
ApproxRoBoT: Training-Free NAS in Implicit
Spaces via Quantile Candidate Generators

Liz Lemma Future Detective

January 20, 2026

Abstract
Training-free neural architecture search (NAS) replaces expensive

training with zero-cost proxies, but existing methods—including RoBoT
(ICLR 2024)—implicitly assume a tabular regime: they can compute
proxy scores for all architectures and select argmax exactly. In modern
2026 settings (adapter composition for LLMs, routing policies, diffu-
sion U-Nets), the search space is implicit and streaming: architectures
are produced by generators, and exact maximization is unavailable. We
formalize this setting through a quantile candidate generator G(θ) that
samples architectures concentrated in the proxy top-L region, and we
introduce ApproxRoBoT-GEN, which learns a robust proxy combiner
and exploits it using only sampled candidates. Our main theoretical
contribution is an end-to-end expected true-rank guarantee that (i)
replaces exact argmax with a generator quality parameter (L, δ) and
(ii) quantifies a clean trade-off between generator effort and expensive
objective evaluations by setting L = ηK. We provide matching lower
bounds showing the η dependence is unavoidable. Experiments (to be
added) would validate the theory on large DARTS-like pools and on a
modern implicit search task (e.g., LoRA/routing design), demonstrat-
ing that RoBoT-style robustness and boosting persist without enumer-
ation.

Table of Contents

1. 1. Introduction: why tabular training-free NAS breaks in 2026; im-
plicit/streaming search spaces; goal (robustness + guarantees without
enumeration).

2. 2. Background: RoBoT (metric combination + BO + exploitation) and
where it assumes exact argmax; why Precision@K/top-region retrieval
matters; related work on proxy-based NAS, generative NAS, BO in
implicit spaces.

3. 3. Problem setup and models: define proxy combiners Sθ, objective
f , ranks, and the candidate generator G(θ); introduce the quantile

1

guarantee (L, δ) and rank-threshold observability; define evaluation
budget and cost model (objective vs proxy vs generator compute).

4. 4. ApproxRoBoT-GEN algorithm: exploration (learn θ) + exploitation
(evaluate K samples); engineering variants (batched sampling, dupli-
cate handling, diversity) flagged as empirical add-ons.

5. 5. Main guarantees I (exploitation): expected true-rank bounds for
best-of-K sampled candidates under (L, δ)-quantile generators; explicit
dependence on ρL and δ; choosing L = ηK yields graceful degradation
by η.

6. 6. Main guarantees II (learning θ under stochastic actions): bandit/BO
guarantees for maximizing an implicit success probability gL(θ) (or re-
lated surrogate) from noisy observations; plug-in to exploitation bound
for an end-to-end theorem.

7. 7. Lower bounds and tightness: construct worst-case instances showing
Ω(η) degradation is necessary; discuss when better-than-η is possible
(additional generator assumptions).

8. 8. Experimental plan (implementation strengthens contribution): large
finite pools (DARTS-like) with ‘no-enumeration’ protocol; implicit adapter/routing
space; ablations over generator quality η, proxy set size, and explo-
ration/exploitation splits.

9. 9. Discussion and limitations: realism of quantile generator assump-
tion; relaxing conditional-uniformity; multi-objective constraints; non-
stationary objectives; implications for proxy design.

10. 10. Conclusion: training-free NAS with guarantees in implicit spaces;
open problems.

2

1 Introduction

Training-free neural architecture search (NAS) was originally developed un-
der a tabular abstraction: one first specifies a finite candidate set Atab ⊂ A,
computes a collection of inexpensive proxy metrics M1, . . . ,MM for every
A ∈ Atab, combines these metrics via a score Sθ(A) =

∑M
i=1 θiMi(A), and

then returns architectures with large Sθ, optionally followed by a small num-
ber of expensive evaluations of the true objective f(A). Within this abstrac-
tion, the operation A(θ) = argmaxA∈Atab

Sθ(A) is well-defined and compu-
tationally trivial given the table, and much of the algorithmic and empirical
work reduces to learning a good θ and choosing a suitable evaluation budget.

By 2026, this abstraction is increasingly misaligned with practice. The
candidate space A is often specified implicitly and is effectively unbounded
for the purposes of search: architectures may be parameterized by compo-
sitional programs, conditional generation rules, hardware-conditional tem-
plates, or other forms of structured design where the set of feasible architec-
tures is defined by constraints rather than enumeration. Moreover, in many
modern pipelines the cost of materializing a candidate (i.e., producing its full
specification and checking feasibility) is itself nontrivial, and the number of
potential candidates grows super-exponentially with depth, width, and oper-
ator vocabulary. Consequently, the central primitive of tabular training-free
NAS—sorting all candidates by Sθ—is no longer available. Even if each
Mi(A) is cheap for a given A, the set {Mi(A) : A ∈ A} cannot be computed
globally, and proxy maximization must be performed under sampling access
to candidates.

This shift from tabular to implicit search spaces changes the mathemati-
cal problem. We assume access to (i) metric oracles Mi(A) that can be com-
puted for sampled architectures A, (ii) an expensive objective oracle f(A),
and crucially (iii) a candidate generator G(θ) which, for a chosen parameter
θ, returns a random architecture A ∼ Dθ. The generator may itself be imple-
mented by a learned model, a heuristic constructor, or a constrained sampler;
regardless of implementation, it constitutes the only feasible mechanism for
exploring A. In this setting, θ no longer merely defines a scoring function
Sθ; rather, θ is an action that controls the distribution Dθ from which candi-
dates are drawn. As a result, the naive surrogate-based reduction “maximize
Sθ and then evaluate f ” is ill-posed: the maximizer argmaxA∈A Sθ(A) need
not be accessible, and, more importantly, the distribution Dθ may assign
negligible mass to the true proxy maximizers even when they exist.

The failure mode can be stated in rank-theoretic terms. Fix L and define
the proxy top set TopL(θ) = {A ∈ A : RSθ

(A) ≤ L}. In a tabular regime, re-
trieving TopL(θ) is computationally straightforward once all proxy scores are
known, and exploitation reduces to evaluating a few elements from this set
under f . In an implicit regime, one must instead rely on the generator to hit
TopL(θ) with nontrivial probability. Thus, the relevant property is not that

3

Sθ is well-correlated with f in expectation, but that the pair (Sθ, G(θ)) yields
a distribution Dθ whose mass concentrates in a region where f is large. Two
distinct sources of error appear: (a) proxy misalignment, in which TopL(θ)
contains few truly good architectures, and (b) generator approximation, in
which Dθ fails to place sufficient probability on TopL(θ) itself. Either error
can dominate, and neither is captured by analyses that presuppose exact
top-K retrieval.

These considerations motivate an explicit separation between (i) the com-
binatorial ranking induced by Sθ and (ii) the sampling behavior induced by
Dθ. We therefore frame the goal as minimizing the expected true rank
E[Rf (Aout)] subject to a budget T of expensive oracle calls. A rank-based
objective is natural in the present context: it is invariant to monotone rescal-
ings of f , it accommodates heterogeneous objectives (e.g., accuracy subject
to latency constraints), and it isolates the fundamental difficulty of identify-
ing extreme quantiles of f under limited queries. In particular, the quantity
of interest is not the regression accuracy of proxy metrics, but the probability
of sampling from the high-performing region of A and the order-statistical
improvement obtained by repeated sampling.

The algorithmic question is then: how do we choose θ adaptively, using
only T evaluations of f , when each chosen θ produces a random architecture?
This is a stochastic decision problem over a continuous (or high-dimensional)
action space, where the reward of an action θ is a latent success probability
gL(θ) = PrA∼Dθ

[Rf (A) ≤ L] for an appropriate L. From this perspective,
the generator converts proxy tuning into a bandit/BO problem with struc-
tured noise: even if θ is fixed, different calls to G(θ) yield different candidates
and hence different objective values. A principled method must therefore
handle stochastic outcomes, must account for generator-induced approxima-
tion error, and must translate any learned improvement in gL(θ) into an
end-to-end guarantee on the best architecture returned after exploitation.

Our contribution is to provide such a formulation and to analyze a simple
exploration–exploitation strategy under explicit, checkable assumptions on
generator quality and proxy–objective agreement in the top region. The
central quantitative phenomenon is an inflation tradeoff: when exploitation
is limited to K expensive evaluations, it is often necessary to target a proxy
region of size L = ηK with η > 1 in order to ensure that the generator
can reliably sample from it. This inflation enlarges the search region and
inherently worsens the best achievable true rank after K samples; indeed, in
the worst case the expected-rank degradation scales linearly with η. Thus,
rather than treating imperfect top-K retrieval as an implementation detail,
we treat it as a first-class parameter in the model and in the guarantees.

Finally, we emphasize that the implicit-space setting does not merely
introduce technical inconvenience; it forces a different notion of robustness.
Any claim that a training-free proxy “selects good architectures” must specify
(a) how candidates are obtained and (b) how proxy information interacts

4

with sampling and with the limited objective budget. The remainder of this
work develops the necessary background and then presents an algorithm
and analysis that make these dependencies explicit, culminating in end-to-
end expected-rank bounds and matching lower bounds under generator-only
access.

2 Background and related work

The starting point for much of training-free NAS is the observation that, for
a fixed architecture A, a variety of inexpensive statistics M1(A), . . . ,MM (A)
can be computed without (or with negligible) training, and that these statis-
tics often exhibit nontrivial rank correlation with a downstream objective
f(A) such as accuracy, accuracy–latency tradeoffs, or a constrained score. A
common operational pattern is to form a linear (or otherwise parameterized)
combiner Sθ(A) =

∑M
i=1 θiMi(A) and to tune θ so that large values of Sθ

correspond to large values of f on a calibration set. The RoBoT family of
methods (in the broad sense of “robust training-free proxy tuning”) instan-
tiates this pattern with an explicit exploration–exploitation loop: one adap-
tively proposes θ (often via Bayesian optimization over θ), uses the proxy
score Sθ to select promising architectures, queries f on those architectures,
and then updates the belief over θ until the budget is exhausted.

This template is conceptually appealing because it reduces an enor-
mous architecture search problem to a low-dimensional continuous opti-
mization over θ. However, the reduction is exact only under a strong re-
trieval assumption that is often left implicit. In the tabular regime, one
fixes a finite candidate set Atab, computes all Mi(A), and then evaluates
A(θ) = argmaxA∈Atab

Sθ(A) (or the entire top-K list) by sorting. In this
regime, Bayesian optimization over θ indeed corresponds to choosing a proxy
weighting and then deterministically extracting the architecture(s) that max-
imize the resulting proxy. The stochasticity is only in the (possibly noisy)
observations of f , not in the act of retrieving a proxy maximizer. Accord-
ingly, many empirical pipelines report performance as a function of how well
the learned proxy ranking matches the true ranking on Atab, while treating
the act of selecting top-K under Sθ as algorithmically trivial.

Once A is specified implicitly rather than enumerated, this retrieval as-
sumption becomes the dominant issue. Even if θ were known, the map
θ 7→ A(θ) need not be computable, and in fact the relevant operational prim-
itive is not “compute argmaxSθ” but “sample a candidate which is likely to
have high Sθ”. It is therefore natural to split the classical RoBoT template
into two distinct components: (i) the proxy alignment problem of choosing
θ so that the proxy top region contains truly good architectures, and (ii)
the retrieval problem of accessing that proxy top region without enumera-
tion. The latter problem is typically addressed by a generator—a learned

5

or heuristic conditional sampler—which attempts to concentrate its distri-
bution Dθ on architectures with large proxy scores. From a methodological
perspective, this moves the role of θ from “weights in a scoring function”
to “an action controlling a sampling distribution,” and it moves the role of
Bayesian optimization from selecting a point in A to selecting a distribution
over A.

This separation clarifies why rank-based notions such as Precision@K
(or its top-L variants) are central but insufficient. If we define TopL(θ)
to be the top-L architectures under Sθ, then the set-overlap ratio ρL(θ) =
|TopL(θ) ∩ TopL(f)|/L measures how much of the proxy top region is truly
good. In a tabular setting, high ρL(θ) nearly implies successful exploitation,
because we can explicitly evaluate one or more members of TopL(θ). In
an implicit setting, high ρL(θ) does not by itself imply anything unless the
generator places nontrivial probability mass on TopL(θ); conversely, an ex-
cellent generator cannot compensate for a proxy whose top region is mostly
misaligned. Thus we are forced to reason about two probabilities: the prob-
ability of landing in the proxy top set, and the conditional probability that
such a landing also lies in the true top set. This is precisely the reason
to elevate “top-region retrieval” to a first-class object of study, rather than
treating it as an engineering detail.

The broader literature supplies each ingredient of this picture, but rarely
analyzes them jointly. On the proxy side, a large body of work proposes zero-
shot or training-free metrics, including gradient-based saliency measures,
synaptic flow criteria, Jacobian or NTK-inspired scores, and graph/topology
heuristics. A parallel line of work considers ensembles or learned combi-
nations of such metrics, observing that different metrics are informative in
different regimes, and that a small number of expensive evaluations can be
used to calibrate the combination weights θ. On the generative side, “gen-
erative NAS” and constraint-aware architecture synthesis treat architectures
as structured objects produced by a sampler (e.g., autoregressive models,
programmatic generators, diffusion-style samplers, or grammar-based con-
structors) conditioned on desired attributes. These methods provide exactly
the kind of oracle G(θ) that we require, but their guarantees are typically
stated in distribution-matching terms (e.g., likelihood or constraint satisfac-
tion) rather than in terms of quantile retrieval of proxy top sets. Finally,
on the optimization side, Bayesian optimization and bandit algorithms in
non-Euclidean or combinatorial domains develop surrogates over structured
candidates and acquisition strategies under limited f -queries, but they often
still presume a mechanism for optimizing the acquisition function over the
candidate domain (which, in an implicit space, is again a retrieval problem).

Our goal is therefore not to introduce new proxy metrics, nor to advocate
a particular generator architecture, but to formulate a minimal abstraction
that captures the interaction between proxy alignment and generator re-
trieval under a strict objective-evaluation budget. We will treat the generator

6

as an oracle inducing a distribution Dθ, and we will measure its adequacy
by a quantile-type guarantee relative to TopL(θ). Likewise, we will treat
Bayesian optimization over θ as a method for maximizing a latent success
probability (the chance that a sample from Dθ lands in a high-performing
region of f), rather than as a method for maximizing Sθ itself. This perspec-
tive directly motivates the formal model and assumptions introduced next:
rank-based performance criteria, top-region overlap measures, and explicit
budgeted interaction with G(θ) and f .

3 Problem setup and models

We work in an implicit architecture space A, which may be finite but too
large to enumerate, or genuinely infinite (e.g., countably infinite programs
or graphs). An architecture is an element A ∈ A. Our ultimate target is an
expensive objective f : A → R, where larger values are better. The expense
of f models any procedure that requires substantial computation or data
access (full training, heavy fine-tuning, costly simulation, or deployment-
time measurement). We assume that f can only be accessed via queries at
selected architectures, and that the total number of queries is budgeted.

To express performance in a way that is invariant to monotone trans-
formations of f , we will use ranks. Let Rf (A) ∈ {1, 2, . . . } denote the true
rank of A under f over A, with Rf (A) = 1 indicating global optimality.
Formally, Rf (A) = 1 +

∣∣{A′ ∈ A : f(A′) > f(A)}
∣∣, with an arbitrary but

fixed tie-breaking rule when f(A′) = f(A). Likewise, for any scoring func-
tion S : A → R, we write RS(A) for the rank induced by S. For an integer
L ≥ 1, define the top-L set under a score S by

TopL(S) = {A ∈ A : RS(A) ≤ L}.

In particular, we abbreviate TopL(f) = TopL(Rf), the set of truly best L
architectures, and we will also write TopL(θ) for TopL(Sθ) when Sθ is the
proxy score defined below.

The training-free information available to us is modeled by a collection
of M cheap metric oracles Mi : A → R for i ∈ {1, . . . ,M}. We think of
Mi(A) as a statistic computable for a given architecture A without invoking
f (e.g., a structural measure, a gradient-based saliency score at initialization,
or any other zero-shot proxy). We will combine these metrics linearly: for
parameters θ = (θ1, . . . , θM) ∈ Θ ⊆ RM ,

Sθ(A) =
M∑
i=1

θiMi(A).

The parameter set Θ can encode normalization or stability constraints (e.g.,
∥θ∥1 ≤ 1, θi ∈ [−1, 1], or a simplex constraint). Our analysis will not depend

7

on a particular choice beyond measurability and compactness assumptions
customary in bandit/BO analyses.

The critical modeling feature is that, in an implicit A, we cannot com-
pute argmaxA∈A Sθ(A) by exhaustive evaluation of Sθ. Instead, we assume
access to a black-box candidate generator G(θ) which, given θ, outputs a
random architecture A ∼ Dθ, where Dθ is an induced distribution over A.
We emphasize that G(θ) is not required to return the maximizer of Sθ; it
only biases sampling toward architectures that score well under Sθ (or are
intended to do so). The algorithmic interaction pattern is therefore: choose
θ, sample A ∼ G(θ), optionally compute Mi(A) (and thus Sθ(A)), and de-
cide whether to pay for an f -evaluation at A. The ability to sample does not
imply the ability to characterize Dθ explicitly; we treat G(θ) as an oracle.

To relate the generator to the proxy ranking, we adopt a quantile-type
approximation guarantee. Fix L ≥ 1 and δ ∈ [0, 1]. We say that G is an
(L, δ)-quantile generator (with respect to the proxy family {Sθ}θ∈Θ) if, for
every θ ∈ Θ,

Pr
A∼Dθ

[
A ∈ TopL(θ)

]
≥ 1− δ.

Equivalently, with probability at least 1 − δ, a draw from Dθ lands in the
proxy top-L region. We interpret δ as a generator failure probability : it
captures approximation error, mode dropping, or any mismatch between the
intended proxy conditioning and the generator’s realized sampling distribu-
tion. The parameter L plays a dual role: it both sets the granularity of
the proxy top region and, as will become explicit later, controls the intrinsic
difficulty of extracting a truly top architecture from a proxy-concentrated
distribution.

Proxy alignment with the true objective is captured by the overlap of
top sets. For each θ and L, we define

ρL(θ) =
|TopL(θ) ∩ TopL(f)|

L
,

the Precision@L of the proxy ranking relative to the true ranking. While
ρL(θ) is not directly observable (since TopL(f) is unknown), it provides a
convenient target quantity: a large ρL(θ) indicates that the proxy top region
contains many truly strong architectures. The generator guarantee and ρL(θ)
will jointly determine the probability that a sample A ∼ Dθ is truly good.

Because our interaction with f is budgeted, we will measure complexity
primarily by the number of objective queries. Let T be the total number of
calls we may make to f . An algorithm is any adaptive procedure that, at
round t, chooses θt as a measurable function of past observations, draws At ∼
Dθt , and optionally queries f(At), subject to at most T such queries total.
We allow the objective to be noisy: a query returns y(A) = f(A) + ξ, where
ξ is mean-zero σ-sub-Gaussian noise, independent across queries conditioned

8

on A. Noise is not essential for the definitions but will be convenient when
we invoke bandit/BO tools.

In addition to observing y(A), we will sometimes reason in terms of a
rank-threshold label that abstracts “is this architecture among the top L
under f?” Concretely, define Z(A) ∈ {0, 1} with conditional expectation

E[Z(A) | A] = 1{Rf (A) ≤ L},

possibly perturbed by mean-zero σ-sub-Gaussian noise (e.g., a stochastic
classifier of “top-L” status derived from noisy y(A), or an indicator against
an unknown but fixed threshold corresponding to the L-th order statistic of
f). This rank-threshold observability model is a deliberate abstraction: it
captures the fact that, for learning θ, we often only need coarse feedback
about whether a sample is “good enough” rather than its exact f -value, and
it allows us to view gL(θ) = PrA∼Dθ

[Rf (A) ≤ L] as a bandit reward function
over θ.

Finally, although objective queries are the primary budgeted resource, in
practice there are additional costs. We therefore distinguish: (i) objective
cost, counted by the query budget T ; (ii) proxy computation cost, typi-
cally O(M) per sampled architecture to compute Mi(A) and Sθ(A); and
(iii) generator cost, the (possibly substantial) wall-clock expense of produc-
ing one sample from Dθ. Our theoretical statements will be parameterized
by T (and by L, δ), while engineering variants may trade additional gener-
ator/proxy computation for better use of the limited objective budget (e.g.,
drawing many samples and only evaluating f on the most proxy-promising
ones). Under this model, the goal is to output, after at most T objective
evaluations, an architecture Aout with small expected true rank E[Rf (Aout)],
or equivalently high expected objective value.

4 ApproxRoBoT-GEN: exploration–exploitation with
generator access

We now describe the procedure we analyze. The algorithm is organized
around two observations. First, for any fixed proxy parameter θ, the only
way to access high-scoring architectures in an implicit A is by sampling
A ∼ Dθ from the generator. Second, because objective queries are the
dominant cost, it is natural to spend a small fraction of the objective budget
to identify a good θ, and then spend the remaining budget sampling from
Dθ̂ and taking the best objective value among the evaluated draws.

Inputs and budget split. Fix a total objective budget T . We choose
an exploration budget T0 ∈ {0, 1, . . . , T} and an exploitation budget K =
T − T0. We also fix a proxy top-set size L, which will later be chosen on the
order of K (we will often write L = ηK for an inflation factor η ≥ 1). The

9

algorithm has oracle access to the generator G(θ) (hence to sampling from
Dθ) and to the expensive evaluator f (possibly noisy), and it may optionally
compute the proxy metrics Mi(A) on sampled candidates.

Exploration: learning a good θ under stochastic outcomes. During
exploration, at each round t ∈ {1, . . . , T0} we choose a parameter θt ∈ Θ as
a function of past observations. We then sample an architecture At ∼ G(θt)
and query the objective to obtain yt (or, in the rank-threshold abstraction,
a label Zt indicating whether At lies in the true top-L). The key point is
that even for a fixed θ, the observed feedback is random due to the sampling
A ∼ Dθ. Thus, exploration is naturally viewed as a stochastic bandit (or
Bayesian optimization) problem over θ, where the latent reward of θ is the
success probability gL(θ) = PrA∼Dθ

[Rf (A) ≤ L], and each play of θ returns
one noisy Bernoulli-like observation via the sampled architecture.

Concretely, we may instantiate the exploration strategy with any opti-
mistic or posterior-sampling rule that is standard in bandit/BO settings. For
example, if we model gL(θ) as a smooth function over Θ, we can maintain a
surrogate model (e.g., a Gaussian process) updated on the pairs (θt, Zt), and
pick θt by an upper-confidence criterion. If instead we only observe objective
values yt, we can similarly use yt directly (or a derived label Zt = 1{yt ≥ τ}
for a suitable threshold τ). Our analysis will only require that exploration
returns some θ̂ whose gL(θ̂) is close to the best value achievable in Θ, up to
a learning error decaying with T0.

At the end of exploration, we commit to a single parameter θ̂. A simple
choice, and the one we will use for definiteness, is to take θ̂ as the parameter
among {θt}t≤T0 whose sampled architecture attained the largest observed
objective value. When exploration is formulated as a bandit on Zt, one can
equivalently select the empirically best θt in terms of observed labels, or the
maximizer of a posterior mean; these variants change constants but not the
qualitative structure of the subsequent guarantees.

Exploitation: best-of-K objective evaluations from Dθ̂. In exploita-
tion, we fix θ̂ and perform K further objective queries. In the most basic
form, for each j ∈ {1, . . . ,K} we draw Aj ∼ G(θ̂), evaluate f(Aj), and
return

Aout ∈ arg max
1≤j≤K

f(Aj),

with ties broken arbitrarily. This stage is intentionally austere: it makes no
attempt to further adapt θ, and it uses objective evaluations only to choose
the best architecture among sampled candidates. The reason for this design
is that, under the quantile-generator model, the distribution Dθ̂ is already
concentrated on architectures with high proxy score, and the remaining un-
certainty is primarily whether these proxy-high samples coincide with truly

10

good architectures. Theoretical bounds in the next section will treat each
draw as an independent chance of landing in the true top-L set and then
analyze the order statistics of the induced ranks.

Engineering variants (empirical add-ons). Several practical modifica-
tions are often beneficial, and we separate them conceptually from the core
procedure above because they rely on additional computational resources
(generator calls and proxy computations) or on properties of the generator
not encoded in our minimal model.

Batched preselection within exploitation. Rather than spending one ob-
jective query per generator draw, we may draw a batch of B ≫ 1 candidates
A(1), . . . , A(B) ∼ Dθ̂, compute their proxy scores Sθ̂(A

(b)) (or a related score),
and only evaluate f on the top-1 candidate (or top-b0 candidates) in that
batch. Repeating this procedure K times uses the same objective budget
but increases the proxy-computation and generator costs by a factor of B.
While our main theorems will focus on the simpler best-of-K sampling for
clarity, the batched variant can be interpreted as increasing the effective suc-
cess probability of each objective evaluation by conditioning on an internal
proxy-based selection step.

Duplicate handling. A generator may return the same architecture mul-
tiple times, which can waste objective queries if not handled. In implemen-
tations, we can maintain a cache of previously evaluated architectures and
either (i) skip objective evaluation when a duplicate is observed, replacing it
by a fresh draw, or (ii) treat duplicates as repeated noisy evaluations and av-
erage the resulting y-values. Our formal model counts only objective queries,
so (i) effectively increases the number of distinct evaluated architectures at
fixed budget, whereas (ii) reduces noise. Since neither behavior is guaranteed
by the oracle model, we will treat duplicate handling as an implementation
detail; when duplicates are frequent, they can be conservatively viewed as
reducing the effective exploitation budget below K.

Diversity and mode coverage. Especially when Dθ̂ is highly concentrated,
it can be useful to enforce diversity among sampled candidates, for example
by penalizing similarity to previously seen architectures, by sampling from
a mixture over nearby θ’s, or by reranking batches using a diversity-aware
criterion. Such heuristics aim to mitigate mode collapse in G(θ) and increase
coverage of TopL(θ̂), but they introduce additional assumptions (a similarity
metric on A, or control over the generator) beyond our present abstraction.

Parallelism. Both exploration and exploitation can be executed in par-
allel by selecting multiple θ’s (or multiple draws from Dθ̂) before observing
their objective outcomes. This affects wall-clock time but not the account-
ing of objective queries, and the guarantees we state later are formulated in
terms of T0 and K regardless of scheduling.

In summary, ApproxRoBoT-GEN consists of (i) a stochastic search over

11

proxy parameters θ driven by objective feedback on generator samples and
(ii) a final best-of-K selection from Dθ̂, with optional proxy-heavy preselec-
tion and other heuristics that we view as orthogonal empirical enhancements.

5 Main guarantees I (exploitation): best-of-K ranks
under quantile generators

We first isolate the exploitation stage, treating the proxy parameter θ as
fixed, and analyze the true rank of the best architecture returned after K
objective evaluations drawn from the generator distribution Dθ. The result-
ing bounds make explicit how performance depends on (i) the generator’s
ability to concentrate on the proxy top set (through δ), and (ii) the alignment
between proxy and objective rankings (through ρL(θ)).

From proxy concentration to true-top-L hit probability. Fix L ∈ N
and θ ∈ Θ. The (L, δ)-quantile generator guarantee asserts that

Pr
A∼Dθ

[
A ∈ TopL(θ)

]
≥ 1− δ. (1)

This statement alone is agnostic to the objective f ; it only certifies that the
generator returns proxy-high candidates with high probability. To convert
(1) into a lower bound on the probability of sampling a truly good architec-
ture, we introduce the proxy–objective overlap (precision@L)

ρL(θ) =

∣∣TopL(θ) ∩ TopL(f)
∣∣

L
.

A direct decomposition yields, for the success probability

gL(θ) = Pr
A∼Dθ

[
Rf (A) ≤ L

]
= Pr[A ∈ TopL(θ)]·Pr

[
Rf (A) ≤ L

∣∣A ∈ TopL(θ)
]
.

The first factor is controlled by δ via (1). The second factor depends on how
Dθ allocates mass within TopL(θ). In the benign case that, conditional on
A ∈ TopL(θ), the generator is (approximately) uniform over TopL(θ), we
obtain the convenient lower bound

gL(θ) ≥ (1− δ) ρL(θ). (2)

More generally, even without conditional uniformity, one can replace ρL(θ)
in (2) by the conditional mass that Dθ assigns to TopL(θ) ∩ TopL(f) given
A ∈ TopL(θ); our subsequent exploitation analysis only requires a lower
bound p ≤ gL(θ).

12

Best-of-K exploitation as order statistics under random successes.
Consider exploitation with fixed θ: draw A1, . . . , AK

iid∼ Dθ, evaluate f(Ai),
and return Aout ∈ argmaxi≤K f(Ai). Let Ri = Rf (Ai) denote the true
ranks. We analyze E[Rf (Aout)] = E[miniRi] under a rank-threshold model
that separates two effects: (a) how often we hit the true top-L, and (b) how
good the hit is when it happens.

Assume that each draw is a “success” (lies in TopL(f)) with probability
at least p, i.e.,

Pr[Ri ≤ L] ≥ p for each i ∈ {1, . . . ,K}, (3)

and assume further that conditional on success, the rank is uniform over
{1, . . . , L}:

(Ri | Ri ≤ L) ∼ Unif{1, . . . , L}. (4)

The uniformity (4) is a stylized but analytically transparent way to express
that, within the true top-L, the generator does not further privilege partic-
ular ranks. Let X =

∑K
i=1 1{Ri ≤ L} ∼ Binomial(K, p) be the number of

successes. Conditional on X = x, the best returned rank is the minimum of
x i.i.d. uniform ranks in {1, . . . , L}, whose expectation is (L + 1)/(x + 1).
Taking expectation over X yields the explicit identity

E[Rf (Aout)] = (L+ 1)E
[

1

X + 1

]
= (L+ 1)

1− (1− p)K+1

(K + 1)p
. (5)

Two immediate corollaries are worth recording. First, the probability that
exploitation returns some truly top-L architecture is

Pr
[
Rf (Aout) ≤ L

]
= 1− (1− p)K , (6)

which exhibits the expected geometric improvement in K at fixed p. Second,
when Kp ≥ 1, (5) implies the simpler upper bound

E[Rf (Aout)] ≤ 2 (L+ 1)

(K + 1)p
, (7)

so the expected rank decays essentially like 1/(Kp), up to the scale factor L.

Explicit dependence on ρL(θ) and δ. Combining (2) with (5) (or (7))
yields a bound in the natural parameters of the proxy–generator interface.
Under conditional uniformity within TopL(θ) and using p = (1−δ)ρL(θ), we
have

E[Rf (Aout)] ≤ (L+ 1)
1−

(
1− (1− δ)ρL(θ)

)K+1

(K + 1)(1− δ)ρL(θ)
. (8)

Thus, degradation is multiplicative in (1−δ)−1 and ρL(θ)
−1: failures to enter

the proxy top set and misalignment between proxy and objective both reduce
the effective success probability p, and exploitation cannot distinguish these
two failure modes.

13

Choosing L = ηK: graceful η-degradation. We finally highlight the
commonly used scaling L = ηK with inflation factor η ≥ 1, which formalizes
the idea that the generator can only approximate a proxy maximizer up to
a top-L region whose size grows with the number of objective evaluations.
Substituting L = ηK into (7) yields, for Kp ≥ 1,

E[Rf (Aout)] ≤ 2(ηK + 1)

(K + 1)p
= O

(
η

p

)
, (9)

up to lower-order terms in K. In particular, if p does not deteriorate as
K grows (e.g., the proxy precision ρL(θ) remains bounded away from zero
at the chosen L), then the expected true rank scales at most linearly in η.
This is the sense in which approximation in the generator—modeled here
by enlarging the proxy top set from K to ηK—induces a controlled and
interpretable loss in the final true rank. The next section addresses how,
during exploration, we can select θ̂ so as to make p = gL(θ̂) as large as
possible under stochastic generator outcomes.

6 Main guarantees II (exploration): learning θ un-
der stochastic actions

We now study the exploration stage, in which we adaptively choose proxy-
combiner parameters θt while only observing objective information through
architectures sampled from the induced distribution Dθt . The central diffi-
culty is that the “action” θ does not deterministically produce an architec-
ture, but rather a random draw A ∼ Dθ. Consequently, even if we intend
to optimize the success probability gL(θ) = PrA∼Dθ

[Rf (A) ≤ L], each query
yields only a noisy, single-sample estimate of this quantity.

A rank-threshold observation model. To connect exploration directly
to the exploitation analysis, we assume that an expensive query returns a
stochastic label Z(A) ∈ {0, 1} indicating whether the sampled architecture
is truly in the top-L set. Formally, when we sample At ∼ Dθt and query the
objective oracle, we observe

Zt = Z(At) = 1{Rf (At) ≤ L}+ εt, (10)

where εt is conditionally mean-zero and σ-sub-Gaussian given the past. Tak-
ing expectation over the generator randomness, we obtain the induced mean-
reward function on parameters,

gL(θ) = EA∼Dθ
[1{Rf (A) ≤ L}] = Pr

A∼Dθ

[Rf (A) ≤ L], (11)

14

so that E[Zt | θt] = gL(θt). In this way, exploration reduces to a stochastic
bandit optimization problem over Θ, with reward function gL(·) that is ex-
pensive to sample but whose maximizer corresponds to the parameter that
most frequently produces truly good architectures.

Modeling gL as a smooth black-box function of θ. To obtain nonasymp-
totic guarantees for optimizing gL(θ) from noisy samples, we impose a stan-
dard regularity assumption from Bayesian optimization. Namely, we assume
gL lies in the reproducing kernel Hilbert space (RKHS) associated with a
positive definite kernel k on Θ, with bounded RKHS norm. This permits
the use of GP-based upper confidence bound algorithms (GP-UCB) to select
θt adaptively. The stochasticity arising from sampling At ∼ Dθt is absorbed
into the bandit noise: for fixed θ, the random variable 1{Rf (A) ≤ L} is
Bernoulli with mean gL(θ), hence sub-Gaussian, and additional oracle noise
εt is also sub-Gaussian by assumption. Therefore the total observation noise
remains sub-Gaussian, and the usual GP-UCB analysis applies.

Concretely, running GP-UCB for T0 exploration rounds produces a se-
quence θ1, . . . , θT0 and observations Z1, . . . , ZT0 . Let θ̂ be the best explored
parameter according to observed rewards (or equivalently the best posterior
mean, up to standard discretization issues). Then, with probability at least
1− δ0, we obtain a best-arm guarantee of the form

gL(θ̂) ≥ max
θ∈Θ

gL(θ) − Õ

(√
γT0

T0

)
, (12)

where γT0 is the maximum information gain for kernel k after T0 samples.
This is the appropriate notion of “learning θ” in our implicit-search setting:
we are not learning a surrogate f over A, but rather learning which gener-
ator parameter induces a distribution that most often produces truly good
candidates.

From optimizing gL to proxy alignment. The exploitation bounds
require a lower bound p ≤ PrA∼Dθ̂

[Rf (A) ≤ L] = gL(θ̂). Equation (12) sup-
plies such a bound relative to maxθ gL(θ). In many instances, however, it is
more interpretable to express success probability in terms of proxy precision
ρL(θ) and generator quality δ. Under the conditional-uniformity condition
within TopL(θ) (as in the exploitation analysis), we have the comparison

gL(θ) ≥ (1− δ)ρL(θ), (13)

so maximizing gL(θ) indirectly promotes high precision ρL(θ). More gener-
ally, if conditional uniformity fails, one may replace ρL(θ) by the conditional
mass that Dθ assigns to TopL(θ)∩TopL(f) given A ∈ TopL(θ); the learning
procedure remains unchanged, since it only ever observes the realized labels
Zt.

15

In order to convert the exploration guarantee (12) into a statement about
ρL(θ̂), we may invoke a calibration condition on the explored region, as-
serting that gL(θ) is (approximately) monotone in ρL(θ) or at least that
near-optimizers of gL are near-optimizers of ρL. This condition is empir-
ically checkable: during exploration, one can estimate ρL(θt) on held-out
samples using a small number of additional objective queries, or validate
that increasing observed success frequency corresponds to improved proxy–
objective overlap.

End-to-end plug-in to exploitation. Having learned θ̂, we run exploita-
tion by sampling K candidates from Dθ̂ and returning the best under f . The
exploitation analysis applies with success parameter pθ̂ = gL(θ̂), yielding an
explicit expression for E[Rf (Aout)] in terms of pθ̂ and (K,L). Substituting
the exploration guarantee (12) yields an end-to-end bound in which the fi-
nal expected rank depends on (i) the intrinsic difficulty of finding θ that
maximizes gL, quantified by γT0 and T0, and (ii) the unavoidable sampling
difficulty during exploitation, captured by the dependence on K and pθ̂. In
particular, taking L = ηK makes the dependence on generator approxima-
tion explicit through the inflation factor η, and separates the two roles of
budget: T0 controls the statistical error in learning θ̂, while K controls the
best-of-K improvement once θ̂ is fixed.

The next section shows that, without assumptions beyond quantile-generation
and the limited feedback model above, the linear η-dependence is not merely
an artifact of our analysis: it is information-theoretically necessary in the
worst case, and can only be improved by strengthening the generator model
or by introducing additional structure linking proxy scores to true perfor-
mance.

7 Lower bounds and tightness: why linear η is un-
avoidable

We now show that the η-inflation appearing in the exploitation bound is
not an artifact of analysis but a genuine information-theoretic obstruction
under our access model. Concretely, when we choose L = ηK and restrict
ourselves to obtaining candidates only through an (L, δ)-quantile generator,
there exist instances in which no algorithm can achieve expected true rank
o(η) after K expensive queries.

A worst-case instance reduces to unstructured search within a size-
L set. Fix any K ≥ 1 and L ≥ K. We construct a finite subset B ⊂ A
with |B| = L and define both the proxy metrics and the generator family so
that (i) the proxy top set TopL(θ) is always exactly B, and (ii) the generator
is “perfect” in the sense that it samples uniformly from B (hence δ = 0).

16

In such a case, any algorithm—regardless of how it adaptively selects θt—
only ever observes i.i.d. samples from the uniform distribution on B when it
requests a candidate to evaluate.

Formally, we may define the training-free metrics to be completely unin-
formative, e.g. Mi(A) ≡ 0 for all A ∈ A and all i ∈ [M]. Then Sθ(A) ≡ 0 for
all (θ,A), so the proxy ranking is arbitrary; we may fix a tie-breaking rule
that declares TopL(θ) = B for all θ. Define Dθ to be the uniform distribution
on B for all θ. This satisfies the quantile-generation property with δ = 0,
since

Pr
A∼Dθ

[
A ∈ TopL(θ)

]
= 1.

Finally, assign the true objective f (equivalently the true ranks Rf) so that
B contains architectures of all ranks 1, 2, . . . , L (and any remaining archi-
tectures in A \ B are worse than rank L). Under this construction, the
algorithm receives no side information from Sθ (or from θ) and can only
learn by directly querying f on sampled elements of B.

Expected best rank from K uniform samples is Θ(L/K). Let A1, . . . , AK

be the architectures queried by the algorithm (possibly with adaptively cho-
sen θt), and let

Rmin = min
1≤t≤K

Rf (At)

be the true rank of the returned architecture Aout (since the algorithm can
do no better than output the best it has seen). In our instance, regardless of
the algorithm, the random variables Rf (At) are i.i.d. uniform on {1, . . . , L}.
Hence Rmin is the minimum of K i.i.d. discrete uniforms. A standard order-
statistics calculation yields

E[Rmin] =
L+ 1

K + 1
. (14)

One way to see (14) is via the tail-sum formula:

E[Rmin] =
L∑

r=1

Pr[Rmin ≥ r] =
L∑

r=1

(
L− r + 1

L

)K

=
1

LK

L∑
s=1

sK ,

and the identity
∑L

s=1 s
K = LK+1

K+1 + LK

2 +O(LK−1) implies E[Rmin] =
L

K+1+
O(1), consistent with (14) (indeed, the discrete uniform case admits the exact
expression shown).

Setting L = ηK gives

E[Rf (Aout)] ≥ E[Rmin] =
ηK + 1

K + 1
≥ c η for all K ≥ 1,

for a universal constant c > 0. This proves that Ω(η) expected-rank degra-
dation is unavoidable even with a perfect (δ = 0) generator, provided the
proxy carries no information that allows nonuniform sampling within the
proxy top set.

17

Tightness relative to our upper bounds. The lower bound above
matches the scaling in the exploitation guarantee when the success prob-
ability p is constant. Indeed, in the idealized setting where every sample
lies in the true top-L region (so p = 1 in Theorem 2), the expected best
rank from K draws is Θ(L/K), and with L = ηK this becomes Θ(η). Thus,
absent additional structure, one should not expect a sublinear dependence
on η from any method that ultimately relies on selecting the best among K
objective-evaluated samples drawn from a proxy-defined top-L region.

When can one do better than linear η? Improving upon Θ(η) requires
strengthening the model beyond quantile generation plus expensive objective
access. We highlight several sufficient directions.

(i) Nonuniformity favoring high true rank within TopL(θ). If, conditional
on landing in TopL(θ), the generator distribution places disproportionately
large mass on TopL(θ)∩TopL(f) (or even on the very best elements therein),
then the success probability gL(θ) can be much larger than ρL(θ), and the
effective sample complexity drops. In the extreme, if Pr[Rf (A) = 1] is
bounded below by a constant under Dθ̂, then E[Rf (Aout)] becomes O(1)
with K = O(1), irrespective of η.

(ii) A stronger generator guarantee than top-L quantiles. Guarantees of
the form “Dθ is close (in total variation, KL, or some coupling sense) to
the Gibbs distribution ∝ exp(βSθ)” can yield exponential concentration on
the highest proxy scores, enabling effective search within TopL(θ) without
requiring L to inflate linearly with K. Similarly, if the generator can target
TopcK(θ) for a small constant c (i.e. η close to 1), the obstruction disappears.

(iii) Additional structure linking proxy scores to the objective. Any as-
sumption that rules out the “proxy-indistinguishable decoys” construction
defeats the lower bound. Examples include Lipschitz or margin conditions
relating Sθ(A) to f(A), or parametric models in which the ordering induced
by Sθ is stochastically aligned with that of f . Under such conditions, proxy-
based filtering effectively increases p with L, and one can realize better-
than-η behavior because the top-L region becomes intrinsically easier than
unstructured search.

In summary, the Ω(η) lower bound characterizes the price of operating
with only a quantile generator and an expensive objective in an otherwise
unstructured space: without further assumptions, linear dependence on the
inflation factor is the best possible.

8 Experimental plan: evaluating ApproxRoBoT-
GEN under no-enumeration protocols

Our experimental objective is twofold: (i) to test whether the qualitative
dependencies predicted by the analysis (notably the linear degradation in

18

the inflation factor η and the role of the success probability p) are visible in
controlled settings, and (ii) to demonstrate that the proposed exploration–
exploitation scheme remains competitive when instantiated with realistic
training-free metrics and practical generators.

No-enumeration protocol via large finite pools. Since A is implicit
in our model, we approximate it by a large finite pool P ⊂ A sampled
once at the beginning of an experiment (e.g. |P| ∈ {105, 106} for DARTS-
like cell spaces). All ranks Rf and RSθ

are understood with respect to P,
but we enforce a strict access protocol: the algorithm may only obtain an
architecture A by calling a generator G(θ) which returns a sample from
an induced distribution Dθ over P, and may only learn f(A) by spending
one unit of objective budget. This protocol prevents trivial enumeration-
based maximization of Sθ or f , while permitting post-hoc analysis (by the
experimenter) of quantities such as ρL(θ) and the realized δ of a generator.

To ensure that TopL(θ) is well-defined despite ties, we fix a determin-
istic tie-breaking rule (e.g. a hash of the architecture encoding). In all
experiments, we log the queried set {(At, f(At))}Tt=1 and return Aout =
argmax f(At), matching the algorithmic interface.

Search spaces and objectives. We consider two complementary regimes.

1. DARTS-like cell spaces. We take a standard cell-based DAG encod-
ing with a finite operator set and edge choices. The expensive objec-
tive f(A) is the validation accuracy after a prescribed training recipe
(full training or a consistent low-fidelity proxy such as few-epoch train-
ing, with noise controlled by fixed seeds). Training-free metrics Mi(A)
are computed without weight training (e.g. SynFlow, Jacobian-based
scores, NTK condition surrogates, parameter count, FLOPs).

2. Implicit adapter/routing spaces. We define A as configurations of
adapter modules or routing policies in a fixed pretrained backbone
(e.g. per-layer adapter rank, placement, and gating). Here f(A) is
downstream performance after a fine-tuning budget, while training-free
metrics include parameter-efficiency terms, activation statistics from a
small calibration set, and gradient-based saliency at initialization of
adapters. This regime stresses the “implicit” aspect: the combinatorial
space is too large to enumerate, and sampling is the natural mode of
access.

Generator implementations with controllable quality. A central goal
is to vary generator quality while keeping the rest of the pipeline fixed. We

19

implement a family of generators indexed by a computational effort param-
eter B and a noise parameter τ :

GB,τ (θ) : sample B candidates {A(b)}Bb=1 i.i.d. from a base sampler over P,

compute noisy proxy scores S̃θ(A
(b)) = Sθ(A

(b)) + ξ(b) with ξ(b) ∼ N (0, τ2),
and return A = argmaxb S̃θ(A

(b)). As B increases and τ decreases, the re-
turned sample concentrates on higher proxy quantiles, yielding an empirical
(L, δ)-quantile guarantee for smaller L (or smaller η = L/K) at fixed K. In
addition, we include an oracle generator baseline G⋆(θ) that samples uni-
formly from TopL(θ) (computed offline from P but never revealed to the
algorithm) to isolate the effect of δ from other practical imperfections.

For each run, we estimate δ empirically as the fraction of generator out-
puts that fall outside TopL(θ) (with θ fixed), and we measure how δ varies
with (B, τ). This provides a concrete knob for studying the dependence of
performance on generator approximation quality.

Learning θ and defining exploration feedback. We implement the
exploration stage in two variants.

1. Rank-threshold feedback (closest to theory). Fix L = ηK and define
Z(A) = 1{Rf (A) ≤ L}. During exploration we observe Z(At) (pos-
sibly with added label noise to simulate stochasticity), and we run
GP-UCB over θ ∈ [−1, 1]M to maximize gL(θ) = EA∼Dθ

[Z(A)].

2. Direct objective feedback (practical). We directly use yt = f(At) as
the exploration reward and run a BO method over θ (e.g. GP-UCB or
Thompson sampling), treating the stochasticity induced by A ∼ Dθ

as observation noise. This variant tests whether the rank-threshold
abstraction is necessary in practice.

In both cases, we set θ̂ to the best observed θ in exploration (by the cor-
responding reward), and then perform exploitation by sampling from G(θ̂)
for K objective queries. We also include the stronger exploitation variant in
which, for each expensive evaluation, we draw B′ ≫ 1 candidates from G(θ̂),
rank them by Sθ̂, and evaluate only the top candidate, thereby converting
proxy computation into fewer objective calls.

Ablations and evaluation metrics. We carry out the following abla-
tions, each repeated over multiple random seeds and multiple independently
drawn pools P :

• Inflation factor and top-set size: vary η via L = ηK and report per-
formance as a function of η at fixed K, as well as at fixed total budget
T = T0 +K.

20

• Generator quality: vary (B, τ) (and/or switch between GB,τ and G⋆),
and report empirical (δ, ρL(θ̂), gL(θ̂)) alongside final rank.

• Exploration–exploitation split: sweep T0 ∈ {0, ⌊T/4⌋, ⌊T/2⌋, ⌊3T/4⌋}
with K = T − T0, to test whether performance follows the anticipated
tradeoff between learning θ and sampling under θ̂.

• Proxy set and combiner family: vary the proxy set size M and com-
pare linear Sθ to constrained variants (e.g. sparse θ, nonnegative θ, or
normalized ∥θ∥1 = 1).

Primary outcomes are (i) the achieved best objective value f(Aout) and its
induced rank Rf (Aout) in P, and (ii) empirical curves of E[Rf (Aout)] ver-
sus (K, η). Secondary outcomes include estimates of ρL(θ) (precision@L),
calibration plots comparing gL(θ) to ρL(θ) over explored θ, and the realized
cost profile in proxy computations versus objective calls.

Baselines. We compare against (a) random search under the same objec-
tive budget; (b) proxy-only selection that fixes θ a priori (e.g. single best
metric) and exploits via G(θ); and (c) objective-only BO over architectures
when feasible (restricted to the same sampling access pattern), to clarify the
benefit of learning in θ-space coupled to a generator.

Together, these experiments are designed to test not merely raw accuracy
but the structural predictions of the framework: how performance varies with
η, how generator approximation quality manifests through (δ, ρL, gL), and
how exploration in θ mediates the effectiveness of exploitation under a fixed
expensive-query budget.

9 Discussion and limitations

On the realism of the (L, δ)-quantile generator assumption. Our
analysis isolates a single property of the generator, namely that it returns
proxy-high candidates with probability at least 1 − δ. This abstraction is
intentionally agnostic to the internal mechanism of G(θ), and it is therefore
simultaneously a strength and a limitation. On the one hand, it matches the
operational reality of many “generate–score–select” pipelines: if the generator
is implemented by drawing a finite batch and returning the best under (pos-
sibly noisy) Sθ, then one expects δ to decrease as the internal effort increases.
On the other hand, δ may depend strongly on θ, on the presence of proxy
ties, and on representational constraints of the sampler (e.g. mode collapse
or restricted support), so that a uniform bound Pr[A ∈ TopL(θ)] ≥ 1 − δ
for all θ can be unrealistic. A more faithful statement is a local quantile
guarantee on the subset of θ-values visited by the algorithm, or even an av-
erage guarantee in which δ is replaced by E[1{A /∈ TopL(θ)} | θ]. Since all

21

end-to-end bounds enter through the success probability p = gL(θ), we may
interpret such deviations as a direct deterioration of p, rather than as a fail-
ure of the framework. Nevertheless, if G(θ) sometimes returns candidates far
outside proxy top sets, the method can reduce to noisy random search; thus,
in practice one should instrument G to report diagnostics (empirical δ, di-
versity, and proxy-score quantiles) and treat generator tuning as a first-class
component.

Relaxing conditional uniformity inside the proxy top set. Theo-
rem 2 uses a conditional-uniformity hypothesis to make the order-statistics
calculation explicit. This assumption is not essential for the qualitative mes-
sage (improvement with K and degradation with L), but it does determine
the exact dependence on L. In the absence of uniformity, the correct quantity
is the conditional mass that Dθ assigns to the intersection TopL(θ)∩TopL(f);
Theorem 1 already exposes this via p

L
(θ). One may therefore replace the

uniform-rank model by a domination condition of the form

Pr
(
Rf (A) ≤ r

∣∣A ∈ TopL(θ) ∩ TopL(f)
)

≥ r

L
∀r ∈ {1, . . . , L},

which asserts that, conditional on being in the true top-L, the generator is
at least as biased toward smaller ranks as a uniform draw. Under such a
condition the expected best rank can only improve relative to Theorem 2.
Conversely, if the generator concentrates on a small subset of the intersec-
tion (e.g. repeatedly returning near-duplicates), then the effective number
of distinct “chances” is smaller than K, and the order-statistics benefit can
disappear. This suggests a practical modification: encourage high entropy
or explicit diversity in Dθ restricted to TopL(θ) (e.g. via rejection sampling
with novelty constraints), thereby making the conditional-uniformity approx-
imation more accurate and, empirically, increasing the “effective” X in the
binomial model.

Multi-objective constraints and feasibility. Many NAS settings im-
pose hard constraints (latency, memory, energy) or treat them as additional
objectives. Our framework can accommodate such requirements, but the ap-
propriate notion of “top-L” must be chosen with care. For hard constraints
defining a feasible set C ⊆ A, one may simply restrict attention to C by
defining fC(A) = f(A) for A ∈ C and fC(A) = −∞ otherwise, and similarly
compute TopL(θ) with respect to proxy scores on C. The resulting guaran-
tees then apply to the best feasible design found. For genuine multi-objective
optimization, one may replace scalar ranks Rf by Pareto ranks or by scalar-
izations fλ with user-chosen tradeoff λ; the latter fits our notation directly
and can be explored by augmenting θ (or coupling θ with λ) at the cost of a
larger search domain. An open technical question is whether one can obtain
bounds directly in terms of Pareto-optimality notions without committing

22

to a scalarization, since the probability of hitting the Pareto front may be
small even when scalarized optima are accessible.

Nonstationary or context-dependent objectives. The model assumes
a fixed objective f , yet in practice the evaluation protocol can drift (training
recipe changes, data distribution shifts, or stochasticity with heavy tails). If
the objective is nonstationary across rounds, gL(θ) becomes time-dependent,
and the exploration stage is more accurately modeled as an online learn-
ing problem with drifting rewards. Standard remedies (sliding-window or
discounted GP-UCB, change-point detection, or restarting) can be incorpo-
rated, but any guarantee must then degrade with a variation budget mea-
suring how fast ft changes. A related issue is context dependence: one may
wish to select architectures specialized to a context c (device, batch size,
dataset slice), in which case f(A; c) varies with c. Here one can treat c
as an additional input to the surrogate over θ (learning gL(θ; c)), but this
again increases sample complexity and highlights the importance of cheap,
informative proxies.

Implications for proxy design and calibration. Our bounds make ex-
plicit that performance hinges not on correlation between Sθ(A) and f(A)
globally, but on ρL(θ), i.e. precision within the proxy top set. This points
toward a design principle for training-free metrics: proxies should be con-
structed to maximize the attainable maxθ ρL(θ) for the relevant L, and to
make ρL(θ) sufficiently learnable from stochastic samples. In particular,
proxies that only separate mediocre architectures may have high global cor-
relation yet poor ρL at small L, which is precisely the regime exploited by
budgeted search. Moreover, Theorem 4 appeals to a calibration relation
between gL(θ) (the learnable success probability) and ρL(θ) (the quantity
appearing in the success lower bound); this calibration need not hold auto-
matically. Consequently, a practical proxy suite should be validated not only
by marginal statistics (e.g. Spearman correlation) but also by top-set calibra-
tion plots that compare estimated gL(θ) to empirically measured ρL(θ) over
a range of θ. Finally, proxy normalization and robustness matter: since Sθ

is linear, heavy-tailed or poorly scaled Mi can make optimization over θ ill-
conditioned, thereby increasing the effective exploration budget T0 required
to identify a good combiner.

Taken together, these limitations delineate the boundary of what can be
guaranteed under generator-only access. They also suggest concrete research
directions: designing generators with controllable δ and diversity, deriving
exploitation bounds under weaker (and verifiable) distributional assumptions
than conditional uniformity, and developing proxy families whose top-set
precision is both high and stably learnable from few expensive evaluations.

23

10 Conclusion

We studied a training-free NAS setting in which the architecture space A
is accessed only implicitly: we cannot enumerate candidates, and we cannot
compute A(θ) = argmaxA Sθ(A) even for a fixed proxy Sθ. Instead, the
algorithm interacts with A through two oracles: a candidate generator G(θ)
producing draws A ∼ Dθ, and an expensive objective oracle f(A). Within
this access model, we proposed an explicit separation of concerns: (i) proxy
combination via a parametric score Sθ(A) =

∑
i θiMi(A) built from training-

free metrics Mi, and (ii) approximate maximization via a quantile generator
that returns proxy-high candidates with high probability. This abstraction
matches a large class of practical “generate–score–select” pipelines while mak-
ing the approximation induced by the generator legible in the analysis.

Our main technical contribution is an end-to-end guarantee stated di-
rectly in terms of the returned architecture’s true rank Rf (Aout). The anal-
ysis rests on two quantities that are intrinsic to the implicit-search setting:
the proxy top-set TopL(θ) and its precision against the true objective, ρL(θ).
In particular, rather than appealing to global correlation between Sθ and f ,
the theory identifies ρL(θ) as the operative measure: the algorithm only ben-
efits from a proxy insofar as it concentrates probability mass on truly good
candidates within the region that the generator can reach. Given a genera-
tor guarantee of the form PrA∼Dθ

[A ∈ TopL(θ)] ≥ 1 − δ, we obtain a lower
bound on the probability gL(θ) of sampling a truly top-L architecture, and
therefore an explicit expression for the expected best rank after K exploita-
tion queries. When one sets L = ηK, the resulting bound exposes a clean
η-dependence: approximate maximization that inflates the proxy top-set by
a factor η yields a corresponding degradation in expected true rank that is
essentially linear in η, up to the success-probability term. Complementing
this, we proved a worst-case lower bound showing that Ω(η) dependence is
unavoidable for any method constrained to generator-only access, even if
the generator were perfect in the sense of sampling uniformly from TopL(θ).
Thus, within the adopted access model, the analysis is not merely sufficient
but qualitatively sharp.

A conceptual message is that “training-free NAS with guarantees” is pos-
sible in implicit spaces, but only after committing to the correct interface
between optimization and generation. Theorems phrased in terms of gL(θ),
ρL(θ), and δ isolate exactly what must be measured or improved to obtain
better empirical performance: one may improve the proxy suite (increase
attainable ρL), improve the generator (decrease δ and increase diversity
within proxy-high regions), or increase exploitation budget K. Moreover,
the exploration–exploitation decomposition clarifies where expensive evalu-
ations are spent: exploration is used to find a parameter θ̂ with large suc-
cess probability, while exploitation converts this probability into a best-of-K
guarantee through order statistics.

24

Several open problems remain. First, our model of learnability assumes
access (directly or indirectly) to rank-threshold feedback, which is analyti-
cally convenient but not always operationally available. A principled theory
for learning θ from real-valued f(A) under the two-stage sampling process
A ∼ Dθ, possibly with heavy-tailed noise and heteroscedasticity induced by
the generator, would substantially broaden applicability. Second, the quan-
tile generator assumption treats Dθ as exogenous, whereas in practice G(θ) is
itself trained, tuned, or adapted. An appealing direction is a joint theory in
which the generator is an agent with its own sample complexity and failure
modes, so that δ and the conditional mass on TopL(θ) ∩ TopL(f) become
controllable quantities rather than fixed constants.

Third, the exploitation analysis is most transparent under conditional-
uniformity (or related domination conditions). Developing verifiable condi-
tions under which weaker diversity assumptions suffice—for example, bounds
in terms of an effective sample size or a mixing time of a Markov-chain gen-
erator restricted to TopL(θ)—would help bridge theory to modern samplers
that are neither uniform nor i.i.d. Relatedly, it is natural to allow the proxy
top-size L to be adaptive: early exploitation could use larger L (higher
coverage) and later exploitation smaller L (higher precision), suggesting an
η-schedule optimized for the remaining budget and empirically observed suc-
cess rates. A corresponding analysis would connect our static L = ηK choice
to sequential design.

Fourth, practical NAS pipelines often include additional costs beyond
objective queries: proxy computation time, generator sampling time, and
wall-clock constraints that depend on architecture size. An explicit multi-
budget theory—in which the algorithm chooses how many generator sam-
ples to draw per objective evaluation, and where rejection/selection is itself
costly—would yield guidance for realistic settings where compute is domi-
nated by generation or by proxy evaluation. Finally, transferring information
across runs (datasets, devices, training recipes) is largely unaddressed in our
framework. If θ (or the proxy suite) can be warm-started from prior tasks,
then the exploration budget T0 may be amortized, but doing so rigorously
requires a theory of task similarity for ρL(θ) or gL(θ) under distribution shift.

In summary, the present work formalizes a tractable interface for training-
free NAS in implicit architecture spaces and proves rank-based guarantees
that make approximation costs explicit. The framework highlights a small set
of measurable quantities—top-set precision, generator quantile quality, and
effective diversity—that determine performance. We view the main value
of these guarantees not as a claim of universal optimality, but as a scaffold
on which richer models of generators, proxies, and evaluation protocols can
be built while preserving end-to-end, budget-aware statements about the
quality of the architecture ultimately returned.

25

	Introduction
	Background and related work
	Problem setup and models
	ApproxRoBoT-GEN: exploration–exploitation with generator access
	Main guarantees I (exploitation): best-of-K ranks under quantile generators
	Main guarantees II (exploration): learning theta under stochastic actions
	Lower bounds and tightness: why linear eta is unavoidable
	Experimental plan: evaluating ApproxRoBoT-GEN under no-enumeration protocols
	Discussion and limitations
	Conclusion

