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Abstract

Sparse MetA-Tuning (SMAT) improves few-shot OOD generaliza-
tion by routing tasks to sparse interpolated experts, but its routing
is typically a point estimate that can catastrophically misroute when
the support set is ambiguous, corrupted, or adversarial—precisely the
regime faced by 2026 deployments. We formalize routing as approxi-
mate Bayesian model selection over a finite (or low-dimensional) fam-
ily of expert mixtures and propose Bayes-Routed SMAT: an amortized
posterior q(α | S) over expert weights conditioned on a task’s sup-
port set. We train this posterior under a distributionally robust meta-
objective that targets tail risk (CVaR) and regularizes routing com-
plexity via KL to a cost-aware prior. On the theory side, we provide
PAC-Bayes generalization bounds for the resulting Gibbs routed pre-
dictor, extend them to CVaR risk, and prove posterior concentration
and a matching indistinguishability lower bound for misrouting prob-
ability in a mixture-of-routings task model. On the systems side (ex-
perimental component), we outline how posterior sampling/ensembling
and entropy-based abstention yield safer OOD behavior and improved
worst-quantile accuracy on heavy shift and corrupted-support bench-
marks, building directly on the SMAT sparse interpolated expert for-
mulation.
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1 Introduction

Few-shot meta-tuning with routed experts offers an appealing compromise
between full task-specific adaptation and fully frozen inference: we preserve
the representational breadth of a pretrained backbone while enabling task-
dependent specialization through a small number of trainable degrees of
freedom. In this regime, however, performance is often limited not by a lack
of capacity in the expert family, but by the brittleness of the routing decision
made from the support set. Concretely, when a learned router maps a small
labeled support set S to a point estimate α = h(S), the induced predictor
can change abruptly under small perturbations of S (label noise, class im-
balance, missing classes, atypical examples, or distribution shift), even if the
underlying expert deltas are well-behaved. This phenomenon is not captured
by sparsity constraints alone: sparsity controls which parameters can move,
while routing controls which move actually occurs. Consequently, the prin-
cipal failure mode in deployed few-shot adaptation is frequently a misrouting
event rather than an overfitting event, and such events manifest most clearly
in the tail of the task-loss distribution.

Our starting point is the observation that the support set S is itself a
random object and, in the few-shot limit, is intrinsically noisy information
about the task. Therefore, even an optimal router should represent uncer-
tainty about which expert combination is appropriate. The deterministic
choice α = h(S) discards this uncertainty and turns a moderate ambiguity
into a hard commitment, which in turn can induce large losses on the query
set. If we are interested in robustness—particularly robustness under unseen
or corrupted episodes—we should not optimize only the average meta-risk
but also the upper tail of the task-loss distribution. In the language of risk
measures, we should control a tail functional such as CVaRρ, which directly
penalizes the worst ρ fraction of episodes. This shifts the meta-training ob-
jective from “doing well on most tasks” to “preventing catastrophic errors
on the hard tasks”, a distinction that becomes operationally important once
routing errors can be severe.

We propose to treat routing as approximate Bayesian inference condi-
tioned on the support set, replacing point routing by an amortized posterior
distribution qψ(α | S). This choice has two immediate consequences. First,
it yields a Gibbs routed predictor whose loss on a task is the posterior ex-
pectation Eα∼qψ(·|S)[ℓ(T ; θ(S, α, z))], which can be approximated by a small
Monte Carlo sample at meta-test time. Second, it provides a quantitative
uncertainty signal (e.g., entropy or posterior mass concentration) that can be
used to abstain and fall back to a conservative predictor when the support set
is uninformative. The resulting mechanism is not merely an implementation
detail: it creates a tractable interface between a modern sparse expert pa-
rameterization and classical generalization tools (PAC-Bayes) that naturally
reason about randomized predictors and KL-regularized posteriors.
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In this work we focus on the SMAT-style construction in which a frozen
pretrained parameter vector is augmented by a shared dense delta, with
per-expert sparsity enforced by masks. This family is attractive precisely
because it decouples two issues: (i) how much adaptation capacity we allo-
cate (via sparsity budgets and shared deltas), and (ii) how we choose among
adaptation modes (via routing). Our thesis is that existing work addresses
(i) thoroughly but leaves (ii) under-regularized: when S is ambiguous, the
router can select a mode that is locally plausible yet globally harmful. By
introducing a posterior qψ(α | S), a cost-aware prior p(α), and a tail-risk ob-
jective, we impose a principled regularization on routing decisions and obtain
both theoretical control and practical mechanisms (ensembling, abstention)
that target the failure modes observed in practice.

Our contributions are as follows.

• Problem formulation (uncertainty-aware routed sparse meta-
tuning). We formalize meta-tuning with sparse masked experts and
uncertainty-aware routing as the optimization of a distributionally ro-
bust tail objective. The meta-learner jointly trains (i) the shared delta
parameters and mask distributions (subject to per-expert capacity con-
straints) and (ii) an amortized posterior router qψ(α | S), with a KL
penalty to a prior p(α) that can encode deployment constraints such
as expected compute or latency. The objective is expressed in terms
of CVaRρ of the posterior-routed per-episode loss, thereby explicitly
targeting catastrophic task outcomes.

• PAC-Bayes generalization bounds for routed meta-tuning (mean
and tail risk). We provide generalization guarantees for the Gibbs
routed predictor that depend on the expected KL divergence ES [KL(qψ(· |
S)∥p)] and the number of observed episodes. For mean risk we obtain a
standard conditional PAC-Bayes inequality for bounded episodic losses.
For tail risk we extend the analysis to CVaRρ, yielding bounds with
explicit ρ dependence and showing the unavoidable difficulty of esti-
mating extreme tail behavior from finite meta-training data. These
results justify the KL-regularized posterior training objective and clar-
ify the sample complexity trade-offs in robust meta-learning.

• Routing identifiability and posterior concentration. Under a
realizability model with a finite routing family and separated support
distributions, we show that routing error decays exponentially in the
number of support points ns, with rate governed by a separation pa-
rameter ∆. This establishes that posterior routing can, in principle,
become reliable in the few-shot regime when tasks are identifiable,
and it isolates a concrete statistical bottleneck: if supports induced
by different routings are not distinguishable, routing cannot be made
uniformly accurate.
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• Matching lower bounds under indistinguishability. We comple-
ment the upper bound with a lower bound based on two-point test-
ing, showing that no router (deterministic or randomized) can achieve
substantially faster decay of misrouting probability when the support
distributions are close. This clarifies that catastrophic routing errors
are information-theoretically unavoidable in the small-ns or small-∆
regime unless additional information is supplied (more shots, richer
task descriptors, or conservative abstention).

• Empirical protocol targeting tail failures (required to validate
the thesis). We specify an evaluation protocol designed to measure
precisely the robustness claims suggested by the theory: (i) report
not only mean accuracy but also quantile/CVaR-style episode metrics,
(ii) evaluate under support corruptions (label noise, outliers, missing
classes) that primarily stress the router rather than the backbone, (iii)
compare point routing, posterior-mean routing, and small-sample en-
sembling over α, and (iv) assess abstention via risk–coverage curves
using the router’s uncertainty statistic. The expected outcome is not
merely improved average performance but a reduction in tail losses and
fewer catastrophic misrouting episodes, especially under OOD task dis-
tributions.

The organizing principle of the paper is therefore deductive: we begin
by isolating routing as the dominant brittleness mechanism in sparse meta-
tuning, we introduce uncertainty-aware posterior routing as the minimal
modification that exposes both a tail-risk objective and a calibrated absten-
tion signal, and we justify this modification by generalization and identifi-
ability results that make explicit what can and cannot be guaranteed from
few-shot support information. The subsequent sections develop the setup,
the learning objective, the theoretical bounds, and an empirical methodology
aligned with the failure modes implied by the analysis.

2 Background and Setup

We recall the sparse meta-tuning (SMAT) parameterization in which a frozen
pretrained backbone is augmented by a small trainable perturbation that is
task-modulated but parameter-efficient. Let fθ denote the backbone and let
θpre ∈ Rd be its pretrained parameters. SMAT introduces a shared dense
vector θδ ∈ Rd and a collection of expert masks {zm}Mm=1, with zm ∈ {0, 1}d
(or a structured analogue, e.g. per-layer or per-block gates). A task-specific
parameter vector is then obtained by mixing masked versions of the same
delta:

θ(S, α, z) = θpre +

M∑
m=1

αm (zm ⊙ θδ), (1)
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where α ∈ ∆M are routing weights (or, in a discrete specialization, α ∈
A ⊆ {0, 1}M encodes a budgeted subset of experts). The capacity control
is enforced through per-expert constraints such as ∥zm∥0 ≤ (1 − τ)d, with
τ specifying the target sparsity level. The salient point for our purposes
is that the same trainable delta vector is reused across experts, while the
masks determine which coordinates of θδ are exposed by each expert; hence
expert diversity is achieved without training M independent dense deltas.

We work in the episodic meta-learning protocol. A task episode T =
(S,Q) consists of a support set S (few-shot labeled examples used to select
adaptation) and a query set Q (labeled during meta-training, unlabeled at
test time) used to compute the episode loss. Meta-training samples i.i.d.
episodes T ∼ PID from an in-distribution task environment. Given episode-
specific parameters θ(S, α, z), we write the task loss as ℓ(T ; θ(S, α, z)), typi-
cally the query cross-entropy of a fixed or lightly parameterized head on top
of the backbone features. For theoretical control we assume ℓ ∈ [0, 1], which
can be enforced by bounded losses or by scaling and clipping; this assumption
is standard in concentration-based analyses and does not materially change
the optimization procedure.

The remaining degree of freedom is the routing map that selects α from
S. In conventional routed meta-tuning one posits a deterministic router hζ
(often a small hypernetwork or set encoder) and sets α = hζ(S). Architec-
turally, hζ must be permutation-invariant in the elements of S and capable
of digesting labeled examples; common designs embed each support pair
(x, y) via a shared feature extractor, aggregate across shots by averaging
or attention, and map the aggregated statistic to α via an MLP and soft-
max. When α lies on the simplex, (1) yields a convex combination of masked
deltas; when α is discrete, it produces a hard selection among a finite set of
candidate mixtures. In either case, the router is trained jointly with θδ and
the masks (or their parameterization), using episodic gradients through the
backbone.

This point-routing paradigm is effective when the support set is suffi-
ciently informative to identify the appropriate adaptation mode. The few-
shot regime, however, is precisely the regime in which S is a noisy statistic
of the task. Even if we condition on an underlying task identity, S is random
due to sampling variability, and it is routinely corrupted by practical nui-
sances: mislabeled shots, class imbalance, missing or spurious classes, out-
liers, near-duplicates, or distribution shift between the support and query
distributions. These perturbations may be small in the sense of affecting
only one or two examples, yet they may alter the router output substantially
because hζ is typically trained to be decisive (to commit to an expert or
mixture) rather than calibrated (to express uncertainty). Consequently, the
induced predictor can exhibit discontinuous behavior as a function of S, even
when the family (1) is stable for a fixed α.

To isolate the phenomenon, it is useful to distinguish two sources of error.
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The first is within-routing generalization: for a fixed routing α, the adapted
predictor may overfit to the support and perform poorly on the query. The
second is routing error : the mechanism selecting α from S may choose an
adaptation mode that is inappropriate for the task, so that the query loss is
high regardless of how well the expert family is trained. The SMAT sparsity
constraints primarily address the first issue by limiting the effective degrees
of freedom exposed at test time; they do not directly regularize the second
issue, because a sparse but wrong adaptation can still be catastrophically
wrong. In practice, these two errors can interact: a highly specialized expert
can be benign when correctly routed and highly damaging when misrouted.

This motivates evaluating meta-tuning not only by the mean episode loss
but also by tail metrics that emphasize rare failures. Concretely, if we define
the per-episode loss random variable

X(T ) = ℓ(T ; θ(S, α, z)),

then average risk E[X] treats a small probability of large losses as acceptable
when compensated by many easy episodes. In deployment, however, one of-
ten cares about bounding the frequency and severity of high-loss episodes
(e.g. tasks with unusual supports, corrupted labels, or OOD classes), be-
cause these correspond to user-visible failures. A standard tail functional is
conditional value at risk (CVaR). For a level ρ ∈ (0, 1), CVaRρ(X) is the
expected loss in the worst ρ fraction of episodes. Equivalently, using the
variational representation,

CVaRρ(X) = min
t∈R

{
t+

1

ρ
E
[
(X − t)+

]}
, (2)

where (u)+ = max{u, 0}. This form makes clear that CVaR interpolates
between quantile control (via t) and tail expectation (via the hinge term),
and it is amenable to stochastic optimization because it expresses a single
expectation of a Lipschitz function of X for any fixed t.

In the episodic setting, CVaR can be estimated empirically by sorting
the per-episode losses in a meta-batch and averaging the top ρ fraction (or,
more smoothly, by optimizing (2) over t jointly with model parameters). The
operational interpretation is straightforward: minimizing CVaR discourages
configurations that perform well on typical episodes but fail badly on a mi-
nority. For routed sparse meta-tuning, this is particularly aligned with the
routing-error failure mode, since misrouted episodes tend to dominate the
upper tail. Thus, tail-risk analysis provides a lens through which routing brit-
tleness becomes visible and measurable, even when mean accuracy changes
little.

Finally, we emphasize that the above setup does not yet specify how un-
certainty in S should be represented; it only clarifies where the uncertainty
enters the pipeline and why mean-risk training can be misaligned with ro-
bustness goals. The key structural feature we will exploit in the subsequent
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formulation is that routing is a decision made from a small random sample
S, and therefore admits an inference perspective: rather than committing
to a single α, one may maintain a distribution over plausible routings condi-
tioned on S and couple this with a tail-risk objective. Section 3 makes this
precise by replacing point routing with a posterior over α, introducing a prior
to encode constraints, and integrating these choices into a distributionally
robust episodic objective.

3 Problem Formulation

We formalize uncertainty-aware routing as a conditional inference problem in
which the support set S induces not a single routing decision but a posterior
distribution over routings. Concretely, rather than setting α = hζ(S), we
posit a family of conditional distributions

qψ(α | S),

parameterized by ψ, from which the routing used in (1) is drawn. This
viewpoint separates (i) the representation class of candidate routings (e.g.
simplex-valued mixtures or a finite discrete family) from (ii) the epistemic
uncertainty arising from having only ns labeled examples in S. The result-
ing predictor is a Gibbs (randomized) routed model: conditioned on S, we
sample α ∼ qψ(· | S), instantiate θ(S, α, z), and then evaluate on Q. At
the level of the episode loss, this induces the posterior-routed (Gibbs) loss
random variable

Xq(T ) := Eα∼qψ(·|S)
[
ℓ(T ; θ(S, α, z))

]
, (3)

where the expectation is with respect to routing randomness only (and T =
(S,Q) is itself random under the task environment).

A central modeling choice is the reference distribution p(α), which plays
two roles. First, it encodes deployment preferences such as favoring sparse or
cheap routings, or restricting attention to a feasible candidate set. Second,
it provides the reference measure required for a PAC-Bayes analysis of con-
ditional posteriors. We therefore treat p(α) as a routing prior and regularize
the learned posterior qψ(α | S) towards p(α) via a conditional KL penalty.
Formally, we measure routing complexity by

K(ψ) := ES
[
KL(qψ(· | S) ∥ p)

]
, (4)

where the expectation is taken over S induced by the episode sampler T ∼
PID (equivalently over the marginal of supports under PID). This term is the
natural conditional analogue of the standard PAC-Bayes complexity term,
and it will appear explicitly in our generalization bounds.
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We couple posterior routing with a tail-risk objective that penalizes rare
high-loss episodes. Let ρ ∈ (0, 1) be a tail fraction. Our meta-training
criterion minimizes the conditional value at risk of the posterior-routed loss
(3):

min
θδ,Φ,ψ

CVaRρ(Xq(T )) + λK(ψ), (5)

subject to the per-expert mask constraints encoded by Φ (e.g. ∥zm∥0 ≤
(1−τ)d for each m under hard masks, or the corresponding expected-budget
constraints under a stochastic mask parameterization). Here λ > 0 controls
the strength of the KL-to-prior regularization. The use of CVaR is intended
to align optimization with the routing-error failure mode described in Sec-
tion 2: when a small fraction of tasks are misrouted, their losses concentrate
in the upper tail, and a mean-risk objective may underweight them. The
variational representation (2) yields an equivalent constrained-free form of
(5),

min
θδ,Φ,ψ

min
t∈R

{
t+

1

ρ
ET∼PID

[
(Xq(T )− t)+

]}
+ λK(ψ), (6)

which isolates the dependence on Xq(T ) through a single expectation of a
Lipschitz function and is therefore amenable to stochastic approximation.

The parameterization of the task-conditioned weights follows (1), but we
emphasize that the routing posterior is the only adaptation mechanism that
depends on S at test time: θδ is shared across tasks, and z = {zm}Mm=1

is shared (up to mask sampling if one uses a stochastic mask estimator).
Thus, for any fixed (θδ, z), posterior routing defines a randomized family
of predictors indexed by α. In the discrete specialization, we restrict to a
finite routing family A (e.g. a catalog of k-expert subsets or a set of hand-
designed mixtures), and qψ(· | S) becomes a categorical distribution over A.
In the continuous specialization, α ∈ ∆M and qψ(· | S) is a distribution on
the simplex. We postpone the choice of these posterior families, and their
differentiable relaxations, to Section 4; for the present section it suffices that
qψ(· | S) is a valid conditional distribution and that the induced loss Xq(T )
is in [0, 1] whenever ℓ ∈ [0, 1].

The sparsity constraints are enforced at the level of the masks zm. Since
(5) is stated abstractly over Φ, it covers both hard-constraint and soft-
constraint implementations. In a hard-constraint view, one requires that
each realized mask obey ∥zm∥0 ≤ (1− τ)d, and meta-training optimizes over
a constrained set of masks (or over parameters that generate masks in that
set). In a soft-constraint view, one introduces Lagrange multipliers to penal-
ize violations of an expected budget (e.g. under hard-concrete gates), thereby
yielding an unconstrained surrogate objective whose minimizers satisfy the
target sparsity in the controlled-sparsity regime. Importantly, the routing
posterior and the sparsity mechanism interact: a prior p(α) can be used to
bias the router towards routings that activate fewer experts or otherwise
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reduce expected compute, while the masks control per-expert capacity by
limiting the number of exposed coordinates of θδ.

Posterior routing also suggests a principled abstention/fallback mecha-
nism. We define a scalar uncertainty score U(S) computed from qψ(· | S),
for instance the Shannon entropy U(S) = H(qψ(· | S)), the posterior gap
1 − maxα qψ(α | S) in the discrete case, or a divergence-to-prior measure
such as KL(qψ(· | S)∥p). Given a threshold η ≥ 0, we consider the decision
rule

if U(S) > η then abstain and use a fallback predictor; otherwise use posterior routing.
(7)

The fallback predictor may be the unadapted model θpre (equivalently α =
0), or a conservative routing such as the prior mean routing under p. This
design ensures that when S is uninformative or corrupted, the system can
revert to a baseline known to be stable. While abstention is not required to
define (5), it will be convenient both for practice (to prevent catastrophic
failures) and for analysis (to decompose risk into covered and abstained
episodes, as in Theorem 5). At test time one may also replace the Gibbs
predictor by a deterministic decision rule derived from qψ(· | S), such as
MAP routing, posterior mean routing (when α ∈ ∆M ), or an ensemble that
averages predictions over a small number of sampled routings; these are
standard conversions from a Gibbs predictor to implementable predictors,
and our bounds will be stated at the Gibbs level to preserve convexity and
enable PAC-Bayes control.

In summary, the problem is to learn three coupled components: (i) the
shared delta θδ, (ii) the mask mechanism Φ satisfying the sparsity/capacity
constraints, and (iii) the amortized routing posterior qψ(α | S) that trades
off empirical tail performance against adherence to the prior p(α). The
objective (5) makes this trade-off explicit and yields a formulation in which
both robustness (via CVaRρ) and generalization (via K(ψ)) can be analyzed.
Section 4 instantiates qψ (discrete versus continuous), describes differentiable
parameterizations and estimators, and gives the empirical CVaR estimator
used in meta-training.

4 Method: Posterior Families and Training Objec-
tive

We now instantiate the conditional routing posterior qψ(α | S) and the result-
ing meta-training objective in forms that admit (i) principled regularization
to a cost-aware prior p(α) and (ii) low-variance gradient estimation under
stochastic routing. Throughout, we treat the mask mechanism z = {zm}Mm=1

as implemented by a SMAT-style sparsifier (e.g. hard masks or hard-concrete
gates), and focus on the remaining design degrees of freedom: the routing
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family (discrete versus continuous), its differentiable parameterization, and
the empirical estimator of the CVaRρ objective.

Discrete routing families. In the discrete specialization we posit a finite
catalog of feasible routings A. Each element A ∈ A may represent, for
example, a k-hot subset of experts (binary selection), a small mixture over
experts (sparse simplex vectors), or a structured routing template consistent
with a deployment budget. We identify α with A and take

qψ(α | S) ≡ qψ(A | S) for A ∈ A,

where qψ(· | S) is a categorical distribution produced by a routing network
that embeds the support set. The KL regularizer assumes a particularly
simple form:

KL(qψ(· | S) ∥ p) =
∑
A∈A

qψ(A | S) log
qψ(A | S)
p(A)

.

The prior p can be uniform when we wish to avoid structural bias, or can
encode compute preferences by setting p(A) ∝ exp(−β cost(A)) for a user-
defined routing cost. When A is not too large, discrete routing has two
advantages: (i) posterior uncertainty is directly interpretable (e.g. via the
maximum posterior mass), and (ii) the KL term is tractable and stable.
The main disadvantage is that sampling from a categorical distribution is
not naively reparameterizable; we address this below via relaxations that
preserve the intended discrete semantics at test time.

Continuous simplex families. In the continuous specialization we allow
α ∈ ∆M to be a convex mixture of experts. This removes the need to
pre-enumerate a catalog and permits interpolation between experts when
beneficial. We require qψ(· | S) to be a distribution on the simplex, and we
consider two standard choices.

First, a logistic-normal posterior: let u ∈ RM follow a Gaussian distri-
bution whose parameters are predicted from S,

u ∼ N (µψ(S),Σψ(S)), α = softmax(u) ∈ ∆M .

This yields a flexible posterior with a fully reparameterizable sampling path
via u = µψ(S) + Lψ(S) ε with ε ∼ N (0, I). The induced density on ∆M

has no closed-form KL to most priors; we therefore either (a) choose a
logistic-normal prior and estimate KL(q∥p) by Monte Carlo using the cor-
responding log-densities, or (b) adopt a simpler proxy regularizer such as
KL(N (µψ,Σψ) ∥N (µ0,Σ0)) on the pre-softmax logits, which empirically con-
trols posterior spread while remaining analytically tractable.
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Second, a Concrete / Gumbel–Softmax posterior (primarily useful when
we want near-discrete routings with straight-through gradients). For logits
πψ(S) ∈ RM , temperature γ > 0, and i.i.d. Gumbel noise gm, we set

αm =
exp

(
(πψ,m(S) + gm)/γ

)∑M
j=1 exp

(
(πψ,j(S) + gj)/γ

) . (8)

As γ → 0 this concentrates near vertices of the simplex and approximates
categorical routing; for larger γ it behaves like a smooth mixture. This pa-
rameterization is compatible with both discrete and continuous viewpoints:
during training we propagate gradients through (8), while at test time we
may either sample (Gibbs), use the posterior mean, or take a discrete proxy
(e.g. argmaxm αm) when deployment requires a single expert.

Stochastic objective and Monte Carlo estimation. Given an episode
T = (S,Q), we recall the posterior-routed loss

Xq(T ) = Eα∼qψ(·|S)
[
ℓ(T ; θ(S, α, z))

]
∈ [0, 1].

In practice we estimate this expectation with Kα routing samples,

X̂q(T ) =
1

Kα

Kα∑
k=1

ℓ
(
T ; θ(S, α(k), z)

)
, α(k) ∼ qψ(· | S), (9)

optionally sharing the same sampled mask z across the Kα routings to re-
duce variance. The KL term is evaluated per support set, either exactly
(categorical) or by a small Monte Carlo estimate in continuous families. The
meta-training objective is the regularized tail risk

CVaRρ(Xq(T )) + λES
[
KL(qψ(· | S)∥p)

]
,

and we implement CVaRρ using its variational form. Concretely, for a scalar
threshold t ∈ R,

CVaRρ(Xq(T )) = min
t∈R

{
t+

1

ρ
E
[
(Xq(T )− t)+

]}
. (10)

Given a meta-batch of B i.i.d. episodes {Ti}Bi=1, we form per-episode esti-
mates X̂q(Ti) as in (9) and compute an empirical CVaR estimator by select-
ing t as the empirical (1 − ρ)-quantile threshold (equivalently, the smallest
value such that approximately a ρ fraction of episodes lie above it), yielding

ĈVaRρ = t+
1

ρB

B∑
i=1

(
X̂q(Ti)− t

)
+
. (11)
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This estimator is consistent and matches the form used in our generalization
analysis; operationally it amounts to sorting the B losses (or using a selection
algorithm) and averaging those in the upper tail. The meta-training loss for
one batch is then

Lmeta = ĈVaRρ + λ
1

B

B∑
i=1

KL(qψ(· | Si) ∥ p) + Lmask(Φ), (12)

where Lmask(Φ) denotes whichever controlled-sparsity penalty or projection
is used to enforce the per-expert capacity constraints.

Gradients via reparameterization and relaxations. When qψ(α |
S) is reparameterizable (logistic-normal or Concrete), we backpropagate
through the sampling path used to form α(k) in (9). In the purely cate-
gorical discrete case, we either apply a Gumbel–Softmax relaxation during
training and anneal γ to approach discreteness, or use a score-function es-
timator with baselines if exact discreteness is essential. Since Kα is small
in typical deployments, we emphasize low-variance estimators; in our exper-
iments we therefore default to reparameterizable families.

Optional teacher distillation. A practical enhancement is to incorpo-
rate a teacher signal that stabilizes routing early in training or transfers a
compute-heavy oracle to a light amortized router. We consider two compat-
ible variants. (i) Routing distillation: given a teacher posterior qteach(α | S)
(e.g. obtained by evaluating candidate routings on S or by a larger router),
we add

λdist ES
[
KL(qψ(· | S) ∥ qteach(· | S))

]
to (12), optionally combined with the prior KL. (ii) Prediction distillation:
we match the predictive distribution of a teacher ensemble over routings
by minimizing a cross-entropy (or KL) between student predictions under
α ∼ qψ(· | S) and teacher predictions, which indirectly shapes qψ toward
routings that reproduce the teacher’s behavior. Both forms preserve our
primary objective and can be viewed as additional regularizers; we treat them
as optional, since our theoretical analysis is stated for the prior-regularized
objective.

These design choices yield a concrete family of uncertainty-aware routers
and a tractable empirical approximation to the regularized CVaRρ objective.
Section 5 specifies the resulting meta-training and meta-testing procedures,
including the deterministic decision rules derived from qψ(· | S) and the
abstention mechanism based on posterior uncertainty.

13



5 Algorithms: Meta-training and Meta-testing

We now make the training and inference procedures explicit. Our goal is
to optimize the regularized tail-risk objective introduced in Section 4 using
episodic meta-training, while ensuring that the learned router admits practi-
cal meta-test decision rules (deterministic, stochastic, and abstaining) with
predictable compute.

Meta-training loop (stochastic CVaR with posterior routing). We
assume access to i.i.d. episodes Ti = (Si, Qi) ∼ PID in meta-batches of size B.
For each episode Ti, we form a Monte Carlo estimate X̂q(Ti) of the posterior-
routed loss Xq(Ti) as in (9), using Kα samples α(k)

i ∼ qψ(· | Si). In parallel,
we apply the SMAT sparsifier to obtain masks zi,m (either sampled from a
gate distribution or taken as an expected/thresholded mask), subject to the
per-expert capacity constraints. Concretely, the per-episode loss estimate
takes the form

X̂q(Ti) =
1

Kα

Kα∑
k=1

ℓ

(
Ti; θpre +

M∑
m=1

α
(k)
i,m (zi,m ⊙ θδ)

)
.

We then compute the empirical CVaRρ across the batch by choosing a thresh-
old t corresponding to the empirical (1 − ρ)-quantile of {X̂q(Ti)}Bi=1 and
forming (11). The resulting meta-objective for one batch is the differen-
tiable surrogate

Lmeta = t+
1

ρB

B∑
i=1

(X̂q(Ti)− t)+ + λ
1

B

B∑
i=1

KL(qψ(· | Si) ∥ p) + Lmask(Φ).

The only subtlety is that the quantile selection defining t is not differentiable.
In implementation, we treat t as a stop-gradient statistic of the current batch
(equivalently, we optimize a piecewise-smooth objective in which gradients
flow through the hinge (·− t)+ but not through the sorting operation). This
choice preserves the intended semantics of empirical tail averaging and is
consistent with common practice in CVaR optimization; if desired, one may
replace the hard quantile by a smooth approximation (e.g. soft-sorting) at
additional computational cost.

Gradient estimation and reparameterization. When qψ(α | S) is
reparameterizable, we write α = gψ(S, ε) for noise ε from a fixed distri-
bution and backpropagate through gψ when differentiating X̂q(Ti) w.r.t. ψ.
This covers the logistic-normal and Concrete families described in Section 4.
In the Concrete case (8), we typically anneal the temperature γ from a
moderate value to a smaller value, trading bias for variance while gradually
approaching near-discrete routings. When a strictly discrete catalog A is
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required at training time (rather than only at test time), we may instead use
a score-function estimator; however, in few-shot regimes and for small Kα,
we have found the reparameterized relaxations to be materially more stable.

The KL regularizer is computed per support set. In the categorical case
it is exact; in continuous families it is either a Monte Carlo estimate of log-
density ratios (when a matching prior is available) or an analytic proxy in
the pre-softmax space. We emphasize that the KL term is not merely a
complexity penalty: in deployment it can encode explicit cost preferences
through p(α) ∝ exp(−β cost(α)), thereby shaping qψ(· | S) toward routings
that are likely to be both accurate and feasible.

Mask enforcement and controlled sparsity. We treat the sparsity
mechanism as orthogonal to routing, but we must ensure that the per-
expert capacity constraints are satisfied throughout training. Operationally,
Lmask(Φ) is implemented either (i) by a primal–dual penalty that drives
E[∥zm∥0] below (1−τ)d for each expert m, or (ii) by projection/thresholding
into the feasible set after gradient steps when hard masks are used. To reduce
variance in the nested stochasticity (mask sampling and routing sampling),
a practical default is to share the same mask sample zi across all Kα routing
samples for episode i.

Meta-testing decision rules (mean, sampling/ensembling, MAP).
At meta-test time, we are given a new support set S and must predict labels
on queries Q without updating θδ. We first compute the routing posterior
qψ(α | S). We then instantiate one of the following decision rules.

1. Posterior mean routing: use ᾱ(S) := Eqψ(·|S)[α] (available in closed
form for categorical distributions and estimated by a small number of
samples otherwise), and predict with θ(S, ᾱ, z). This yields a single-
forward inference path and typically the best compute/accuracy trade-
off.

2. Gibbs sampling / ensembling: draw α(1), . . . , α(Kα) ∼ qψ(· | S) and
average predictions (or logits) across routings. This is the direct oper-
ational analog of the Gibbs predictor analyzed in Section 6 and often
improves tail performance by reducing misrouting sensitivity.

3. MAP / top-k routing: in discrete families, take α̂(S) = argmaxα qψ(α |
S), or restrict to the top-k routings by posterior mass and ensemble
only within that subset. This interpolates between single-route infer-
ence and full posterior averaging.

When masks are stochastic, we analogously either fix z to its expected/thresholded
value for deterministic inference or sample and ensemble if uncertainty in
sparsity is part of the intended model.
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Abstention and fallback via routing uncertainty. We additionally ex-
pose a meta-test abstention mechanism to guard against catastrophic errors
under ambiguous or corrupted support sets. We define a scalar uncertainty
score U(S) derived from qψ(· | S), and abstain (fall back) whenever U(S) > η
for a chosen threshold η. In the categorical case, simple choices include

Umax(S) = 1−max
α

qψ(α | S), Uent(S) = −
∑
α

qψ(α | S) log qψ(α | S),

and in continuous families we may use the entropy of the induced categorical
proxy (e.g. after discretization), or the sample variance of α under qψ(· | S).
Upon abstention we use θpre (or a conservative fixed routing chosen to be
cheap and robust), and we report both the prediction and the abstention
indicator. The threshold η is selected on a validation distribution to realize
a target coverage (fraction of non-abstained episodes) or to minimize a user-
specified risk–coverage objective.

Implementation notes and required empirical checks. We use a
permutation-invariant set encoder for S (e.g. DeepSets-style pooling over
embedded support points) to parameterize qψ(α | S), since the ordering
of shots is immaterial. The CVaRρ estimator in (11) requires sorting B
per-episode losses; thus B should be large enough that ρB is not too small
(otherwise the tail average is dominated by a few episodes and gradients are
noisy). Typical stable settings are ρ ∈ [0.05, 0.2] and Kα ∈ {1, 2, 4}.

Since our contribution is primarily about tail robustness and uncertainty-
aware routing, we mark as required the following experiments: (a) tail accu-
racy curves as a function of ρ (not only mean accuracy), including OOD task
shifts; (b) a comparison of meta-test decision rules (posterior mean vs. Gibbs
ensembling vs. MAP) under a fixed compute budget; (c) an ablation demon-
strating that abstention improves worst-case performance relative to always
routing, with risk–coverage plots and calibration diagnostics for U(S); and
(d) sensitivity to shot count ns, verifying the predicted monotone decrease
in misrouting and the empirical benefit of increased support. These checks
align the implementation with the guarantees and failure modes formalized
in our theory.

6 Theory I: Generalization via PAC-Bayes for Pos-
terior Routing

We analyze the generalization behavior of the Gibbs routed predictor in-
duced by the learned conditional posterior qψ(α | S). Throughout, we treat
the pretrained parameters θpre as fixed and view (θδ,Φ, ψ) as the learned
components; the stochasticity of routing is explicit, while the sparsity masks
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z may be random or deterministic (for the bounds below, it suffices that the
induced episode loss is bounded).

Episode-wise routed loss and risks. Given an episode T = (S,Q) ∼
PID, define the posterior-routed loss random variable

Xq(T ) := Eα∼q(·|S)
[
ℓ(T ; θ(S, α, z))

]
∈ [0, 1].

We denote by

R(q) := ET∼PID

[
Xq(T )

]
and R̂(q) :=

1

N

N∑
i=1

Xq(Ti)

the population and empirical mean risks over N i.i.d. training episodes
T1, . . . , TN ∼ PID. The essential point is that q(· | S) is data-dependent
through S, and therefore complexity control must be expressed in terms of
an expected conditional divergence ES [KL(q(· | S)∥p)] to a prior p(α).

A conditional PAC-Bayes bound for mean risk. When the routing
family is finite (or discretized) to A, we may invoke a conditional variant
of the PAC-Bayes theorem for Gibbs predictors. The next statement makes
explicit the role of the conditional posterior and the KL term used in our
meta-objective.

Theorem 6.1 (PAC-Bayes bound for Gibbs-routed meta-tuning). Assume
ℓ(T ; θ) ∈ [0, 1] and a finite routing set A. Fix any prior p(α) on A. Let
q(α | S) be any learned conditional posterior. With probability at least 1− δ
over N i.i.d. episodes, we have

R(q) ≤ R̂(q) +

√
ES [KL(q(· | S)∥p)] + log 2

√
N
δ

2(N − 1)
.

Interpretation. Theorem 6.1 yields a direct reading of our regularization
choice: for fixed empirical risk R̂(q), any posterior with smaller expected
divergence to the prior admits a tighter bound. In particular, if p is chosen
to prefer cheap routings (e.g. p(α) ∝ exp(−β cost(α))), then the bound for-
malizes a trade-off between predictive performance and deployment cost. We
also emphasize that the bound controls the Gibbs predictor (randomly sam-
ple α ∼ q(· | S)); deterministic rules such as MAP routing may be analyzed
via standard Gibbs-to-MAP conversions (e.g. bounding MAP risk by Gibbs
risk plus a term depending on the posterior sharpness), but the Gibbs form
is the natural object for PAC-Bayes analysis and aligns with our ensembling
decision rule.
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Extension to tail risk via CVaRρ. Mean risk bounds do not directly ad-
dress catastrophic episodes. To capture worst-quantile behavior, we consider
the population tail objective

CVaRρ(Xq) := inf
t∈R

{
t+

1

ρ
E
[
(Xq(T )− t)+

]}
, ρ ∈ (0, 1),

and its empirical analog (computed fromXq(T1), . . . , Xq(TN ) or Monte Carlo
estimates thereof). Using the variational representation above, we reduce
tail control to uniform control of the class of bounded hinge losses (X − t)+
indexed by t.

Theorem 6.2 (Generalization for CVaRρ tail risk of Gibbs routing). Let
Xq(T ) ∈ [0, 1] be defined as above and let ĈVaRρ(Xq) denote the empirical
CVaRρ computed from N i.i.d. episodes. Then, with probability at least 1−δ,

CVaRρ(Xq) ≤ ĈVaRρ(Xq) +O

(√
ES [KL(q(· | S)∥p)] + log(1/δ)

N ρ2

)
.

Moreover, there exist bounded task families for which the ρ−2 dependence is
unavoidable up to constants.

Consequences for sample complexity. Theorem 6.2 makes precise an
expected phenomenon in tail-risk learning: as ρ decreases, the effective num-
ber of informative tail samples behaves like Nρ, and concentration degrades
accordingly. In particular, to keep the tail generalization gap below ε one
needs, in the worst case,

N ≳
ES [KL(q(· | S)∥p)] + log(1/δ)

ρ2 ε2
.

This scaling justifies two practical design choices already reflected in our
algorithm: (i) one should not take ρ extremely small unless the number of
meta-training episodes is correspondingly large, and (ii) one should actively
control the routing posterior complexity via the KL term, since any uncon-
trolled growth in ES [KL(q∥p)] directly enlarges the tail generalization gap.

Relation to the training objective. Our meta-training objective may
be viewed as minimizing a proxy for the right-hand side of Theorem 6.2:
the empirical tail term ĈVaRρ is optimized directly, while λES [KL(q∥p)]
plays the role of a tunable surrogate for the complexity term in the bound.
Although the theorem itself does not prescribe the optimal λ, it provides
a principled interpretation: increasing λ biases training toward posteriors
that generalize better (especially in the tail) at the cost of potentially higher
empirical loss. In addition, because q(· | S) is amortized, the KL penalty
is applied per support set, which encourages the router to be simple on
average while still allowing confident deviations from the prior when the
support evidence is decisive.
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Discussion and limitations. The bounds above are stated for a finite
routing family A to obtain sharp complexity measures. In implementation,
we may train with continuous relaxations (logistic-normal or Concrete) and
interpret the theory as applying to a discretized approximation (e.g. by quan-
tizing to a finite catalog at test time, or by restricting attention to a top-k set
of routings). Finally, these generalization results do not by themselves guar-
antee that the router selects the correct routing for a given task; they control
only the routed predictor’s population risk relative to its empirical risk and
posterior complexity. To connect support size to routing correctness, we next
study identifiability and posterior concentration under separation conditions
on the support distributions.

7 Theory II: Routing Identifiability and Posterior
Concentration

The PAC-Bayes bounds in Section 6 control the risk of the routed predictor
as a randomized (Gibbs) procedure, but they do not by themselves imply that
the router selects an appropriate expert configuration for a given episode.
We now isolate a complementary question: when does the support set S
contain enough information to identify a good routing, and how fast does
the induced posterior q(· | S) concentrate?

A realizable finite-routing model. We assume that there is a finite set
A of candidate routings (e.g. a catalog of sparse expert mixtures), and that
each episode admits a latent routing variable A ∈ A which governs the dis-
tribution of the support set. Formally, for each A ∈ A there is a distribution
PA over labeled supports S of size ns (often S = {(xj , yj)}nsj=1 i.i.d.), and the
meta-training (or meta-testing) episode first samples A and then samples
S ∼ PA. We emphasize that this assumption concerns identifiability of rout-
ing from the support, not correctness of the backbone; it is compatible with
arbitrary query distributions and arbitrary downstream heads, provided the
routing is the principal latent choice.

A necessary condition for identification is that different routings induce
distinguishable support distributions. We capture this by a separation con-
dition: there exists ∆ > 0 such that

TV(PA, PA′) ≥ ∆ for all A ̸= A′,

where TV denotes total variation. This is a strong but transparent assump-
tion: if ∆ is small, then no support-based router can reliably discriminate
routings without many shots.
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MAP routing as multi-hypothesis testing. Given a learned posterior
q(α | S), a natural deterministic decision rule is MAP routing

Â(S) ∈ argmax
A∈A

q(A | S),

while the Gibbs decision samples Ã ∼ q(· | S). In the realizable setting
where q(· | S) approximates the Bayes posterior for the generative family
{PA}A∈A, the MAP rule is an optimal test for the latent routing A (up to
approximation error), and its error probability decays exponentially in ns
under separation.

Theorem 7.1 (Misrouting probability under TV separation). Assume |A| <
∞ and pairwise separation TV(PA, PA′) ≥ ∆ for all A ̸= A′. Assume further
that S consists of ns i.i.d. draws from PA conditional on the latent routing A.
Then there exists a universal constant c > 0 such that the MAP misrouting
probability satisfies

Pr
[
Â(S) ̸= A

]
≤ (|A| − 1) exp(−c ns∆2).

Proof sketch. We reduce routing to multi-hypothesis testing. For any
fixed A, by a union bound it suffices to control Pr[choose A′ ̸= A]. Under
i.i.d. sampling, the likelihood ratio between P⊗ns

A and P⊗ns
A′ concentrates,

and standard inequalities (e.g. Bretagnolle–Huber or a Chernoff bound) re-
late the optimal testing error to a divergence between PA and PA′ . Total
variation separation implies a nontrivial gap in these divergences, yielding an
exponential decay rate in ns of the form exp(−Ω(ns∆

2)). The factor |A|− 1
accounts for competing alternatives.

Posterior concentration and a usable uncertainty score. Theorem 7.1
is most useful when translated into a statement about the posterior itself.
In the well-specified case, the Bayes posterior satisfies a concentration phe-
nomenon: for typical supports sampled under PA, the posterior mass as-
signed to A approaches 1 at an exponential rate. Operationally, this suggests
that simple uncertainty measures derived from q(· | S) can serve as proxies
for misrouting risk. A canonical choice is

U(S) := 1−max
A∈A

q(A | S),

which is the Gibbs probability of not sampling the MAP routing, conditional
on S. Indeed, if Ã ∼ q(· | S), then Pr[Ã ̸= Â(S) | S] = U(S) holds
identically. Moreover, under posterior concentration, U(S) is small precisely
when the support provides decisive evidence.

While U(S) does not automatically upper-bound Pr[Â(S) ̸= A | S] for
an arbitrary amortized router, it is the correct quantity under the Bayesian
model and remains a meaningful calibration target in practice: one may
post-train q(· | S) (e.g. via temperature scaling) so that supports with large
U(S) empirically correlate with misrouting events.
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Abstention and fallback guarantees. Given an uncertainty score U(S),
we may introduce an abstention rule: if U(S) > η we decline to route (or
choose a conservative default), and instead evaluate using θpre. Let Lpost(S)
denote the posterior-routed loss on the episode and Lpre the loss under θpre.
By decomposing on the abstention event, we obtain the deterministic risk–
coverage trade-off

E[L] ≤ Pr[U(S) ≤ η] · E
[
Lpost(S) | U(S) ≤ η

]
+ Pr[U(S) > η] · Lpre.

Consequently, if U(S) is calibrated so that large values indeed correspond
to likely misrouting (as predicted by Theorem 7.1 in the separated regime),
then abstention prevents catastrophic losses from exceeding the baseline per-
formance of θpre on the abstained episodes. This mechanism is particularly
relevant when the support set is corrupted, ambiguous, or drawn from POOD

where separation may fail.

A matching lower bound: indistinguishability is unavoidable. The
previous results rely on separation. Without it, routing is information-
theoretically hard: if two routings induce nearly indistinguishable support
distributions, no algorithm can reliably infer which routing generated the
support, regardless of computation. The next theorem formalizes this by a
standard two-point testing argument.

Theorem 7.2 (Lower bound via Le Cam for binary routing). Let A =
{0, 1} and suppose S consists of ns i.i.d. samples from PA given A. For any
(possibly randomized) router π(· | S),

sup
A∈{0,1}

Pr
S∼PA

[
π(S) ̸= A

]
≥ 1

2

(
1− TV

(
P⊗ns
0 , P⊗ns

1

))
.

In particular, for families with TV(P0, P1) = ∆ in the small-∆ regime, there
exist constants C, c′ > 0 such that

inf
π

sup
A∈{0,1}

Pr[π(S) ̸= A] ≥ c′ exp(−C ns∆2),

showing that exponential-in-ns∆2 rates are tight up to constants.

Implications. Taken together, Theorems 7.1 and 7.2 provide a sharp pic-
ture: support-based routing is feasible when routings are separated at the
level of support distributions, and impossible to make uniformly reliable
when they are not. Thus, increasing ns improves routing only to the ex-
tent that the induced ∆ is non-negligible; conversely, when ∆ is small (or
when POOD breaks the generative assumptions), calibrated uncertainty and
abstention are not merely heuristics but necessary safeguards. In Section 8
we turn to computational considerations, where even in identifiable regimes,
exact deterministic routing can be intractable under realistic budget con-
straints.
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8 Computational Complexity and Hardness

The identifiability results of Section 7 address when the support set contains
information sufficient to discriminate routings. They do not, however, re-
solve the separate question of whether selecting an optimal routing is compu-
tationally tractable under realistic routing constraints. We therefore isolate
the computational bottleneck at meta-test time: given a support set S, and
a (learned) scoring rule or posterior qψ(α | S), how hard is it to compute a
deterministic routing decision such as MAP, or more generally to optimize
a routing objective under budgets?

MAP routing as discrete optimization. If α is restricted to a finite
catalog A (as in the theory), MAP routing is trivial once we can evaluate
qψ(A | S) for each A ∈ A. The computational issue is then moved to the
construction of A: if A is large (e.g. all k-sparse subsets ofM experts), brute-
force enumeration is infeasible. In deployed systems, the natural constraint
is not finiteness per se, but a budget such as “activate at most k experts” or
“expected cost no more than c,” which yields a combinatorial feasible set.

To make this explicit, consider the common binary-selection restriction
α ∈ {0, 1}M with ∥α∥0 ≤ k (or the simplex with α supported on at most k
indices). Even if we fix masks {zm} and the shared delta θδ, the mapping

α 7→ ℓ

(
T ; θpre +

M∑
m=1

αm(zm ⊙ θδ)

)
is an arbitrary nonconvex set function in general, since it is induced by a
deep network. Thus, selecting an optimal routing by minimizing loss over
feasible α is a priori a hard combinatorial problem.

NP-hardness via subset selection reductions. We formalize the above
intuition by a standard reduction from maximum coverage (equivalently,
minimum set cover under a suitable encoding of loss). Fix a universe U of
elements, and let each expert m correspond to a subset Em ⊆ U . Construct
a synthetic family of episodes in which the query loss decreases as more
universe elements are “covered” by the chosen experts, with a budget ∥α∥0 ≤
k. Concretely, define a task-dependent loss of the form

L(α) = 1− 1

|U |

∣∣∣ ⋃
m:αm=1

Em

∣∣∣,
which is minimized exactly by choosing the k experts that maximize cover-
age. We can realize (or approximate) such a set function as a bounded loss
ℓ(T ; θ(S, α, z)) by embedding the coverage signal into a supervised classifi-
cation task whose error rate matches L(α) up to an arbitrarily small approx-
imation (e.g. by hard-coding features and a shallow head), while treating
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the routed model as selecting which feature blocks become active. It follows
that, in the worst case, computing

arg min
α∈{0,1}M : ∥α∥0≤k

ℓ(T ; θ(S, α, z))

is NP-hard. This remains true if we add a cost-aware prior p(α) or an explicit
penalty (e.g. +γ · cost(α)): the reduction can be arranged so that all feasible
selections have the same cost, or so that costs encode the same cardinality
constraint.

The implication is not that routing is hopeless, but rather that exact
deterministic routing under realistic subset constraints admits no general
polynomial-time algorithm unless P = NP. Accordingly, a learned amor-
tized router qψ(α | S) should be viewed as an efficient inference heuristic
trained end-to-end, not as an algorithm that solves the underlying discrete
optimization problem exactly.

When greedy or approximation guarantees apply. The above hard-
ness is worst-case and does not preclude approximation in structured regimes.
Indeed, in the coverage construction the objective −L(α) is a monotone
submodular function of the selected set, and the classical greedy algorithm
achieves a (1 − 1/e) approximation under a cardinality constraint. This
observation suggests a conditional message for routing: if, for the episode
distribution of interest, the mapping

A ⊆ [M ] 7→ −E[ℓ(T ; θ(S,1A, z)) | S]

behaves approximately like a monotone submodular function (diminishing re-
turns of adding experts), then greedy selection of experts based on marginal
improvements may be effective. However, verifying submodularity for deep
losses is generally infeasible, and interactions between experts (especially un-
der shared deltas θδ and overlapping masks) can induce strong non-submodular
effects. Thus greedy search should be interpreted as a pragmatic baseline,
with guarantees only in special cases (e.g. additive expert contributions, or
provably submodular surrogate scores).

A more robust strategy is to restrict the candidate family A a priori to
a tractable size (a “routing catalog”), either by design (e.g. a small set of
mixture patterns) or by construction (e.g. generate a pool of candidate rout-
ings offline by greedy/beam search on training tasks, then learn qψ over this
pool). This returns us to the finite A setting where MAP is computationally
easy and where the identifiability theory is directly applicable.

Continuous relaxations and nonconvexity. If we instead allow contin-
uous α ∈ ∆M and optimize a score (e.g. expected loss on S or an ELBO-
like objective) by gradient methods, we avoid NP-hardness at the level of
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discrete search, but we inherit nonconvex optimization. Concretely, even for
fixed S, minimizing Eα∼qψ(·|S)[ℓ(T ; θ(S, α, z))] over ψ is a nonconvex problem
due to the backbone and the router network. Moreover, enforcing sparsity
of α (top-k mixtures) typically reintroduces combinatorial structure; com-
mon relaxations (Concrete/Gumbel-softmax, sparsemax/entmax, or top-k
straight-through estimators) are computationally efficient but do not pro-
vide worst-case optimality guarantees.

Implications for practical inference. The preceding considerations mo-
tivate the inference choices emphasized by our algorithmic design.

First, we treat qψ(α | S) as the primary mechanism for routing, since it
yields O(Crouter) inference without per-task combinatorial search. Second,
we distinguish point decisions (MAP or posterior mean) from stochastic de-
cisions (Gibbs sampling). From a computational perspective, MAP over a
large structured space is hard, whereas sampling a small number of rout-
ings from an amortized qψ is easy. From a statistical perspective, sampling
aligns with the PAC-Bayes view (Theorems in Section 6) and provides un-
certainty measures such as U(S) = 1−maxA q(A | S), which we can exploit
for abstention.

Third, when deployment requires strict latency/cost constraints, we can
encode them either as a prior p(α) (biasing qψ toward cheap routings) or by
restricting the support of qψ(· | S) to a small feasible subset (e.g. a handful
of routings in A). This is the computational analogue of the identifiabil-
ity separation condition: even if routings are distinguishable, we must still
ensure that the decision space is operationally searchable.

Finally, we note a conceptual complementarity between hardness and
abstention. Theorems 7.1–7.2 show that uncertainty is unavoidable when
supports are indistinguishable. The hardness discussion shows that, even
when supports are informative, exact optimization over routings may be
infeasible. In both cases, calibrated posteriors and fallback rules provide a
principled way to trade coverage for safety without requiring exact discrete
optimization at test time.

9 Experimental Plan

We view the main empirical burden as validating that posterior routing and
tail-risk training improve not only average few-shot performance but also
the upper tail of the per-episode loss distribution under realistic distribution
shifts, and that the induced uncertainty is sufficiently calibrated to support
abstention. Accordingly, our experimental plan is organized around (i) heavy
OOD evaluation suites, (ii) controlled corruptions of the support set (the
router input), (iii) tail-focused metrics aligned with our objective, and (iv)
explicit comparisons to point routing and to search-based heuristics that
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attempt to optimize routings at meta-test time.

Benchmarks and OOD suites. We will evaluate on both standard few-
shot classification benchmarks and cross-domain/meta-dataset style suites.
On the standard side, we will use miniImageNet, tieredImageNet, CIFAR-
FS, and FC100 with ns ∈ {1, 5} shots and N -way episodes (typically 5-way
and 10-way). To stress OOD generalization, we will include cross-domain
transfer (e.g. train on ImageNet-like sources and test on CUB, Cars, Places,
Plantae) and large heterogeneous suites (e.g. Meta-Dataset style evaluation)
where test episodes come from a mixture of visually distinct datasets. We will
report results separately for ID and each OOD target, but we will treat the
primary success criterion as improved tail performance on the OOD mixture
distribution.

Corrupted and ambiguous supports (router stress tests). Since
routing depends on S, we will create controlled families of support-set corrup-
tions that leave the query distribution unchanged (or corrupted in a known
way), thereby isolating misrouting and uncertainty effects. We will consider
at least the following interventions: (i) label noise in S: flip each support la-
bel independently with probability ϵ ∈ {0.1, 0.2, 0.4}; (ii) feature corruption
in S: apply common corruptions (Gaussian noise, blur, JPEG compression,
occlusion) at multiple severities to the support images only; (iii) shot imbal-
ance / partial support : delete a random fraction of support examples from
a subset of classes, producing ambiguous S at fixed ns budget; (iv) support–
query mismatch: apply a style shift (e.g. color jitter, grayscale, sketch-like
filter) to S but not to Q, modeling spurious cues that can mislead the router.
In each case we will evaluate (a) the routed predictor without abstention,
and (b) the abstaining predictor that can fall back to θpre (or a conservative
fixed routing) when uncertainty is high. These controlled tests complement
natural OOD suites by creating regimes where indistinguishability is explicit
and where we can measure the degradation curve as a function of corruption
strength.

Tail-quantile and robustness metrics. Let Li denote the per-episode
query loss (or 1 − accuracy) on episode i. In addition to standard mean
accuracy, we will report metrics that directly probe the upper tail:

1. Empirical CVaRρ(L) for ρ ∈ {0.05, 0.1, 0.2}, computed over the evalu-
ation set of episodes via the usual “top-ρ fraction” estimator.

2. Empirical quantiles Q0.9(L) and Q0.95(L) (or equivalently the 10th and
5th percentile of accuracy), to make tail behavior interpretable without
the auxiliary threshold optimization in CVaR.
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3. Worst-group performance when the evaluation suite provides natu-
ral partitions (dataset identity, corruption type, severity); concretely,
maxg E[L | g] and CVaRρ(L | g).

Because posterior routing introduces stochasticity, we will separately report
(i) Gibbs performance (sample α ∼ qψ(· | S) once), and (ii) Bayes model
averaging with Kα ∈ {2, 4, 8} routing samples. We expect averaging to
improve tail metrics disproportionately, and we will quantify the compute–
robustness trade-off by plotting CVaRρ versus Kα.

Calibration and misrouting diagnostics. A central claim is that qψ(α |
S) yields usable uncertainty. We will therefore evaluate calibration at two
levels. First, predictive calibration of the final classifier (ECE, reliability
diagrams, Brier score) under both ID and OOD evaluation. Second, routing
calibration: we will treat U(S) (e.g. 1 − maxA q(A | S), posterior entropy,
or the prior-posterior KL) as a score for the event “the chosen routing is
suboptimal.” Operationally, we will approximate “suboptimal” by comparing
the achieved query loss under the chosen routing to the best loss among a
small candidate set (e.g. top-J routings under qψ, or a catalog A), and we
will plot calibration curves of U(S) versus observed excess loss. We will
also report selective risk curves conditioned on U(S) ≤ η to verify that
uncertainty meaningfully stratifies difficult episodes.

Abstention and risk–coverage curves. We will implement abstention
rules of the form “abstain if U(S) > η” with fallback to θpre (or to a fixed
low-variance routing). For each evaluation distribution we will sweep η and
report: (i) coverage c(η) = Pr[U(S) ≤ η]; (ii) selective risk E[L | U(S) ≤ η];
(iii) overall risk with fallback, i.e. E[L] under abstention. We will also sum-
marize the risk–coverage curve by area-under-curve style aggregates (or by
the minimum achievable selective risk at fixed coverage levels, e.g. 80% and
95%). The goal is to empirically instantiate the decomposition in Theorem 5:
abstention should cap catastrophic losses on corrupted supports without sac-
rificing too much coverage on clean episodes.

Baselines and comparisons. We will compare against: (i) Point routing
baselines: deterministic routers hζ(S) trained with mean risk, and the same
architecture trained with a CVaR objective but producing a point estimate;
(ii) Non-routed adaptation: standard adapters/LoRA or SMAT-style sparse
deltas without routing uncertainty; (iii) All-experts or uniform mixtures
(when feasible) to separate the value of sparsity/routing from raw capacity.
To address the question “why amortized posterior routing rather than test-
time optimization,” we will include heuristic gradient-free or search-based
routing procedures that attempt to minimize support loss under a budget,
such as greedy forward selection of experts (based on marginal improvement
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on S), beam search over k-expert subsets from a fixed catalog, and random
search with a fixed evaluation budget. We will report not only their mean
and tail performance but also their meta-test latency, since these heuris-
tics are plausible competitors precisely in the regime where exact discrete
optimization is infeasible.

Ablations aligned with the theory. Finally, we will run ablations tar-
geting the specific mechanisms in the objective: remove the KL regularizer
(or vary λ), vary the prior p(α) to encode different cost preferences, vary
ρ to test the tail-risk dependence, and vary ns to empirically probe the
concentration phenomenon predicted by Theorem 3. We will also ablate
the size/structure of the routing family (catalog size |A|, top-k constraints,
structured masks) to determine where tail benefits saturate and where un-
certainty becomes essential.

10 Discussion

We conclude by clarifying the scope of our claims, isolating the main limita-
tions of our modeling and analysis choices, and outlining several extensions
that appear technically natural within the same formalism.

Limitations of the shift model and the meaning of “robustness.”
Our objective is distributionally robust only in the specific sense encoded by
CVaRρ over episodes: we emphasize the upper tail of the loss distribution
induced by the meta-training episode sampler (and, at evaluation time, by a
chosen test suite). This differs from worst-case robustness over an adversarial
uncertainty set, and it does not, by itself, guarantee performance under
arbitrary shifts in POOD. In particular, if the support sets S under POOD are
systematically misleading—e.g. they contain spurious cues that are highly
predictive for the router but irrelevant for the query distribution—then even
an optimally calibrated qψ(α | S) relative to PID may route confidently and
incorrectly. Our abstention mechanism mitigates this by capping risk at
Lpre on abstained episodes, but the guarantee is only as meaningful as the
deployment-specific choice of fallback and the calibration of the uncertainty
score U(S).

Moreover, the analysis assumes episodic i.i.d. sampling and bounded
losses ℓ ∈ [0, 1]. While boundedness is not restrictive for classification losses
after normalization, the i.i.d. assumption can fail in practical evaluation
streams (correlated episodes, drifting domains). In such regimes, both our
PAC-Bayes-style controls and the empirical CVaRρ estimator may become
optimistic unless one explicitly accounts for dependence (e.g. via block esti-
mates or martingale variants).
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Discretization: finite routing families versus continuous routings.
Our sharpest generalization and concentration statements treat the rout-
ing family as a finite catalog A, both to obtain explicit dependence on
ES [KL(q(· | S)∥p)] and to make misrouting well-defined relative to latent
routings. In implementation, however, one may use continuous relaxations
(simplex-valued α via softmax, Concrete/logistic-normal posteriors, or top-k
relaxed gates). This creates an approximation gap in both directions: (i) a
continuous router may place mass on routings not representable in a finite
catalog, making it unclear how to interpret ∆-separation between “routings”;
(ii) conversely, a too-small catalog may artificially discretize a smoothly vary-
ing adaptation space, forcing unnecessary routing entropy. Bridging this gap
rigorously likely requires complexity measures beyond |A| (e.g. covering num-
bers or PAC-Bayes bounds for continuous hypothesis classes), and we do not
attempt this here.

The discretization issue is also entangled with computational hardness.
When α is constrained to select a subset of experts under a budget, exact
MAP routing can encode NP-hard subset selection problems. Our method
takes amortization as a design choice: we accept that routing is learned and
approximate, and we shift the emphasis from exact optimality of a discrete
combinatorial problem to calibrated uncertainty and tail-aware training.

Identifiability and separation assumptions. The posterior concentra-
tion claim relies on a separation parameter ∆ between support distributions
associated with different routings. This is a strong assumption: in realis-
tic few-shot regimes, two routings may induce nearly indistinguishable sup-
port statistics, particularly under low ns, class imbalance, or systematic la-
bel noise. Theorem 4 formalizes the consequence: when indistinguishability
holds, no router can avoid a nontrivial misrouting probability. Practically,
this suggests that improvements should be sought not only in router ar-
chitecture but also in the informativeness of S (more shots, better curation,
auxiliary task descriptors), and that abstention is not optional in high-stakes
settings.

Tail-risk estimation is statistically expensive. The dependence on ρ
in both optimization and generalization control is not merely an artifact: our
bound scales as ρ−2, and the lower-bound statement indicates this scaling is
unavoidable in worst-case bounded settings. Consequently, very small ρ (e.g.
ρ = 0.01) can be unstable unless one has a large number N of meta-training
episodes and sufficiently large meta-batches B to estimate the empirical tail.
This is a deployment-relevant limitation: one can train with a moderate ρ to
stabilize learning and still report smaller-ρ metrics at evaluation, but then
the training objective is only an approximation to the evaluation desidera-
tum.
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Extensions: structured sparsity and hierarchical expertization. Our
exposition treats zm ∈ {0, 1}d abstractly; in practice, structured masks (per-
layer blocks, attention heads, channels, or low-rank factors) are often prefer-
able. From an optimization perspective, structured sparsity can reduce gra-
dient variance (fewer independent Bernoulli gates) and can enforce hardware-
aligned constraints. Formally, one may replace ∥zm∥0 ≤ (1− τ)d by module-
wise budgets, e.g.

∑
ℓ ∥zm,ℓ∥0 ≤ Bm, and maintain the same meta-objective

with a primal–dual enforcement of constraints. A further extension is hierar-
chical routing: first choose a coarse expert family (domain-level), then a fine
expert (task-level), which may improve both identifiability (larger effective
∆ at the top level) and interpretability.

Extensions: multi-source and cost-aware priors. The prior p(α) is
an explicit lever for deployment constraints (latency, energy, memory band-
width). In multi-domain settings, it is natural to use a mixture prior p(α) =∑

j πjpj(α), where components correspond to operating regimes (e.g. “cheap”
versus “accurate”) or source domains. More ambitiously, one can place a hy-
perprior on cost parameters and learn them jointly with the router, effectively
performing empirical Bayes while retaining the KL(q∥p) control. In all cases,
we recommend treating p as part of the system specification rather than a
purely statistical regularizer.

Extensions: toward certified abstention. Our abstention guarantee
(Theorem 5) is a decomposition that becomes meaningful when U(S) is
calibrated. A natural next step is to convert the posterior uncertainty into
a certificate. One path is PAC-Bayes: for a given deployment distribution
and a fixed abstention threshold η, one can attempt to bound the selective
risk on the accepted set via a bound on the Gibbs risk plus an estimate of
Pr[U(S) ≤ η]. Another path is conformal-style calibration of U(S) against
excess loss or misrouting indicators on held-out episodes, yielding finite-
sample guarantees on coverage or conditional error under exchangeability
assumptions. We regard such certification as feasible but not automatic, and
it requires careful dataset construction to avoid leakage between calibration
and evaluation episodes.

Deployment guidance. We summarize practical choices that follow log-
ically from our analysis:

1. Choose ρ to match data and risk appetite. Smaller ρ targets rarer fail-
ures but requires more episodes for stable optimization and evaluation.

2. Use Kα > 1 when tail failures matter. Bayes model averaging over a
small number of routings can reduce variance and disproportionately
improve upper-tail metrics, at a linear compute cost in Kα.
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3. Treat abstention as a first-class decision. Select η by risk–coverage
analysis on validation shifts that resemble the anticipated deployment
shifts; ensure the fallback θpre (or conservative routing) is acceptable.

4. Monitor routing drift. The quantities KL(qψ(· | S)∥p) and the entropy
of qψ(· | S) are inexpensive diagnostics; persistent increases can indi-
cate support corruption or domain shift and can trigger conservative
policies.

These recommendations do not remove the fundamental indistinguishability
barrier, but they make explicit where the system is expected to fail gracefully
rather than catastrophically.
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