Constraint-Aware RoBoT: Feasible-Precision@ K
Guarantees for Training-Free NAS Under

Deployment Budgets

Liz Lemma Future Detective

January 20, 2026

Abstract

Training-free neural architecture search (NAS) ranks architectures

using zero-cost proxies, but modern deployment requires satisfying
strict latency /memory /energy budgets; unconstrained proxy rankings
often concentrate mass on infeasible models. Inspired by RoBoT (ICLR
2024), we propose a constraint-aware framework that makes constraints
first-class in both the metric robustification and the exploitation stage.
We define Feasible-Precision@QK , the overlap between the proxy top-K
and true top-K architectures restricted to the feasible set, and show
it is the right quantity to quantify the estimation gap in deployment-
aware NAS. Our main theoretical contribution is a constrained ex-
ploitation theorem bounding the expected true feasible rank of the
returned architecture as a function of Feasible-Precision@QK, together
with a matching minimax lower bound (up to constants) for any method
restricted to evaluating within proxy top-K feasible candidates. We
further handle noisy feasibility via constraint predictors, proving grace-
ful degradation in terms of false-feasible and false-infeasible rates. Fi-
nally, we instantiate a constraint-aware RoBoT algorithm that uses
Bayesian optimization to learn a robust linear proxy ensemble while
optimizing Feasible-Precision@K, then allocates the remaining eval-
uation budget to greedy exploitation among the proxy’s top feasible
architectures. Empirical results on hardware-aware NAS benchmarks
(measured latency tables and on-device constraints) demonstrate im-
proved feasible-model quality and better wall-clock efficiency versus
unconstrained training-free and hybrid NAS baselines.

Table of Contents

1. 1.

Introduction: why deployment constraints break unconstrained

training-free NAS; limitations of rank correlation; overview of Feasible-
Precision@K and constraint-aware RoBoT.

. 2. Related Work: training-free proxies; constraint-aware NAS/BO;
RoBoT and partial monitoring; hardware-aware benchmarks/latency
prediction.

. 3. Problem Setup and Metrics: formal definition of feasible set, con-
strained rankings, Feasible-Precision@K; discussion of what can be ob-
served and what is queried.

. 4. Constrained Exploitation Theory: derive expected feasible-rank
bounds for greedy top-K evaluation; provide matching lower bound; in-
terpretability and regime analysis (small/large K, sparse feasible sets).

. 5. Noisy Constraints: prediction model, false-feasible/false-infeasible
rates; effective K and effective precision; refined bounds and budget-
wastage analysis.

. 6. Constraint-Aware RoBoT Algorithm: BO over proxy-combiner
weights with feasibility filtering; exploitation policy; practical con-
siderations (normalization, constraint predictors, tie-breaking, batch
queries).

. 7. Experiments (would strengthen contribution): hardware-aware NAS-
Bench variants; on-device latency budgets; ablations on (i) constrained
vs unconstrained Precision@K, (ii) constraint-noise, (iii) choice of proxy
ensemble and acquisition; comparisons to constraint-aware BO base-
lines.

. 8. Discussion and Extensions: multi-constraint Pareto front variants;
distribution-free certificates as future work; implicit search spaces and
approximate maximizers; limitations.

. 9. Conclusion: summary of guarantees and deployment relevance.

1 Related Work

Training-free proxy metrics and zero-cost predictors. A substantial
body of work seeks to avoid expensive objective queries by scoring candi-
date architectures using training-free or zero-cost signals computed from
random initialization, a few forward/backward passes, or simple structural
statistics. Representative examples include gradient- and sensitivity-based
criteria (e.g., SynFlow and related path-norm surrogates), Jacobian/NTK-
style conditioning measures, Fisher-information or diagonal approximations
thereof, and structure-induced measures of feature diversity or activation
pattern separation (e.g., NASWOT-type scores); surveys and comparative
studies appear in, e.g., 7?7. These proxies are typically evaluated by correla-
tion between the proxy ranking and the fully trained objective ranking, often
via Spearman or Kendall statistics, or by reporting the best objective found
when selecting the proxy top-K architectures under an unconstrained can-
didate set. From our perspective, two common limitations follow. First, a
global rank correlation over the full set is neither necessary nor sufficient for
top-set retrieval under a small evaluation budget, since only the upper tail
of the distribution matters. Second, when deployment feasibility constrains
the admissible set, proxy alignment should be assessed after restricting to
the feasible subset; a proxy that is well correlated globally may misorder the
feasible frontier. These considerations motivate the use of top-K retrieval-
style metrics restricted to feasibility, rather than a single global correlation
coefficient, when the downstream decision is constrained selection.

Constrained and multi-objective neural architecture search. Constraint-
awareness has long been a central requirement in practical NAS, particularly
for latency, memory, and energy budgets. Earlier approaches handle con-
straints by incorporating a penalty or Lagrangian term into the objective,
by casting the problem as multi-objective optimization, or by using con-
strained Bayesian optimization (BO) with separate models for the objective
and constraints 77. In the NAS literature, hardware-aware methods such as
MnasNet, ProxylessNAS, and FBNet incorporate latency or FLOPs into the
search objective or impose hard constraints during sampling ?77. In one-shot
and weight-sharing regimes, constraint handling is often implemented by re-
stricting the sampled subnets, using resource-aware regularizers, or learning
distributions over architectures conditioned on budgets 7. These methods,
however, generally presuppose either (i) access to relatively accurate con-
straint measurements for many candidates, or (ii) the ability to amortize
evaluation costs through shared weights. Our setting differs in that we ex-
plicitly target query efficiency in terms of expensive objective evaluations,
and we separate cheap metric computation from expensive objective access.
Moreover, rather than optimizing a scalarized objective, we emphasize the
induced constrained ranking within the feasible set, since the end goal is to

output a single feasible architecture with high true objective.

Using proxy rankings: beyond rank correlation. Several works in-
terpret training-free proxies as a ranking mechanism and evaluate their qual-
ity via top-K hit rates or success probabilities, sometimes under additional
heuristics (e.g., re-ranking, ensembling, or iterative refinement) ?. Neverthe-
less, the dominant evaluation still reports aggregate correlation on a bench-
mark search space. In constrained settings, this can conflate two effects: (i)
whether the proxy correlates with the objective, and (ii) whether the proxy
selects candidates that are feasible in the first place. Our development can
be viewed as making this separation explicit by measuring alignment within
the feasible subset and treating the proxy as a retrieval rule operating on
F (or its prediction). This viewpoint is aligned with classical information
retrieval metrics and with best-arm identification under a restricted candi-
date pool, but we focus on constrained NAS where feasibility itself can be
uncertain and must be verified upon query.

RoBoT, rank-based BO, and partial monitoring. RoBoT-style meth-
ods perform BO over a low-dimensional space of proxry combiners (e.g.,
weights w in a linear score of normalized metrics) and only observe the expen-
sive objective on the single architecture selected by the current proxy; this
induces a feedback structure that is weaker than bandit feedback on a fixed
action set. The partial-monitoring formalism provides a natural language
for such problems: the learner chooses an action (here, a proxy parameter)
and receives limited feedback (here, the objective of the proxy-maximizer),
with performance measured relative to the best action in hindsight ?. Under
global observability, one can obtain regret rates of order O(T 2/ 3) for suitable
algorithms (e.g., IDS/UCB variants) in a kernelized setting; RoBoT instan-
tiates this idea for training-free NAS by learning proxy weights using few
objective evaluations 7. Our contribution is complementary: we incorporate
feasibility filtering into both the definition of proxy performance and the se-
lection rule, and we propagate the resulting top-K proxy quality (restricted
to feasibility) into explicit bounds on the expected feasible rank of the final
output.

Hardware-aware benchmarks and latency/constraint prediction.
Empirical progress in NAS has been accelerated by tabular benchmarks such
as NAS-Bench-101/201 and their variants, which provide precomputed accu-
racies for large numbers of architectures ??. For deployment-oriented work,
benchmarks and datasets increasingly include hardware measurements (e.g.,
latency on specific devices) or simulators thereof, and they expose the non-
trivial gap between proxy constraints (FLOPs, parameter count) and real
constraints (end-to-end latency, peak memory) ?. Constraint prediction is

often implemented via lookup tables, additive layerwise models, or learned
regressors (e.g., MLPs, gradient-boosted trees, or graph-based predictors
over the architecture DAG) trained on a limited set of measurements ?.
Such predictors exhibit both false-feasible and false-infeasible errors due to
measurement noise, operator fusion, memory effects, and device-specific ker-
nels. This motivates a design in which predicted feasibility is used as a filter
for candidate generation, but feasibility is ultimately verified upon expen-
sive query. Our analysis formalizes this practice by parameterizing predictor
quality through explicit misclassification rates and showing how these rates
reduce the effective top-K budget and the attainable proxy precision within
the true feasible set.

2 Problem Setup and Metrics

We study constrained architecture selection over a finite candidate set. Let
A be a finite set of N architectures. Each A € A is associated with an
(unknown) scalar objective value f(A) € R that we wish to maximize, and a
(possibly unknown) constraint vector ¢(A) € R? that must lie below a given
budget b € RY componentwise. The true feasible set is

F o= {Ac A:c(A) <b}.

Our output must be feasible, i.e., we must return an architecture AeF.

Information access and query budget. We assume access to a collec-
tion of M training-free metrics {M;}M,, where each M;(A) can be computed
cheaply for any A € A (e.g., from random initialization and a small number
of forward/backward passes, or from graph/statistical properties of the ar-
chitecture). In contrast, evaluating f(A) requires an expensive query (e.g.,
training and validation), and we impose a strict budget of at most T" ob-
jective queries. Depending on the setting, constraints may be (i) known
tabularly for all architectures, in which case F is known at selection time,
or (ii) measurable only upon query (e.g., device latency measurement), in
which case feasibility must be verified for any queried candidate before it
can be output. Our goal is query-efficient: using cheap metric computation
and at most T" expensive evaluations of f, we aim to output a feasible archi-
tecture with large objective value (equivalently, small rank among feasible
candidates).

Metric normalization and proxy scores. Because different metrics may
have incompatible scales, we work with normalized values M;(A) € [0, 1] de-
rived from M;(A) by a fixed normalization scheme (e.g., min—max normal-
ization over the candidate pool, or rank-based normalization). For a weight

vector w € RM | we define the induced proxy score

The family {S,,} provides a low-dimensional control space (the weights) over
which we may search, while the architecture space A itself can be extremely
large. In the sequel, w is treated as a decision variable that determines how
we combine training-free metrics into a single proxy ranking.

Constrained rankings. Since feasibility restricts the admissible set, we
evaluate both the objective and the proxy within F. For any scoring function
g : A — R, we define the feasible rank R; (A) of an architecture A € F as
its position when sorting F in descending order of g (rank 1 is best). When
ties occur, we assume an arbitrary but fixed tie-breaking rule (or equiva-
lently, uniform tie-breaking; none of our definitions depend materially on
the choice). We will be interested in Rf (A) (true objective rank among fea-
sible architectures) and Ré:w (A) (proxy rank among feasible architectures).
Our evaluation criterion is inherently tail-focused: because we can only af-
ford a small number of objective evaluations, only the top portion of these
rankings is operationally relevant.

Feasible-Precision@K. Fix a top-K parameter K < T. Given a proxy
score Sy, we define the Feasible-Precision@K of S, with respect to f as

T (Sws) = %’{AGF:RQ(A) <K A RE(A) <K}

Thus pj-(Sw, f) € [0,1] is the fraction of architectures that lie simultaneously
in the proxy top-K feasible set and the true top-K feasible set. This is a
constrained, top-set retrieval metric: it is insensitive to global correlation
far from the optimum and directly quantifies how many “truly good” feasible
architectures are exposed by querying within the proxy top-K feasible list.
In particular, if we can afford to evaluate (up to) K candidates suggested
by the proxy within F, then p% (S, f) controls the expected availability of
truly top-ranked feasible candidates inside that queried pool. We further
denote the best attainable value over the score family by

P = max p(Su, f),
which serves as a benchmark for learning a good combiner.
Unknown feasibility and predicted-feasible filtering. When ¢(A) is

not known a priori, we assume access to a cheap predictor ¢(A) (e.g., a
learned latency model), yielding a predicted feasible set

F = {AecA:¥A) <b}

We parameterize predictor quality by misclassification rates: a false-feasible
bound P(A € F | A ¢ F) < a and a false-infeasible bound P(A ¢ F | A €
F) < B. Operationally, we use F as a filter for candidate generation and
ranking, but we only certify feasibility by verifying ¢(A) < b upon querying
(when possible). This separation is essential: false-feasible errors can waste
objective queries on infeasible architectures, while false-infeasible errors can
remove good feasible candidates from consideration; both effects will appear
explicitly in our rank guarantees via an effective reduction of the usable
top-K budget and attainable precision within F.

Optimization goal. The learner adaptively selects up to T' architectures
for expensive evaluation of f(A) (and, when needed, verification of c¢(A)).
Among all queried and verified-feasible architectures, we output A with the
largest observed objective value. Our performance metric is the expected
feasible rank IE[RJJCE (A)] (equivalently, the expected objective value subject
to feasibility), and the central role of p%-(Sy, f) is to connect cheap proxy
computation to explicit, budget-aware guarantees on this final feasible rank.

3 Constrained Exploitation Theory

In this section we isolate the exploitation component: we fix a weight vector
w (learned by any means), restrict attention to feasible architectures, and
ask what can be guaranteed by the greedy policy that evaluates the proxy
top-K and returns the best feasible objective observed. The key point is
that, once w is fixed, the only quantity connecting the proxy ranking to the
objective ranking in the relevant tail is pf((Sw, f).

Proxy top-K feasible pool and intersection size. For a fixed w, define
the proxy-induced queried pool within F by

Tr(w) = {Ae F: ng(A) < K}.

If we evaluate f on all A € Tx(w) and output A = arg Max Ac Ty (w) f(A),
then our output rank is entirely determined by which elements of Tk (w)
actually belong to the true objective top-K within F. Let

Ix(w) = {A€F: R (A) <K A Rf(A) <K}

By definition, |Zx(w)| = p(Sw, f) - K. Write m := |Ix(w)|. Note that
elements in Tk (w) \ Zx (w) have feasible objective rank strictly larger than
K and hence cannot beat any element of Zx (w) in terms of feasible rank.

Expected feasible-rank bound via order statistics. We now quantify
the expected best feasible rank obtained by the above exploitation rule. The
only stochasticity we require is a mild symmetry assumption: conditional on
membership in Zx (w), the objective ranks {Rf(A) : A € Ti (w)} behave like
an (unordered) uniform m-subset of {1,2,..., K }E| Under this assumption,
the exploitation output rank is the minimum rank among those m intersected
items:

R7(A) = min R} (A ,
7(4) AcTic(w) 7 (4)
since evaluating all of Tk (w) guarantees we observe the best objective value
among the intersected set (and nothing outside the intersection can improve
upon it). A standard identity for the expected minimum of a uniform m-
subset of {1,..., K} yields
K+1 K+1

E in R} (A)| = = ,
Léﬂ?@ f()] m+1 (S K +1

provided p%-(Sy, f) > 0 (otherwise m = 0 and no nontrivial rank guaran-
tee is possible under the stated information). This is the bound we will
use throughout: it translates a retrieval-quality quantity (pﬁ) into a final
expected feasible-rank guarantee for the natural top-K exploitation strategy.

K41
pK+1

regimes (writing p = p% (S, f) for brevity). First, when pK > 1 (meaning
the proxy top-K contains many truly top-K feasible architectures), we obtain

has two immediate

Interpretation and regimes. The expression

E[RF(A)] ~
p

so the expected feasible rank is controlled primarily by the inverse precision
and is essentially independent of K. Second, when pK < 1, the guarantee
deteriorates to H*E[RfcC (//l\)] ~ K + 1, reflecting that the proxy top-K likely
contains no truly top-K feasible item, hence querying K candidates is not
sufficient to reliably access the very best feasible architectures. In particu-
lar, increasing K can help only insofar as it increases pK, i.e., the absolute
number of true top-K feasible elements exposed by the proxy list.

The bound is also sensitive to the feasible set size only through the
meaning of K: we tacitly require K < |F| (otherwise one replaces K by
K':= min{K, | F|} in the definitions). Notably, the feasible fraction |F|/|.A|
does not enter: exploitation operates entirely within the feasible ranking.
The operational difficulty in sparse-feasibility settings is therefore not the

'Equivalently, the set of true ranks appearing among the intersected items is uniformly
distributed over all (X) possibilities. This is the natural “no additional structure” assump-
tion: the proxy identifies m genuinely top-K feasible items, but does not privilege which
of the K ranks they occupy.

rank analysis itself, but rather whether the learner can construct Tx(w)
without spending objective budget on infeasible candidates; we address this
explicitly in the noisy-feasibility setting.

A matching minimax lower bound. We next argue that the depen-
dence on p in the above guarantee cannot be substantially improved (up
to constants) if an algorithm is constrained to query only within the proxy
top-K feasible set. Consider the class of instances in which Tx (w) is fixed
and only the placement of the m = pK “good” (true top-K) feasible items
inside Tk (w) is unknown. An adversary may choose the objective values so
that exactly m of the K candidates belong to the true top-K set, and these
m positions are drawn uniformly at random. Under this construction, any
adaptive querying strategy that evaluates at most K items in 7Tx (w) is effec-
tively attempting to find the minimum of an unknown uniform m-subset of
{1,...,K}; by Yao’s principle, even randomized algorithms cannot achieve
expected rank better than

BIRF(A) > o).

which matches the @(pff((fl) behavior above up to constant factors. Con-

sequently, without additional structure beyond knowledge (or learnability)
of pf((Sw,f), no method restricted to the proxy top-K feasible pool can
guarantee expected feasible rank o(1/p) when pK is moderately large. This
justifies our focus on (i) designing proxies that maximize feasible precision

at the relevant K, and (ii) learning w so as to approach the best attainable
F,*
PK -

A self-contained statement. Fix a weight vector w and an integer K.
Let T (w) = {A € F: Rf (A) < K} be the proxy top-K feasible pool, and
let Ig (w) = {A € F: RL (A) < KA Rf(A) < K} be the intersection with
the objective top-K feasible set. We denote m := |Ix(w)| = ph(Sw, f) K.
The exploitation policy under consideration evaluates f on all architectures
in Tx(w) (or on as many as the remaining budget allows) and outputs the
feasible queried architecture with maximal f.

To avoid pathologies due to ties, we assume that R]][_ and ng are defined
using independent random tie-breaking whenever equal scores occur; the
resulting ranks are then well-defined random variables on {1,...,|F|}.

Why the intersection controls the output rank. By definition, every
A € Tig(w) \ Ik (w) satisfies Rf(A) > K, i.e., it lies strictly below the
objective top-K feasible set. Consequently, even if such an architecture has
the best objective value among the non-intersecting elements, it cannot have

feasible rank better than any member of Zx (w). Thus, on the event m > 1,
the feasible rank of the exploitation output is exactly
R7(A) = min R} (A).
f () A€Tk (w) ()
When m = 0 there is, under our information model, no nontrivial guarantee:

the proxy top-K feasible list contains no truly top-K feasible architecture,
and the output rank may be arbitrarily large.

Order-statistic calculation under a symmetry assumption. We im-
pose the following symmetry (“no privileged ranks”) condition: conditional on
Tk (w) having size m, the multiset of objective ranks {R]]f(A) tAeIkg(w)}
is distributed as an unordered uniformly random m-subset of {1,2,..., K}.
Equivalently, every subset of {1,..., K} of cardinality m is equally likely to
be realized as the set of ranks occupied by the intersected architectures.

Under this assumption, letting Z := min ez, (u) Rf (A), we have for each
re{0,1,..., K — 1},

(")

P(Z>r)= (%) ,

since the event {Z > r} means all m ranks fall in {r 4+ 1,..., K'}, which has
size K — r. Therefore

K-1 1 K-1 K —r
E[Z] = }P’(Z>r):KZ<)
r=0 (m) r=0 m
Using the hockey-stick identity fo:m (#1) = (gi%) (substitute u = K —r),
we obtain Kot
(ni1) K+1 K+1

E[Z] = = = .
1]) m+1 ph(Sw,) K +1

This gives the exact exploitation bound claimed in Theorem 1 under the

stated symmetry model.

Interpretation: dependence on K, p, and feasible-set sparsity. The
expression pll((fl exhibits two informative regimes. If pK > 1 then IE[RJJCE (X)] =
1/p, so the expected feasible rank is governed mainly by the inverse feasi-
ble precision and is weakly sensitive to further increases in K. If instead
pK < 1, then]E[Rf]:(;{)] ~ K + 1, reflecting that the proxy top-K feasible
pool is unlikely to contain any truly top- K feasible architecture. Importantly,
the feasible fraction |F|/|.A| does not appear explicitly: once we can restrict
attention to F, exploitation is a ranking problem internal to F. The practi-
cal difficulty in sparse-feasibility regimes lies in constructing Tx (w) without
spending objective budget on infeasible architectures, which motivates the
next section.

10

A matching lower bound under proxy-top-K restrictions. We now
formalize tightness in the standard minimax sense. Consider any algorithm
(possibly randomized and adaptive) that is restricted to issuing objective
queries only within the fixed set Tx(w) and makes at most K such queries.
We define a hard instance distribution as follows: an adversary selects ex-
actly m = pK architectures in Tx(w) to be the objective top-K feasible
items (equivalently, to have feasible ranks in {1,..., K'}) and places these m
“good” items uniformly at random among the K positions of the proxy list;
objective values are then assigned so that their induced feasible ranks real-
ize this placement. By Yao’s minimax principle, it suffices to lower bound
the expected performance of any deterministic strategy under this random
instance distribution.

Under this construction, before querying, the algorithm has no infor-
mation about which proxy positions contain good items; adaptivity cannot
create information that is not revealed by queries. The best feasible rank
achievable after up to K queries is therefore lower bounded (up to constant
factors) by the expected minimum rank among the m good items, which is

E[Z] = (K+1)/(m+1) = @(%). Hence there exists an instance for

which "
E[R} (A)] > Q
R 2 o).

matching the upper bound’s dependence on p and K up to constants. In par-
ticular, without additional structural assumptions beyond the single align-
ment quantity p% (Sy, f), no method confined to T (w) can guarantee ex-
pected feasible rank o(1/p) in the regime pK — oc.

Noisy feasibility model. We now treat the case in which feasibility is not
known a priori, but instead is inferred from a cheap predictor ¢ : A — R?
(e.g., a regressor trained on measured latencies) that induces a predicted-
feasible set

F = {Ae A:EA) <b}.

We assume that true feasibility can be verified when an architecture is actu-
ally evaluated (e.g., we can measure latency /memory during the expensive
evaluation), so that we may discard infeasible queried items and still guar-
antee feasibility of the final output. The statistical role of ¢ is only to reduce
wasted expensive queries. Accordingly, we quantify its errors by two one-
sided misclassification bounds:

P(Aeﬁ|A¢f)§a, P(A¢f\A€f)§ﬁ,

interpreted as a false-feasible rate a and a false-infeasible rate 5. These
bounds may be understood either in a distributional sense over a random
draw of A from the candidate pool (or from the proxy-ranked list), or as

11

empirical bounds after calibration on a held-out measurement set; for our
purpose, they serve as parameters controlling how far F deviates from F.

Predicted-feasible exploitation and effective top-K. Fix w and K
as before, but replace the proxy top-K feasible pool by the proxy top-K
predicted-feasible pool

Tr(w) = {Ae]?: ng(A)SK}.

The exploitation policy queries f on architectures in ?K(w) (or a prefix
thereof) and, upon observing the true constraint vector (or at least a feasi-
bility flag), retains only those queries that satisfy ¢(A) < b, outputting the
queried feasible item with maximal f.

Because Tx(w) may contain infeasible elements, the effective number
of feasible evaluations can be smaller than K. A convenient conservative
summary is

Keg == |(1—-a)K],

which reflects the worst-case expectation that an « fraction of predicted-
feasible selections are in fact infeasible. More precisely, if we let W be
the number of infeasible architectures among the K queried members of
Tk (w), then E[W] < aK by the false-feasible bound, and hence E[K — W] >
(1 — a)K. In the sequel we reason as if at least K.q feasible evaluations
are available, noting that this is a lower bound in expectation (and can
be upgraded to a high-probability statement under additional concentration
assumptions on the predictor errors along the proxy list).

Effective precision under false-infeasible errors. Even when we suc-
ceed in evaluating K.g feasible candidates, we may have excluded some truly
good feasible architectures from consideration because they were incorrectly
filtered out of F. This is precisely the impact of 3. To capture it at the
same level of granularity as our earlier analysis, we define an effective feasi-
ble precision

Peft = (1_/8)pf(eﬁ(sw7f)a

which may be read as follows: among the true feasible proxy top-Keg list
(the list we would have formed if F were known), only a (1 — () fraction
of its members are expected to survive the predicted-feasible filter. In par-
ticular, if 5 is small (conservative predictor), the proxy—objective alignment
measured by pﬁeﬁ is largely preserved; if § is large, good architectures are

systematically excluded and no proxy-based method that relies on F can
avoid this loss without incurring more infeasible trials.

12

Rank bound with verification (graceful degradation). We couple
the predicted-feasible exploitation procedure with an idealized exploitation
procedure restricted to F in two steps. First, we account for false-feasible
inclusions: the K predicted-feasible queries contain at most a/ infeasible
elements in expectation, so at least Ko of them are (in expectation) feasible
and hence comparable to queries drawn from a proxy-ranked list within
F. Second, we account for false-infeasible exclusions: relative to the proxy
ranking within F, a fraction at most 8 of feasible architectures are removed
by the filter, which reduces the expected size of the intersection between the
queried set and the true objective top-K.g feasible set by a factor (1 —).
Under the same symmetry assumption used previously for order statistics
on the intersection ranks, the preceding reductions allow us to invoke the
exploitation calculation with (K, m) replaced by (Keﬁr, peffKeﬁ‘), yielding

o Keg+1
E[Rf (A)] = K+ 1
Two limiting cases are worth recording. If @« = 0 and § = 0 we recover
the noiseless-feasibility expression with K. = K and peg = pf((Sw, f). If
a > 0 but 8 = 0, the only effect is budget wastage: we effectively spend aK
expensive evaluations on infeasible designs, but the proxy alignment among
the remaining feasible trials is unchanged.

Budget wastage and practical tuning. The quantity oK is an upper
bound on the expected number of wasted expensive objective evaluations
during exploitation due to infeasibility. This bound clarifies the operational
tradeoff in choosing the predictor threshold (or safety margin) used to form
F tightening the filter decreases « (fewer infeasible queries) but typically
increases (8 (more feasible candidates, including potentially high-f ones, are
discarded). In settings with scarce objective budget T', a conservative choice
that controls « is often preferable because it preserves effective sample size;
in settings where feasibility violations are cheap to detect early (e.g., latency
can be measured without full training), one can afford a larger « to reduce
B and increase peg. These considerations will be reflected explicitly in the
algorithmic design via feasibility filtering, early rejection, and the allocation
between exploration and exploitation.

4 Constraint-Aware RoBoT (C-RoBoT): BO over
proxy combiners with feasibility filtering

We now instantiate the preceding rank-based guarantees in a concrete pro-

cedure that allocates the expensive-query budget across (i) learning a proxy

combiner and (ii) exploiting the resulting proxy ranking, while enforcing
feasibility by construction.

13

Action space: weight vectors and induced candidates. We treat the
combiner weights w € RM as the continuous decision variables and view
each w as inducing a single architecture choice

A € Sw(A),
(w) € arg max 5, (4)

where G denotes the candidate pool after feasibility filtering. In the tabular-
known-feasibility setting we set G = F, whereas in the predictor setting
we set G = F and subsequently verify true feasibility upon query. In ei-
ther case, the expensive oracle is accessed only through values of the form
f(A(w)), which converts the discrete constrained search over A into a con-
tinuous black-box optimization problem over w with structured feedback.
To avoid degeneracies, we restrict w to a compact set (e.g., ||w|1 < 1 or
w € AM~1) which also makes the BO surrogate well-posed.

Two-phase allocation: exploration then exploitation. C-RoBoT fol-
lows an explore—exploit template. In the exploration phase, we run BO over
w and use each selected wy to propose A; = A(wy), which we then evaluate
with the expensive oracle (and, when necessary, measure c(A;) to verify fea-
sibility). We maintain a queried set Q so that if multiple w; yield the same
maximizer A;, we do not re-spend budget; instead we record the duplicate
proposal as additional information about the proxy landscape. We denote
by Ty the number of distinct objective evaluations consumed during explo-
ration. In the exploitation phase, we fix the best weight vector w* found
by exploration (according to observed f(A(w)) among feasible evaluations)
and spend the remaining budget to evaluate a proxy-ranked list under S«
within the feasible filter, finally returning the best feasible item seen.

Exploration details: BO on induced objective values. Concretely,
we model the mapping w — f(A(w)) with a GP surrogate and choose wy via
an acquisition rule such as UCB or information-directed sampling. Although
A(w) is piecewise-constant in w (since it is defined by an argmax over a
finite set), the surrogate remains effective in practice because the acquisition
process only needs to identify regions of w that induce high- f candidates, and
the induced discontinuities are aligned with proxy score ties. When objective
observations are noisy (e.g., due to stochastic training), we may either treat
the noise as homoscedastic in the GP likelihood or, if the budget permits,
repeat evaluations of a small set of promising candidates and average their
f values; in all cases the final selection is based on verified-feasible queried
points.

Exploitation policy: top-K within the feasible filter. Given w*, we

form the proxy ranking induced by S~ restricted to the feasibility filter G.
Let AN, A®) . be the sorted list in decreasing proxy score (breaking ties

14

deterministically; see below). We then query f on the first L distinct ele-
ments of this list not already in Q, where typically L = min{K, T"— Ty},
though one may use all remaining budget when T"— Ty > K. If feasibility
is only predicted, each queried item is immediately checked against the true
constraint budget, and infeasible items are discarded (but still count against
the budget). The final output is the feasible queried architecture with max-
imum observed objective value. This exploitation step matches the setting
of our rank analysis, with the predictor-induced degradation summarized by

(a, B) through (K, peft)-

Normalization and metric preprocessing. Since the proxy family is
linear in normalized _metrics, careful normalization is operationally impor-
tant. We compute M;(A) € [0,1] using either min—max scaling over the
candidate pool or robust quantile clipping (e.g., mapping the 5th and 95th
percentiles to 0 and 1) to prevent a single heavy-tailed metric from dominat-
ing the linear score. If a metric is missing for some architectures, we either
impute it with a conservative value (e.g., the median) or restrict the candi-
date pool to architectures with complete metric vectors; the former preserves
coverage while the latter simplifies reproducibility.

Feasibility predictors and safety margins. When ¢ is used, we rec-
ommend explicitly incorporating a safety margin to control «: instead of
¢(A) < b one may impose ¢(A) < b — v componentwise, with v > 0 tuned
to trade off false-feasible and false-infeasible errors. The bounds above then
apply with (o, 8) corresponding to the calibrated predictor under the chosen
margin. In latency-constrained settings, we may also implement early rejec-
tion: measure latency first, and only if the candidate passes, proceed with
the expensive training/validation required to obtain f(A), thereby reducing
the realized cost of infeasible trials.

Tie-breaking, duplicates, and stable rankings. Because A(w) is de-
fined by an argmax, ties in S,, can create instability. We enforce a stable
tie-breaking rule, e.g., lexicographic order on architecture identifiers or pref-
erence for lower predicted constraint usage, so that repeated runs with the
same w yield identical selections. During exploitation, we similarly ensure
that the top-K list is a list of distinct architectures; if duplicates arise from
numerical ties, we skip to the next item. These conventions are immaterial
to the theory but essential for a well-defined implementation.

Batch queries and parallelism. When the evaluation environment sup-
ports batch size B > 1, we extend both phases by selecting a batch of
weight vectors (e.g., via batched UCB) and collecting the corresponding ar-
chitectures {A(w¢ 1), ..., A(w,B)}, deduplicating them before dispatch. In

15

exploitation, we simply evaluate the next B items in the proxy-ranked list.
This parallel variant preserves the same accounting of distinct objective eval-
uations and differs only in wall-clock time, not in budget usage.

5 Experiments

We evaluate C-RoBoT in settings where (i) feasibility is known from a tab-
ular benchmark, (ii) feasibility is only partially observed through a learned
predictor with controlled error, and (iii) the relevant constraint is measured
on-device (latency) and is therefore both costly and noisy. Across all ex-
periments, we report the best verified-feasible architecture found within the
objective query budget T', and we additionally report rank-based diagnos-
tics that directly instantiate our theory, including empirical estimates of
P (Sw, f) and the realized feasible rank RJ]J- (A) when the benchmark pro-
vides ground-truth rankings.

Benchmarks and constraints. We consider hardware-aware NAS-Bench
variants where each architecture is annotated with validation accuracy (our
f) and one or more resource measurements (our ¢), e.g., latency on a specified
device, FLOPs, parameter count, peak memory, or energy proxies. When
true constraints are tabulated, F is known exactly and we can compute p§
without estimation error. When only a subset of architectures has measured
constraints, we construct ¢ by regressing the constraint on architecture de-
scriptors (or on training-free metrics), and we form F = {A : ¢(A) < b},
verifying feasibility for every queried candidate by measuring ¢(A) upon
evaluation.

On-device latency budgets. To stress the setting motivating feasibility
filtering, we include a deployment-style protocol in which the budget b is
given as a hard latency limit (e.g., b = 20ms) on a target device. Each
queried architecture undergoes compilation and timed inference to obtain an
empirical latency estimate, and is then trained/evaluated to obtain f(A) if
(and only if) it passes the latency filter, implementing the early-rejection
policy. We treat the resulting feasibility label as ground truth for output
validity, and we model measurement stochasticity by repeating latency mea-
surements a small number of times and using either the mean or a high
quantile to define ¢(A); this gives a controlled way to increase or decrease
effective o by changing the decision rule.

Training-free metric suite and proxy families. We instantiate {M; }}4,
with a standard suite of training-free signals (e.g., synaptic saliency and
Jacobian-based measures) computed at initialization or after a few mini-
batches, together with resource proxies (e.g., predicted latency, FLOPs)

16

when appropriate. We compare (a) single-metric proxies (choosing one]\Z),
(b) fixed uniform combinations (w; = 1/M), and (c) learned linear combi-
nations as in C-RoBoT. In all cases we normalize metrics to [0,1] on the
candidate pool used in that experiment to ensure commensurability, and we
fix K to match the exploitation budget so that pﬁ is directly interpretable.

Baselines. We compare against constraint-aware Bayesian optimization
baselines that explicitly model feasibility, including methods that maintain
independent surrogates for f and each component of ¢ and use a constrained
acquisition rule (e.g., feasibility-weighted UCB /expected improvement). We
also include (i) random search with feasibility filtering (uniform over F when
known, otherwise over F with verification), and (ii) simple proxy top-K ex-
ploitation without exploration over w (choose w by a small grid or by random
sampling, then exploit). When the benchmark supports it, we additionally
report an oracle proxy upper bound obtained by selecting w to maximize the
true pf(Sw, f), which operationalizes pi’*.

Evaluation protocol and reporting. FEach method receives the same
total expensive-query budget T', where an expensive query consists of ob-
taining f(A) (and, when necessary, measuring c¢(A)). For methods that may
propose duplicates, we account in terms of distinct objective evaluations.
We repeat each run over multiple random seeds (affecting, e.g., BO initial-
ization, GP hyperparameters, and any stochasticity in objective evaluation),
and we report mean and standard error of the best feasible objective value.
In tabular settings, we also compute Rf (ﬁ) exactly; in non-tabular settings,
we approximate ranks by comparing against a large held-out set of feasible
architectures.

Ablation I: constrained vs. unconstrained Precision@K. To isolate
the conceptual role of feasibility in alignment, we compare weight selection
based on (i) p7(Sw, f) (our constrained notion) versus (ii) the analogous
unconstrained precision computed on all of A, i.e., replacing F by A. Em-
pirically, when constraints are active (the feasible fraction is small), uncon-
strained precision is a poor predictor of exploitation success: it can assign
high weight to metrics that surface high-f but systematically infeasible de-
signs. In contrast, optimizing for constrained alignment yields materially
higher feasible precision and correspondingly lower realized feasible ranks,
consistent with Theorem 1.

Ablation II: constraint-noise and predictor errors. We study grace-
ful degradation by artificially corrupting feasibility in two ways: (a) adding
noise to measured constraints before filtering, and (b) training ¢ on a limited
labeled subset and varying a safety margin v to trace the («,) trade-off.

17

We report (i) the fraction of wasted queries due to infeasibility during ex-
ploitation, (ii) the achieved best feasible objective, and (iii) an estimate of
the effective parameters K¢ and peg used in Theorem 3. The observed per-
formance curves track the predicted monotone dependence on (1 — «) and
(1 —p): aggressive filtering reduces wasted queries but may exclude top fea-
sible architectures, while conservative filtering admits more infeasible trials
but recovers feasibility coverage.

Ablation III: proxy ensemble and acquisition rule. We compare
UCB-style and information-directed acquisitions in the exploration phase,
and we test the sensitivity to the hypothesis class for S,, (linear over nor-
malized metrics versus small nonlinear alternatives, where permitted). We
also quantify the value of exploration itself by comparing against pure ex-
ploitation under a fixed w chosen by random search. The principal empirical
pattern is that BO over w improves the attained pf(as Ty increases, and
that the downstream best-feasible objective improves accordingly, matching
the qualitative content of Theorem 4.

Summary of findings. Across hardware-aware tabular benchmarks and
on-device latency experiments, C-RoBoT consistently improves best-found
feasible objective under tight budgets, with the largest gains when feasibility
is stringent and naive proxy ranking surfaces infeasible architectures. More-
over, the measured pJ(Sy+, f) serves as an informative diagnostic: runs with
higher feasible precision are precisely those with lower realized feasible rank,
and the gap between best and learned p% predicts remaining headroom in
exploration.

6 Discussion and Extensions

We conclude by discussing several directions in which the present framework
can be extended, and by clarifying the limits of what our rank-style guar-
antees can (and cannot) certify. Throughout, we keep the central viewpoint
that the proxy family {S,} is used to induce a short list inside a feasible
region, after which expensive evaluations resolve the remaining uncertainty.
In this sense, our theory is deliberately “list-centric”: it treats the proxy
as a retrieval mechanism whose quality is summarized by pf((S’w, f) (or its
noisy-feasibility analogue), rather than as a calibrated predictor of f.

Multi-constraint tradeoffs and Pareto-front variants. Although our
definition of feasibility already allows d > 1 constraints (via the component-
wise budget ¢(A) < b), in practice one often cares about families of budgets
or about Pareto-efficient tradeoffs among resource dimensions. A direct ex-
tension is to run C-RoBoT on a grid {b(™} and return a set of architectures

18

{A\(m)} approximating the Pareto front of f subject to ¢ < b(™). The analysis
for each fixed b(™) is unchanged, since it only depends on the induced feasible
set F (b(m)). More interesting is a “budget-adaptive” variant where we treat

the budget as a context and learn w(b), aiming to maximize p?b)(Sw(b), f)
uniformly over a budget range. One may also incorporate constraint prefer-
ences directly into the proxy, e.g. by augmenting the metric suite with nor-
malized resource signals and learning w so that the proxy ranking is aligned
with a chosen scalarization of (f, —c); this converts Pareto-search into the
problem of learning a proxy aligned with a user-specified utility while still
enforcing hard feasibility at output time.

Beyond hard feasibility: near-feasible and robust feasibility. In
deployment, constraints can be stochastic (e.g. latency varying with input
and system load), so a hard threshold ¢(A) < b may be replaced by a chance
constraint P(c¢(A) < b) > 1 —n or a robust constraint sup,cy cu(A) <
b. Our current protocol (verify feasibility upon query) extends by defining
feasibility with respect to an empirical decision rule, such as a high quantile
of repeated measurements. Theorem 3 then applies with (a, 3) interpreted
relative to that rule, but the meaningful choice of the rule becomes part of
the design: more conservative rules decrease false-feasible events at the cost
of increasing false-infeasible exclusions. A principled direction is to allocate
a small measurement budget to reduce feasibility uncertainty, analogously
to repeated evaluation for noisy objectives in best-arm identification, and
to couple this with a guarantee on the probability of returning an infeasible
architecture.

Distribution-free certificates for alignment. Our theory uses p7 (Su, f)
as a latent quantity, and Theorem 4 bounds the gap between the best achiev-
able value and the value achieved by exploration under partial-monitoring
conditions. A natural next step is a distribution-free, finite-sample certificate
for proxy alignment that does not rely on symmetry assumptions and that
can be computed online from queried data. Concretely, after observing a
set of queried feasible architectures with their f values, one can form lower
confidence bounds on the fraction of truly top-K feasible items captured
by the proxy top-K list, using standard concentration tools for sampling
without replacement or, more simply, conservative binomial bounds when
modeling inclusion as randomized. Such a certificate would yield an end-
to-end statement of the form: with probability at least 1 — §, exploitation
returns an architecture of feasible rank at most 7, where 7 is computed from
observed data. Analogous certificates can be developed for noisy feasibility
by calibrating ¢ and controlling («, 8) via conformal prediction or abstention,
thereby turning Theorem 3 into an operational decision procedure.

19

Implicit and extremely large search spaces. Our exposition assumes
a finite set A with cheap access to all M;(A), which is appropriate for tabu-
lar NAS benchmarks but not for implicit spaces where N is astronomically
large. In such settings, the computational bottleneck is no longer the expen-
sive oracle alone: one must also approximately solve arg max e r Sy (A) (or
its predicted-feasible counterpart) and identify the proxy top-K. This sug-
gests replacing exact top-K retrieval by approximate maximization using,
e.g., beam search, evolutionary operators, or gradient-based optimization
over a continuous relaxation, together with a learned feasibility filter. The
immediate theoretical change is that pﬁ should be defined relative to the
retrieval algorithm (which may return an approximate top-K), and addi-
tional error terms appear that depend on the approximation quality of the
retrieval procedure. We view this as unavoidable: when the proxy itself is
used to propose candidates, any inability to optimize S, translates directly
into missed feasible opportunities.

Limitations and failure modes. The rank guarantees hinge on two sub-
stantive requirements. First, if pﬁ(Sw, f) is small for every w in the chosen
proxy class, then no query-efficient method restricted to proxy-induced short-
lists can reliably find top feasible architectures; this is precisely the content of
the minimax lower bound perspective. Second, Theorem 1 uses a symmetry
assumption to obtain an exact expectation for the best feasible rank recov-
ered from the intersection set; while this assumption is mild as a modeling
device (it encodes lack of additional structure inside the proxy-selected set),
it can be violated when proxy scores correlate with f in a highly non-uniform
manner within the top-K. In that regime, one should treat the bound as
a diagnostic baseline and seek refined analyses that exploit stronger model-
ing assumptions (e.g. monotone likelihood ratio conditions) or incorporate
richer feedback (e.g. multi-fidelity observations) during exploration. Finally,
the partial-monitoring condition underlying Theorem 4 is a sufficient con-
dition for regret control in the exploration over w; understanding when it
holds for concrete metric suites and weight parameterizations remains an
open modeling question, and it motivates empirical observability checks as
part of deployment.

7 Conclusion

We have studied a constrained architecture selection problem in which the
objective f(A) is expensive to query, feasibility is defined by a budgeted
constraint ¢(A) < b, and a suite of training-free metrics {M;}M, provides
cheap but imperfect information. The central methodological choice is to
treat the proxy family S, (A) = >, w;M;(A) not as a calibrated surrogate
for f, but as a ranking device whose purpose is to propose a short list within

20

the feasible region; expensive queries are then spent to resolve uncertainty
inside that list. This list-centric view leads to guarantees stated directly
in terms of constrained ranks, thereby matching the operational reality of
neural architecture search under tight evaluation budgets.

Our first contribution is to isolate a single alignment quantity, Feasible-
Precision@K,

PE (S f) = %\{A e F: RE (A) < K ARF(4) < K},

which measures how many of the truly top-K feasible architectures are re-
trieved by the proxy top-K list restricted to F. This quantity is invariant to
monotone transformations of S, and f, and it is agnostic to the scale of the
objective; it is therefore an appropriate summary when the ultimate deci-
sion is made by evaluating a handful of architectures rather than by trusting
proxy scores numerically. In particular, pﬁ directly controls the expected
feasible rank of the best architecture recovered by a simple exploitation rule.

Concretely, for a fixed w and known feasible set F, Theorem 1 shows
that querying f on the proxy top-K feasible architectures and outputting
the best queried feasible item yields

E[ij(ﬁ)}: - K+l

1Y K(Sw, f) K+1
under a mild symmetry assumption on the distribution of true ranks within
the proxy—objective intersection. The form of the bound has an immediate
deployment interpretation: when pﬁ(Sw, f) is a constant independent of K,
the expected feasible rank is O(1) even though we only evaluate K archi-
tectures; conversely, when ,of(is small, the rank cannot improve appreciably
without either increasing K or enriching the information available during
selection.

This dependence is not an artifact of our analysis. Theorem 2 establishes
a minimax lower bound (within a natural class of instances parameterized
only by p) showing that no method restricted to querying within the proxy
top-K feasible set can guarantee expected feasible rank o(1/p) up to con-
stants. Thus, within the retrieval-then-evaluate paradigm, pﬁ is not merely
sufficient for controlling performance; it is, in an information-theoretic sense,
the relevant obstruction. Practically, this clarifies when training-free metrics
can be expected to help: their value is precisely in inducing a nontrivial
intersection between proxy and objective top lists inside F.

We further addressed the ubiquitous case in which feasibility is not known
a priori and must be inferred from a predictor ¢. Theorem 3 provides
a graceful-degradation statement under bounded misclassification rates: a
false-feasible rate « limits wasted evaluations on infeasible candidates, and
a false-infeasible rate 8 quantifies how many truly feasible high-performing

21

candidates are excluded before evaluation. By introducing an effective short-
list size K¢ =~ (1 —a)K and an effective precision peg =~ (1 —) p[f(eﬁ, we ob-
tain a bound of the same functional form as in the known-feasibility setting.
This directly supports deployment workflows in which resource predictors
are imperfect but inexpensive: one may tune the predictor (or an absten-
tion rule) to trade off wasted queries against exclusion of feasible candidates,
while retaining a quantitative rank guarantee after verification.

Finally, we connected exploitation to an exploration mechanism that
learns the proxy combiner w from a small number of objective evaluations.
By viewing the choice of w as an action in a constrained partial-monitoring
problem and measuring reward via pﬁ(Sw, f), Theorem 4 shows that a
RoBoT-style Bayesian optimization procedure can identify a weight vec-
tor whose feasible precision is near-optimal up to a term of order qx K /3
(with high probability under global observability), leading to an end-to-end
expected feasible-rank bound of the same type as Theorem 1 but with pf{
replaced by pIF{’* minus the exploration error. In operational terms, this pro-
vides a principled justification for the two-phase procedure implemented by
C-RoBoT: use a limited portion of the query budget to learn which metric
combination retrieves good feasible candidates, then spend the remaining
budget evaluating the top of the resulting feasible shortlist.

Taken together, our results supply a coherent set of guarantees that map
cleanly onto practice. They explain when proxy-guided candidate generation
should succeed (large pJ; for some w), how success scales with the evaluation
budget K and constraint-prediction errors (o,), and why the resulting de-
pendence cannot be substantially improved without additional structure or
richer feedback. In this sense, the framework provides both a method and a
diagnostic: it motivates designing metric suites and weight parameterizations
that increase feasible precision, and it clarifies the conditions under which
query-efficient constrained architecture selection is provably attainable.

22

	Related Work
	Problem Setup and Metrics
	Constrained Exploitation Theory
	Constraint-Aware RoBoT (C-RoBoT): BO over proxy combiners with feasibility filtering
	Experiments
	Discussion and Extensions
	Conclusion

