST : yi = c}.

We then aggregate {pc} into a fixed-dimensional summary uT ∈ Rq using a
symmetric operator (e.g., concatenation of moments, attention pooling over
prototypes, or DeepSets-style pooling). The only requirement for the sequel
is that uT is a deterministic function of ST (or of a stochastic augmentation
thereof) and that it can be computed in O(n · enc) time.

Routing to simplex weights over source checkpoints. Given uT , the
router produces logits ρT ∈ RR via a small network hζ : Rq → RR, and
outputs mixing weights by

wT = softmax(ρT ) ∈ ∆R, ρT := hζ(uT ).

This guarantees the simplex constraint by construction. The resulting mixed
initialization (without residual) is

θmix
T :=

R∑
r=1

wT,r θ
(r).
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When the architecture admits a meaningful partition into L blocks (lay-
ers, attention/MLP modules, heads), we may also predict blockwise mixing
weights {wT,ℓ ∈ ∆R}Lℓ=1 by outputting ρT,ℓ ∈ RR for each block and setting

θmix
T,ℓ :=

R∑
r=1

(wT,ℓ)r θ
(r)
ℓ , wT,ℓ = softmax(ρT,ℓ),

which increases flexibility while keeping the constraint local to each block.
Inference cost scales as O(R) (or O(LR) for blockwise mixing) beyond the
support encoding.

Sparse residuals via shared deltas and masks. To capture task-specific
deviations not expressible by convex combinations of sources, we add a resid-
ual term whose nonzeros are controlled by a mask family Z. We parameter-
ize a small set of residual “experts” by a shared delta tensor θδ ∈ Rd and M
masks {zm}Mm=1 ⊂ {0, 1}d (or structured binary tensors aligned with blocks).
Each expert corresponds to the masked delta zm ⊙ θδ, and we let the router
output combination weights αT ∈ ∆M (or allow a sparse αT ) to form

∆T :=
M∑

m=1

αT,m (zm ⊙ θδ), θT := θmix
T +∆T .

This construction separates where adaptation is allowed (the support of zm)
from how much to adapt (the values in θδ and the mixture αT ). The budget
can be enforced by requiring each zm to have at most k nonzeros (or at most
k active blocks), yielding nnz(∆T ) ≤ k when αT selects a single expert, and
a controlled multiple of k more generally.

Learning masks: relaxations and structured sparsity. In practice we
learn masks using continuous relaxations. A common choice is to treat each
coordinate of zm as a hard-concrete gate, optimize the expected sparsity
E[∥zm∥0] via a Lagrangian penalty, and then discretize at deployment by
thresholding so that nnz(zm) ≤ k. When blocks {Iℓ}Lℓ=1 are prescribed, we
instead gate at the block level, so that zm is constant on each block and the
residual cost is proportional to the number of activated blocks. This aligns
the amortized model with the block-k hypothesis class used in the theory
and yields predictable compute (masked-add at module granularity).

Meta-training objective and optional teacher distillation. We meta-
train (ϕ, ζ) and the residual parameters by episodic training. For each sam-
pled task T , we compute (wT , αT ) from ST , form θT , and minimize the query
loss on QT :

min
ϕ,ζ,θδ,{zm}

ET∼P

[
ℓ̂QT

(θT )
]
+ λw Ωw(wT ) + λz Ωz({zm}),
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where Ωw may encourage low-entropy routing (for interpretability or reduced
source access) and Ωz enforces sparsity/structure. To better approximate the
oracle mapping (4), we may distill from a teacher that solves (approximately)
for (ŵT , ∆̂T ) on the support set. A simple distillation loss is

Ldistill(T ) = τ2KL
(
softmax(ρ̂T /τ)

∥∥ softmax(ρT /τ)
)
,

where ρ̂T are teacher logits over sources and τ > 0 is a temperature. One
may analogously distill αT or the induced predictions on QT . This hybrid
objective reduces the amortization gap when the router is small relative to
the complexity of the task family.

Deployment modes and budgeted adaptation. We distinguish three
deployment regimes. (i) No-adapt: run the router once, form θT from wT

(and αT if used), and evaluate on queries; this yields fixed per-task overhead
and never backpropagates through θ(r). (ii) Gradient-free refinement: initial-
ize w at the router output and take a small number of Frank–Wolfe steps on
the support loss (optionally keeping the residual fixed); because the iterate
remains sparse in the number of visited vertices, this can be stopped early
to meet a source-access budget. (iii) Gradient-based refinement: optionally
fine-tune only low-dimensional variables (e.g., αT or a small continuous re-
laxation of the mask) on ST while keeping sources frozen; this interpolates
between pure amortization and the oracle solver, with compute governed by
the number of refinement steps and the residual sparsity pattern.

The resulting procedure preserves the core structure of HR,k: prediction
is obtained by convex mixing of pretrained checkpoints, augmented by a
sparse residual whose support is controlled by masks. The next section
analyzes the statistical consequences of this structure in the convex surrogate
regime by decomposing estimation into the simplex and sparse components.

7 Theory I (Upper Bounds): Excess-Risk Rates
from Simplex Mixing and Sparse Residuals

We analyze the constrained estimator induced by the oracle program (4) in
the convex surrogate regime. Fix a task T and write the population and
empirical losses as ℓT (θ) and ℓ̂T (θ), where ℓ̂T is formed from n i.i.d. support
examples. Let the structured hypothesis class be

HR,k :=
{
θ ∈ Rd : θ =

∑R
r=1wrθ

(r) +∆, w ∈ ∆R, ∥∆∥0 ≤ k
}
.

The estimator θ̂T is the empirical risk minimizer over HR,k, and our goal is
to bound its expected excess risk.
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Assumptions and a reduction via strong convexity. Throughout this
section we assume that for every task T , the function ℓT is µ-strongly con-
vex and L-smooth in θ. Strong convexity converts excess risk to parameter
estimation error:

ℓT (θ̂T )− ℓT (θ
⋆
T ) ≥ µ

2
∥θ̂T − θ⋆T ∥22, ℓT (θ̂T )− ℓT (θ

⋆
T ) ≤ L

2
∥θ̂T − θ⋆T ∥22,

(10)
where θ⋆T denotes the (assumed unique) minimizer of ℓT over HR,k in the
realizable setting. Thus it suffices to control ∥θ̂T − θ⋆T ∥2 in expectation (or
with high probability). Technically, our bounds may be obtained by local-
ized Rademacher complexity arguments or by stability of ERM for strongly
convex objectives; in either case the statistical complexity will be governed
by the metric entropy of HR,k around θ⋆T .

Decomposition into simplex and sparse components. A key point
is that HR,k decomposes as a Minkowski sum of two sets:

HR,k =
{ R∑

r=1

wrθ
(r) : w ∈ ∆R

}
︸ ︷︷ ︸
CR (convex hull of sources)

+
{
∆ : ∥∆∥0 ≤ k

}
︸ ︷︷ ︸
Sk (k-sparse residuals)

.

Consequently, the estimation error may be controlled by separately account-
ing for (i) uncertainty in the (R − 1)-dimensional simplex weights, and (ii)
uncertainty in the combinatorial support of a k-sparse residual. At a high
level, the simplex term contributes a parametric rate proportional to R/n,
whereas the sparse term contributes the familiar k log(d/k)/n rate.

Simplex estimation term. Consider first the residual-free class CR. Writ-
ing Θ := [θ(1) · · · θ(R)] ∈ Rd×R, the mixed parameters are θ = Θw with
w ∈ ∆R. Since ∆R is a compact convex set of intrinsic dimension R − 1,
covering number bounds yield metric entropy scaling like (R − 1) log(1/ε)
in the natural geometry for w. Under standard boundedness/sub-Gaussian
assumptions ensuring Lipschitzness of ℓT (Θw) as a function of w, uniform
convergence over ∆R gives an estimation contribution of order R/n to the
excess risk. Intuitively, despite θ living in Rd, the mixing weights are low-
dimensional; the statistical price depends on R rather than d.

Sparse residual estimation term. Now consider the residual-only class
Sk. Even when the loss is strongly convex, estimating an unrestricted vector
in Rd from n samples would scale with d/n; sparsity replaces d by k up to
a combinatorial log(d/k) factor. Formally, the number of possible supports
is

(
d
k

)
, and log

(
d
k

)
≍ k log(d/k). Under restricted strong convexity (or an
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appropriate compatibility/restricted eigenvalue condition in the linear pre-
diction surrogate), ERM over Sk achieves excess risk of order k log(d/k)/n.
This is the same term that appears in classical sparse regression, and it is
unavoidable even when the sources are absent.

Combined upper bound (realizable case). Putting the two compo-
nents together and applying (10), we obtain the rate stated in Theorem 1: if
the task satisfies the representation hypothesis (H1), namely θ⋆T =

∑
r w

⋆
T,rθ

(r)+
∆⋆

T with w⋆
T ∈ ∆R and ∥∆⋆

T ∥0 ≤ k, then

E
[
ℓT (θ̂T )− ℓT (θ

⋆
T )
]
≤ C

R+ k log(d/k)

n
, (11)

for a constant C depending on (L, µ) and on distributional quantities (noise
level, feature norms) required to ensure concentration and restricted curva-
ture. The salient feature of (11) is additivity: the convex-hull part behaves
as an R-parameter model, while the sparse residual behaves as a k-sparse
model.

Extension: block sparsity and structured partitions. Suppose {1, . . . , d}
is partitioned into L blocks I1, . . . , IL (e.g., layers or modules), and we re-
place ∥∆∥0 ≤ k by a block constraint ∥∆∥block-0 ≤ k, meaning ∆ is supported
on at most k blocks. The combinatorial term becomes log

(
L
k

)
≍ k log(L/k),

while estimation within the active blocks scales with their total dimension.
A representative bound is therefore

E
[
ℓT (θ̂T )− ℓT (θ

⋆
T )
]
≲

R

n
+

k log(L/k)

n
+

1

n

∑
ℓ∈suppblock(∆⋆

T )

|Iℓ|, (12)

with the last term simplifying to k dblk/n when blocks have comparable size
|Iℓ| ≈ dblk. In parallel, if one allows blockwise mixing with weights wT,ℓ ∈ ∆R

per block, the simplex term scales with the number of independent simplex
parameters, yielding LR/n in the worst case (and smaller when blockwise
weights are tied or low-rank across ℓ). This provides a direct statistical justi-
fication for using block structure only when it is needed: increased flexibility
has a quantifiable sample cost.

Agnostic tasks and approximate source-model mismatch. The re-
alizable assumption (H1) may fail when the source checkpoints do not span
the relevant task optima, or when the residual budget k is too small. In this
case we define the best approximation within HR,k,

θ†T := arg min
θ∈HR,k

ℓT (θ), App(T ) := ℓT (θ
†
T )− inf

θ∈Rd
ℓT (θ),
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and we bound the excess risk relative to the unconstrained optimum by the
sum of estimation and approximation:

E
[
ℓT (θ̂T )

]
− inf

θ
ℓT (θ) ≤ App(T ) + C

R+ k log(d/k)

n
. (13)

Equivalently, if one has a quantitative mismatch in parameter space, e.g.
there exist (w,∆) with ∥∆∥0 ≤ k such that ∥θoptT − (

∑
r wrθ

(r) +∆)∥2 ≤ δ,
then smoothness implies App(T ) ≤ L

2 δ
2, so the penalty for imperfect source

coverage appears as an additive O(Lδ2) term on top of the statistical rate.
The bounds above isolate the statistical benefits of multi-source transfer

(a low-dimensional simplex) and the cost of specialization (a sparse resid-
ual). In the next section we show that these rates are minimax-tight and
that exact optimization over more stringent sparsity constraints is computa-
tionally intractable in general, motivating the relaxations and amortization
mechanisms used in practice.

8 Theory II (Lower Bounds and Hardness): Mini-
max Optimality and Computational Intractabil-
ity

We now justify that the upper rate obtained for the oracle program is not an
artifact of our analysis but rather reflects the intrinsic statistical difficulty of
simultaneously (i) identifying a mixture over R pretrained sources and (ii)
fitting a k-sparse specialization. We then complement this statistical per-
spective with computational hardness results showing that more stringent
combinatorial routing objectives are intractable in general, thereby motivat-
ing the relaxations and amortization mechanisms used in practice.

Minimax lower bound for simplex mixing plus sparse residuals.
Fix a task T and consider the family of realizable parameters

FR,k :=
{
θ⋆ : θ⋆ =

∑R
r=1wrθ

(r) +∆, w ∈ ∆R, ∥∆∥0 ≤ k
}
.

Under the same bounded-noise assumptions used to establish concentration
for the upper bound (e.g., sub-Gaussian features and noise for a generalized
linear model or ridge-regularized squared loss), we claim that any estimator
θ̃(ST ) suffers worst-case expected excess risk at least on the order of

inf
θ̃

sup
θ⋆∈FR,k

E
[
ℓT (θ̃)− ℓT (θ

⋆)
]
≳

R+ k log(d/k)

n
, (14)

which matches Theorem 2. The key point is that the class FR,k contains two
statistically independent degrees of freedom: an (R−1)-dimensional simplex
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component and a combinatorial sparse-support component of size
(
d
k

)
. Since

the lower bound is additive in these contributions, there is no estimator that
can uniformly beat the sum rate.

Proof strategy (packing and information bounds). We outline a
standard route via Fano’s inequality (or, equivalently, a multi-hypothesis
Le Cam argument). We construct a finite subset {θ(j)}Nj=1 ⊂ FR,k such
that (i) parameters are well-separated in ℓ2 (hence in excess risk by strong
convexity), and (ii) the induced distributions over support sets have small
pairwise Kullback–Leibler divergence. The packing is built as a Cartesian
product of two packings:

θ(j) = Θw(j) + ∆(j), Θ := [θ(1) · · · θ(R)],

where {w(j)} is an ε-packing of ∆R in ℓ2 (or ℓ1), and {∆(j)} is a k-sparse
packing obtained by choosing supports among

(
d
k

)
possibilities and assigning

±a signs on the active coordinates. The packing size satisfies

logN ≳ (R− 1) log(1/ε) + k log(d/k),

while strong convexity yields, for a suitable choice of amplitude a and pack-
ing resolution, that ∥θ(i) − θ(j)∥22 is proportional to the desired separation
in excess risk. On the other hand, for common convex surrogate models,
the KL divergence between the distributions induced by two parameters
scales as n times a quadratic form in θ(i) − θ(j) (e.g., n∥θ(i) − θ(j)∥22 up
to feature-covariance factors in linear regression). Choosing the separation
small enough ensures KL(Pθ(i)∥Pθ(j)) ≲ logN , which is the regime where
Fano implies a constant probability of identification error. Translating this
identification error back into excess risk via µ-strong convexity yields the
rate (14).

Interpretation: why the rate decomposes as R + k log(d/k). The
lower bound formalizes the intuition that the learner must pay at least (i)
a parametric price for discovering an (R − 1)-dimensional mixture, and (ii)
a combinatorial price for discovering a sparse support. The term R/n per-
sists even when k = 0, corresponding to estimation over the simplex (or,
equivalently, a low-dimensional convex set in parameter space). The term
k log(d/k)/n persists even when R = 1 (i.e., when there is only a single pre-
trained initialization), corresponding to classical sparse regression difficulty.
Thus, absent further structure on the sources (e.g., orthogonality, known
supports, or additional supervision on wT ), the additive form of the upper
bound cannot be improved in general.

Hardness of sparse source subset selection. Statistical optimality
does not imply computational tractability. A natural alternative to dense
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simplex mixing is to restrict w to be ks-sparse, i.e. to select at most ks
sources. Even in the simplest quadratic setting with ∆ ≡ 0 and

ℓ̂T (θ) = ∥Aθ − b∥22,

the optimization

min
w∈∆R, ∥w∥0≤ks

ℓ̂T

( R∑
r=1

wrθ
(r)

)
(15)

is NP-hard (Theorem 5). The reduction is from subset selection (sparse
regression): one encodes candidate columns as source parameters so that
choosing a subset of sources corresponds to choosing a subset of regressors.
The simplex constraint may be enforced by augmenting the construction
(e.g., adding a bias coordinate and scaling) so that feasible w correspond to
convex combinations without changing the combinatorial core of the prob-
lem. Consequently, exact best-ks routing over sources is intractable in worst
case, and one should not expect polynomial-time algorithms that solve (15)
globally for arbitrary instances.

Hardness of exact ℓ0 residual optimization. A second intractability
arises from the residual itself. Setting R = 1 and θ(1) = 0 reduces the oracle
program to

min
∥∆∥0≤k

ℓ̂T (∆),

which includes ℓ0-constrained least squares as a special case and is NP-hard
by classical reductions. Therefore, even if the mixture weights were known,
globally optimizing the sparse specialization is computationally intractable
in general. This motivates the use of relaxations (e.g., hard-concrete gates,
ℓ1 or group-lasso surrogates) and iterative heuristics (e.g., hard-thresholding
schemes) in practical implementations.

Implications for approximation and our algorithmic choices. The
hardness results delineate the role of the convex-hull relaxation w ∈ ∆R: by
allowing dense mixtures, we obtain a tractable convex domain for the mix-
ing part (and, in smooth settings, Frank–Wolfe provides an efficient solver
with sparse iterates as in Theorem 3). The residual component remains non-
convex under ℓ0 constraints, but approximate solvers can be deployed with
explicit budget control and predictable anytime behavior. From a systems
standpoint, these considerations suggest that (i) dense simplex mixing can
be used as the primary routing primitive, with optional sparsification via
the inherent sparsity of Frank–Wolfe iterates, and (ii) specialization should
be enforced through structured sparsity mechanisms amenable to masked
computation rather than through exact combinatorial search. In the next
section we quantify the resulting time and memory costs for oracle solvers
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versus amortized routers and discuss how structured partitions affect deploy-
ment latency.

9 Complexity and Systems Considerations

Two cost models: oracle per-task optimization versus amortized
routing. We distinguish (i) an oracle regime in which, given a support set
ST , we solve (approximately) the constrained empirical risk minimization
over (w,∆), and (ii) an amortized regime in which a meta-trained router
outputs wT (and optionally residual expert weights) in one forward pass
over ST . The salient systems question is how the marginal cost per new
task scales with (n,R, d, k, L), and how this interacts with deployment-time
latency budgets.

Oracle complexity: dependence on n and on the representation of
sources. In the convex surrogate regime where ℓ̂T is evaluated on frozen
features, a direct implementation of the oracle program

min
w∈∆R, ∥∆∥0≤k

ℓ̂T (Θw +∆) , Θ = [θ(1) · · · θ(R)] ∈ Rd×R,

admits two natural representations. In a parameter-centric view, each itera-
tion requires forming Θw (cost O(Rd)) plus evaluating gradients of ℓ̂T on n
samples (cost O(nd)), leading to a nominal per-iteration cost O(nd + Rd).
In a sufficient-statistics view (e.g., squared loss or generalized linear mod-
els), one can precompute task-specific statistics from ST (cost O(nd)) and
then evaluate ℓ̂T (Θw +∆) and its gradients with respect to (w,∆) without
scanning all n samples, reducing subsequent iterations to a dependence on
(R, d) alone. This distinction matters primarily when n is not tiny relative
to (R, d), and it clarifies that the few-shot setting (n small) is generally
dominated by feature extraction rather than by optimization over w.

When we solve for w over the simplex using Frank–Wolfe, each iteration
requires a linear minimization oracle over ∆R, which reduces to selecting the
best vertex er under the current gradient; in the parameter-centric view this
selection can cost O(Rd) if one evaluates ⟨∇ℓ̂T (Θw+∆), θ(r)⟩ naively for all
r. However, if θ(r) are stored as deltas from a common base (or are blockwise
addressable), the relevant inner products can be computed at lower overhead,
and the number of nonzeros in the Frank–Wolfe iterate remains at most the
iteration count (Theorem 3), yielding an explicit latency–accuracy trade-off.

Residual sparsity: masked updates and structured partitions. The
residual variable ∆ is the primary handle for controlling specialization cost.
In unstructured sparsity, we store ∆ as (index, value) pairs with nnz(∆) ≤
k, and apply it as a sparse add; the incremental memory is O(k) and the
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incremental compute is proportional to nnz(∆) for those operations that
can exploit sparsity (e.g., embedding updates, MLP weight updates under
sparse kernels). In structured sparsity, we fix a partition of parameters into
L blocks (layers, attention heads, MLP submodules, or tensor shards) and
constrain ∆ to be block-k sparse. This makes deployment costs substantially
more predictable: if a block is inactive, we can skip loading and applying its
delta entirely, while if it is active, the block is typically dense and amenable
to optimized dense kernels. Thus structured sparsity replaces a theoretically
sharper k log(d/k) combinatorial term with an engineering-friendly module
budget that aligns with hardware execution.

For blockwise mixing over sources, we similarly allow weights wT,ℓ ∈ ∆R

per block ℓ ∈ [L], yielding

θT =
(
θT,1, . . . , θT,L

)
, θT,ℓ =

R∑
r=1

wT,ℓ,r θ
(r)
ℓ + ∆T,ℓ.

This increases routing dimension from R−1 to L(R−1), but it has two sys-
tems benefits: (i) we can form parameters on demand per module (streaming
the required blocks), and (ii) we can define latency budgets per module in
a way that matches transformer execution (attention and MLP dominate,
while normalization and residual adds are typically negligible).

Latency and energy proxies as explicit constraints. To connect spar-
sity and routing to deployment budgets, we introduce a proxy ĉost(θT ) in-
tended to correlate with wall-clock latency, memory bandwidth, or energy.
A simple proxy in the block-structured setting is

ĉost(θT ) :=

L∑
ℓ=1

(
cmix
ℓ · ∥wT,ℓ∥0 + cresℓ · 1{∆T,ℓ ̸= 0}

)
,

where cmix
ℓ accounts for reading and combining multiple source blocks and

cresℓ accounts for loading and applying a residual block. In the unstructured
case, one may replace 1{∆T,ℓ ̸= 0} by nnz(∆T,ℓ) when sparse kernels are
available. Such proxies can be enforced either by projection (discarding up-
dates that exceed a budget C) or by a Lagrangian penalty ℓ̂T (θT )+λ ĉost(θT ).
While the proxy is not a perfect predictor of hardware time, it enables re-
porting Pareto behavior (risk versus cost) and guides the design of routers
that explicitly trade accuracy for compute.

Amortized routing: constant overhead beyond feature extraction.
In the amortized Multi-Source SMAT regime, the per-task overhead beyond
encoding the support set is dominated by: (i) producing wT = softmax(hζ(ST )),
which is O(R) (or O(LR) in the blockwise case), and (ii) applying a small

25



number of residual experts via masks, which is O(nnz(∆T )) for unstruc-
tured masks or O(#active blocks) for structured masks. Importantly, amor-
tization avoids iterative evaluation of ℓ̂T and therefore avoids repeated for-
ward/backward passes on ST ; this is the principal savings when tasks arrive
online and must be served under tight latency constraints. The amortized
model also admits caching: if multiple queries share a task identity, the
computed wT and active masks can be reused.

Memory footprint and checkpoint storage formats. Storing R full
checkpoints of dimension d requires O(Rd) parameters; when R is large, we
may store each source as a delta to a base checkpoint θpre (or to a low-rank
code), which reduces disk usage when sources are similar and also simpli-
fies streaming. At inference, one can further reduce memory bandwidth by
limiting ∥wT,ℓ∥0 (implicitly via Frank–Wolfe iterates or explicitly via top-k
truncation), so that only a few source blocks must be fetched per module.
Residual masks similarly permit loading only the active parameters. These
considerations are often more consequential than raw floating-point opera-
tion counts, since routing and specialization mainly change which weights
are read, not the structure of the dominant dense matrix multiplications.

Checkpoint compatibility constraints and alignment. All parameter-
space mixing mechanisms require that sources share a common parameter-
ization: identical architecture, tensor shapes, and ordering of parameters.
Practical incompatibilities arise from changes in tokenizers/vocabularies, po-
sitional encodings, normalization conventions, and merged/unmerged projec-
tion matrices. Even with identical shapes, mixing can be degraded by permu-
tation symmetries (e.g., permuting attention heads or MLP neurons across
independently trained checkpoints). When such symmetries are present, a
pre-alignment step (e.g., matching heads by maximizing correlation of ac-
tivations on a calibration set, or applying weight-matching heuristics) may
be necessary to ensure that convex combinations remain semantically mean-
ingful. Finally, mixed-precision and quantization introduce additional con-
straints: if sources are stored in quantized form, the system must either
dequantize selected blocks to a common compute type or implement mix-
ing directly in the quantized domain, which alters both cost and numerical
behavior.

10 Experimental Plan (Strengthening)

We structure the empirical evaluation to test three claims suggested by the
model and theory: (i) multi-source simplex mixing improves adaptation rela-
tive to any single source when tasks draw from a heterogeneous mixture, (ii)
sparse residual specialization is necessary when tasks lie outside the convex

26



hull of sources (or when source alignment is imperfect), and (iii) the amor-
tized router can approximate the per-task oracle while achieving a favorable
risk–cost trade-off under explicit deployment budgets.

Cross-domain few-shot suites. We evaluate on few-shot benchmarks de-
signed to emphasize domain heterogeneity rather than within-domain class
variation. Concretely, we assemble suites where each episode samples a do-
main and then a classification problem within that domain (e.g., natural
images, sketches, rendering, satellite, medical; or, for language, topic and
genre shifts). We report standard n-shot/q-query episodic metrics (mean
accuracy and 95% confidence intervals over episodes) and additionally re-
port per-domain accuracies to diagnose when mixing collapses to a single
source. To connect to the theoretical task distribution P , we explicitly de-
fine mixtures of in-distribution (ID) domains used for meta-training and
held-out out-of-distribution (OOD) domains used only at test time.

Additional OOD and safety shifts. Beyond domain shifts, we introduce
shifts intended to stress reliability: label shift (class priors changed at test
time), corruption shift (e.g., blur/noise/compression), spurious-correlation
shift (synthetic confounders), and prompt/instruction shift for language episodes.
For safety-oriented evaluation, we include (when applicable) harmlessness/refusal
and toxicity tasks with few-shot supervision, and we measure not only task
accuracy but also constraint-violation rates under fixed prompting/decoding
protocols. Our goal is not to claim safety from routing alone, but to test
whether routing concentrates on safer sources under such shifts and whether
residual specialization increases risk of constraint violations. Accordingly,
we report (a) performance on the main task metric and (b) auxiliary safety
metrics, both as a function of the residual budget k (or block budget) and
the mixing sparsity induced by routing.

Source scaling and diversity ablations. We perform controlled abla-
tions over the number of sources R and their diversity. Holding total pre-
training compute approximately fixed, we compare: (i) many moderately
specialized sources versus (ii) a few highly specialized sources, and we mea-
sure how performance and routing entropy change with R. To isolate the
value of diversity, we construct groups of sources that are (a) near-duplicates
(different seeds), (b) same domain but different objectives, and (c) differ-
ent domains/objectives. We then quantify gains from mixing by comparing
against the best single source chosen with access to ST (an oracle selection
baseline) and by analyzing the learned weights wT (entropy, effective support
size, and stability across resampled support sets). Where feasible, we also
evaluate sensitivity to source misalignment by applying controlled permuta-
tions within symmetric substructures (e.g., attention head permutation) and
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measuring degradation with and without any alignment heuristic.

Structured versus unstructured masks. We compare three specializa-
tion mechanisms at matched parameter budgets: (i) unstructured k-sparse
residuals, (ii) block-k residuals under a fixed partition into L modules, and
(iii) no residual (k = 0). We evaluate not only accuracy but also realized
efficiency measured by (a) proxy cost ĉost(θT ) and (b) wall-clock latency on
representative hardware, since unstructured sparsity may not translate into
speedups without specialized kernels. We additionally report how specializa-
tion localizes across modules (which blocks activate) and whether structured
sparsity produces more predictable costs across tasks, as suggested by the
systems discussion.

Baselines: soups, arithmetic, and routing-free compositions. We
include parameter-space baselines that are natural competitors to our mix-
ing formulation. First, we compare to model soups (uniform or validation-
weighted averages of checkpoints) and to fixed arithmetic compositions (e.g.,
θpre +

∑
r ar(θ

(r) − θpre) with fixed ar), which do not condition on ST . Sec-
ond, we compare to per-task single-source adaptation baselines (fine-tuning
from the best source chosen by support loss) under identical residual bud-
gets. Third, we include a mixture without residual baseline (simplex mixing
only), which isolates the contribution of ∆T . For completeness, we compare
amortized routing to the per-task oracle solver (approximate Frank–Wolfe
plus a sparsification routine) to estimate the amortization gap in practice,
aligning with the role of Theorem 4.

Pareto fronts under latency budgets. We treat deployment constraints
as first-class and report Pareto curves of query risk (or accuracy) versus cost.
Operationally, we sweep (i) the residual budget k (or the number of active
blocks), (ii) any imposed sparsity on wT (e.g., top-ks truncation or limiting
Frank–Wolfe iterations), and (iii) the router architecture capacity. For each
setting we report

(
metric, ĉost, latency

)
triplets and plot Pareto fronts per

benchmark and per OOD shift. We also evaluate explicit budget enforcement
by solving min ℓ̂T (θT ) subject to ĉost(θT ) ≤ C (or using a Lagrangian) and
measuring constraint satisfaction rates. This protocol clarifies whether im-
provements come from better use of a fixed budget or simply from spending
more compute.

Implementation details and robustness checks. To ensure fair com-
parisons, we standardize: episodic sampling, support/query sizes, optimizer
settings for any per-task procedures, and the total number of meta-training
episodes. We report variability across random seeds and across indepen-
dently sampled task sets. We further include robustness checks: (i) varying
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n to test the few-shot dependence, (ii) degrading support labels with con-
trolled noise to test sensitivity of routing, and (iii) stress-testing with mixed
ID/OOD task mixtures to evaluate whether routing overfits to meta-training
domains. Finally, we provide qualitative diagnostics (e.g., nearest-source be-
havior, weight trajectories, and module activation patterns) to make failure
modes explicit, particularly in cases where mixing produces unstable or high-
variance solutions.

11 Discussion and Future Directions

Our formulation isolates two mechanisms for per-task adaptation: (i) select-
ing a point in the convex hull of pretrained sources via wT ∈ ∆R, and (ii)
applying a sparse specialization ∆T outside that hull. This separation is con-
ceptually useful, but it also exposes several directions where the model class,
the routing mechanism, and the associated guarantees can be strengthened.

Multi-modal and cross-modal source collections. A natural exten-
sion is to treat the sources {θ(r)}Rr=1 as a heterogeneous library spanning
modalities and interfaces (e.g., vision encoders, text encoders, multimodal
fusion modules, and decoders). In such settings, one may not have a sin-
gle shared parameterization across sources, so the literal mixing map θ 7→∑

r wrθ
(r) requires modification. One approach is to define mixing on a

shared subspace: for instance, restrict mixing to a subset of aligned modules
(a common text backbone) while treating modality-specific components as
fixed and selected (rather than mixed) at the level of discrete routing. An-
other approach is to define a learned alignment operator A(r) so that mixing
occurs in an aligned coordinate system, e.g., θT =

∑
r wT,r A

(r)θ(r) + ∆T ,
where A(r) is block-diagonal and acts within permutation-symmetric struc-
tures (attention heads, MLP channels). This suggests a combined estimation
problem over (wT ,∆T ) and alignment parameters, where identifiability be-
comes nontrivial: multiple decompositions may yield indistinguishable pre-
dictors. Developing conditions under which wT is interpretable (or at least
stable) is an open question, particularly when the sources share function but
differ by internal symmetries.

Privacy-preserving and edge-constrained routing. A second direc-
tion concerns deployment regimes where the support set ST is sensitive and
must remain on-device, or where compute/energy constraints require routing
decisions with minimal overhead. Our amortized router naturally supports
this setting because it can be implemented as a small encoder hζ applied
to ST , producing wT (and possibly αT ) without backpropagating through
large source models. One can further reduce leakage by transmitting only
low-dimensional routing outputs, i.e., communicate wT (or a small subset of
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active sources) rather than any examples or gradients. This raises questions
about privacy guarantees: even a weight vector wT can leak task/domain
information. It is therefore of interest to study differentially private routing,
where hζ(ST ) is perturbed to satisfy (ε, δ)-DP, and to quantify the induced
increase in risk relative to the oracle. In addition, edge constraints moti-
vate explicit cost-aware objectives, e.g., minimizing ℓ̂T (θT )+λ ĉost(θT ), and
studying the resulting trade-offs between concentration of wT (few active
sources), structured sparsity of ∆T , and achieved accuracy.

Uncertainty-aware mixing and abstention. Our current estimator out-
puts a single wT and ∆T , implicitly committing to a point estimate. In
regimes with small n or ambiguous tasks, it is often preferable to represent
uncertainty over routing. A simple mechanism is to interpret wT as param-
eters of a Dirichlet distribution and perform either (i) posterior sampling of
w (and possibly sparse supports of ∆) or (ii) risk-averse selection using a
robust objective over a plausible set of weights. This connects to distribu-
tionally robust optimization: one may select θT minimizing the worst-case
empirical risk over an ℓ1-ball around wT , thereby hedging against routing
error (cf. the amortization gap perspective). Similarly, uncertainty can be
used for selective prediction: if the inferred routing distribution is diffuse
(high entropy) or the support loss landscape is flat, the system may abstain,
request more labels, or fall back to a safer source. Providing formal guar-
antees of coverage or constraint satisfaction (e.g., via conformal prediction
on top of routed models) is largely open, especially when ∆T is enabled and
can increase variance or enable spurious shortcuts.

Continual addition and removal of sources. In many applications the
set of available checkpoints is not fixed: new sources are added over time
(new domains, improved models), and old sources may be removed for li-
censing, privacy, or deprecation. This suggests studying dynamic R and
maintaining a router that generalizes to unseen sources. A practical desider-
atum is modularity: adding a new θ(R+1) should not require full retraining.
One can view this as a meta-learning problem with a changing candidate set,
where the router must embed sources (e.g., via source descriptors or probing
features) and then compute wT by matching ST to sources in an embedding
space. On the theoretical side, the statistical complexity in Theorem-type
bounds depends on R, but in a continually growing library one would like
rates in terms of an effective number of distinguishable sources (e.g., cov-
ering numbers of the set {θ(r)}) rather than raw R. Another open point
is stability under removal: if a source is excised, we would like guarantees
that performance degrades gracefully, perhaps by re-optimizing wT within
the reduced simplex while keeping ∆T within the same budget.
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Open problems: computation, structure, and nonconvexity. Sev-
eral unresolved issues lie at the interface of optimization and modeling. First,
our hardness results motivate relaxations, but we do not yet have sharp char-
acterizations of when practical heuristics (Frank–Wolfe on w and threshold-
ing on ∆) recover near-oracle solutions for realistic feature distributions.
Second, the choice of sparsity structure remains delicate: unstructured ℓ0
sparsity is statistically attractive but systemically expensive, whereas block
sparsity is implementable but may be too coarse. Understanding the opti-
mal partition into L modules—and whether it can be learned jointly with
routing—is an important direction. Third, the convex surrogate theory pro-
vides clean rates, yet the transformer regime is nonconvex and exhibits ad-
ditional symmetries; extending excess-risk guarantees to parameter-space
mixing in deep networks likely requires new stability arguments, perhaps
based on local linearization around pretrained checkpoints or on function-
space metrics that avoid parameter non-identifiability. Finally, we note a
modeling question: the decomposition θ⋆T =

∑
r w

⋆
T,rθ

(r) +∆⋆
T implicitly as-

sumes that “source knowledge” is additively composable in parameter space.
Determining when this approximation is valid, and when one should instead
mix in representation space or through conditional computation, remains
central to understanding the limits of multi-source routing.
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