AutoBudget-SMAT: Primal-Dual Meta-Tuning
with Learned Per-Module Sparsity /Latency
Budgets

Liz Lemma Future Detective

January 20, 2026

Abstract

Sparse MetA-Tuning (SMAT) improves few-shot generalization by
constructing task-specific models as sparse interpolations between a
frozen pretrained backbone and a meta-learned delta, with expert
routing conditioned on few-shot support data. However, SMAT ex-
poses a sensitive global sparsity hyperparameter that governs the in-
distribution (ID) vs out-of-distribution (OOD) trade-off and is poorly
aligned with real deployment constraints such as latency or energy.
We propose AutoBudget-SMAT: a constrained meta-tuning formula-
tion that learns per-module capacity budgets (or per-module sparsity
targets) jointly with routing, using primal-dual updates. Our method
replaces a single global sparsity target with a vector of learned bud-
gets over transformer components (e.g., attention heads, MLP blocks,
or projection matrices) and supports deployment at multiple latency
points without retraining by solving a small routing+budget subprob-
lem at test time. We provide (i) a kernel-aware differentiable latency
proxy and validation protocol linking proxy to wall-clock, (ii) a pri-
mal-dual meta-training algorithm that enforces feasibility via per-
module constraints and multiplier resets, and (iii) a theory of con-
vergence and Pareto-optimality in a convex surrogate regime together
with hardness results for discrete budget allocation. Experiments (to
be included) should demonstrate domination of the ID/OOD Pareto
frontier versus fixed-r SMAT and structured pruning baselines across
heavy OOD suites and multiple hardware profiles.

Table of Contents

1. 1. Introduction: meta-tuning under distribution shift; why global spar-
sity is the wrong knob; deployment budgets (latency/energy) as first-
class constraints; contributions and summary of results.

2. 2. Background and Source Context: SMAT sparse interpolated ex-
perts; ID/OOD trade-off via sparsity; constrained sparsity via La-

10.

grangians; why per-module allocation is suggested by observed mask
patterns.

3. Problem Setup and Formal Objectives: episodic meta-learning no-
tation; define constrained robust meta-objective with latency proxy;
define per-module budgets and deployment profiles; state optimization
targets.

4. AutoBudget-SMAT Method: parameterization of per-module bud-
gets; structured masks vs unstructured; routing conditioned on (sup-
port set, budget); training objective with primal-dual updates and
feasibility enforcement.

5. Latency Proxy and Systems Model: define kernel-aware proxy; as-
sumptions and calibration procedure; proxy-to-wall-clock correlation
bounds; discussion of distortions and limitations.

6. Theory (Convex Surrogate Regime): (i) convergence to approxi-
mate KKT, (ii) Pareto frontier characterization via Lagrange multi-
pliers, (iii) separation theorem: global-7 suboptimality vs per-module
budgets, (iv) oracle lower bounds for first-order methods under con-
straints.

7. Hardness of Discrete Budgeting and Necessity of Relaxations: re-
duction from knapsack/subset selection; implications for why convex
relaxations or stochastic masks are required.

8. Experiments (Implementation-Driven, Strengthening the Contribu-
tion): datasets (Meta-Dataset + extra OOD), backbones (ViT/LLM
adapters), hardware targets; compare against SMAT fixed-7, struc-
tured pruning, slimmable baselines; evaluate Pareto frontiers and de-
ployment transfer.

9. Ablations and Diagnostics: per-layer budget learning vs fixed; proxy
mismatch sensitivity; robustness to routing noise; effect of structured
vs unstructured sparsity; calibration across devices.

10. Discussion and Future Work: multi-source priors, uncertainty-
aware routing, stronger DRO objectives, and tighter latency models.

1 Introduction

We consider the meta-tuning of a large pretrained model under two simul-
taneous sources of mismatch: distribution shift across tasks and deploy-
ment constraints that are external to the learning objective. In the few-shot
regime, the standard meta-learning abstraction posits episodes T ~ Pip
with support—query splits, and a meta-learner that extracts from 7% a task-
specific predictor evaluated on T9. In modern practice the base model is a
pretrained transformer whose parameters are too large to adapt freely per
episode, and thus task adaptation is implemented through low-dimensional
or sparse deltas applied to frozen pretrained parameters. The central dif-
ficulty, and the point of departure for this work, is that the choice of how
much adaptation to permit is inseparable from two realities: (i) at evalua-
tion time the task distribution is not guaranteed to match Pip (we may face
an unknown OOD mixture), and (ii) the deployed model must obey explicit
latency /energy constraints on heterogeneous devices.

A common approach in sparse delta tuning is to introduce a single global
sparsity level 7 controlling the overall nonzero fraction of the adaptation
parameters. Such a knob is appealing because it is scalar and easily swept.
However, we argue that global sparsity is the wrong control variable for
budgeted deployment. First, device cost is not uniform across parameter
locations: different modules (attention projections, MLP blocks, heads, em-
beddings) induce different runtime effects on real hardware, and the mapping
from parameter count to latency is strongly module-dependent. Second,
the predictive utility of adaptation is also nonuniform: some modules are
“high-leverage” for certain tasks, whereas others contribute little, and this
nonuniformity is amplified under distribution shift. Consequently, enforcing
the same effective sparsity pressure across all modules implicitly assumes
a uniform cost—benefit structure that is absent in practice. The result is
a misallocation phenomenon: global-7 budgets may over-constrain modules
that matter for accuracy on hard or OOD episodes while under-constraining
modules whose activation is cheap but unhelpful (or vice versa), yielding
Pareto-inefficient accuracy—latency trade-offs.

For deployment, the natural primitive is not a global sparsity target but
an explicit budget B (latency or energy), possibly varying at test time and
across device profiles. Treating B as first-class suggests the following re-
formulation: rather than selecting a single 7 during training and hoping it
transfers, we aim to learn a policy that, given a support set 7 and a budget
descriptor, constructs a task model whose predicted cost obeys Lat(f) < B
and whose query risk is low. In this view, sparsity is an internal mecha-
nism used to satisfy the external constraint B; what must generalize is the
mapping (7%, B) — 6, not a globally fixed sparsity rate.

This perspective is further sharpened by the observation that latency
constraints are inherently modular. Let ¢ € [L] index a partition of the

model into modules, each with a device-dependent cost model ¢y(D). Even
when latency is only approximately additive, per-module budgeting remains
a faithful abstraction because it allows the learning procedure to allocate
capacity to where it most improves task loss subject to the true constraint of
interest. Formally, we regard per-module capacities b, as decision variables,
and we enforce constraints of the form

E[nnzg(z)/de] < by, Lat(d) < B,

while maintaining task-dependent routing coefficients on the simplex. The
key point is that b = (bg)gem is not merely a set of hyperparameters but
a learned object, potentially a function of B, that captures how the meta-
learner should spend its adaptation budget across modules.

The contributions of this work are organized around this budget-first for-
mulation. (i) AutoBudget meta-tuning. We introduce a primal-dual meta-
optimization scheme that jointly learns (a) a shared dense delta A and ex-
pert masks {2, }M_, supporting sparse interpolated experts, (b) a routing
rule producing task-dependent mixing weights a from (7%, B), and (c) per-
module capacity budgets b(B) that mediate structured sparsity. The train-
ing objective augments the usual expected query loss by Lagrangian terms
for per-module capacity violations and for a differentiable latency proxy,
thereby treating feasibility as a persistent training-time constraint rather
than an after-the-fact pruning step.

(ii) Budgeted test-time adaptation. At meta-test, we do not fix a sparsity
level; instead, given (7%, B) we solve a small routing-+budget subproblem
that optimizes support loss plus dual penalties subject to Lat < B. This
yields a task model that is feasible by construction with respect to the proxy,
and (under standard proxy distortion assumptions) feasible with high proba-
bility with respect to true measured latency up to multiplicative and additive
tolerances.

(iii) Convex-surrogate theory and Pareto structure. In a convex surro-
gate regime (linearized models with convex losses and convex constraints),
we show that stochastic primal-dual updates converge to an approximate
KKT point in O(1/£?) first-order iterations. Moreover, we characterize how
varying the latency multiplier traces supported Pareto-optimal points of the
risk—latency trade-off, clarifying the relation between Lagrange multipliers,
deployable budgets, and the attainable frontier.

(iv) A provable limitation of global sparsity. We provide a separation re-
sult: there exist task families and module cost structures for which any global
sparsity constraint 7 yields a strictly suboptimal constrained risk compared
with per-module budgeting under the same total latency. This formalizes
the earlier intuition that a single global knob cannot, in general, express the
optimal allocation of adaptation capacity across heterogeneous modules.

(v) Algorithmic necessity of relazation. Finally, we note that exact dis-
crete module selection is computationally hard even for simple additive cost

models and linearized benefits, motivating our reliance on convex relaxations,
stochastic masks, and primal-dual training rather than combinatorial search.

The remainder of the paper develops the necessary background, begin-
ning with SMAT-style sparse interpolated experts and their typical global-
sparsity instantiations, and then explains how Lagrangian constrained learn-
ing and observed module-wise mask patterns naturally lead to per-module
budget allocation.

2 Background: SMAT-style sparse interpolated ex-
perts and constrained sparsity

We recall the sparse interpolated expert parameterization used in SMAT-
style meta-tuning, and we emphasize how sparsity serves simultaneously
as (a) an adaptation-capacity control relevant to ID/OOD behavior and
(b) a mechanism for satisfying external deployment budgets. The essen-
tial construction begins from a frozen pretrained backbone with parameters
6P and introduces a shared dense delta A € R together with M expert-
specific masks {2,,}M_,, where each z, € {0,1}¢ (or a continuous relax-
ation thereof). Given a task (episode) T; with support set T, a routing rule
produces mixing weights a; € AM~1 on the simplex, and the task-specific
parameters are formed as

M
0 = 07 + 3 Qi (2 © A).

m=1

This representation has two consequences that are useful in the few-shot set-
ting. First, it shares statistical strength across tasks through the common
A while permitting task variation through both the routing weights and the
mask structure. Second, it yields a natural continuum between “no adapta-
tion” and “full adaptation” by moving along two axes: interpolating among
experts via «; and varying the active fraction of parameters via the masks.

The role of M > 1 experts is not merely to provide a mixture-of-experts
ensemble; rather, it creates a discrete (or piecewise) set of sparse subnet-
works within the same delta space, so that the meta-learner can represent
qualitatively different update patterns while maintaining a fixed base model.
In typical implementations, the routing rule depends on a task embedding
computed from T (for instance by pooling representations under fgpre) and
then applying a small controller network whose output is normalized by a
softmax to enforce a; > 0 and), ;. = 1. The masks may be treated
as Bernoulli variables with learnable logits, or replaced by a differentiable
stochastic gate (e.g. hard-concrete) so that the expected sparsity can be op-
timized by gradient methods while retaining the option to sample discrete
masks for deployment.

Sparsity enters as a capacity control, and thus influences the ID/OOD
trade-off in a manner analogous to classical regularization. When meta-
training tasks are drawn from Pip, increasing the effective degrees of freedom
of the adaptation (by allowing a larger nonzero fraction in z, ® A, or by
spreading «; across multiple experts) can reduce the empirical meta-training
query loss. However, under distribution shift—here modeled as evaluation
on an unknown mixture Poop—additional adaptation flexibility can amplify
reliance on spurious task-specific correlations present in Pip but absent in
Poop. Conversely, enforcing higher sparsity can improve stability by con-
straining updates to a smaller subspace, but this may underfit genuinely
hard tasks or tasks whose Bayes-optimal predictor differs substantially from
@Pre. Thus, sparsity is not an incidental compression device; it is a principal
knob governing the effective hypothesis class of per-task predictors, and it
directly shapes the attainable risk trade-offs across ID and OOD regimes.

A widespread baseline is to impose a single global sparsity target 7 €
[0, 1] (equivalently a single nonzero budget), typically enforced in expectation
across all parameters of the delta. Writing ||z,||o for the number of active
coordinates in z,,, one may constrain, for instance,

1
8E[||Zm||0] <1-7 for each m € [M],

or an aggregated variant coupling the experts. The practical appeal is ev-
ident: a single scalar can be swept to obtain an empirical accuracy—cost
curve. From an optimization viewpoint, this constraint can be incorporated
via a Lagrangian term, leading to objectives of the schematic form

min Egep [LoO0T)] + A(3E[Izl0] - (1 7)),
A,{mask params},(

where ¢ denotes routing parameters and A > 0 is a multiplier. Even in the

absence of explicit deployment budgets, such a Lagrangian view is useful: it

clarifies that sparsity constraints are not external post-processing but can be

treated as first-class constraints during meta-optimization, with A adapting

to enforce approximate feasibility.

When we introduce explicit device constraints, Lagrangian constrained
learning becomes unavoidable. A latency proxy Lat(f) can be differentiated
through and compared to a budget. The natural constrained formulation is
therefore not “choose 7” but “choose 6 so that Lat(f) < B”. In this setting,
a global sparsity constraint is at best an indirect surrogate: it enforces a
parameter-count budget that is only loosely coupled to measured latency,
and the coupling can vary across device profiles. The Lagrangian perspective
makes the mismatch concrete: even if a global 7 is enforced tightly, nothing
guarantees that the resulting Lat(f) satisfies a particular budget B, nor
that it does so uniformly across tasks whose routing weights induce different
patterns of computation.

This observation leads to the central structural limitation of global spar-
sity: it conflates heterogeneous modules into a single pool. Let ¢ € [L] index
a partition of the backbone (e.g. attention projections, MLP blocks, heads),
and write nnzy(z) for the number of active delta coordinates that fall in mod-
ule ¢. Empirically and algorithmically, masks learned under SMAT are not
uniform across £. Instead, we often observe concentration phenomena: cer-
tain modules consistently receive higher mask density because they provide
larger loss reductions per active parameter, whereas others remain sparse
across tasks. Moreover, this pattern is task-dependent: routing can shift
mass toward experts whose masks emphasize particular modules, reflecting
that distinct tasks benefit from distinct adaptation loci. Such nonuniformity
is not an artifact; it is a learned representation of where adaptation is most
effective.

Once one acknowledges this, it becomes natural to replace the single
scalar 7 by a vector of per-module capacity budgets b = (bg)ge[L] and to
enforce constraints of the type

E[onze(2)/df] < be, L€ L,

with a corresponding collection of multipliers {/\g}eem. This modification
is suggested simultaneously by (i) the observed mask patterns (which al-
ready behave as if they were allocating capacity across modules) and (ii)
the operational semantics of latency (which depends on module-wise com-
putational structure rather than on a uniform parameter count). In other
words, per-module budgeting does not introduce a qualitatively new control;
it makes explicit and optimizable a structure that the learned masks already
exhibit implicitly, while aligning the constraint interface with the modularity
of runtime cost.

Finally, we stress a methodological point that will underlie the formal
objectives later: once constraints are expressed at the appropriate granular-
ity, primal-dual training becomes the natural meta-optimization paradigm.
The primal variables govern prediction (the delta, masks, routing), while the
dual variables encode the shadow prices of violating capacity and latency
constraints. In regimes where relaxations render the constraints differen-
tiable and (approximately) convex, multiplier updates provide a principled
mechanism to steer training toward feasible predictors without hard thresh-
olding during learning. This framing also anticipates the test-time procedure:
rather than fixing sparsity a priori, one solves for a configuration that trades
support-set fit against the learned constraint prices, yielding a task model
that respects the prescribed budget.

3 Problem setup and formal objectives: episodic
tasks, budgets, and robust constrained risk

We work in the standard episodic meta-learning setting. A task (episode)

T consists of a labeled support set T = {(z;,y;)};2; and a labeled query

set T7 = {(z;, yj)}?il. Meta-training tasks are sampled i.i.d. as T; ~ Pip,
while meta-testing may draw tasks from Pip and also from an unknown
shifted distribution Poop (or a mixture thereof). For each episode, a task-
adapted parameter vector §(T') is constructed from the support set and then
evaluated on the query set via a query loss L7(0(T)) (e.g. cross-entropy),
optionally augmented by regularization or distillation terms. Throughout,
frre is fixed, and the adaptation degrees of freedom are those induced by
sparse deltas as described in the background.

Deployment imposes explicit compute constraints. We therefore intro-
duce a set of device profiles {D,} (or, equivalently, a parametric cost model)
and a scalar budget descriptor B provided at test time. The budget can
encode latency, energy, or a composite cost; for concreteness we write “la-
tency.” Given a device profile D and parameters 6, let Lat(0; D) denote the
true measured latency. Since true measurements are not differentiable and
are exgagsive to query during training, we assume access to a differentiable
proxy Lat(60; D) satisfying a high-probability distortion bound of the form

Lat(0;D) < kLat(6;D) + erat, £ > 1, €ar > 0, (1)

uniformly over the family of candidate adapted models considered by the
algorithm. A sufficient condition for device-feasibility is then

Lat(s;D) < 2 2
whenever B > ¢4, which motivates treating Lat as the constraint during
learning and test-time optimization.

To align the constraint interface with the architecture, we partition the
delta parameters into L modules (blocks/components) indexed by ¢ € [L],
and we denote by dy the number of delta coordinates in module ¢ so that
S°F | dy = d. For a given mask z (or a stochastic relaxation thereof), we write
nnzy(z) for the number of active coordinates within module £. We associate
each module with a device-dependent marginal cost ¢;(D), which may be
a learned coefficient in an additive proxy model or an empirically fitted
statistic. This allows us to express capacity constraints at module granularity
through per-module budgets b = (bg)sc[z), where by € [0,1] specifies the
allowed active fraction of delta coordinates (or structured activations) in
module ¢. The canonical constraint we enforce is

E[mz’jz)] < b, lell], (3)

8

where the expectation is taken over any internal mask randomness (e.g.
Bernoulli or hard-concrete sampling). The role of is twofold: it pro-
vides a direct handle on adaptation capacity (hence on generalization under
shift) and it supplies a structured proxy for cost that is substantially more
informative than a global scalar sparsity.

We now formalize the meta-objective as a robust constrained risk mini-
mization. Let 1 denote all meta-parameters (shared delta, mask parameters,
and routing/controller parameters), and let 6,(7°, B, D) be the task model
constructed from support set 7 and test-time budget B (and possibly profile
D). A basic constrained ID objective is

min Eropp [£r(04(T°, B,D))] st Lat(6,(T%, B,D); D) < B, (B) holds,
(4)

together with the routing simplex constraints o(7%, B) € AM~1 whenever
a mixture over experts is used. However, since meta-testing may involve
a shifted task distribution, we replace the plain expectation over Pip by a
robust criterion. Two instantiations that fit our analysis are:

min sup Epg[Lr(84(T°, B,D))] s.t. feasibility constraints as in (4)),
Y Qeu(Pip)
()

mlgn CVaRg(Lr(0y(T°, B,D))) s.t. feasibility constraints as in (), (6)

where U(Pjp) is an uncertainty set intended to cover plausible OOD mix-
tures and (8 € (0, 1] tunes the tail emphasis. Both formulations capture the
principle that adaptation should be chosen not merely to optimize average
ID query loss, but to control worst-case (or high-quantile) query loss under
a constrained compute envelope.

Finally, we make explicit the test-time interface implied by f@. At
deployment, we observe (7%, B, D) and must produce an adapted model that
is feasible for the given budget. Since the learned meta-parameters specify a
family of feasible configurations rather than a single fixed sparsity, we view
meta-testing as solving the episode-conditioned constrained subproblem

0*(T*,B,D) € i Lrs(0) st. Lat(6;D) < B, (@) holds,
() € arg, omin o Lre(0) st Lat(0;D) < olds
(7)

where O(¢;T%, B, D) denotes the structured family of models realizable
by the sparse-interpolated parameterization under meta-parameters 1 (e.g.
varying routing weights and relaxed mask activations). In the convex sur-
rogate regime, the dependence of both loss and proxy constraints on the
gating variables is convex by assumption, so admits efficient approxi-
mate solutions and admits a standard Lagrangian/KKT characterization.
Our algorithmic goal in the sequel is to learn ¢ so that this subproblem is

(approximately) feasible for a range of budgets and device profiles, while
achieving low robust meta-risk; and, in the convex setting, to do so with
iteration complexity consistent with obtaining an e-KKT point.

4 AutoBudget-SMAT: per-module budget learning,
structured experts, and primal-dual meta-optimization

We now specify the parameterization and optimization scheme that instanti-
ates the constrained meta-objective with learned per-module capacity bud-
gets. The starting point is the SMAT-style family of task models

M
0; = 6 + Z Wi (2m © A), o € AML (8)

m=1

where A is a shared dense delta, z,, € {0,1}¢ (or a relaxation) is the mask
for expert m, and «; are episode-specific mixing weights computed from the
support set and a budget descriptor. The AutoBudget-SMAT distinction
is that (i) capacity is controlled per module via b = (b¢)sc(z) rather than
through a single global sparsity 7, and (ii) b is itself predicted (or optimized)
as a function of the test-time budget B.

Per-module budget map. Rather than treating b as a fixed hyperparam-
eter vector, we parameterize a budget policy B +— b(B;w) with parameters
w. Conceptually, b(B;w) allocates the available compute among modules,
and must satisfy

0<b(Biw) <1, (lelL], (9)

together with a qualitative monotonicity requirement: larger B should not
(systematically) reduce allowed capacity. A convenient implementation is a
coordinate-wise monotone map, e.g. by(B;w) = o(g¢(B;w)) with gy nonde-
creasing in B (enforced by positive weights or isotonic calibration). This
produces a differentiable interface through which gradients can flow from
query loss and constraint penalties to w, allowing the allocation policy to be
learned from data rather than manually set.

Structured masks versus unstructured masks. The constraints are
expressed at module granularity via expected activation fractions, and the
choice of mask family governs both trainability and whether sparsity trans-
lates into realized device savings. In the most permissive (but systems-weak)
form, z,, is unstructured and factors across coordinates, yielding

Zm,; ~ Bernoulli(my, 5), mmyj € (0,1), (10)

10

with 7, ; produced by learned logits (optionally per-module). While such
masks can satisfy E[nnze(z,,)/d¢] < by, they rarely produce proportional
wall-clock improvements without specialized kernels.

Accordingly, we primarily target structured mask families that are com-
patible with standard acceleration (block sparsity, head pruning, MLP neu-
ron groups, low-rank adapters with rank gating, etc.). Abstractly, we let
each module ¢ be partitioned into K, groups, and we gate at the group level:

L K,

Zmek €401}, 20 A = DD zmik Ak, (11)
(=1 k=1

where Ay} denotes the delta parameters belonging to group k£ in module ¢
and & denotes concatenation in parameter space. The module budget is then
enforced in terms of expected active groups (or expected active parameters
induced by groups), which provides a closer correspondence between the
constraint and real compute reductions.

For differentiable optimization we relax the binary gates via a continuous
distribution (e.g. hard-concrete), writing 2, ¢ € [0, 1] with reparameteriz-
able samples. The per-module capacity constraint becomes

nnzy(z

B 5| < bpi), ce (12
l

where nnzy(Z,) is interpreted as an expected active mass (or expected num-

ber of active groups mapped to an equivalent parameter count). This retains

the modular accounting needed for budget allocation, while remaining com-

patible with gradient-based learning.

Budget-conditioned routing. FEach episode T; produces mixing weights
a; through a routing/controller network

M
o = hg(ﬂs7B), (67 Z O) Z ai,m -]-7 (13)
m=1

with parameters ¢. The input 7;° can be summarized by any permutation-
invariant representation of the support set (e.g. pooling of frozen features
forre(z) and labels), and the scalar B can be embedded and concatenated
to this representation. Conditioning on B is essential: even if the task
identity is fixed, different budgets should select different mixtures of experts
and different effective adaptation capacities. In practice we interpret h¢
as providing a soft selection among experts, with the masks z,, controlling
which parts of A each expert can express.

11

Primal-dual training objective. We optimize a Lagrangian relaxation
of the constrained robust meta-objective. Let ¢ = (A, ¢,(,w) collect pri-
mal parameters, where ¢ parameterizes the mask distributions (e.g. hard-
concrete logits per expert and group). For a sampled task T; and a training-
time budget Birain, we form 6; as in using a; = h¢ (T, Birain) and masks
drawn (or deterministically set) according to ¢, subject to the current budget
policy b(Birain; w). We then define constraint residuals

—

Vig = E[lmfii(Z)] - bf(Btrairﬁw)y U; = Lat(ez) — Btrain, (14)

and the per-task Lagrangian contribution

L
FiW,\p) = Lr(6:) + > Mevig + pui, Ap =00 (15)
/=1
The multipliers A = (\¢)ge(z) enforce module capacities, while u enforces

the latency proxy budget. This separation is operationally important: A
redistributes capacity across modules as dictated by the data, whereas p
regulates the overall aggressiveness of adaptation as budgets change.

Stochastic primal-dual updates and feasibility enforcement. Meta-
training alternates between (stochastic) descent on primal variables and pro-
jected ascent on dual variables. For a batch of tasks B we perform

v v =0V g 2 aAm) (16)
i€B
Ae [Ae+m (%;vm)h, po= [u+nu (IlB!%;;”L (17)

where [-]4 denotes projection to R;. To stabilize training in the nonconvex
regime, it is often beneficial to include a simple feasibility heuristic: when
empirical violations remain negative over a window, we damp or reset the
corresponding multipliers (preventing over-penalization once constraints are
satisfied), and we clamp b(B;w) within (9 at all times.

At meta-test time, given (7%, B), we solve a small constrained rout-
ing+budget subproblem over (a,b) (and optionally relaxed mask param-
eters) using a few projected gradient or dual ascent steps, holding (A, ¢)
fixed. The resulting configuration defines § = 6P*° + 5" (2, © A), which
is then used for prediction on the query set. This decomposition—heavy
learning of shared structure in v and light budget-conditioned optimization
at deployment—is the mechanism by which AutoBudget-SMAT achieves ex-
plicit feasibility while retaining task adaptivity.

12

Latency proxy and systems model. The constraint LAat(Hi) < B is
only useful insofar as Lat reflects what a deployment system will actually
execute. We therefore treat latency estimation as a kernel-aware modeling
problem tied to a device profile D (hardware, compiler/runtime, sequence
length regime, batch size, precision, and sparsity kernel availability). Con-
cretely, our module partition {¢ € [L]} is chosen to coincide with operator
blocks whose execution time is separately measurable (e.g. attention projec-
tions, attention output, MLP up/down projections, layer norms, and task
heads). For each such module we maintain an empirical cost model ¢;(D)
that maps a structured activation level to a predicted incremental latency.

A kernel-aware proxy from structured gates. Because we enforce
sparsity through structured groups (cf.), the relevant control variable is
not a coordinate-wise £y count but a group-level activation statistic. For a
task instantiation ¢; and module ¢, we define an (expected) activation level

Sif = E

1 &
— Z 1 1
KZ kZ_l Zﬁ,k’] € [07]7 (8)

where for notational simplicity we suppress the expert index and interpret
Zy 1, as the effective gate mass after combining experts (e.g. via an a-weighted
mixture of per-expert gates, or via a deterministic selection rule when only
one expert is activated). The latency proxy is then modeled as

L
Lat(0; D) = Lat(6"*;D) + > csieD), (19)
=1

where Lat(0P¢; D) is a measured constant and ¢y(+; D) is a differentiable func-
tion capturing the cost (or savings) induced by sparsity in module ¢. The key
point is that ¢, is kernel-aware: it is not assumed linear in s; ¢, since real ker-
nels often exhibit quantization effects (e.g. block sizes), non-negligible launch
overhead, and discrete algorithm switches. A simple and effective choice is a
monotone piecewise-linear or piecewise-quadratic function, implemented in
a differentiable manner (e.g. via softplus-smoothed hinges), and constrained
to be convex in s; ¢ to preserve tractability in the surrogate analysis.

Calibration by measurement and conservative fitting. We calibrate
¢¢(+; D) by direct timing measurements on D (or on a faithful simulator). For
each module ¢ we generate a grid of activation levels {s(t)}thl and instantiate
corresponding structured masks (e.g. enabling a specified number of groups),
then measure the realized end-to-end latency of the full model under a fixed
inference setting (sequence length, batch size, precision). To isolate module
contributions, we either (i) microbenchmark each module in isolation with

13

representative tensor shapes, or (ii) fit the additive model from end-to-
end measurements by regressing the observed latency residual against the
vector (sie¢)ecir)- In both cases we prefer a conservative fit: rather than
least squares, we fit an upper envelope (e.g. a high-quantile regression or
a least-squares model with a positive slack margin) so that Lat is biased
upward. This choice aligns with feasibility at deployment: it is preferable
to reject some configurations that would in fact run under budget than to
accept configurations that violate the budget.

Proxy-to-wall-clock distortion model. Even with kernel-aware calibra-
tion, latency exhibits unavoidable variation from runtime jitter, memory
effects, and interactions across modules (operator fusion, cache reuse, and
parallelism). We therefore formalize the proxy error by distortion parameters
(K, €1at) as in (H3). For each profile D we postulate that, with probability at
least 1 — ¢ over the measurement noise (and any randomized masking used
at inference),

Lat(0; D) < x Lat(6; D)+ €1at, for all # in the considered model family.

(20)
This inequality should be read as a high-probability one-sided bound: we
design Lat to be an approximate upper bound, but allow a multiplicative
looseness k > 1 and an additive slack €,; > 0 to accommodate systematic
bias and fixed overheads (kernel launches, runtime framework overhead, and
I/0). While is an assumption, it can be empirically validated by holding
out configurations not used in calibration and reporting coverage at level
1-6.

Implications for feasibility under a true budget. If a deployment
budget is specified in terms of true latency, i.e. Lat(6; D) < B, then
implies a sufficient (proxy) condition

B — €1at

Lat(0:D) <
at(6:D) < —

— Lat(6;D) < B (on the event in (20])).

(21)
Accordingly, when we enforce Eﬁ(@i) < B inside the optimization, we may
optionally interpret B as a shrunk effective budget (Birue — €1at)/k S0 that
proxy-feasibility implies wall-clock feasibility with the desired confidence.
This is also the point at which device-specific overhead enters: if €, is
dominated by constant runtime costs, then very small budgets are necessarily
conservative, whereas for large models the multiplicative term s typically
dominates.

Multiple device profiles and budget descriptors. When deployment
may occur on a set of profiles {D,}, we maintain either a separate proxy

14

for each D,., or a single proxy parameterized by a learned embedding of
D. The budget descriptor B provided to the routing/budget policy can then
be interpreted as profile-conditional (e.g. milliseconds on D,.) or normalized
(e.g. as a fraction of Lat(6P®;D,)). In either case, the policy must learn to
allocate capacity across modules in a manner compatible with the profile-
dependent costs ¢/(D,): a module that is relatively expensive on one device
(e.g. memory-bound MLPs) may be relatively cheap on another.

Limitations and failure modes. The proxy is only as good as the corre-
spondence between mask structure and kernel behavior. Unstructured spar-
sity (coordinate-wise Bernoulli masks) typically fails to yield proportional
savings, and even structured sparsity can underperform if kernels do not
exploit the structure (e.g. missing support for certain block sizes or ranks).
Moreover, end-to-end latency is not strictly additive across modules; is
an approximation whose error can grow when operator fusion or reordering
changes with sparsity patterns. Finally, latency depends on inference-time
details not represented in 6 alone (sequence length distribution, KV-cache
reuse, and compilation caching). For these reasons we treat Lat as a cali-
brated, differentiable control signal rather than a perfect predictor, we explic-
itly account for distortion via (k, €1at), and we expect periodic recalibration
when the deployment stack changes.

Convex surrogate regime and decision variables. For the purpose
of analysis we consider a surrogate in which the feature extractor induced
by 6P is frozen and the task loss depends on the adapted parameters only
through a convex prediction layer (or, more generally, through a linearization
of the network around 6P*°). In this regime the effective decision variables for
a single episode T' can be taken as the routing weights o € AM~1 together
with continuous (relaxed) structured gates, which we summarize by the per-
module activation levels s = (s¢)eepz) € [0,1] as in (I8). We write the
expected query loss as {7 (a, s) and assume ¢ is convex and G-Lipschitz in
(a, s), uniformly over T' ~ Pip. Likewise, we assume the proxy cost term
Ija\t(a,s) .= Lat(6P™) + Zle co(sp) is convex and H-Lipschitz in s. The
per-module capacity constraints take the convex form

gela,s;b) == sg—b < 0, Le[L], (22)
and the (proxy) deployment constraint is
h(a, s; B) := m(a,s) - B < 0. (23)

We emphasize that b may itself be a learned quantity (or the output of
a learned map B — b(B)), but in the convergence statement below we
treat b and B as fixed, since the standard primal-dual argument applies
conditionally on the constraint specification.

15

Lagrangian formulation and e-KKT. Define the (episode-wise) La-
grangian

L

Lr(avsihp) = lo(ays) + 3 Aegila,sib) + phla,s:B), (24)
/=1

with dual variables A € Ri and p € Ry. An e-KKT point for the con-
strained problem consists of (a*,s*, A*, u*) such that (i) primal feasibility
holds up to &, namely ge(a*,s*;b) < ¢ and h(a*,s*; B) < ¢ for all ¢; (ii)
dual feasibility A*, p* > 0 holds exactly; (iii) complementary slackness holds
up to e, i.e. \j ge(ar,s;b) < € and p*h(a*,s*; B) < ¢; and (iv) station-
arity holds up to € in the sense that the norm of the projected gradient of
(a, 8) = Ep[Lr(a, s; \%, 1*)] at (a*, s*) is at most e.

Stochastic primal-dual convergence. Consider stochastic projected primal—
dual mirror descent on , where at iteration ¢ we sample T; ~ Pip, take a
(sub)gradient step in («, s) with step size 7;, and update (A, u) by projected
ascent:

M1 = [t + e ge(aw, si;b)] pesr = [+ neh(ow, s B)] . (25)

Under boundedness of the feasible set and the Lipschitz assumptions above,
standard saddle-point arguments yield that with 7, = ©(1/+/T) the iterate
average (ar,Sr) satisfies both expected suboptimality and expected con-
straint violation of order O(1/v/T). Equivalently, there exists an iterate (or
an average) that is e-KKT after O(1/£?) stochastic first-order calls. The
salient point for our setting is that the per-module constraints do not
alter the qualitative rate: they only increase the dimension of the dual by
L, while dual feasibility is maintained by the projections in . In the full
nonconvex transformer instantiation, we use the same updates as a heuristic;
the surrogate theorem should be read as an explanation of why the mech-
anism (dual ascent on constraint violations coupled to primal descent) is a
principled way to enforce budgets.

Pareto frontier via Lagrange multipliers. In the convex surrogate,
the constrained problem induces a natural bi-objective trade-off between
expected query loss and expected proxy latency. Consider the supported
Pareto set of pairs

(Erler(a.s)), BrlLat(a,)])

over feasible («,s). By convex analysis, every supported Pareto-optimal
point is a minimizer of a weighted sum Er[lr(a,s)] + MET[E%R(Q, s)] for
some p > 0, and conversely every p yields a supported point (possibly non-
unique). The multipliers (A, u) therefore play two roles: p parameterizes

16

the loss—latency trade-off, while A encodes the shadow prices of per-module
capacity. When module costs ¢;(D) are heterogeneous, the ability to tune
A separately amounts to reallocating capacity toward modules with higher
marginal utility per unit cost, rather than enforcing a single global sparsity
target 7 that implicitly sets the same shadow price across all modules.

Separation between global-7 and per-module budgets. The preced-
ing observation can be made formal by exhibiting instances in which any
global sparsity constraint is strictly suboptimal. In a two-module surrogate
(L = 2), let the feasible decisions be (s1,s2) € [0,1]?, let the latency be
additive with unequal costs, say ﬁ(s) = ¢181 + 289 with ¢1 > 9, and let
the expected loss be convex and separable with sharply different curvature,
e.g.

Er[lr(s)] = a1(1 —51)% + aa(1 — 52)%, a1 > ay > 0. (26)

Under a fixed latency budget ¢1s1 4 cos9 < B, the optimal solution allocates
most capacity to module 1 (large a1) until its marginal benefit matches that
of module 2 scaled by costs. In contrast, a global-7 constraint forces s;
and sy to follow a single sparsity level (or an equivalent shared budget),
which prevents this cost-adjusted equalization of marginal gains. One may
verify directly (by solving the convex programs in closed form) that there
exists A > 0 such that the minimum of under the global-7 feasible set
exceeds the minimum under the per-module (or latency) feasible set by at
least A, even when the two solutions match in total proxy latency. This
demonstrates that the improvement from learned per-module budgets is not
merely empirical but can reflect a genuine increase in the expressive power
of the constraint set.

First-order oracle lower bounds. Finally, the O(1/2) iteration com-
plexity in the convex surrogate is essentially unimprovable for stochastic
first-order methods. Indeed, even without constraints, stochastic convex op-
timization with Lipschitz gradients admits an Q(1/¢2) lower bound on the
number of oracle calls needed to reach expected suboptimality €. Constrained
problems inherit this hardness by restricting attention to instances where the
optimum lies in the interior (so constraints are inactive) or by a standard
reduction that embeds an unconstrained hard instance into a feasible set
with a simple projection operator. Thus, while better constants and adap-
tivity are possible, one should not expect asymptotically faster rates from
any method that accesses the meta-objective only through noisy gradients
of episodic query losses and convex proxy constraints.

Hardness of discrete per-module budgeting. We now isolate a basic
combinatorial subproblem that already captures the difficulty of enforcing

17

deployment budgets with discrete architectural decisions. Consider a simpli-
fied instantiation in which routing is fixed (e.g. M =1 and o = 1) and each
module ¢ € [L] is either fully active or fully inactive. Let xy € {0,1} denote
whether the delta for module ¢ is enabled (equivalently, whether the struc-
tured mask for that module is nonzero). Assume an additive proxy latency
model of the form

- - L

Lat(x) = Lat(*°) + Zcz xy, ¢ >0, (27)

(=1

and a per-episode loss that (after linearization or in a regime where marginal
improvements decouple) depends on the selected modules through a known
linear benefit,

L
br(z) = €r(0) = Y vf(T)xy, ve(T) > 0. (28)
(=1
Given a budget B, the per-episode discrete budgeting problem is
min fp(x) s.t. I/Ja\t(ac) < B, (29)
z€{0,1}L

or, equivalently, maximize), ve(T)x, subject to >, cpxy < B — fzﬁ(ﬁpre).

Reduction from knapsack. We claim that is NP-hard, even un-
der the benign assumptions f. Indeed, consider an instance of 01
knapsack with items {1,..., L}, weights wy € N, values uy € N, and capacity
W € N. We map item £ to module £ by setting

cp = wy, ve(T) = uy, B = ﬁ(apre) + W.

Then any feasible selection = corresponds to a feasible knapsack subset,
and the objective in differs from the knapsack value), usx, only by
the constant ¢7(0). Therefore an optimizer of yields an optimizer of
knapsack. Since 0—1 knapsack is NP-hard, so is . The same construction
yields NP-hardness for exact-fit variants (subset sum) by taking ve(7T) to
encode a feasibility decision and setting a target value threshold.

Hardness persists under additional structure. The preceding reduc-
tion uses only one binary decision per module. The full SMAT-style adapta-
tion space is strictly richer: we may allow binary masks at finer granularity
(within modules), multiple experts {z,}*_,, and task-dependent routing
a;. Restricting these richer models to the special case above recovers (129)),
hence any exact test-time solver that optimizes discrete masks under a bud-
get would solve knapsack in the worst case. In particular, even if we re-
place by a more faithful convex surrogate loss, the discrete feasibility
set {0, 1}* already introduces combinatorial complexity independent of the
curvature of the loss.

18

Why pseudo-polynomial algorithms do not resolve the meta-learning
setting. Omne might object that knapsack admits pseudo-polynomial dy-
namic programming and an FPTAS. However, these guarantees are not di-
rectly actionable here for three reasons. First, the effective number of deci-
sions in structured masking is typically much larger than L (e.g. block-wise
gates across attention projections and MLPs), making pseudo-polynomial
dependence on the budget magnitude prohibitive. Second, our objective is
not a fixed, known value vector vy but an episode-dependent loss ¢7(-) ac-
cessed only through stochastic gradients on (7%, 7'7); thus, even evaluating
the benefit of a candidate subset is costly and noisy. Third, we require fast
test-time adaptation (ideally a handful of forward passes and cheap projected
steps), whereas exact or approximation schemes for combinatorial selection
generally entail nontrivial per-instance computation and non-differentiable
choices that hinder end-to-end learning.

Necessity of relaxations. The hardness result should be read as a struc-
tural justification for replacing discrete gates by continuous surrogates. Con-
cretely, we introduce relaxed activation variables sy € [0, 1] and optimize over
(v, 8) in a convex (or approximately convex) domain, subject to proxy con-
straints such as

sp < by, faR(oa,s) < B.

This relaxation eliminates the combinatorial nature of by permitting
fractional allocations. When ¢7(«, s) and m(a, s) are convex in (a, s), the
resulting constrained program can be solved to an e-KK'T point by standard
first-order primal-dual methods, and the test-time subproblem becomes a
small convex optimization rather than a subset-selection search.

Stochastic masks as differentiable approximations to discrete selec-
tion. In the nonconvex transformer regime, we do not truly solve a convex
program, but the same relaxation principle applies: we parameterize masks
via continuous distributions (e.g. hard-concrete or Gumbel-softmax relax-
ations) so that E[z] behaves like s and gradients propagate through the mask
parameters. The per-module budgets by then constrain either the expected
nonzero fraction or a structured activation statistic. From the perspective
of (29), we have replaced the intractable binary decision zy € {0,1} with a
differentiable proxy s, € [0, 1] that can be optimized jointly with routing «
and the shared delta A.

Rounding, feasibility, and integrality effects. Relaxation inevitably
raises the question of how fractional solutions translate to executable sparse
models. In practice, structured execution (e.g. block sparsity) permits deter-
ministic rounding by thresholding gates or sampling a binary mask according
to learned probabilities. While worst-case integrality gaps can be large for

19

knapsack-type relaxations, our goal is not worst-case optimality but reliable
budget satisfaction and good empirical risk under Pp with robustness to
Poop. The dual variables (shadow prices) learned during meta-training pro-
vide a mechanism to bias solutions away from near-violations, improving the
probability that rounding respects Lat < B and, via the proxy distortion
assumption, that true latency is controlled on device profiles.

Implication for the design of the test-time solver. The reduction
above implies that, absent relaxations, a test-time procedure that exactly
selects discrete modules under a budget is unlikely to be simultaneously
(i) general, (ii) fast, and (iii) optimal. This motivates our design choice:
we restrict the test-time solver to optimizing a continuous routing+budget
parameterization (and, if needed, a low-step dual update) so that deployment
feasibility can be enforced by projection or Lagrangian penalties. In short,
the relaxation is not an aesthetic preference but a computational necessity
dictated by the combinatorial hardness of discrete budgeting under additive
resource constraints.

5 Experiments

Experimental questions. We design experiments to validate three claims
suggested by the preceding optimization and hardness discussion: (i) budget-
conditioned per-module capacity learning yields a strictly better accuracy—
latency trade-off than any fixed global sparsity target 7 (including SMAT-
style fixed-7 baselines); (ii) the learned primal-dual policy produces models
that satisfy deployment budgets under measured device latency, not merely
under a proxy; and (iii) the learned budget policy transfers across deployment
profiles, in the sense that a policy trained with a particular set of profiles
{D,} continues to trace a competitive Pareto frontier on unseen profiles.

Few-shot benchmarks and OOD protocol. Our primary meta-learning
benchmark is Meta-Dataset, using the standard episodic protocol with sup-
port/query splits and dataset-balanced sampling during meta-training. We
treat the canonical Meta-Dataset training datasets as inducing Pip and eval-
uate on both (a) held-out episodes from the same datasets (ID generaliza-
tion across episodes) and (b) datasets excluded from meta-training (OOD
tasks). To stress distributional shift beyond the Meta-Dataset suite, we
further introduce an extra-O0D pool constructed from datasets with differ-
ent image statistics and label spaces (e.g. fine-grained natural domains and
sketch /clipart-like domains). Episodes are generated by sampling N-way
K-shot classification tasks with a fixed query size per class; we vary (N, K)
to examine whether the learned budget policy is sensitive to task difficulty.
When reporting robustness, we summarize performance not only by mean

20

query accuracy but also by tail-aware criteria (e.g. CVaRg over tasks for a
fixed () to approximate evaluation under an unknown mixture Poop.

Backbones and module partitions. We instantiate fpere as (i) a vi-
sion transformer backbone (ViT) for episodic image classification and (ii)
an instruction-tuned language model for few-shot text classification and
lightweight generation tasks, implemented through parameter-efficient adap-
tation. For ViT, we partition parameters into L modules aligned with trans-
former blocks and subcomponents (attention projections, attention output,
MLP up/down projections, and the classification head). For language mod-
els, we focus on adapter-style modules (e.g. low-rank or MLP adapters in-
jected into attention/MLP blocks) and treat each insertion site as a module.
In both cases we meta-learn a shared dense delta A together with M expert
masks {z,} and a routing network producing a = h¢(T%, B), so that test-
time adaptation amounts to constructing 0(T) = 6P + > ap(zm © A)
and solving a small routing+budget subproblem. We implement structured
sparsity at the module level and (when supported by kernels) at a block
level within each module; the module budgets b, constrain either the ex-
pected nonzero fraction or an activation-statistic proxy consistent with the
deployed kernels.

Hardware targets, latency proxy, and true measurement. To make
the budget constraints concrete, we consider multiple deployment profiles D
spanning GPU and edge settings. For each profile, we construct a proxy
Lat(; D) by summing per-module costs ¢y(D) calibrated by microbench-
marks and applying a sparsity-aware correction for structured execution. We
then measure true end-to-end latency Lat(0; D) by repeated timed forward
passes with warm-up and fixed batch sizes matching the episodic query set-
ting. Budgets B are specified in milliseconds (or equivalently in normalized
units after subtracting the frozen backbone baseline), and during training
we sample B from a range that spans tight to loose regimes, so that the
learned mapping B — b(B) is identifiable. We report (a) the average and
tail query loss/accuracy as a function of B and (b) the empirical feasibility
rate P[Lat(6(T); D) < B] over tasks, which directly tests the effect of proxy
distortion (cf. the k, €154 model) on deployment reliability.

Baselines. We compare against four classes of methods, all using the same
frozen pretrained backbone for fairness. First, SMAT with fixzed global spar-
sity chooses a single 7 (or a fixed global mask budget) and learns masks/routing
under that constraint, without per-module budgets and without budget con-
ditioning at test time. Second, structured pruning baselines allocate a fixed
per-layer sparsity pattern learned offline (global or layerwise magnitude prun-
ing, movement pruning, or group-Lasso variants) and then perform episodic

21

adaptation by fine-tuning only the remaining parameters, again without a
budget-conditioned policy. Third, slimmable/width-scaling baselines vary
the effective width or number of active blocks by a hand-designed schedule
indexed by B, with a controller that does not solve a constrained optimiza-
tion and does not learn module-wise shadow prices. Fourth, we include a
continuous relaxation ablation that optimizes a global continuous sparsity
variable (a single gate shared across modules) to isolate the contribution of
per-module flexibility from the contribution of continuous optimization itself.

Training and test-time procedures. All methods are trained episodi-
cally with matched compute budgets and the same number of meta-iterations.
For our method, we implement the primal-dual updates described earlier:
primal variables include (A, ¢) and mask parameters (e.g. hard-concrete log-
its), and dual variables include {\;} for per-module constraints and p for
the global latency budget. The budget policy b(B;w) is parameterized to
be monotone in B (implemented by a constrained network or by monotone
spline parameterization) to avoid pathological non-monotone allocations. At
meta-test time, given (7%, B), we run a low-step projected optimization (or
dual ascent on p with a small number of iterations) over (a,b) to enforce
Lat < B, and then instantiate a sparse model for prediction on 79. We
emphasize that this test-time computation is forward-pass dominated and
does not require backpropagating through the backbone.

Pareto frontier and deployment transfer evaluation. For each device
profile D and each method, we sweep budgets B and obtain a set of points

S(D) = {(Lat(6(T; B); D), Acc(T; B))},

aggregated over tasks 7' (reporting mean and CVaRg). We then compute
the empirical Pareto frontier (non-dominated set) and summarize it by (i)
domination counts (how often one method dominates another at matched
latency), (ii) area-under-frontier style summaries under a fixed latency inter-
val, and (iii) feasibility-adjusted accuracy, defined as accuracy on the subset
of tasks satisfying Lat < B (penalizing systematic budget violations). To
test deployment transfer, we train the proxy and policy on a subset of de-
vice profiles and then evaluate on unseen D’ without re-training, using only
the measured cy(D’) (or a small calibration set) to instantiate Lat(-;D’).
This directly probes whether per-module budgeting captures device-invariant
structure (modules that are consistently expensive or cheap) and whether the
learned dual variables induce conservative behavior under proxy mismatch.

Findings summarized. Across backbones and benchmarks, the budget-

conditioned per-module policy traces a frontier that is consistently non-
inferior to fixed-1 SMAT and to static structured pruning, with the largest

22

gains in the tight-budget regime where misallocation across modules is most
costly. Feasibility rates under true measured latency improve relative to
baselines that enforce only a global sparsity target, indicating that per-
module constraints plus a latency-aware test-time solver better align with
heterogeneous device costs. Under extra-OOD episodes, the learned pol-
icy tends to allocate capacity to modules that most affect representation
adaptation, improving tail metrics (e.g. CVaRg) at fixed latency. Finally,
the deployment-transfer evaluation shows that the learned budget map and
routing remain competitive on unseen profiles, supporting the intended in-
terpretation of Lat as a portable proxy up to controlled distortion and mo-
tivating the diagnostic studies reported next.

5.1 Ablations and Diagnostics

Overview. We perform a targeted ablation suite to isolate which compo-
nents are responsible for (i) improved accuracy—latency trade-offs, (ii) high
feasibility under measured latency, and (iii) robustness under task shift and
device mismatch. Throughout, we keep the pretrained backbone, episodic
sampling, and training compute fixed, and we report (a) mean and CVaRg
query accuracy at a given budget B, (b) feasibility rate under true latency
P[Lat(6(T; B); D) < B], and (c) diagnostic statistics of the constrained op-
timization (constraint violations and dual variables).

Per-module budget learning versus fixed budgets. Our principal ab-
lation replaces the learned budget policy b(B;w) with fixed budgets bf*
chosen by heuristics. We consider: (i) uniform allocation b?x = b tuned
so that the proxy constraint is met in expectation; (ii) cost-proportional al-
location bg‘x x 1/cg(D), which preferentially allocates to cheaper modules;
and (iii) loss-sensitivity allocation, where b?x is proportional to a frozen-
feature sensitivity score computed at initialization (e.g. ||V, L| aggregated
over episodes), then held constant during meta-training. In all cases we re-
tain the same routing network h¢ (7%, B) and the same mask parameteriza-
tion, so differences reflect budget learning rather than routing capacity. Em-
pirically, fixed allocations tend to underperform in the tight-budget regime:
cost-proportional rules overspend on cheap but low-utility modules, whereas
sensitivity rules overfit to ID statistics and degrade OOD tail performance.
The learned b(B) improves both mean and CVaRg at matched latency, con-
sistent with the separation intuition that module utility and cost are nonuni-
form and must be co-adapted.

Isolating budget conditioning from per-module flexibility. To dis-
tinguish the benefit of conditioning on B from the benefit of having L degrees
of freedom, we include two intermediate variants: (i) per-module budgets

23

learned but not conditioned on B (a single vector b shared across all bud-
gets), and (ii) a single scalar gate (B) that scales a fized per-module tem-
plate b via by(B) = (B)b,. The first tests whether a single sparse configu-
ration suffices; the second tests whether one-dimensional control can approx-
imate the Pareto set. We find that a budget-invariant b typically matches
mid-range budgets but breaks at extremes, while the one-dimensional scaling
fails to reallocate capacity across modules as B tightens, producing domi-
nated points on the frontier.

Proxy mismatch sensitivity via controlled distortions. We stress-
test feasibility under the proxy distortion model in (H3) by injecting con-
trolled perturbations into the proxy at test time:

ﬁ'(e;p) = H'ﬁ(@;@) + €lat

with (x/, e{at) spanning optimistic to pessimistic regimes. For each pertur-
bation we rerun the test-time routing-+budget solver and measure true fea-
sibility. This diagnostic separates two failure modes: (i) solver-induced vi-
olations (inadequate optimization steps) and (ii) model-induced violations
(proxy systematically misranking configurations). We observe that feasibil-
ity degrades gracefully with multiplicative inflation (as expected) but can
be brittle to additive offsets when B is close to the backbone baseline; this
motivates reporting budgets relative to the frozen baseline and motivates the
calibration study below.

Leave-one-profile-out mismatch and cross-profile generalization. We
further evaluate proxy mismatch by training the proxy calibration and the
budget /routing policy on a subset of profiles and evaluating on an unseen
D’. We instantiate sz(-; D’) using only per-module microbenchmarks ¢;(D’)
(no policy finetuning). We report the feasibility gap

Ageas(B) = P[Lat(0) < B] — P[Lat(0) < B,

and correlate it with per-module cost rank shifts between D and D’. We
find that most violations on unseen profiles are attributable to a small set of
modules whose relative costs change drastically; this suggests that a small
amount of per-profile calibration can suffice if it corrects those modules.

Calibration across devices: simple corrections and conservative
margins. We study two calibration mechanisms. First, a lightweight affine
correction Lat ~ a Lat + b fit on a small set of sparse configurations, yielding
a corrected proxy used only at test time. Second, a conservative margin
policy that replaces B by B — § in the solver, with ¢ selected to achieve a
target feasibility rate. Both reduce systematic violations; the affine correc-
tion is more sample-efficient when the proxy is approximately linear, while

24

the margin policy is robust when the proxy misranks configurations but still
provides an upper envelope. We additionally report the trade-off between
feasibility and accuracy induced by increasing §, making explicit the cost of
conservatism.

Robustness to routing noise and limited support. Since routing a =
he(T#, B) is computed from few-shot support sets, we inject controlled noise
into the routing logits at test time and measure sensitivity of both accuracy
and constraint satisfaction. Concretely, if & = softmax(loga + o) with
& ~ N(0,I), we sweep o and observe whether the solver can compensate
via budget adjustments. We also ablate support size (smaller K) to induce
estimation noise endogenously. In both cases, feasibility is relatively stable
(since the solver can reduce budgets when uncertainty increases), whereas
accuracy degrades smoothly; this indicates that constraint satisfaction is
primarily governed by the dual-weighted objective rather than by fragile
routing decisions.

Structured versus unstructured sparsity. We compare our default
structured sparsity (module- and block-structured masks aligned with ker-
nels) against an unstructured elementwise mask with the same expected
nonzero fraction per module. We evaluate (i) proxy fidelity, by measur-
ing the correlation between Lat and Lat across sampled configurations, and
(ii) effective speedups at fixed nominal sparsity. Unstructured masks can
match or slightly improve accuracy at a given proxy budget, but they often
underdeliver on true latency due to poor hardware utilization; structured
masks yield a substantially tighter proxy—latency relationship, which in turn
improves feasibility after test-time solving. This experiment supports the
design choice that the constraint should be stated in the same granularity at
which execution is efficient.

Optimization diagnostics: KKT residuals and dual behavior. Fi-
nally, we report diagnostics directly tied to the constrained formulation. For
each meta-iteration we track (i) average constraint violations v, and u (per-
module and latency), (ii) the distribution of dual variables A\; and p, and (iii)
an empirical e-KKT residual combining stationarity (gradient norm of the
Lagrangian), primal feasibility (violations), and complementarity (products
Aevg and pu). We observe that the learned policy reaches a stable regime
where violations are near zero in expectation and dual variables concentrate
on a small set of consistently binding modules, providing an interpretable
“shadow price” view of which components dominate the budget in practice.

25

5.2 Discussion and Future Work

Our development has treated the pretrained parameters 8P as a fixed prior
and has focused optimization effort on a shared delta A, sparse expert masks
{zm}¥M_, and budget-conditioned routing. This framing isolates the con-
strained adaptation mechanism, but it is natural to ask how the picture
changes when the prior itself is uncertain or multi-modal. In many realistic
deployments, one has access to several pretrained backbones (or checkpoints
at different stages), e.g. {#P**}5_, trained on different corpora or with dif-
ferent inductive biases. A direct extension is a multi-source prior mixture in
which each task selects a convex combination of priors and sparse deltas:

S M
0; = Zﬂ-i’s grTes Z Qm (Zm ® A), T € AS_I,
s=1

m=1

with m; produced by a support-conditioned controller. The principal tech-
nical issue is that device costs and feasibility then depend on the chosen
backbone as well as the delta. This suggests a two-level budgeting view: (i)
coarse selection among priors (which changes the baseline latency and repre-
sentational capacity), and (ii) fine per-module allocations for the delta. From
a constrained optimization standpoint, this multi-source formulation may
reduce OOD fragility by providing a larger feasible set of representational
“starting points,” at the price of a harder routing problem and potentially
increased calibration burden across devices.

A second direction concerns the fact that routing a = h¢ (7%, B) is com-
puted from few-shot evidence and is therefore intrinsically uncertain. Our
current implementation is point-estimate routing coupled to a (relaxed) con-
strained solver at test time. A more principled alternative is uncertainty-
aware routing, in which we explicitly maintain a distribution over a (and
possibly over b) and optimize a risk-sensitive objective. One simple in-
stantiation is to penalize entropy collapse and to bias toward routes whose
performance is stable under perturbations:

min E[£(6(a,b))] + pVar(£(6(a,b))) st. Lat(6(a,b)) < B,

where the expectation is taken over a variational posterior for («, b) induced
by the support set. A complementary approach is to convert feasibility into
a chance constraint P[Lat(6; D) < B] > 1 — § by introducing probabilistic
latency models or conservative upper confidence bounds. Either viewpoint
turns the test-time subproblem into a small stochastic program; the promise
is improved robustness when support sets are ambiguous (e.g. mixed do-
mains) or when budgets are tight and small routing errors can trigger infea-
sibility.

Third, while we have already emphasized tail-aware metrics (e.g. CVaRpg)
as diagnostics, a stronger integration of distributional robustness into train-
ing is warranted. The episodic setting provides a natural adversarial lever:

26

rather than minimizing E7.p[£], we may optimize a robust objective of
the form
min sup E7g[L(0(T))] s.t. feasibility,
QEU(Pp)

where U(Pip) can encode, for example, an f-divergence ball, a Wasserstein
ball over task descriptors, or a mixture model capturing plausible OOD
shifts. In our constrained setting this interacts nontrivially with the dual
variables: robustifying the loss may shift which modules become binding,
thereby changing the learned “shadow prices” {A¢} and the induced alloca-
tion pattern. Algorithmically, one may view this as a min—max saddle-point
problem in which the adversary chooses task weights (or perturbs task sam-
pling) while the learner updates (A, (, ¢,w) and multipliers (A, u). A con-
crete open question is to characterize when the robustified objective yields
genuinely improved OOD performance at fized budget as opposed to simply
producing more conservative (and hence less accurate) solutions; answering
this likely requires combining stability arguments with explicit modeling of
proxy distortion (&, €jat).

Fourth, the fidelity of the latency proxy Lat is a central practical bot-
tleneck. Our assumptions permit bounded distortion, but in realistic accel-
erators latency depends on memory bandwidth, kernel fusion, and shape-
dependent dispatch rules; additive decompositions across modules can fail
when modules interact through scheduling. A promising path is to learn
tighter device-conditioned proxies that are both differentiable and conserva-
tive. One approach is hybrid modeling: retain per-module microbenchmarks
c¢(D) for interpretability, but correct them with a small learned residual
model that ingests structured sparsity patterns (e.g. block sizes and layer
shapes) and predicts non-additive overheads. Another approach is to fit
quantile regressors or conformal predictors so that the proxy returns an
upper confidence bound Lat o © satisfying Lat(0; D) < fERUCB(H; D) with
prescribed probability. In either case, the proxy is no longer merely a train-
ing convenience: it becomes part of the deployment contract, and its un-

certainty should be propagated into the solver (e.g. replacing Lat < B by
—UCB
Lat < B).

Finally, we emphasize that the convex surrogate analysis serves as a guide
rather than a complete explanation for transformer-scale behavior. The dis-
crete nature of masks, the nonconvexity of deep networks, and the possibility
of proxy misranking imply that classical KKT convergence is, at best, ap-
proximate. This suggests two complementary research programs: (i) develop
better relaxations and rounding procedures with explicit bounds on feasi-
bility loss (relative to the proxy and, when possible, relative to measured
latency), and (ii) co-design sparsity structure with hardware execution so
that the feasible set induced by per-module budgets more faithfully reflects
true device constraints. Progress on these fronts would tighten the loop be-

27

tween theory, solver behavior, and deployment, and would move constrained
meta-adaptation from a heuristic to a more reliable engineering primitive.

28

	Introduction
	Background: SMAT-style sparse interpolated experts and constrained sparsity
	Problem setup and formal objectives: episodic tasks, budgets, and robust constrained risk
	AutoBudget-SMAT: per-module budget learning, structured experts, and primal–dual meta-optimization
	Experiments
	Ablations and Diagnostics
	Discussion and Future Work

