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Abstract

Training-free NAS methods rank architectures using zero-cost prox-
ies and typically select the top-scoring model, leaving an ‘estimation
gap’ between proxy rankings and true performance. RoBoT (ICLR
2024) addresses this gap by learning a robust proxy ensemble and then
greedily searching within the proxy top set, but its key expected-rank
analysis relies on a uniform-rank assumption within the relevant set.
We remove this assumption. For a fixed candidate pool and a fixed
proxy ranking, we derive an exact, distribution-free expression for the
expected true rank achieved by randomized top-K exploitation (sam-
pling B candidates uniformly from the proxy top-K). This expression
depends only on the empirical conditional rank CDF inside the proxy
top-K. We then design a practical certificate that estimates this CDF
under limited objective queries, controls adaptive sampling error, and
outputs high-probability upper bounds and stopping rules. Our bounds
are tight given the identifiable statistics, and we prove near-matching
sample-complexity lower bounds. Experiments on NAS-Bench-201 and
TransNAS-Bench-101 show that (i) rank correlation can be misleading
while our certificate tracks top-K utility, and (ii) the certificate enables
reliable decide-to-exploit vs decide-to-stop behavior across tasks.
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1 1. Introduction: estimation gap in training-free
NAS; why RoBoT’s uniform-rank assumption is
problematic; goals—distribution-free certification
and stopping rules for top-K exploitation.

In training-free neural architecture search (NAS) and related model-selection
problems, we often face an estimation gap: we possess a cheaply computed
proxy score s(a) for every candidate architecture a (e.g., a zero-cost score, a
weight-sharing surrogate, or an ensemble predictor), yet the actual objective
f(a) (e.g., validation accuracy after full training) is expensive and can be
queried only a small number of times. A common operational pattern is
therefore top-K exploitation: we sort candidates by s, restrict attention to
the proxy top set, query f for a small subset, and return the best observed
objective value. This pattern is attractive because it is simple, parallelizable,
and empirically effective when the proxy is informative.

The difficulty is that, on any fixed finite pool, the quality of top-K ex-
ploitation is governed not by a global correlation statistic between s and f ,
but by the fine-grained behavior of the true elite ranks inside the proxy-
filtered set. In particular, for a given K and a given number B of objective
queries spent within the proxy top set, the outcome depends on how many
truly top-ranked candidates are present among those K and how these counts
evolve with the true rank threshold. Two proxy scores may look similar under
Spearman or Kendall metrics while inducing markedly different membership
of the true top-r items inside the proxy top-K, and it is this membership
that controls the success probability of sampling an elite candidate when we
query only B items. Consequently, global rank correlation is not, by itself,
a certificate of exploitation performance.

Existing certificate-style methods in this setting have frequently relied,
implicitly or explicitly, on a uniform-rank assumption of the following flavor:
conditional on being in the proxy top-K, candidates are treated as if their
true ranks behave like (approximately) uniform draws from some range, or as
if the proxy-induced ordering noise is exchangeable in a way that makes un-
observed ranks “typical.” Such assumptions are problematic for two reasons.
First, they are rarely verifiable from the limited objective queries available:
if we only observe a handful of queried f -values in the proxy top set, many
distinct rank configurations remain consistent with the data. Second, these
assumptions can be badly violated in precisely the regimes in which certi-
fication is most valuable: the proxy top-K may contain a mixture of a few
genuinely elite architectures and many mediocre ones (or, conversely, may
systematically exclude the global elites due to a proxy failure mode). In ei-
ther case, a uniform-rank heuristic can yield overly optimistic estimates and
premature stopping decisions, even though the underlying instance is fixed
and adversarially unfavorable.
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Our goal is to replace such assumptions with distribution-free guarantees
on the performance of randomized top-K exploitation on a fixed finite pool.
Concretely, we seek procedures that, using only a limited number of objective
queries, return (i) a selected candidate â produced by an explicit exploitation
primitive, and simultaneously (ii) a high-probability certificate upper bound-
ing the expected true rank E[Rf (â)], where the expectation is taken solely
over the algorithm’s internal randomization (the instance (A, s, f) is treated
as deterministic). This expectation is the relevant quantity for randomized
exploitation because the only uncertainty is which subset of the proxy top
set we happen to query. A certificate in this sense enables principled stop-
ping rules: we may terminate exploitation once the certified bound crosses a
user-specified target rank, or allocate additional objective queries only when
the current certificate remains inconclusive.

The technical obstruction is that a certificate for E[Rf (â)] cannot be ob-
tained from proxy information alone; it depends on the unknown true ranks
within the proxy top set. Our approach is therefore to (a) identify an exact,
assumption-free expression for the expected rank of the exploitation output
in terms of simple combinatorial quantities, and (b) estimate conservative
lower bounds on these quantities using a small number of carefully structured
objective queries. The key point is that the certificate must hold uniformly
over all fixed instances consistent with the observed objective values, rather
than in expectation over an assumed data-generating distribution.

At a high level, we proceed in three steps. First, we analyze the ran-
domized exploitation primitive that samples B distinct candidates uniformly
from the proxy top-K, queries f on them, and returns the best observed
candidate. For a fixed instance, the expected output rank admits an exact
hypergeometric survival-function identity expressed through the cumulative
counts of truly top-ranked items inside the proxy top set. Second, we de-
sign a calibration mechanism that uses a small number of objective queries
both globally (to translate observed objective values into rank information)
and conditionally within the proxy top set (to estimate, conservatively, how
much true top-r mass is present there). Third, we combine these ingredients
into a computable, data-dependent upper bound on E[Rf (â)] that holds with
probability at least 1− δ over the algorithm’s sampling.

Two features are essential. The first is monotonicity : the exploitation
expected rank improves as the number of true elites within the proxy top
set increases, so lower bounds on elite counts yield upper bounds on ex-
pected rank. The second is finite-population validity : because we operate on
a fixed pool and sample without replacement, our bounds must be phrased in
terms of finite-sample concentration and combinatorial sampling, rather than
asymptotics or parametric noise models. The resulting certificate procedure
yields nonvacuous guarantees whenever the proxy top set contains a de-
tectable fraction of high-rank candidates, and its query complexity matches
the Ω(1/ε2) barriers inherent to distribution-free certification up to logarith-
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mic factors.
We now formalize the setting and introduce the definitions needed to

state the exploitation identity and the certificate construction.

2 Setup and Definitions

We work in a finite-pool query model. Let A = {a1, . . . , aN} be a fixed set
of N candidates (architectures). For each a ∈ A we are given a proxy score
s(a) ∈ R, which is assumed to be available for all candidates at negligible cost
relative to objective evaluation. In contrast, the objective value f(a) ∈ R
(e.g., accuracy after full training) is unknown a priori and may be revealed
only by issuing an objective query for a, at unit cost. Throughout, we adopt
the convention that larger objective values are better.

The objective values induce a global ranking on A. We write Rf (a) ∈
{1, . . . , N} for the (descending) true rank of a under f : Rf (a) = 1 means
that a is globally best, and Rf (a) ≤ r means that a lies in the true top-r set.
When objective values tie, we fix an arbitrary deterministic tie-breaking rule
once and for all; this makes Rf (·) a well-defined function on A for a fixed
instance (A, s, f).

Given a budget-sensitive setting, we focus on the standard proxy top-K
restriction. Fix K ∈ {1, . . . , N}. Let SK(s) ⊆ A denote the set of the K
candidates with largest proxy score s, with deterministic tie-breaking. Intu-
itively, SK(s) is the exploitation pool suggested by the proxy. The central
quantities governing exploitation performance are the counts of truly elite
candidates inside this proxy-filtered set. For each threshold r ∈ {0, 1, . . . , N},
define the empirical conditional elite count

mr :=
∣∣{a ∈ SK(s) : Rf (a) ≤ r}

∣∣, m0 := 0,

and the associated empirical conditional rank CDF

FK(r) :=
mr

K
.

Thus mr records how many members of the proxy top-K are also in the
true top-r globally, and FK(r) is the corresponding fraction. The sequence
r 7→ mr is nondecreasing, satisfies 0 = m0 ≤ mr ≤ K, and stabilizes at
mN = K. Our results will treat (mr)

N
r=0 as an instance-dependent summary

of how well the proxy top set captures the true elite ranks.
We now formalize the randomized exploitation primitive whose perfor-

mance we seek to certify. Fix an integer B ∈ {1, . . . ,K}, interpreted as the
number of objective queries allocated within SK(s) for exploitation. The ex-
ploitation algorithm draws a subset E ⊆ SK(s) uniformly at random among
all size-B subsets (sampling without replacement), queries f(a) for all a ∈ E,
and returns

âB ∈ argmax
a∈E

f(a),
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with deterministic tie-breaking on the argmax if needed. All randomness is
therefore internal to the algorithm and arises only from the random choice
of E. The induced output rank Rf (âB) is a random variable on {1, . . . , N}
even though the instance (A, s, f) is fixed.

The quantity we will certify is the expected true rank of the exploitation
output,

E
[
Rf (âB)

]
,

where the expectation is taken solely over the algorithm’s sampling of E
(equivalently, over all

(
K
B

)
equally likely subsets of SK(s)). This is the rel-

evant notion of performance for randomized exploitation: once the instance
is fixed, the only uncertainty is which B proxy-top candidates happen to
be queried, and the expectation captures the average quality of the returned
candidate under that randomization. Importantly, we make no distributional
assumptions on how f relates to s; the ranks can be adversarially arranged
subject only to being a fixed total order on A.

A certificate is a computable, data-dependent upper bound UB satisfying
a high-probability validity requirement of the form

Pr
(
E
[
Rf (âB)

]
≤ UB

)
≥ 1− δ,

for a user-chosen failure probability δ ∈ (0, 1). Here the probability is over
all random choices made by the certificate procedure (including any calibra-
tion sampling and, if desired, the exploitation sampling), while the instance
(A, s, f) is treated as fixed. In particular, the certificate must remain valid
uniformly over all possible objective assignments f on unqueried candidates
that are consistent with the observed queried objective values and the deter-
ministic tie-breaking rules. In the sequel, we will construct such certificates
using a limited number of objective queries split between (i) global cali-
bration queries (to translate observed f -values into rank information) and
(ii) conditional queries within SK(s) (to conservatively lower bound mr and
hence upper bound the exploitation expectation). The next section estab-
lishes that, for fixed K and B, the expected rank E[Rf (âB)] admits an exact,
distribution-free expression in terms of the finite-population quantities mr,
thereby reducing certification to estimating these counts conservatively.

3 Exact Distribution-Free Exploitation Identity

We first isolate an exact finite-population identity for the randomized ex-
ploitation primitive. The point of the identity is that, once A, s, and f
are fixed, the distribution of the output rank Rf (âB) under uniform sam-
pling within SK(s) is determined entirely by the sequence of conditional elite
counts (mr)

N
r=0. In particular, no stochastic relationship between s and f is

required: the identity holds instance-by-instance.
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Recall that âB is obtained by drawing a size-B subset E ⊂ SK(s) uni-
formly without replacement and returning the queried element with maxi-
mum objective value f (equivalently, minimum true rank). Thus,

Rf (âB) = min
a∈E

Rf (a).

For any positive-integer-valued random variable X, we have the elementary
survival-function representation

E[X] =
∑
r≥0

Pr(X > r),

which is the discrete analogue of E[X] =
∫∞
0 Pr(X > t) dt. Applying this to

X = Rf (âB) ∈ {1, . . . , N} yields

E[Rf (âB)] =
N−1∑
r=0

Pr(Rf (âB) > r) .

It remains to compute the event probabilities in terms of mr. Fix r ∈
{0, 1, . . . , N − 1}. The event {Rf (âB) > r} is equivalent to the sampled
subset E containing no globally top-r elements. Among the K elements of
SK(s), exactly mr have true rank at most r, and hence K − mr have true
rank strictly larger than r. Because E is a uniform size-B subset of SK(s),
we obtain the hypergeometric survival probability

Pr(Rf (âB) > r) =

(
K−mr

B

)(
K
B

) .

Substituting into the survival-function representation yields the promised
expression.

Theorem 3.1 (Exact exploitation identity). Fix any instance (A, s, f), and
let SK(s) be the proxy top-K set. Let E ⊂ SK(s) be a uniformly ran-
dom subset of size B ≤ K sampled without replacement, and let âB ∈
argmaxa∈E f(a) (with deterministic tie-breaking). Then, with mr = |{a ∈
SK(s) : Rf (a) ≤ r}| and m0 = 0,

E[Rf (âB)] =
N−1∑
r=0

(
K−mr

B

)(
K
B

) .

Theorem 3.1 makes explicit which aspects of the proxy matter for randomized
exploitation. The expected rank is a functional of the entire conditional rank
CDF FK(r) = mr/K, not merely a single summary such as mK . Moreover,
the dependence is monotone in the natural direction: for each fixed r, the
term

(
K−mr

B

)
/
(
K
B

)
is nonincreasing in mr, reflecting the fact that having
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more true top-r items inside SK(s) can only improve the chance that a size-
B sample hits at least one such item.

The identity also admits a useful interpretation as an integral over missed-
elite probabilities. For each rank threshold r, the hypergeometric fraction is
exactly the probability that B draws from SK(s) miss the subset {a ∈ SK(s) :
Rf (a) ≤ r}. Summing these miss-probabilities over r aggregates the entire
tail behavior of the output rank: large contributions come precisely from
thresholds r for which the proxy top set contains few truly elite candidates.

Several special cases sharpen intuition.

Case B = K (query all proxy top-K). Here E = SK(s) deterministi-
cally, so âB is simply the best element in SK(s). Let r⋆ := min{r : mr ≥ 1},
i.e., the true rank of the best element in SK(s). Since

(
K−mr

K

)
= 1 iff mr = 0

and 0 otherwise, the identity reduces to

E[Rf (âK)] =

N−1∑
r=0

⊮{mr = 0} = r⋆,

as expected.

Case B = 1 (one random query in SK). Then â1 is a uniformly random
element of SK(s), and the identity recovers the mean rank within the proxy
top set. Indeed,

(
K−mr

1

)
/
(
K
1

)
= (K −mr)/K, so

E[Rf (â1)] =

N−1∑
r=0

(
1− mr

K

)
,

which is equivalent to 1
K

∑
a∈SK(s)Rf (a) by the standard counting identity∑

r≥0⊮{Rf (a) > r} = Rf (a).

Small B and the role of early ranks. When B ≪ K, each term(
K−mr

B

)
/
(
K
B

)
is close to

(
1− mr

K

)B (the corresponding with-replacement prob-
ability), making transparent that the dominant contributions to E[Rf (âB)]
arise from small r where mr/K is small. Consequently, certification efforts
should focus on lower bounding mr for relatively small r, since improving
knowledge of mr near r = N has negligible effect on the sum.

In the next section we use Theorem 3.1 as the deterministic backbone for
certification: if we can produce high-probability lower bounds mr ≤ mr for
a range of thresholds r, then monotonicity of the hypergeometric survival
terms yields an immediate, computable upper bound on E[Rf (âB)] without
any assumption linking s and f .
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4 What Can and Cannot Be Certified

Theorem 3.1 reduces the analysis of randomized exploitation within SK(s) to
the finite sequence (mr)

N
r=0. Consequently, any instance-wise (distribution-

free) performance statement about E[Rf (âB)] must, implicitly or explicitly,
control mr for a range of thresholds r. This creates an identifiability issue:
if the available information does not determine (or at least constrain) the
conditional rank CDF FK(r) = mr/K at the relevant low ranks, then no
nonvacuous certificate for E[Rf (âB)] can be valid uniformly over all fixed
instances (A, s, f) consistent with that information.

Why knowing only Precision@K is insufficient. A common summary
of proxy quality is Precision@K = mK/K, i.e., the fraction of truly top-K
items that appear in SK(s). However, mK is only a single coordinate of
the full vector (mr), and Theorem 3.1 shows that E[Rf (âB)] depends on the
entire tail {

(
K−mr

B

)
/
(
K
B

)
}N−1
r=0 . In particular, for small B, the dominating

contribution arises from small r, where mr can vary widely even when mK

is fixed.
Formally, fix N ≫ K and B ≤ K. Consider two fixed instances that

share the same pool A and the same proxy top set SK(s) (so the proxy
scores may even be identical), and satisfy the same value of mK , but differ
in the placement of true ranks within SK(s). Let t ∈ {1, . . . ,K} and enforce
mK = t. In both instances, we place K − t elements of SK(s) at very poor
global ranks, say

Rf (a) ∈ {N − (K − t) + 1, . . . , N} for K − t elements of SK(s).

The remaining t elements of SK(s) are placed within the true top-K, ensuring
mK = t, but we choose two extreme configurations:

• (Front-loaded) the t in-top-K elements have ranks 1, 2, . . . , t, hence
mr = t for all r ≥ t.

• (Back-loaded) the t in-top-K elements have ranks K − t + 1, . . . ,K,
hence mr = 0 for all r ≤ K − t.

In both cases mK = t holds, yet the exploitation behavior differs sharply.
Indeed, with back-loading, the probability that B uniform draws from SK(s)
miss all t acceptable elements is

Pr(miss all t) =
(
K−t
B

)(
K
B

) ,

and on this miss event the returned rank is at least N−(K−t)+1. Therefore,

E[Rf (âB)] ≥
(
K−t
B

)(
K
B

) ·
(
N − (K − t) + 1

)
. (1)
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For t fixed and B ≪ K, the factor
(
K−t
B

)
/
(
K
B

)
≈ (1− t/K)B is close to 1, so

the lower bound in (1) is Θ(N). Thus, any purported certificate that depends
only on mK (or Precision@K) must remain valid on both configurations
and is forced to be of order N in the worst case, i.e., essentially vacuous
in normalized rank. This is an identifiability barrier, not an artifact of a
particular analysis.

Rank correlation is not a certificate. A related pitfall is to treat global
rank correlation between s and f (e.g., Spearman ρSp) as a surrogate for ex-
ploitation utility. Theorem 3.1 implies that exploitation depends on whether
SK(s) contains truly elite items (and how many), i.e., on mr for small r,
whereas ρSp averages squared displacements over all N items and can be
dominated by the behavior on the non-elite majority.

We can construct explicit proxies s and s′ (for the same fixed f) such that
ρSp(s, f) > ρSp(s

′, f) while E[Rf (âB(s))] ≫ E[Rf (âB(s
′))]. Identify f with

the identity ranking Rf (ai) = i. Let s induce the permutation that swaps the
top block {1, . . . ,K} with the bottom block {N−K+1, . . . , N} and fixes all
middle ranks. Then SK(s) consists of the K worst items under f , so mr = 0
for all r ≤ N−K, and in particular E[Rf (âB(s))] ≥ N−K+1 (indeed, every
queried item has rank at least N −K + 1). Yet the Spearman degradation
of this block swap is small when K ≪ N : the squared displacement is
Θ(K(N −K)2), hence

ρSp(s, f) = 1−
6
∑N

i=1(i− π(i))2

N(N2 − 1)
≥ 1−O

(
K

N

)
,

which can be arbitrarily close to 1 for fixed K and large N .
Conversely, let s′ be a proxy that places the true top-K items in SK(s′)

but permutes the remaining N − K items nearly arbitrarily. Then mr

for small r is maximized (mr = r for r ≤ K), implying much smaller
E[Rf (âB(s

′))], while the global Spearman correlation can be made close to
0 by sufficiently scrambling the bottom N − K ranks. Hence, higher ρSp
does not imply better exploitation, and it cannot serve as a distribution-free
certificate for E[Rf (âB)].

These examples isolate the correct target for certification: we must esti-
mate (or lower bound) the conditional elite counts mr for a range of r, partic-
ularly at small r where the hypergeometric survival terms are sensitive. This
motivates the next section, where we show how to obtain high-probability
lower bounds mr ≤ mr from a limited number of objective queries via con-
ditional sampling within SK(s) and rank calibration from a uniform sample
of A.
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5 Certified Stopping and Adaptive Budgeting

Having reduced certification to lower bounds on the conditional elite counts
mr and having described how to obtain mr ≤ mr with high probability from
limited objective queries, we now describe how to use the resulting certificate
online. The central point is that the certificate

UB =
N−1∑
r=0

(K−mr
B

)(
K
B

)
is (i) computable from the queried data, (ii) monotone nonincreasing in each
mr, and (iii) monotone nonincreasing in B (for fixed mr). These monotonic-
ities allow us to maintain a valid expected-rank upper bound as more queries
arrive, and to implement a stopping rule and a budget-allocation policy that
are themselves certified.

Online maintenance of confidence bounds. Suppose we run in rounds
t = 1, 2, . . ., and at round t we have queried nU (t) items from A (global
calibration) and nS(t) items from SK(s) (conditional sampling). From these
data we compute updated rank intervals [Rt(·), Rt(·)] for the conditional
samples and updated one-sided bounds mr,t for mr over r ∈ R.

To ensure validity under optional stopping, we must guarantee that the
event

E :=
⋂
t≥1

⋂
r∈R

{mr,t ≤ mr}

holds with probability at least 1−δ. There are two standard ways to enforce
this in our finite-pool setting. First, we may commit to a maximal horizon
tmax (equivalently a maximal number of calibration queries) and apply a
union bound over |R|tmax events, using one-sided confidence intervals at
level δ/(|R|tmax). Second, we may avoid committing to tmax by using a
summable error schedule (δt)t≥1 (e.g. δt = δ ·2−t) and enforce at round t that
all intervals are valid at level δt/|R|; then

∑
t δt = δ implies Pr(E) ≥ 1 − δ.

Either construction yields an anytime certificate process (UB,t)t≥1, where

UB,t :=
N−1∑
r=0

(K−mr,t

B

)(
K
B

) , and Pr(∀t : E[Rf (âB)] ≤ UB,t) ≥ 1− δ.

In particular, since mr,t is nondecreasing in t (additional evidence can only
certify more elite items), the sequence UB,t is nonincreasing in t.

A certified stopping criterion. Fix a target expected-rank guarantee
U⋆ ∈ {1, . . . , N} (or a normalized target u⋆ ∈ (0, 1) with U⋆ = ⌈u⋆N⌉). We
define the stopping time

τ := inf{t ≥ 1 : UB,t ≤ U⋆},
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with the convention τ = ∞ if the set is empty. On the event E we have
E[Rf (âB)] ≤ UB,t for all t, hence whenever τ < ∞ we obtain the desired
guarantee E[Rf (âB)] ≤ U⋆. Importantly, this statement is instance-wise
and does not rely on any stochastic model for (A, s, f): only the algorithm’s
randomness is controlled.

When τ triggers, we may execute exploitation (sample B items from
SK(s), query f , return the best) using the remaining budget, or we may
have already interleaved exploitation queries with calibration. In either case
the stopping rule is purely certificate-based: we stop once the certificate
becomes strong enough, and not merely when the observed best f -value
appears large.

Adaptive choice of B given a remaining budget. Because UB,t is
monotone in B, once we have computed mr,t we can select B adaptively to
meet a target with minimal exploitation cost. Concretely, at round t we may
define

B⋆
t := min{B ∈ {1, . . . ,K} : UB,t ≤ U⋆},

provided the set is nonempty. If we have a remaining objective-query budget
Qrem(t), we may impose B ≤ Qrem(t) and either (i) pick B = B⋆

t to satisfy
the target as soon as it is feasible, or (ii) pick the largest feasible B to
strengthen the certificate further (since increasing B can only help), then
execute exploitation. This turns the certificate into a control knob: we
translate desired performance into a concrete number of exploitation queries.

Optional selection of K. If K is not fixed a priori, we may treat it
as a tunable parameter and compute certificates over a discrete set K ⊆
{1, . . . , N}. For each K ∈ K we form SK(s), draw conditional samples from
that set, and compute UB,t(K). The dependence on K is not monotone
in general: larger K increases diversity (potentially increasing mr) but also
dilutes elite fraction mr/K. Consequently, the principled choice is to select

(K⋆
t , B

⋆
t ) ∈ arg min

K∈K, B≤K
UB,t(K) subject to budget constraints,

or, in the target-driven variant, the least-cost pair achieving UB,t(K) ≤ U⋆.
Since all certificates are valid simultaneously under the same E event (via a
union bound over K ∈ K as well), this model selection does not compromise
correctness.

In summary, once we have an anytime-valid mechanism producing mr,t,
we obtain an anytime-valid expected-rank upper bound UB,t, a certified
stopping rule based on UB,t ≤ U⋆, and an adaptive budgeting scheme that
chooses B (and optionally K) to meet a user-specified guarantee within a
finite query budget.
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Making exploitation compatible with adaptive stopping. A sub-
tlety is that the certificate UB,t is derived for the randomized exploita-
tion rule that draws a fresh uniform subset E ⊂ SK(s) of size B. If we
were to “reuse” previously queried conditional samples as exploitation can-
didates, then the final evaluated set would no longer be distributed as a
uniform size-B subset, and Theorem 1 would not apply as stated. A con-
venient remedy is to couple calibration, stopping, and exploitation through
a single randomization: at the beginning, draw a uniformly random per-
mutation π of SK(s), and reveal/query its elements sequentially. For each
b ∈ {1, . . . ,K}, the prefix {π(1), . . . , π(b)} is a uniform size-b subset of SK(s).
Consequently, if we define a (possibly data-dependent) stopping time τ and
then set E := {π(1), . . . , π(Bτ )}, we still have that E is uniform conditional
on Bτ , and the certified bound E[Rf (âBτ )] ≤ UBτ ,τ remains valid on E . Op-
erationally, we may use the early queried prefix elements both (i) to update
mr,t and (ii) as the eventual exploitation pool, while preserving the sampling
model needed by the hypergeometric identity.

Anytime construction of mr,t with a summable error schedule.
When we update mr,t online, we require the whole trajectory {mr,t}t≥1,r∈R
to be simultaneously valid. In practice we implement the summable sched-
ule described above by selecting δt = δ · 2−t and, at round t, running (i) the
global DKW band for rank calibration at confidence level δt/2, and (ii) the
one-sided binomial lower bounds for {p

r,t
}r∈R at level δt/(2|R|) each. By

the union bound over r ∈ R and the summability of (δt), we ensure

Pr(∀t ≥ 1, ∀r ∈ R : mr,t ≤ mr) ≥ 1− δ,

without committing to a finite horizon. This design makes the certificate
“anytime” in the usual optional-stopping sense: the algorithm may exam-
ine UB,t at each round and decide whether to stop, increase calibration, or
increase exploitation, while maintaining the stated coverage.

Budget allocation via marginal certificate improvement. Given that
objective queries are scarce, a natural control question is how to allocate the
next query between global calibration (improving rank intervals) and condi-
tional sampling (improving the estimated elite fractions within SK). While
the exact optimal allocation depends on the instance, we can base a simple
policy on the observed bottleneck in the current certificate. Since

UB,t =

N−1∑
r=0

(K−mr,t

B

)(
K
B

)
is monotone in each mr,t, we may inspect which ranks r contribute most
to the sum (typically small r, where the survival probabilities are near 1)
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and prioritize improving mr,t at those thresholds. Concretely, if the DKW-
induced rank intervals are wide, then additional global samples (increasing
nU (t)) shrink [Rt(·), Rt(·)] and can convert previously “uncertified” condi-
tional points into certified top-r points, increasing Ir(·) and thus mr,t. Con-
versely, if rank intervals are already tight but p̂r,t has large binomial un-
certainty, then additional conditional samples (increasing nS(t)) are more
effective. A minimal implementation is a doubling schedule: increase nU un-
til the calibration band width is below a preset rank tolerance, then increase
nS until UB,t meets the target.

Choosing B under finite remaining budget. At any time t, we may
compute Ub,t for all b ∈ {1, . . . ,min{K,Qrem(t)}} and select the smallest
feasible b that meets the target. Since b 7→ Ub,t is nonincreasing, this can
be done by binary search over b once we can evaluate the sum efficiently.
In implementations we also truncate the sum over r: because the terms(K−mr,t

b

)
/
(
K
b

)
become negligible once mr,t is large relative to b, it is often

sufficient to sum only up to a moderate rmax (e.g. the smallest r for which
the term is below a numerical tolerance), yielding a fast approximate com-
putation that remains conservative if we drop only provably nonnegative tail
terms.

Simultaneous consideration of multiple K. When K is not predeter-
mined, we may evaluate a finite set K of candidate proxy set sizes while
maintaining correctness via an additional union bound over K ∈ K. To re-
duce query overhead, it is helpful to exploit the nesting SK(s) ⊆ SK′(s) for
K ≤ K ′. For example, fix Kmax := maxK, sample a random permutation π
of SKmax(s), and query sequentially along π. For any K ∈ K, the induced
relative order of elements in SK(s) is uniform, so the first n queried items
that fall in SK(s) form a uniform sample without replacement from SK(s).
Thus a single stream of conditional queries can support certificates for all
K ∈ K, at the cost of bookkeeping for each K and an additional log |K| fac-
tor in the confidence accounting. We may then select (K,B) either to min-
imize the certificate value UB,t(K) or to minimize exploitation cost subject
to UB,t(K) ≤ U⋆, while preserving the same instance-wise, distribution-free
validity guarantee.

Sample complexity for ε-accurate certificates. We quantify how many
objective queries are sufficient for the certificate to approximate the “oracle”
value obtained if the entire conditional rank profile {mr}Nr=1 were known. Fix
a finite grid of thresholds R ⊆ {1, . . . , N} (typically logarithmically spaced),
and let ε, δ ∈ (0, 1). We allocate confidence budget across (i) the global rank-
calibration step and (ii) the conditional sampling step, via a union bound
over r ∈ R. Assuming (after a monotone transformation if needed) that
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f(a) ∈ [0, 1], the Dvoretzky–Kiefer–Wolfowitz inequality implies that with
nU = Θ(ε−2 log(|R|/δ)) uniform queries from A we obtain a simultaneous
(over all z ∈ [0, 1]) CDF band

sup
z∈[0,1]

∣∣Ĝ(z)−G(z)
∣∣ ≤ c

√
log(|R|/δ)

nU

with probability at least 1−δ/2 (for a universal constant c), where G denotes
the empirical CDF of {f(a)}a∈A. Interpreting a queried value f(t) through
this band yields a rank interval [R(t), R(t)] whose width is O(Nε) uniformly
over all queried t. Consequently, for each r ∈ R, the conservative indicator
Ir(t) = ⊮{R(t) ≤ r} undercounts true membership in the global top-r set,
but does so in a controlled manner.

Independently, with nS = Θ(ε−2 log(|R|/δ)) uniform queries from SK(s),
standard one-sided binomial concentration (e.g. Clopper–Pearson or Chernoff-
type bounds) yields simultaneous lower confidence bounds p

r
on the condi-

tional elite fractions pr = mr/K:

Pr
(
∀r ∈ R : p

r
≤ pr and pr − p

r
≤ c′

√
log(|R|/δ)

nS

)
≥ 1− δ/2,

for a universal c′ > 0. Thus mr := ⌊Kp
r
⌋ satisfies mr ≤ mr and mr −mr =

O(Kε) for all r ∈ R on the joint event of probability at least 1− δ.
To translate these inaccuracies in mr into inaccuracies in the certificate

UB =
N−1∑
r=0

(K−mr
B

)(
K
B

) ,

we use that, for fixed K,B, the map m 7→
(
K−m
B

)
/
(
K
B

)
is nonincreasing and

has bounded discrete slope:(K−(m+1)
B

)(
K
B

) −
(
K−m
B

)(
K
B

) = − B

K −m
·
(
K−m
B

)(
K
B

) ∈ [−1, 0].

Hence replacing mr by mr−∆r perturbs each summand by at most ∆r, and
summing over r yields a crude but distribution-free bound of order

∑
r ∆r.

With a grid R and monotone interpolation of mr between grid points, one
obtains an additive certificate error of order O(εN) in rank units (and O(ε)
in normalized ranks after dividing by N), consistent with Theorem 3. In
applications we often care only about small ranks (e.g. a target U⋆ ≪ N);
then truncating the sum at a data-dependent rmax improves constants while
remaining conservative because all omitted terms are nonnegative.
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Minimax lower bounds via Bernoulli mean testing. We next justify
that the ε−2 dependence is unavoidable for distribution-free certificates. The
core obstacle is identifiability of mr from finitely many objective queries:
the certificate must upper bound the expected exploitation rank for any
fixed instance consistent with observed queries, and thus must distinguish
instances whose conditional elite fractions differ by Θ(ε). A standard reduc-
tion uses two families of instances that share the same proxy scores (hence
the same SK(s)) and differ only in which elements of SK(s) fall into the
true global top-r. Concretely, we set f(a) ∈ {0, 1} with deterministic tie-
breaking, and choose r so that membership in the global top-r coincides
with having label 1. Within SK(s), we generate labels with mean p ver-
sus p + ∆ where ∆ = Θ(ε), and arrange the remaining pool A \ SK(s) so
that global ranks are consistent with these labels. Any valid certificate with
additive error at most εN in the expected rank (or equivalently, which non-
trivially separates the two resulting values of

∑
r

(
K−mr

B

)
/
(
K
B

)
) yields a test

distinguishing the two Bernoulli means with probability at least 1 − δ. By
classical information-theoretic bounds (e.g. Le Cam’s method), this requires
Ω(∆−2 log(1/δ)) = Ω(ε−2 log(1/δ)) objective queries in the worst case, re-
gardless of adaptivity and regardless of whether the queries are drawn from
SK(s) or from A for calibration. This establishes Theorem 4.

Tightness and interpretation. Taken together, the upper and lower
bounds show that our certificate procedure is minimax-rate optimal up to
logarithmic factors in |R| (and any additional factors arising from anytime
schedules). Importantly, this tightness holds without any stochastic assump-
tions on (A, s, f): the role of randomness is only the algorithm’s sampling.
The bounds also clarify what is and is not learnable under finite budgets.
Estimating only a single number such as Precision@K (i.e. mK/K) is in-
sufficient to control E[Rf (âB)], because Theorem 1 depends on the entire
profile r 7→ mr; conversely, obtaining a coarse approximation of this pro-
file on a modest grid is already enough to yield nonvacuous, quantitatively
meaningful certificates for practical values of B. This motivates the empiri-
cal evaluation plan that follows, where we measure both coverage (validity)
and the decision quality induced by stopping based on UB.

Empirical evaluation plan. We evaluate the practical behavior of Cer-
tiTopK along three axes: (i) validity of the certificate (coverage), (ii) tight-
ness/calibration of the certificate relative to the instance-specific oracle value
from Theorem 1, and (iii) decision quality when the certificate is used to drive
a stopping rule under a fixed objective-query budget. All experiments are
performed in the finite-pool query model of the paper: the pool A and proxy
scores s(a) are fixed and fully observed; randomness arises only from our
uniform sampling steps and from any optional anytime schedule.
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Benchmarks and instances. We instantiate (A, s, f) using two standard
NAS tabular benchmarks. For NAS-Bench-201, we take A to be the full
set of N = 15625 cell architectures and define f(a) as the reported validation
accuracy (or a monotone transformation to [0, 1]) on each dataset (CIFAR-
10, CIFAR-100, ImageNet16-120), yielding three fixed instances per choice of
proxy. For TransNAS-Bench-101, we treat each task (and any prescribed
search space variant) as a separate instance (A, s, f), with f(a) given by the
benchmark’s task-specific score. In both benchmarks, proxy scores s(a) are
computed without using objective queries (e.g. zero-cost proxies, training-
free scores, or a learned proxy built from auxiliary data); we treat s as
fixed input and do not charge its computation to Q. For each instance
we sweep (K,B) over a range reflecting realistic exploitation regimes (e.g.
K ∈ {50, 100, 200, 500, 1000} with B ≤ K), and we evaluate multiple total
budgets Q with specified splits Q = nU + nS +B.

Ground-truth quantities enabled by tabular access. Because the
benchmarks provide f(a) for all a ∈ A, we can compute the true ranks
Rf (a) exactly and hence compute the full conditional profile mr = |{a ∈
SK(s) : Rf (a) ≤ r}| for all r ∈ {0, . . . , N}. This enables two forms of
ground truth. First, we compute the oracle expected exploitation rank for
any (K,B) using the exact identity

E[Rf (âB)] =

N−1∑
r=0

(
K−mr

B

)(
K
B

) .

Second, we can simulate the randomized exploitation procedure itself (sam-
pling B elements from SK(s) and selecting the best by f) across many ran-
dom seeds to estimate the realized output-rank distribution; this distribu-
tional view is not required for validity (which concerns the expectation),
but it diagnoses how conservative certificates translate into realized decision
outcomes.

Certificate validity (coverage) and tightness (calibration). For each
instance, budget split, and random seed, we run CertiTopK to produce a
certificate UB and record whether it covers the oracle expectation:

1
{
E[Rf (âB)] ≤ UB

}
.

Empirical coverage is the average of this indicator over independent runs;
we report it as a function of δ, (nU , nS), and (K,B). To assess tightness, we
report additive and multiplicative gaps, e.g.

gap(B) = UB − E[Rf (âB)], ratio(B) =
UB

E[Rf (âB)]
,
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as well as normalized variants obtained by dividing ranks by N . We addi-
tionally evaluate the monotone dependence of UB on B (and on any anytime
schedule) to verify that the certificate yields a sensible tradeoff curve for
exploitation size under fixed K.

Decision quality under certificate-driven stopping. To convert cer-
tificates into decisions, we fix a target rank level U⋆ (or a target normalized
rank U⋆/N) and run an anytime variant that increases B (and optionally
increases nS) until the certificate satisfies UB ≤ U⋆ or the query budget Q
is exhausted. We then execute exploitation with the final B and output âB.
We report decision quality in terms of (i) true rank Rf (âB), (ii) objective
value f(âB), and (iii) objective regret relative to the best achievable within
SK(s) or within A, depending on the comparison. As baselines that use the
same total query budget, we include: querying B architectures chosen uni-
formly from SK(s) without calibration (no certificate), proxy-only selection
(returning argmax s), and fixed-split heuristics (varying nU : nS : B without
adaptivity). The primary comparison is not in runtime but in how certificate-
driven stopping reallocates queries between calibration and exploitation to
achieve a desired bound on expected rank.

Ablations and synthetic stress tests. We ablate (i) the calibration
split (nU , nS) at fixed Q, (ii) the grid choice R (dense vs. logarithmic vs.
truncated to small ranks), and (iii) the conditional sampling policy inside
SK(s). For (iii) we compare uniform without replacement (our default) to
with-replacement sampling, and to alternative designs such as stratification
by proxy score quantiles; when considering non-uniform designs, we evaluate
whether conservative reweighting can preserve validity. We also include syn-
thetic stress tests in which we construct instances by prescribing the place-
ment of true top-r items inside SK(s) (thus controlling mr) while varying
global proxy–objective rank correlation. These tests isolate the dependence
of E[Rf (âB)] on the conditional profile r 7→ mr and allow us to probe regimes
where correlation-based summaries are misleading, while still measuring cer-
tificate coverage and tightness against the exact oracle value computed from
the constructed mr.

Related work and positioning. Our setting combines two ingredients
that are often treated separately: (i) a finite candidate pool with a fully
observed proxy score for every candidate, and (ii) a small budget of expen-
sive objective evaluations used both for exploitation and for producing a
high-probability certificate on the expected true rank of the returned item
(expectation over the algorithm’s internal sampling, with the instance fixed).
This places our work between NAS heuristics driven by cheap proxies and
classical sequential-design/bandit formulations that assume repeated sam-
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pling from an underlying distribution. The central distinction is that our
guarantees are instance-wise and distribution-free: we do not assume any
generative model for (s, f), but instead certify what randomized top-K ex-
ploitation achieves on the realized finite pool.

RoBoT-style bounds and uniform-rank assumptions. The closest
conceptual precursor is RoBoT and related proxy-guided selection methods
that attempt to bound the performance of proxy-based exploitation under
assumptions on the relationship between proxy rank and true rank ?. A
recurring simplification in this line is a uniformity (or approximate unifor-
mity) assumption on the true ranks within the proxy top set, which allows
closed-form expectations but is generally unverifiable on a fixed instance.
Our contribution is to replace such assumptions by a measurable instance
quantity: the conditional rank profile mr = |{a ∈ SK(s) : Rf (a) ≤ r}|. We
then (a) express the expected exploitation rank exactly as a hypergeometric
survival sum determined by mr, and (b) provide a data-dependent, finite-
sample certificate by lower-bounding mr using a small number of objective
queries. Thus, instead of assuming a rank model to obtain a bound, we in-
fer a conservative surrogate of the relevant instance statistics and propagate
it through an exact identity. In this sense, we view CertiTopK as a de-
assumption of RoBoT: the bound is no longer contingent on an untestable
rank-uniformity premise, but on explicit confidence events controlled by δ.

Zero-cost proxies and NAS heuristics. Zero-cost proxies and training-
free predictors are widely used in NAS and related architecture screening
pipelines because they enable large-scale ranking without objective training
??. The empirical literature largely evaluates such proxies by correlation
metrics (Spearman/Kendall) or by downstream performance when selecting
the proxy top-k. Our results explain why correlation summaries can be
insufficient for predicting exploitation outcomes: the expected rank of a
randomized top-K exploitation strategy depends on the entire conditional
profile r 7→ mr, not on a single global monotonicity score. Accordingly, we
view our certificate as a practical complement to proxy design: it provides
a principled way to answer, on a given pool and proxy, how many objective
evaluations are required to certify that exploiting the proxy top-K will (in
expectation) return an architecture within a target true-rank range. This
aligns with the operational use of zero-cost proxies (screening under a strict
budget) while introducing a missing reliability layer.

Partial monitoring, top-k feedback, and identifiability. Our query
model is closer to finite-population inference than to stochastic bandits: the
pool is fixed, and objective values are revealed only for queried items. This
connects to partial monitoring and top-k feedback models where only lim-
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ited information about the global ranking is observed ??. A key point is
identifiability: if one only ever observes the single proxy argmax (or a deter-
ministically chosen subset), then the placement of elite items inside SK(s)
is generally unidentifiable without further structure. Our approach makes
the minimal exploration access explicit by requiring uniform sampling within
SK(s) for conditional estimation; this is precisely what allows us to estimate
(conservatively) the conditional inclusion counts mr. We regard this as a
concrete articulation of a partial-monitoring barrier in NAS-style pipelines:
certificates require not only a proxy but also an exploration mechanism that
reveals information about the proxy top set beyond the single best predicted
architecture.

Selective inference and adaptive concentration. Because our certifi-
cate is intended to support stopping rules and anytime schedules (e.g. in-
creasing B until a target bound is met), it interacts with adaptive data usage.
There is a broad literature on selective inference and time-uniform concen-
tration, including confidence sequences and always-valid p-values ??. Our
present development uses standard finite-sample tools (DKW bands and one-
sided binomial confidence bounds) combined with an explicit union bound
over a rank grid; this keeps the argument transparent and distribution-free
in the fixed-pool model. We view sharper time-uniform or adaptively valid
bounds as an orthogonal enhancement: replacing the union bound by a con-
fidence sequence for the conditional membership rates would directly yield
tighter certificates under repeated checks, while preserving the same basic
monotonic propagation of lower bounds on mr through the hypergeometric
identity.

Certified ranking, retrieval, and top-k identification. Finally, our
objective—certifying the quality of a returned item in rank units—is related
to PAC-style ranking and best-arm identification ??, as well as certified re-
trieval and auditing of search/ranking systems ?. The main difference is
structural: in best-arm identification one typically assumes repeated sam-
pling with noise, whereas we assume noiseless but expensive queries on a
fixed pool and focus on certifying the expected rank produced by a ran-
domized exploitation policy constrained to SK(s). In retrieval auditing, one
often certifies recall/precision of a top-k output; our certificate targets the
expected minimum true rank achieved by random sub-sampling of the proxy
top-K, which is the natural performance criterion for budgeted exploitation
when one cannot afford to query all of SK(s). In this way, our work can be
read as importing finite-population certification techniques into proxy-guided
NAS exploitation, with an explicit bridge from conditional rank counts to
an exact performance identity.
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Discussion: beyond randomized top-K exploitation. Our develop-
ment focuses on the randomized exploitation policy that samples a size-B
subset uniformly from SK(s) and returns the best queried item. This par-
ticular randomization is not merely a technical convenience: it is the mech-
anism that makes the relevant instance statistic mr identifiable from finitely
many conditional queries, and it yields the exact hypergeometric identity in
Theorem 1. Nevertheless, the same perspective—reduce performance to a
finite-population inclusion profile, then lower-bound that profile from partial
objective queries—extends to several common variants.

Deterministic greedy exploitation. A frequently used baseline is de-
terministic “greedy” exploitation: query the proxy top-B items (or, more
generally, a fixed deterministic subset D ⊆ SK(s) of size B) and return the
best among them. Here there is no internal randomness, hence no nontrivial
E[·] over the exploitation step. However, if we query all of D, then certifying
the true rank of the returned item reduces to global rank calibration: from
the global calibration sample U we can produce a high-probability rank in-
terval for each queried a ∈ D, and hence for â = argmaxa∈D f(a). This
yields an instance-wise certificate of the form Rf (â) ≤ R(â) with probability
≥ 1−δ, which is distinct from our expected-rank certificate but operationally
similar when one wants a bound on the returned architecture itself.

If one insists on an expected-rank statement for greedy policies (e.g. be-
cause D is itself random due to tie-breaking, randomized proxy ensembling,
or stochastic screening), then an analogue of Theorem 1 holds with K re-
placed by |D| and mr replaced by mr(D) := |{a ∈ D : Rf (a) ≤ r}|, provided
the randomization makes D a uniform (or otherwise known) sampling design
from a superset. In that case, the core requirement becomes a valid lower
bound on mr(D) under the sampling design; uniform-without-replacement is
the simplest case, while more complex designs suggest importance-weighted
or Horvitz–Thompson-style conservative estimators for membership rates.
We view this as a clean separation: the hypergeometric identity is specific to
uniform sampling, but the “propagate a lower bound on an inclusion profile
through a survival-sum identity” template is not.

Multi-objective constraints and feasibility filtering. Many NAS pipelines
optimize accuracy subject to constraints (latency, memory, energy), or more
generally a vector objective. One natural extension is constrained exploita-
tion: restrict attention to the feasible subset F := {a ∈ A : g(a) ≤ 0}
for some constraint function(s) g, and run our procedure on A′ = F with
objective f . When constraints are also expensive to evaluate, we can treat
feasibility as an additional queried attribute and certify conditional perfor-
mance: for example, certify the expected rank among feasible candidates,
Rf,F (âB), by calibrating ranks with respect to F using a uniform sample
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from F (or a two-phase sampling scheme that first estimates |F| and then
samples uniformly from it). If one instead wants a certificate in the global
rank Rf (·) while guaranteeing feasibility with high probability, then the cer-
tificate naturally becomes two-part: (i) a lower bound on the feasible condi-
tional profile mF

r := |{a ∈ SK(s) ∩ F : Rf (a) ≤ r}| and (ii) a bound on the
probability that exploitation returns an infeasible item (which can be forced
to zero by discarding infeasible queried items, at the cost of changing the
sampling design). For genuinely multi-objective settings without a total or-
der, one may replace rank by dominance depth or by rank induced by a fixed
scalarization; our arguments remain valid as long as the performance crite-
rion can be written as a minimum over a subset and admits a survival-sum
representation with respect to a monotone threshold.

Implicit or extremely large search spaces. We have taken A to be
a finite explicit pool with known proxy scores for all items, which matches
the common “one-shot scoring then shortlist” use of zero-cost proxies. For
implicit spaces where A is too large to enumerate, an immediate adaptation
is to treat the proxy itself as defining a proposal distribution over candidates,
and to define SK(s) implicitly as the top-K among a large proxy-sampled
slate. Our certificates then apply to the realized finite slate, not to the
underlying infinite space; this is appropriate when the actual decision is
made from the slate. A more ambitious direction is to certify performance
relative to the full implicit space; this would require additional assumptions
linking the proxy-sampling mechanism to the unseen portion of the space, or
an explicit exploration model that allows uniform (or otherwise controlled)
sampling from progressively higher proxy quantiles.

Limitations. The present certificate is only as informative as (a) the abil-
ity to sample uniformly within SK(s) and (b) the tightness of global rank
calibration from nU samples. When uniform access to SK(s) is unavail-
able (e.g. due to determinism or constrained generation), the conditional
profile mr can fail to be identifiable, and any distribution-free guarantee
becomes correspondingly weaker. Moreover, our conservative construction
intentionally undercounts top-r membership; when nU is small or f has
heavy ties/noise, the resulting mr may be too small to yield a non-vacuous
UB. Finally, our union-bound treatment over a rank grid is simple but can
be loose when one checks many r values or adapts B repeatedly.

Next steps. Several improvements are conceptually straightforward within
our framework: replacing the union bound by confidence sequences to sup-
port repeated stopping decisions; using stratified or diversity-aware sampling
within SK(s) while retaining valid finite-population lower bounds; and ex-
ploiting monotonicity of r 7→ mr more aggressively (e.g. isotonic tightening
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of the lower confidence envelope). On the calibration side, one can replace
DKW by finite-population variants (e.g. Serfling-type bounds) and incorpo-
rate variance-sensitive empirical Bernstein bounds when f is bounded. We
view these as refinements rather than changes of principle: the core object
remains a certified lower envelope for the conditional inclusion counts, which
is then propagated through an exact or design-specific survival identity to
yield an instance-wise certificate for budgeted exploitation.
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